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Abstract—As one of the most relevant data preprocessing
techniques, discretization has played an important role in data
mining, which is widely applied in industrial control. It can
transform continuous features to discrete ones, thus improving
the efficiency of data processing and adapting to learning
algorithms that require discrete data as inputs. However, tradi-
tional discretization methods have shortcomings, such as highly
complex programs, excessive numbers of intervals obtained, and
significant loss of necessary information in the preprocessing
of high-resolution remote sensing big data. Moreover, the large
number of mixed pixels in the image is a primary reason for the
uncertainty of remote sensing information systems, and current
discretization methods are based on the assumption that one pixel
only corresponds to the spectral information of a single object,
without considering the influence of the uncertainty caused by
a mixed spectrum, which causes the classification accuracy to
drop after discretization. We propose a discretization method for
high-resolution remote sensing big data. We determine the mem-
bership degree of each pixel in training samples through linear
decomposition, and establish the individual fitness function based
on a fuzzy rough model. An adaptive genetic algorithm selects
discrete breakpoints, and a MapReduce framework calculates
the individual fitness of the population in parallel, to obtain the
optimal discretization scheme in the minimum time. Our method
is compared to the best state-of-the-art discretization algorithms
on the authentic remote sensing datasets. Experiments verified
the effectiveness of the proposed method, which provides strong
support for the subsequent processing of images.

Index Terms—Adaptive genetic algorithm, Discretization,
Fuzzy rough model, MapReduce framework, Mixed pixels.

I. INTRODUCTION

CLASSIFICATION is always a concern in remote sensing
image processing [1]. Although high-resolution remote

sensing data can provide more detailed spectrally continuous
spatial information about the land surface than low- and
medium-resolution data [2], this rich information brings huge
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space-time overhead and greatly increases the complexity of
data analysis [3]. In addition, the use of all possible spectral
information in the classification process of high-resolution
remote sensing images will lead to information redundan-
cy and weaken the generalization ability of the learning
model, thus significantly reducing the overall accuracy [4].
Discretization plays an important role in data mining as used
in industrial control [5]. It can transform continuous features
in spectral information to discrete ones that are closer to the
knowledge layer representation, reducing system overhead,
removing redundant information, and enhancing the robustness
of learning algorithms [6]. Therefore, feature discretization is
a key step for the success of high-resolution remote sensing
image processing [7]. However, in the feature discretization of
high-resolution remote sensing image, due to the large number
of different values on each band, the complex correlations
among multiple bands, and the unknown distribution of pixel
categories, making the selection of breakpoints extremely diffi-
cult [7]. On the other hand, due to the addition of more detailed
information in high-resolution remote sensing images, gaps
and shadows between objects that are neglected and weak-
ened in low- and medium-resolution images are enhanced,
boundaries are weakened, and intra-class heterogeneity is
enhanced, which greatly increases the proportion of mixed
pixels [8]. The existence of a large number of mixed pixels
makes high-resolution remote sensing data highly complex
and uncertain, which greatly increases the difficulty of feature
discretization [9].

Genetic algorithm is a mature global optimization algorithm,
which can achieve good results on many complex remote
sensing processing problems [10], [11]. A genetic algorithm
was used for parameter optimization and feature selection
of support vector machines (SVM), which improved the
classification accuracy of RADARSAT-2 (RS2) images and
Thaichote (THEOS) images [10]. The genetic algorithms have
been applied for simultaneous refinement of multiple disparity
maps, which effectively solved the problem of dense stereo
image matching in remote sensing images [11]. On the other
hand, fuzzy sets and rough sets, as mathematical tools to solve
uncertainty problems, are also widely used in the analysis
of remote sensing data [12], [13]. Deep learning technology
and fuzzy clustering method were combined to deal with
the uncertainty of high-resolution remote sensing data, which
efficiently achieved the broad-area thematic and contextual
understanding of the geographic land cover [12]. Rough set
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theory was used to encode domain knowledge to reform the
structure of granular neural network, which enhanced the
performance of progressive granular neural network (PGNN)
model for the classification of remote sensing images [13].
The fuzzy rough set is considered to be a more powerful
uncertainty analysis model for big data than either fuzzy
or rough sets [14]–[19]. This model introduces a fuzzy set
on the basis of a rough set, and describes the relationship
between the pixels by a similarity relation instead of the
equivalent relation of a rough set. Thus, it deals more flexibly
with uncertain information introduced by mixed pixels. In
our previous research work [20], we used genetic algorithm
to optimize the multidimensional data discretization scheme,
and determined the crossover segments and mutation points
of the discretization scheme to be optimized through Q-
learning mechanism, and achieved good discretization results.
However, this method uses conventional genetic operations on
other individuals in the population, so it is difficult to obtain
high-quality individuals to cross with the discretization scheme
to be optimized, which reduces search efficiency. In addition,
the fitness function of this method is based on rough set model,
which is difficult to describe the fuzziness caused by mixed
pixels. Therefore, by establishing fitness function based on
fuzzy rough model in adaptive genetic algorithm to search
discrete breakpoints, more accurate classification results can
be obtained.

