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Abstract

This paper presents a framework for optimization-based informative
planning and control with applications to adaptive sampling with AUVs
under sea ice. A spatial model of the information of interest is approxi-
mated as a Gaussian process (GP), which is learned online from in-situ
sensor data. The planner uses a two-layer model predictive control (MPC)
scheme on a low-fidelity model of the vehicle for exploration and exploita-
tion of the GP, subject to safety constraints. The planner trajectories
are then tracked using a constant bearing based guidance law, aligning
the desired orientation of the AUV toward the planned trajectory. The
proposed framework enables the vehicle to plan and replan its mission as
new data is obtained, while ensuring tracking of the planned trajectories
and safety constraint satisfaction. Simulation results of a case study are
presented for demonstrating the performance of the proposed method. An
AUV is tasked with finding and tracking concentrations of marine biomass
in 3D under sea ice while avoiding collisions.

1 Introduction

There has recently been an increasing interest in conducting ocean research
in polar regions and under sea ice. Autonomous underwater vehicles (AUVs)
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provide unique mapping capabilities for spatial coverage and resolution, and
are able to operate untethered with limited human intervention over relatively
large time scales. Operating under sea ice imposes demanding requirements to
the system due to reduced capabilities of the navigation sensors, limited com-
munication and harsh and unstructured environments [1]. The vehicle might
encounter drifting submerged ice features, such as ice ridges, ice keels and ice-
bergs, which impose a risk of collision. Collisions with ice may damage the
thrusters, antenna and/or the hull of the vehicle, and in the worst case, the
vehicle might get stuck under the ice.

Also, the biological and oceanographic phenomena of interest in these oceans
are highly dependent on location and time, that is, spatial and temporal scales.
Due to the size of the domain and the limited time of operations, it is not feasible
to sample everything in detail. Relying purely on pre-programmed missions
based on prior data may lead to both unsafe and ineffective data acquisition.

Adaptive sampling for mobile robotics is an active research area. [2] use
a chance-constrained Markov decision process formulation for calculating an
optimal trajectory for maximizing predictions from a GP for AUVs. [3] and [4]
use a GP discretized on a grid for adaptive sampling for AUVs, using a greedy
approach for choosing which grid point to sample next.

A commonly used method in planning is MPC [5], where a model of the
system is used to predict the future states over a finite time horizon, and an op-
timal sequence of control inputs is computed by solving a constrained finite time
optimization problem by minimizing a cost function. Advantages of such online
optimization-based methods are that they use updated information in each it-
eration, and allow for formulating safety and input constraints, and checking if
they are satisfied for future predictions. [6] presents an MPC approach to the
information filter for informative path planning.

For complex planning and control problems, it might be too computation-
ally demanding to solve the whole problem within one optimization program
while satisfying sampling time requirements. To alleviate this issue, a common
approach is to use a two-layer approach, as done in [7] for motion planning, and
in [8] for planner-tracker design.

This paper proposes a framework for optimization-based informative plan-
ning and control with applications to adaptive sampling of AUVs under sea
ice. The planner learns a spatial model of the information of interest (IOI) on-
line using a GP from in-situ payload sensor data. The planner then calculates
an optimal planner trajectory using two-layer kinematic MPC based on a cost
function expressed in terms of exploitation and exploration of the GP. Safety
constraints may be included in both layers. The planner trajectories are then
tracked using a constant bearing guidance law. This will increase safety and
efficiency of adaptive AUV operations.

The paper is organized as follows: In Section 2, preliminaries on mathemat-
ical modeling of AUVs and GPs are given. Section 3 presents the proposed
framework. Simulation results are given in Section 4. Section 5 concludes the
paper.
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2 Preliminaries

2.1 Mathematical modeling an underwater vehicle

The generalized position of an AUV in the Earth-fixed North-East-Down (NED)
reference frame {n} is given by η = [x, y, z, φ, θ, ψ]>, and the velocity of an
AUV in the body-fixed reference frame {b} is given by ν = [u, v, w, p, q, r]>.
The kinematic and kinetic equations of motion for the vehicle may be described
by [9]

η̇ = J(η)ν, (1a)

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ , (1b)

where J(η) is a matrix transforming the velocities from {b} to {n}, M =
MRB+MA is the rigid-body and added mass inertia matrix, C(ν) = CRB(ν)+
CA(ν) is the rigid-body and added mass Coriolis and centripetal matrix, D(ν)
is the damping matrix, g(η) is the hydrostatic restoring force vector, and τ is the
body-fixed propulsion force/torque vector generated by the vehicle’s actuators.
For more information, the reader is referred to [9].