Discretization can be considered supervised or unsupervised
depending on whether the data contain category informa-
tion [5]. Supervised discretization makes full use of labels
and target attribute information because the calculations are
based on class information [21]. Therefore, it is easier to find
the appropriate locations of breakpoints than in unsupervised
discretization [22]–[24]. The method of discretization based
on information entropy was used to rank label data, which
improved the sensitivity of homogeneity of sample ranking in
the set [25]. However, using this standard, only one attribute at
a time can be partitioned separately in multi-feature data, and
the compatibility of the information system after discretization
cannot be guaranteed. Particle swarm optimization (PSO)
was used for discretization-based feature selection, which
could generate a stronger and more compact representation
in high-dimensional datasets to achieve better classification
performance [26]. However, this representation is static, and
the number of possible solutions increases exponentially with
the size of the feature set, making the search space larger.
The method can only select one discrete breakpoint at a
time for each feature, and its performance on data requiring
discretization into multiple intervals has not been verified.
A discretization method was proposed to classify remote
sensing image features [27]. The method first defines the
uncertainty of the decision system based on the equivalence
class model of the rough set. Using an information entropy
criterion, it then selects breakpoints by controlling the change
of the uncertainty under a given threshold. Since this method
considers the intrinsic relationship between multiple attributes
during discretization, it achieved a high classification accuracy
on SPOT-5 (Systeme Probatoire d’Observation de la Terre-5)
images. However, it only considers the stability of the interval,

and not that of adjacent intervals, so it cannot effectively
filter the noise interval, and it will produce more intervals.
A discretization method based on Cramers V-test (CVD) has
been applied for feature selection during remote sensing image
classification [28]. Discrete features generated by this method
on QuickBird and PHI (Pushbroom Hyperspectral Imagery)
images could improve the performance of J48 decision tree
and naive Bayes classifiers. However, as in the method re-
ported in Ref [25], the intrinsic correlation between multiple
attributes was not considered, and it was difficult to ensure the
compatibility of the system after discretization.

The above methods assume that only one pixel corresponds
to the spectral information of a single object. In practice, the
ground unit covered by one pixel usually contains more than
one object type. Under linear spectral model, the spectral value
of each pixel is derived from the linear combination of the
reflectance of all objects within the pixel and the coefficient
weighted by their proportions of the pixel area [9]. In remote
sensing image feature discretization, neglecting the influence
of the uncertainty caused by the mixed spectrum will cause
errors in the data and reduce the classification accuracy after
discretization [29]. With the advantage of rough set in dealing
with incomplete information, the discretization method of
combining rough set and genetic algorithm [20] can make full
use of the powerful search ability and the known knowledge
base without any prior information to obtain the minimum
number of breakpoints while ensuring that the compatibility
of the system is not destroyed. However, the equivalent class
of rough set is an ordinary set, which is difficult to describe
the fuzzy components in the data, and the accuracy obtained in
the discretization of mixed spectrum is low. In addition, using
genetic algorithm to determine the discrete breakpoints has the
following challenges: (1) due to the large number of different
values on each band, it is difficult to generate high-quality
initial population which directly affects the performance of
the algorithm; (2) the time cost increases sharply with the
expansion of population size; (3) the convergence speed is
slow in the processing of big data, and the unreasonable
parameter setting is easy to make the search space fall into
local optimum.