2.2 Gaussian process

A GP is a random variable over functions with the property that any collection
of point evaluations is a random variable with a multivariate normal distribution
[10]. They are fully specified by the mean value at every point in the domain,
denoted as the mean function m(x), and the covariance between each pair of
points in the domain, denoted as the covariance function c(x,x′), for two points
x and x′.

Formally, g(x) ∼ GP(m(x), c(x,x′)) denotes that g(x) is a GP with mean
function m(x) and covariance function c(x,x′), so that m(x) = E[g(x)] and
c(x,x′) = E[(g(x)−m(x))(g(x′)−m(x′))].

GPs are used as a Bayesian, nonparametric regression model by choosing a
GP as a prior distribution over the unknown function and conditioning the GP
on the data. Under a Gaussian noise assumption, the posterior distribution over
the unknown function (that is, the prior GP conditioned on the data) is also a
GP, whose mean and covariance are known analytically. Since GPs provide an
approach to modeling spatially and temporally correlated data with probabilistic
uncertainties, GP regression is a popular model for environmental sampling
applications [11]. [12] evaluates and compares the performance of different 3D
spatial modeling and interpolation methods for the marine pelagic environment,
and conclude that GP regression is the preferred method.

GP regression begins with a dataset (x(i), y(i)) with n datapoints, for i =
1, ...n, where y(i) is the ith measurement in y of the underlying function g at
the point x(i) corrupted by Gaussian noise with variance σ2

n, and the selection
of a kernel function c(x,x′) which is used as the covariance function of the GP
prior. The GP model’s prediction of the underlying process g at a test point
x∗ is the evaluation of the posterior GP at that point. This yields a predictive
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distribution, which is a Gaussian distribution with mean ḡ∗ and variance V[g∗]
given by [10]

ḡ∗ = c>∗
(
Σ + σ2

nI
)−1

y, (2)

V[g∗] = c(x∗,x∗)− c>∗
(
Σ + σ2

nI
)
c∗, (3)

where Σ is the matrix with elements (Σ)ij = c(x(i),x(j)), and c∗ is the vector
with elements (c∗)i = c(x∗,x

(i)). The predictive mean corresponds to the
“predicted value” of the GP regression model, while the predictive variance
provides a quantified uncertainty about the accuracy of the predictive mean.

The quality of the regression is determined to a great extent by the kernel
function. To see this, consider that the predictive mean is simply a weighted sum

of kernel functions evaluated at the data points. If we let α = (Σ + σ2
nI)
−1
y,

then

ḡ∗ =

n∑
i=1

αic(x∗,x
(i)),

where αi is the ith element of α. A similar expression exists for the predictive
variance. From this expression, it is clear that the kernel function determines
most of the mathematical properties of the regression function, such as continu-
ity, stationarity, periodicity, and correlation lengths in each dimension. Choos-
ing a kernel function that is suitable for the underlying process is therefore a
critical part of the model selection.

The most common choice of kernel function for GP regression modeling is
the emphisometric squared exponential kernel

c(x,x′) = σ2 exp

(
−‖x− x

′‖2

2`2

)
,

where ‖·‖ denotes the Euclidean norm. The scalars σ2 and ` are kernel hy-
perparameters: σ2 determines the magnitude of the predictive variance, and `
determines the lengthscale, or correlation length, of the predictions. This kernel
function forces the lengthscale in each dimension to be identical, which is the
reason for the name “isometric”.

3 Optimization-based informative planning and
control

We propose a framework for optimization-based informative planning and con-
trol. The framework may be separated into the following components:

A) Spatial modeling layer

B) Long-term planning layer

C) Short-term planning layer
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Figure 1: Block diagram of the proposed framework. The dotted red lines
highlight the main focus of this paper.

D) Guidance and control layer

This framework should enable informative planning and control in terms of
exploration and exploitation of a GP, while satisfying safety constraints. Figure
1 shows the structure of the proposed framework.