In view of the above problems, we propose a discretization
method called the fuzzy-rough-set-based genetic algorithm
(FRSGA) for high-resolution satellite remote sensing of big
data. Our innovation points to the article are as follows: (1)
different from the current discretization methods, which are
based on the assumption that one pixel only corresponds to
the spectral information of a single object, the influence of
uncertainty caused by a mixed spectrum is fully considered in
our method, each category of ground object in high-resolution
remote sensing image is regarded as a fuzzy set, and the
Euclidean distance between pixels is calculated according to
the pixel values on each band to obtain the fuzzy relation
matrix on the set of pixels; (2) based on the rough set model
in the original work, the membership degree of pixels to each
category is determined through linear decomposition, and the
individual fitness function based on a fuzzy rough model [19]
is established; (3) in contrast to the conventional genetic
operations in the previous work [20], chaotic mapping is
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employed to generate the initial population of adaptive genetic
algorithm [30] to select discrete breakpoints, and MapRe-
duce [31] is used to calculate the fitness of all individuals
of the population in parallel, hence obtaining the optimal
discretization scheme in the minimum time. We compared
our method with mainstream discretization methods on the
authentic remote sensing datasets. The results showed that
our method can effectively mine the data association, reduce
the response time of data access, improve the accuracy of
classification rules, and provide strong support for subsequent
image processing.

The rest of this article is arranged as follows. Section II
introduces basic concepts and reviews related work. Section III
describes the discretization problem of mixed pixels. Section
IV elaborates the discretization algorithm based on a fuzzy
rough model applied to high-resolution remote sensing images.
The experimental environment and datasets are introduced
in Section V. We analyze and discuss the results in Section
VI. Section VII summarizes the paper and presents prospects
for future research work. The specific implementation of
the improved adaptive genetic algorithm and the parallel
calculation of the individual fitness of the population in the
MapReduce framework provided by MATLAB are detailed in
the Appendix.

II. PRELIMINARIES

We introduce the basic concepts of the decision table and
rough set, describe the fuzzy set and fuzzy relation, define
the fuzzy rough model, and explain related concepts in this
section.

A. Decision Table and Rough Set

A decision table can be described as a 4-tuple S =
(U,R, V, f), in which U = {x1, x2, . . . , xn} is a finite set
of objects, i.e., a universe. R = C ∪ D refers to the set
of attributes, where C and D are nonempty subsets of the
condition and decision attributes, respectively, and C∩D = ∅.
V =

⋃
a∈R Va, where Va is the range of values of attribute

a. f : U × R → V is an information function that specifies
a unique value f(x, a) ∈ Va for each object x ∈ U on each
attribute a ∈ R.

The decision table in the classification of a remote sensing
image was introduced previously [6], and the elements in U
are the pixels of the image. The bands and land cover classes
correspond respectively to condition attributes in C and the
decision attribute in D. VCi

refers to the range of pixel values
of the ith band, and Vd is the scope of the land cover class.

A rough set is based on a classification mechanism. It inter-
prets a classification problem as an indiscernible relation that
is a division of the feature space. Each division corresponds to
knowledge in the universe. The idea of rough set theory [32]
is to use the known knowledge base to approximate imprecise
or uncertain knowledge. The concepts of the equivalent class,
lower approximation set, and upper approximation set [33] are
needed to describe the uncertainty.

Given a decision table S = (U,R, V, f), for each attribute
subset A ⊆ R, the indiscernible binary relation IND(A) and

equivalent classes for attribute subset A in U are defined as
follows:

IND(A) =
{
(x, y) | (x, y) ∈ U2,∀a ∈ A(a(x) = a(y))

}
(1)

U | IND(A)
= {X | X ⊆ U ∧ ∀x ∈ X∀y ∈ X∀a ∈ A(a(x) = a(y))}

(2)
According to the above decision table S, for each subset

X ⊆ U and the equivalent classes for attribute subset A in U ,
the lower and upper approximation sets of X are defined as
follows:

A−(X) = ∪{Y |Y ∈ U |IND(A) ∧ Y ⊆ X} (3)

A−(X) = ∪{Y |Y ∈ U |IND(A) ∧ Y ∩X 6= ∅} (4)

B. Fuzzy Set and Fuzzy Relation

Fuzzy sets are used to describe fuzzy phenomena that are
difficult to measure precisely because of the lack of strict
boundaries. In the theory proposed by Zadeh [34], fuzzy sets
can express both fuzzy and clear concepts. The definition of
a fuzzy set is as follows:

∀A ∈ F (U), A↔ µA(x) :

U → [0, 1], A(x) =

 1, x ∈ A
µA(x), 0 < µA(x) < 1

0, x /∈ A

(5)

Let A be a fuzzy subset determined by the mapping function
µA on U . A(x) denotes the degree to which element x in U
belongs to A. F (U) is the set of all fuzzy subsets on U , which
is called a fuzzy power set. The complementary set, union,
intersection, and inclusion operations between fuzzy subsets
A and B in F (U) are specified as follows:

(−A)(x) = 1−A(x), (6)

(A ∪B)(x) = max{A(x), B(x)}, (7)

(A ∩B)(x) = min{A(x), B(x)}, (8)

A ⊆ B ⇔ A(x) ≤ B(x). (9)

A binary fuzzy relation R̃ from set X to set Y is a fuzzy set

on U , denoted as X R̃→ Y . The membership function R̃(x, y)
is a mapping from X × Y to the real number interval [0,1],
indicating the degree of relationship R̃ between x and y. Let R̃
be a fuzzy relation from X to Y , denoted as rij = R̃ (xi, yj),
where X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn}, i =
1, 2, . . . ,m, and j = 1, 2, . . . , n. If rij ∈ [0, 1] is satisfied for
any i and j, then R̃ = [rij ]m×n is called a fuzzy matrix,

R̃(m×n) =


r11 r12 . . . r1n
r21 r22 . . . r2n
. . . . . .
. . . . . .
. . . . . .

rm1 rm2 . . . rmn

 . (10)



4

C. Fuzzy Rough Set

The theory of the fuzzy rough set was proposed by Dubois
and Prade to deal with data inconsistencies [35], [36]. They
introduced the theory of fuzzy sets into rough sets to solve
the problem of information loss caused by discretization of
continuous attributes. After many years, the fuzzy rough set
has a relatively complete theoretical framework [37]–[39], and
has seen wide use in machine learning and data mining [40],
[41].

Let (U, R̃) be a fuzzy approximation space and R̃ be a bi-
nary fuzzy relation on U . The lower and upper approximation
sets of the fuzzy set B ∈ F (U) are still fuzzy sets in (U, R̃).
∀y ∈ U , and the membership functions of the lower and upper
approximation sets of B are specified as follows:

B(y) = inf
x∈U
{(1− R̃(x, y)) ∨B(x)}, (11)

B(y) = sup
x∈U
{R̃(x, y) ∧B(x)}. (12)

If ∀s ∈ U and R̃(s, s) = 1, then the lower and upper
approximation sets of B have the property

B ⊆ B ⊆ B. (13)

The cardinality of the fuzzy set B is:

|B| =
∑
y∈U

B(y). (14)

Hence its approximate precision is:

η(B) =
|B|
|B|

, (15)

where |B| and |B| are the respective cardinalities of B and
B. The approximate precision is used to measure the overall
accuracy of describing fuzzy set B from known knowledge.
The closer η(B) is to 1 the higher the overall approximate
precision is. If η(B) = 1, then B can be precisely defined
by known knowledge. In the feature discretization of high-
resolution remote sensing image, the existence of a large
number of mixed pixels makes the collected massive remote
sensing data highly complex and uncertain. Fuzzy rough set
has the advantages of both fuzzy set and rough set. It can
make full use of the known knowledge base without any
prior information, and use membership function to fuzzify
the equivalence relationship to describe the fuzziness and
uncertainty between and within the mixed pixels, so as to
improve the accuracy of discrete breakpoints on continuous
spectral features.

III. PROBLEM STATEMENT

We formally define the problem of feature discretization
of a high-resolution remote sensing image and introduce
the concept and decomposition models of mixed pixels. On
this basis, we analyze the influence of mixed pixels on the
discretization results through a simple example.

Features extraction
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Fig. 1. Results of feature extraction from high-resolution remote sensing
image.

A. Definition of Feature Discretization

Before feature discretization, it is necessary to extract the
features of the original images [42] to obtain the corresponding
digital number (DN) of the pixels in each band. As shown in
Fig. 1, these DN values are a set of continuous values from
0 to 1. To discretize the image features is to represent the
continuous DN values in a band by as few discrete intervals
as possible while not destroying the compatibility of the
information system.