3.1 Spatial modeling layer

At this layer, the AUV continuously records new measurements, and updates
its GP-based spatial model of the IOI. The restriction that the lengthscale shall
be identical in each dimension is a serious limitation for modeling variables
across the water column, as the correlation length in the horizontal directions
are typically significantly different from the correlation length in the vertical
direction, often differing by an order of magnitude or more. One solution,
considered in [3], is to rescale the data so that the correlation length in each
dimension is similar. Instead of doing this, we select a kernel function which
allows each dimension to have its own lengthscale. Specifically, we use a squared-
exponential with automatic relevance determination (ARD),

c(x,x′) = σ2 exp

(
−

d∑
i=1

(xi − x′i)
2

2`2i

)
,
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where d is the number of input dimensions considered, and `i is the lengthscale
hyperparameter for input dimension i. Differences in the lengthscales between
input dimensions can be handled by a suitable choice for the `i, without needing
to rescale the data.

While the kernel hyperparameters may be chosen using prior knowledge or
heuristics, we instead use a data-driven approach, which learns suitable hyper-
parameter values by optimizing the marginal likelihood

p(y(1), . . . , y(n)|σ2, `1, . . . , `n,x
(1), . . . ,x(n)). (4)

That is, the probability of observing the specific values of the y(i) at the input
points x(i) with respect to the hyperparameters for n datapoints. In addition to
improving the quality of the GP regression, the hyperparameters learned in this
fashion also provide some insight into the underlying process. For instance, the
optimal lengthscale parameters in the North, East and depth directions give an
estimate of how frequently the levels of marine biomass in the water fluctuate
in each of those directions.

3.2 Long-term planning layer

The long-term planner (LTP) updates the AUV’s plan as new information is
obtained in order to maximize the efficiency of the mission objective. Safety
constraints with low requirements to response time and sampling rate, such as
prohibited areas and limited time and energy, may be included in this layer.

An MPC scheme is used for optimizing the planner trajectories balancing
exploration and exploitation of the GP. An exploratory strategy is most efficient
when little or no prior information about the environment is available. As
more information is gathered, it may be advantageous to gradually shift over
to an exploitation-based strategy. Exploration of a GP model is addressed by
maximization of the predictive variance, see (3), while exploitation is addressed
by utilizing the predictive means, see (2), in the cost function.

Performing regressions on the GP over candidate trajectories is increasingly
computationally expensive to do as the number of training points increase. In
order to alleviate the issue of the local optima problem of optimization, a long
planning horizon is needed, which further complicates the computations. There-
fore, the LTP will update at a relatively slow sampling rate. In order to reduce
the computational complexity of the planner, it is proposed that the planner
uses a low-fidelity version of the vehicle model.

For the low-fidelity model used in the planner, we propose to use only the
kinematics (1a) assuming self-stabilization in roll. Moreover, due to the under-
actuated nature of conventional AUVs, the sway and heave velocity v and w are
not considered controllable in the planner. This means that it only has direct
control over the surge speed, pitch rate and yaw rate. We define the plan-
ner states as η̌ , [x̌, y̌, ž, θ̌, ψ̌]> with its corresponding planning input vector
ν̌ , [ǔ, q̌, ř]>, where the planning variables are defined similarly as in Section
II.A. Please note that the check notation (̌·) denote planner variables, describing
the reference trajectory to be tracked by AUV.
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The proposed GP-based LTP is formulated as

min
ν̌ltp

N ltp∑
k=1

−r>k|tQrk|t + (ν̌ltp
k|t)
>Rν̌ltp

k|t

s.t. η̌ltp
k+1|t = f̌(η̌ltp

k|t, ν̌
ltp
k|t, T

ltp),

η̌ltp
k|t ∈ X̌

ltp, k ∈ {1, ..., N ltp}

ν̌ltp
k|t ∈ Ǔ ,

η̌ltp
0|t = η̌(t)

(5)

where η̌ltp
k|t is the LTP state at step k from time t, X̌ ltp is the LTP state con-

straints, ν̌ltp
k|t is the LTP input, Ǔ is the planner input constraints, f̌ is the

discretized low-fidelity vehicle model, N ltp is the number of prediction steps,
T ltp is the sampling time, and Q � 0 and R � 0 are weighting matrices.
Moreover, rk|t , [V[g∗(η̌

ltp
k|t)], ḡ∗(η̌

ltp
k|t), ]

> represents the reward (negative cost)

characterized by the predictive variance (exploration) and the predictive mean

(exploitation) in the GP at η̌ltp
k|t, respectively.

The first term in the MPC represents the reward characterized by the balance
between maximization of variance and gradient seeking, while the last term
penalizes the squared norm of the planner input, weighted by the matrices
Q and R, respectively. Thus, the MPC planner will balance exploration and
exploitation of the GP while minimizing effort and adhering to state and input
constraints.

3.3 Short-term planning layer

The short-term planner (STP) receives and monitors the plan suggested by
the LTP. At a high sampling rate, the planner trajectory is updated locally in
a minimally invasive way. We propose to use an MPC scheme with a short
prediction horizon, minimizing the squared norm of the difference between the
STP input and the LTP input, subject to the STP safety constraints.

The proposed STP is given by

min
ν̌stp

Nstp∑
k=1

(ν̌stp
k|t − ν̌

ltp
p|t)
>Γ(ν̌stp

k|t − ν̌
ltp
p|t)

s.t. η̌stp
k+1|t = f̌(η̌stp

k|t , ν̌
stp
k|t , T

stp),

η̌stp
k|t ∈ X̌

stp, k ∈ {1, ..., Nstp}

ν̌stp
k|t ∈ Ǔ ,

η̌stp
0|t = η̌(t)

(6)

where η̌stp
k|t is the STP state at step k from time t, X̌ stp is the STP state con-

straints, ν̌stp
k|t is the STP input, Nstp is the number of prediction steps in the
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STP, T stp is the STP sampling time, and Γ � 0 is a weighting matrix. More-
over, the index p , dk T stp

T ltp e, where d·e denotes the ceiling function operator,
accounts for the different sampling times between the LTP and the STP, such
that the the input velocities ν̌stp and ν̌ltp are compared at the same points in
time.

Remark 1: We have omitted the superscript on the “real” planner state
η̌(t), as this is a continuous signal without any predictions (whereas the LTP
and STP states are discrete signals). This signal is calculated from ˙̌η(t) =
f̌ c(η̌(t), ν̌stp(t)), where f̌ c is the continuous-time low-fidelity vehicle model,
and ν̌stp(t) is the STP input at time t.

Remark 2: The state constraints of the LTP and the STP do not need to
be equal to each other. For example, state constraints with low requirements to
sampling rate, such as battery and time limitations, do not need to be included
in the STP. Thus, we typically have that X̌ stp ⊆ X̌ ltp. This will reduce the
computational complexity of the STP.

Remark 3: Both optimization programs (5) and (6) are non-convex due to
the nonlinear nature of AUV dynamics. Nonlinear solvers, e.g. IPOPT [16] are
required to solve (5) and (6).

3.4 Guidance and control layer

The low-level control objective of the AUV is to track the trajectory suggested
by the planning layer, that is,

lim
t→∞

[p(t)− p̌(t)] = 0, (7)

where p , [x, y, z]> is the position of the AUV and p̌ , [x̌, y̌, ž]> is the planner
position. Motivated by interceptor-target guidance laws (commonly used for
air-to-air missiles), we propose to use a constant bearing (CB) based guidance
law for tracking the planner trajectory. We denote the AUV as the interceptor,
and the planner position as the target.

The goal of CB guidance it to reduce the line-of-sight (LOS) vector between
the interceptor and the target to zero, such that the interceptor closes on a
collision course [9]. The desired linear velocity vector for the AUV in {n} is
given by [9]

vnd = v̌n − Ua,max
p̃√

p̃>p̃+ ∆2
p̃

, (8)

where p̃ , p − p̌ is the position error, v̌n is the linear velocity vector for the
planner in {n}, Ua,max is the maximum approach speed toward the target, and
∆p̃ is a speed tuning parameter.

The desired speed, pitch and heading are then found according to Ud = ‖vnd‖,
θd = − arctan

(
vn
d (3)

‖vn
d (1:2)‖

)
+ κi

∫ t

0
p̃(3)dτ and ψd = arctan

(
vn
d (2)
vn
d (1)

)
, respectively,

where κi is an integral gain. These reference signals are then sent as input to a
low-level control system. It can be shown that this gives uniform convergence
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of p to p̌ [9]. Note that integral action is added to the desired pitch angle for
counteracting the influence of non-zero slip angles. The same may be done for
the desired heading angle.

4 Results and discussion

This Section presents the case study and simulation setup and discusses the
results.