Consider the classification problem of a remote sensing
image, including k types of land cover and m bands. The
discretization algorithm divides the continuous DN values on
the ith band into ni discrete and disjoint intervals,

Di = {[d0, d1] , (d1, d2] , . . . , (dn−1, dni
]}

where min(DN(i)) = d0 ≤ d1 < d2 < . . .
< dn1−1 < dni

= max(DN(i)), i ∈ {1, 2, . . . ,m}
, (16)

Di is called a division on the ith band, and each inter-
val is represented by a breakpoint (discrete value). BP =
[D1, D2, . . . , Dm] is a discretization scheme obtained by the
discretization algorithm on a remote sensing image. Therefore,
the search space for feature discretization is formed by all
candidate breakpoints in each band, which are from all the
different DN values in each band of the training set [6].

B. Decomposition of Mixed Pixels

The pixel is the basic unit that reflects the features of a
high-resolution remote sensing image [43]. The phenomenon
of similar ground objects being in different states or the
coexistence of multiple heterogeneous ground objects gener-
ally occurs at the pixel scale, which affects the recognition
accuracy of ground objects and restricts the development of
quantitative high-resolution remote sensing [8]. A component
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Fig. 2. A simple example of discretization of three mixed pixels. Left: original
information table; Top right: the first discretization scheme; Bottom right: the
second discretization scheme.

of the spectral signal of a mixed pixel is called an endmember.
The percentage of the area of the endmember in the mixed
pixel is called its abundance, and this can be obtained from
the mixed pixel by decomposition [44]–[46].

Decomposition methods of mixed pixels include linear
spectral, probability, random geometric, geometric optical, and
fuzzy models [47]. The linear spectral model is simple and
intuitive, and it is suitable for most applications [48]. In this
model, the radiance or reflectivity of each mixed pixel is
regarded as a linear combination of the internal endmembers
and their proportions of the area, as follows:

Rb =

N∑
i=1

FiRi,b + Eb, b = {1, . . . ,M}, (17)

where Rb is the reflectivity of the mixed pixel on band b, N
is the number of extracted endmembers, M is the number of
bands, and Fi is the area proportion of the endmember of type
i in the mixed pixel, Ri,b is the reflectivity of the endmember
of type i on band b, and Eb is the fitting residual of band b.

C. Discretization Problem of Mixed Pixels

The pixel is usually regarded as the basic unit when dividing
the continuous features of a remote sensing image. A pixel
is treated as a single nominal entity, i.e., the category of the
pixel is determined and unique [27], [28]. However, each pixel
contains a variety of objects. The endmember, as the smallest
unit of a pixel, represents a single feature of information. The
reflectivity and abundance of the endmembers in each spectral
band determine the DN value of a pixel [9], [46]. Therefore,
methods that regard a pixel as a single nominal entity are
challenged by fuzzy logic and fuzzy datasets that consider
blur, haziness, and uncertainty in image processing [49].

Fig. 2 shows an example of the discretization of three
mixed pixels. Assuming that under linear spectral model,
these pixels contain only the terrain information of trees (T),
grass (G), and soil (S), the abundance of each endmember
satisfies T + G + S = 1, and the candidate breakpoint set
is {0.05,0.15,0.25,0.35}. The abundances of these three end-
members in pixel 1 are 80%, 17%, and 3%, respectively, repre-
sented by vector PN(1) = [0.8, 0.17, 0.03], so its label shows
type T with the largest proportion, and DN(1) = 0.1. Sim-
ilarly, PN(2) = [0.45, 0.45, 0.1], PN(3) = [0.43, 0.52, 0.05],
because of the same proportions of trees and grass, the label of
pixel 2 is uncertain, and the label of pixel 3 is G, DN(2) = 0.2,
DN(3) = 0.3. |PN(i) − PN(j)| is the Euclidean distance
between PN(i) and PN(j). We should divide the continuous
features of the three pixels into two discrete intervals. There

are two feasible schemes. Under the first, the system regards
pixel 2 as the T type and chooses {0.05,0.25,0.35} as the
discrete breakpoint set. 0.05 < DN(1) < DN(2) < 0.25, so
pixel 1 and pixel 2 of the same type T are placed in the same
interval of value 0.05. However, we can see that the abundance
of each endmember of PN(1) is quite different from that of
PN(2), and the abundance of each endmember of PN(2) is
closer to that of PN(3)(|PN(2)−PN(3)| < |PN(1)−PN(2)|).
When the label type of pixel 2 is uncertain, to classify it with
pixel 1 in the same interval will inevitably cause data errors. In
the second scheme, {0.05,0.15,0.35} is chosen as the discrete
breakpoint set. Since 0.15 < DN(2) < DN(3) < 0.35, pixel
2 and pixel 3 are placed in the same interval, with a value of
0.15. This division is more reasonable.

IV. DISCRETIZATION ALGORITHM BASED ON FUZZY
ROUGH MODEL

We first construct the individual fitness function based on
the fuzzy rough model. We then analyze the models feasi-
bility and describe the binary coding scheme of the genetic
algorithm. Finally, we explain the flow of the algorithm.

A. Fitness Function Based on Fuzzy Rough Model

As mentioned above, failure to consider the impact of the
uncertainty caused by the mixed spectrum will significantly
increase the data error rate. Blur, haziness, and uncertainty
between and within mixed pixels in the discretization can be
described by a fuzzy rough model. Based on the decision table
S = (U,R, V, f), as applied to an image in Section II-A, we
introduce the distance matrix in the pixel space,

D(n×n) =


d11 d12 . . . d1n
d21 d22 . . . d2n
. . . . . .
. . . . . .
. . . . . .
dn1 dn2 . . . dnn

 , (18)

where n is the number of pixels, and dij is the Euclidean
distance between the ith and jth pixels, 1 ≤ i, j ≤ n, dij is
defined as

dij =

√√√√ m∑
s=1

(
DNs

i −DNs
j

)2
, (19)

where m is the number of bands, and DNs
i and DNs

j

respectively represent the DN values of the ith and jth pixels
in the sth band. The element rij in the fuzzy relationship R̃
represents the degree of similarity between the ith and jth
pixel,

rij =

{
1− dij

max(D) , max(D) > 0

1, max(D) = 0
, (20)

where max(D) is the maximum Euclidean distance in matrix
D. Suppose the image contains k types of ground objects. For
any mixed pixel x ∈ U , let p1(x), . . . , pk(x) be the abundance
of each endmember in the mixed pixel x, i.e., the proportion
of k types of ground objects in the mixed pixel x, where
0 ≤ p1(x), . . . , pk(x) ≤ 1 and

∑k
s=1 ps(x) = 1. Ct is defined
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as the fuzzy set corresponding to the tth type of land cover,
Ct(x) = pt(x), t ∈ [1, . . . , k]. Since the principle of selecting
the optimal breakpoint set is to obtain the minimum number of
breakpoints under the premise of satisfying the data accuracy
within a given range, the fitness function of chromosome c
should be determined by the obtained number of breakpoints
and the average accuracy of the fuzzy sets corresponding to
all land cover types,

Fitness (c) = u×
(
1− Nc

NI

)
+(1−u)× 1

k
×

k∑
t=1

|Ct|∣∣Ct

∣∣ , (21)

where NI is the number of candidate breakpoints, and Nc is
the number of breakpoints obtained by decoding chromosome
c. Ct and Ct are respectively the lower and upper approxima-
tion sets of fuzzy set Ct corresponding to the tth type of land
cover, and u is the weight coefficient, 0 ≤ u ≤ 1. The selection
of the weight coefficient is an open problem, as no specific
weight coefficient can adapt to all datasets. The rationality of
the weight selection is usually judged by the characteristics of
the dataset and experimental observations [50]. The purpose of
this paper is to improve the classification accuracy of data after
discretization, and classification accuracy is directly related to

data accuracy. Therefore, we set the weight of 1
k ×

∑k
t=1
|Ct|
|Ct|

to be larger than that of
(
1− Nc

NI

)
, set u = 0.1, and verified

it using the experimental results.
We use this fitness function to verify the results of the two

discretization schemes in Fig. 2. Suppose U = {x1, x2, x3}
represents the pixel set composed of pixels 1, 2, and 3, and
CT , CG, and CS represent the fuzzy sets corresponding to
types T, G, and S, respectively. D1, R̃1, and η1 respec-
tively represent the distance matrix, fuzzy relation matrix,
and average approximation precision of all the fuzzy sets in
the first discretization scheme, and D2, R̃2, and η2 are the
corresponding variables in the second discretization scheme.
For any pixel x ∈ U , the membership function values in
fuzzy sets CT , CG, and CS correspond to the abundance of
internal endmembers of types T, G, and S, respectively. Since
these two schemes have the same number of intervals, we
can judge the results by comparing η1 and η2. From (19) and