4.1 Case study

For demonstrating the performance of the proposed framework, we present a
case study where an AUV is tasked with finding and tracking concentrations of
marine biomass in 3D under sea ice. During its operation, it must avoid collisions
with the ice. Chlorophyll a (Chla) is indicative of primary productivity and
phytoplankton concentration [3], and is used as a proxy for marine biomass.
We assume that the AUV is able to measure the Chla levels using onboard
sensors.

4.2 Safety constraints

Without loss of generality, we consider the following safety constraints:

1. Ice altitude constraint. The AUV should not be closer to the ice surface
than a certain threshold:

−žk|t + tice + aice,max ≤ 0,

where žk|t is the planned depth, the ice thickness is found from tice =
z − aice, aice is the measured ice altitude (defined as the vertical distance
between the AUV and the ice) and aice,max is the maximum allowed ice
altitude.

2. Collision avoidance constraint. The AUV should not collide with ice ridges
(modeled as ellipsoids):

(p̌k|t − po,i)>P o,i(p̌k|t − po,i) ≥ 1,

where po,i and P o,i are the position and shape matrix of the elliptic ice
ridge i, respectively.

Both constraints are added in both the LTP and the STP, such that X̌ ltp ≡
X̌ stp. Ice altitude may be measured by an upwards-looking Doppler velocity log
(DVL). Ice ridges may be detected by onboard sensors using sonars and optics.

Remark 4: Ellipsoids may be a poor representation of complex ice structures
such as ice ice ridges. We argue that ellipsoids may be used to overapproximate
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these structures, thus adding a safety margin to the collision avoidance con-
straint.

Remark 5: [17] develop dynamic safety envelopes for underwater vehicles,
that is, a three-dimensional spatial area around the vehicle that that serves as a
virtual protective barrier against collision, using information about the vehicle
velocity, the probability of acoustic sensor failure and a time to collision risk
indicator. Developing dynamic safety envelopes for use in this framework is of
interest for further work, as this may increase safety.

Remark 6: There are other operational challenges which may be addressed
through safety constraints, such as battery and time limitations, reduced navi-
gational capabilities, surfacing limitations and rapidly-changing environmental
conditions. This will be refined in further work.

4.3 Simulation setup

The implemented dynamics of the vehicle are based on the REMUS-100 AUV
[13]. Proportional-integral-derivative (PID) controllers for speed, pitch and
heading were implemented for tracking the signals produced by the guidance
system. The MPC-based planners were implemented in MATLAB/Simulink
using CasADi [15] with the IPOPT [16] solver.

The ice data was synthesized using the Automatic Terrain Generator toolbox
[14] in MATLAB with initial depth, initial roughness and roughness roughness
of h0 = 2, r0 = 2 and rr = 2 meters, respectively. Two ice ridge are included
and placed underneath the ice, modeled as ellipsoids with positions po,1 =
[100, 100, 0] and po,2 = [150, 200, 0] meters, and shape matrices P o,1 = P o,2 =
diag([1/752, 1/7.52, 1/152]) (75 meters long, 7.5 meters wide, 15 meters deep),
respectively. The ice considered in this paper is stationary, that is, non-drifting
and non-deforming.

The maximum ice altitude is set to aice,max = 5 meters. The guidance
parameters are set to Ua,max = 1 m/s, ∆p̃ = 5 meters and κi = 0.003.

As navigation is not the main focus of this paper, it is assumed that all states
of the system (1) are fully observable with no noise or bias in the simulations.
Moreover, the position and shape of the elliptic ice ridges, as well as the altitude,
are assumed fully observable.

4.4 Chla distribution and spatial model implementation

For simplicity and without loss of generality, the simulated spatial distribution
of Chla in mg/m3 is given by the sum of three exponential functions

Chla(x, y, z) =

3∑
i=1

e
(x−xc,i)

2

`2c,x
+

(y−yc,i)
2

`2c,y
+

(z−zc,i)
2

`2c,z ,

where [xc,1, yc,1, zc,1] = [250, 150, 12], [xc,2, yc,2, zc,2] = [150, 250, 8] and [xc,3, yc,3, zc,3] =
[250, 250, 10] meters are the local maxima, and [`c,x, `c,y, `c,z] = [75, 75, 4] me-
ters are the lengthscales. Gaussian zero-mean noise with standard deviation
σy = 0.001 mg/m3 are added to the Chla measurements.
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Table 1: State and input constraints in the planner. LB: lower bound. UP:
upper bound.

x̌ y̌ ž θ̌ ψ̌ ǔ q̌ ř
LB 0 0 0 −15 −∞ 2 −8.6 −8.6
UP 300 300 30 15 ∞ 2 8.6 8.6

[m] [m] [m] [◦] [◦] [m/s] [◦/s] [◦/s]

The hyperparameters for the squared-exponential ARD kernel were learned
by optimizing the marginal likelihood as shown in (4) from random samples in
the above distribution. The learned values for the hyperparameters are `x =
`y = 125, `z = 6.3 and σ = 0.175 meters.

A prior mean Chla0(x, y, z) = e
(x−x0)2

`20,x
+

(y−y0)2

`20,y
+

(z−z0)2

`20,z with [x0, y0, z0] =
[150, 150, 10] and [`0,x, `0,y, `0,z] = [125, 125, 6.3] was used in the GP predictions
for guiding the vehicle’s search towards the middle of the map.

4.5 Planner implementation

The planners were implemented with sampling times and predictions steps
T ltp = 2 seconds, T stp = 0.2 seconds, N ltp = 20 and Nstp = 10, respectively.
The cost matrices in the LTP and STP are given as

Q =

[
103 0
0 5n0.7

]
,R =

1 0 0
0 1 0
0 0 1

 ,Γ =

1 0 0
0 1 0
0 0 1

 ,
where n = n(t) is the number of Chla measurements. A new Chla measure-

ment is taken every 5 seconds. The implemented state and input constraints in
the planner are given in Table 1.

4.6 Simulation results

The simulations were performed using MATLAB/Simulink on a MacBook Pro
with an Intel Core i7 CPU and 16GB RAM. Figure 2 shows the trajectory of
the AUV under the ice. Figure 3 shows the North, East and depth trajectories
of the AUV.

As seen in Figure 2, the AUV is able to find and track the Chla con-
centrations. The trajectory of the AUV is highly dependent of the explo-
ration/exploitation trade-off reflected in the tuning of Q. The AUV satisfies the
ice altitude constraint, and does not collide with the ice ridges. The guidance
system and low-level control system are able to track the trajectory suggested
by the planner.

The computation time for the LTP ranges from 0.5 second to 5 seconds
depending on the number of measurements used in the GP predictions. The
computation time for the STP remains fairly constant at 0.1 seconds.
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Figure 2: Trajectory of the AUV under the ice. The green structure represents
the isosurface with value 1.6 mg/m3 of the Chla distribution. The gray ellipsoids
represent the ice ridges. The black star represents the initial position of the
AUV. Please note that the AUV dives around the corner of the first obstacle.
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Figure 3: North, East and depth trajectories of the AUV.
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Remark 7: An ice following altitude control behavior is achieved when the ice
altitude constraint is active. This may happen when the spatial model predicts
that there is a high marine biomass concentration close to the ice surface, and/or
the area close to the ice surface is unexplored.

Remark 8: This framework is general and allows for modularity. For in-
stance, one may add more layers of planners with different prediction horizons.
At the higher levels, long prediction horizons help mitigate the local minima
problem in optimization, while at the lower levels, short prediction horizons
incorporates local information at a high rate. Moreover, additional safety con-
straints may be added. Using supervisory switched control to switch between
different mission objectives is also of interest. The supervisor may monitor the
process in the background, and suggest new mission objectives, e.g. by switch-
ing between different planners, or changing parameters in the planners, such as
the cost functions and/or the constraints. This is topic for further work.

5 Conclusion

The proposed optimization-based framework for informative planning and con-
trol of AUVs integrates spatial modeling and planning using GPs and kinematic
MPC at the higher level, with guidance and control at the lower level. New infor-
mation is incorporated in each planning iteration, used for both GP regression
and constraint satisfaction over a finite time horizon, thereby increasing safety
and efficiency of adaptive AUV missions. The framework performed well in
a simulated case study, where an AUV was tasked with finding and tracking
concentrations of marine biomass in 3D under sea ice while satisfying safety
constraints. This framework may be used for other AUV applications or other
types of autonomous vehicles by changing the relevant parameters and dynamic
models of the problem, and adding other safety constraints.
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