(20), D1 =

 0 0 0.2
0 0 0.2
0.2 0.2 0

, D2 =

 0 0.1 0.1
0.1 0 0
0.1 0 0

,

R̃1 =

 1 1 0
1 1 0
0 0 1

, and R̃2 =

 1 0 0
0 1 1
0 1 1

. From (11)

and (14), CT (x1) = 0.45, CT (x2) = 0.45, CT (x3) = 0.43;
thus |CT | = 1.33. Similarly, |CG| = 0.79 and |CS | = 0.11.
From (12) and (14), CT (x1) = 0.8, CT (x2) = 0.8,
CT (x3) = 0.43; thus

∣∣CT

∣∣ = 2.03. Similarly,
∣∣CG

∣∣ = 1.42
and

∣∣CS

∣∣ = 0.25. Therefore, from (15), η1 ≈ 0.5505
(reserving four decimal places) can be found. In the same way,
η2 ≈ 0.8087. η2 > η1, i.e., the average approximation preci-
sion of all the fuzzy sets obtained by the second discretization
scheme was higher than that of the first scheme, which is
consistent with the conclusion of Section III-C. Furthermore,
in remote sensing image feature discretization, due to a large
number of mixed pixels, even if the numbers of intervals of
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Fig. 3. Function curves of Ct(x) and Ct(x) on D (s1, x) and D (s2, x).

the discretization schemes are the same, the obtained data
accuracy will differ greatly.

B. Feasibility Analysis and Genetic Coding

The discretization problem can be seen as a classification of
the data itself [5]. Its purpose is to categorize data of the same
type into the same interval as much as possible. A greater
distance between the different types of data is better. Since
Ct ⊆ Ct ⊆ Ct, |Ct| ≤ |Ct| ≤

∣∣Ct

∣∣. Because the approximate
precision of fuzzy set Ct is ηt = |Ct| /

∣∣Ct

∣∣, 0 ≤ ηt ≤ 1. The
larger the value of ηt is, the more accurate the data will be
after discretization. To maximize ηt requires |Ct| and

∣∣Ct

∣∣ to
be as close as possible to |Ct|.

We divide U into two parts, U1 and U2. ∀s1 ∈ U1, Ct (s1) <
Ct(x), while ∀s2 ∈ U2, Ct (s2) ≥ Ct(x); then Ct(x) =

inf
{
Ct(x), infs1∈U1

{(
1− R̃ (s1, x)

)
∨ Ct (s1)

}}
. Let d be

the absolute distance between s1 and x. According to (18) and
(20),

(
1− R̃ (s1, x)

)
= d

max(D) , where max(D) is the maxi-
mum distance between pixels in the distance matrix, which is
a constant, and d

max(D) is called the relative distance between
s1 and x. D (s1, x) = 1 − R̃ (s1, x) represents the relative
distance between s1 and x, where 0 ≤ D (s1, x) ≤ 1, as shown
in Fig. 3(a). The value of Ct(x) is determined by D (s1, x).
When Ct(x) takes the minimum value mins1∈U1

(Ct (s1)),
0 ≤ D (s1, x) ≤ Ct (s1), and when it takes the maximum
value Ct(x), Ct(x) ≤ D (s1, x) ≤ 1. For Ct(x) to approach
Ct(x), it is necessary to increase the relative distance D (s1, x)
between s1 and x as much as possible. In general, for two
mixed pixels, the greater the difference of the membership de-
gree is, the greater the distance between them becomes. We as-
sume that ∃u1 ∈ U1, where mins1∈U1

(Ct (s1)) = Ct (u1) and
maxs1∈U1 (D (s1, x)) = D (u1, x). To prevent some pixels
with smaller membership values from playing a decisive role
in Ct(x), it is necessary to shorten the distance between u1 and
pixels with similar membership values to increase the distance
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between them and x and to maximize Ct(x). As shown in Fig.
3(b), the value of Ct(x) is also determined by D (s2, x). We
assume that ∃u2 ∈ U2, where maxs2∈U2 (Ct (s2)) = Ct (u2)
and maxs2∈U2

(D (s2, x)) = D (u2, x). To prevent some ele-
ments with larger membership values from playing a decisive
role in Ct(x), it is necessary to shorten the distance between
u2 and pixels with similar membership values as much as
possible to increase the distance between these pixels and x,
thereby minimizing Ct(x).

Determining the distance matrix D of the pixel set is
equivalent to determining ηt and 1−Nc

NI
. Therefore, solving the

optimal discretization scheme is equivalent to determining an
optimal distance matrix D such that the interval division result
can maximize the average distance between the heterogeneous
pixels and minimize the average distance between similar
pixels when the number of intervals is as small as possible.
According to the definition of D, each selected set of break-
points B uniquely determines D, and the problem becomes to
select the optimal set of breakpoints. We let g(B) = 1−

(
Nc

NI

)
,

h(B) =
(∑k

t=1 ηt

)
/k. Furthermore, we let P be the set of

all of the candidate breakpoints in all of the bands, and u be
the weight coefficient, where 0 ≤ u ≤ 1. The problem of
choosing the best set of breakpoints can be reduced to:

min f(B) = 1
u×g(B)+(1−u)×h(B) , B ⊆ P

s.t.


0 ≤ D(x, y) ≤ 1, ∀x, y ∈ U∑k

t=1 Ct(z) = 1, ∀z ∈ U
0 ≤ Ct(z) ≤ 1, t ∈ {1, . . . , k}

. (22)

Thus, the determination of the optimal discretization scheme is
a constrained optimization problem, which has been proven to
be NP-complete [51]. It is difficult to solve this kind of prob-
lem by traditional methods, and global optimization algorithms
are more effective than traditional methods because their group
search strategies and calculation methods do not depend on
gradient information [52]. Global optimization algorithms for
discretization mainly include the genetic algorithm (GA) [53],
PSO [26], and ant colony optimization (ACO) [54]. Compared
to the GA, the PSO has no crossover and mutation, which
makes the operation principle simpler. Furthermore, the PSO
has fewer parameters, and is more easily implemented. How-
ever, the theoretical research on convergence analysis is still
weak, and we cannot use mature analysis methods to estimate
the convergence speed like for the GA [55], [56]. The ACO
algorithm can obtain good results when the number of intervals
is known, but the number of intervals for discretization must
be given in advance. The best number of intervals usually
cannot be determined, especially with datasets including a
large number of samples, where the method fails because it
cannot provide the optimal number of intervals [54], [57].
Therefore, given the characteristics of a high-resolution re-
mote sensing image, we use the improved adaptive genetic
algorithm to solve the above constraint optimization problem.
By introducing the adaptive mechanism in each stage of
the genetic operation, we can dynamically adjust the search
range, thus improving the search efficiency and accelerating
the convergence speed.

Algorithm 1 Initial Breakpoints Acquisition
Input: DN value set of all bands V C = [V c1, V c2, . . . , V cm]
Output: Initial breakpoint set B = [B1, B2, . . . , Bm]

1: Bi = ∅, 1 ≤ i ≤ m.
2: for all V ci do
3: Sort the DN values in V ci by ascending order;
4: Remove duplicate DN values in V ci;
5: Bi ← V ci;
6: end for

1
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Fig. 4. Chromosome structure.

Applying S = (U,R, V, f) to high-resolution remote sens-
ing image, U = {x1, x2, . . . , xn} is a finite set of objects
representing the set of pixels in the image; R = C ∪D is the
set of all attributes; and C = {c1, c2, . . . , cm} and D = {d}
are respectively the band and class attribute sets, where is the
number of bands. The steps to obtain the initial set of candidate
breakpoints are shown in Algorithm 1.

The feature discretization of a high-resolution remote sens-
ing image is the selection of some of the DN values as discrete
breakpoints to divide the whole feature interval. Therefore,
the binary coding scheme can be used to directly encode the
selection state of the initial breakpoint. Each bit in the binary
code corresponds to a breakpoint, and the values 1 and 0
respectively represent reserving or abandoning a breakpoint.
The set of initial breakpoints obtained by Algorithm 1 in the
ith band is Bi =

{
b1i , b

2
i , . . . , b

ni
i

}
(i = 1, 2, . . . ,m), where ni

is the number of different values of pixels in the ith band, and
the structure of each chromosome in the population is shown
in Fig. 4. The colors in Fig. 4 represent bands in the image.
Each chromosome with length

∑m
i=1 ni represents a feature

discretization scheme. With this coding, all the bands in the
image can be discretized simultaneously, laying the foundation
for multivariable discretization.

C. Flow of Proposed Discretization Method

The proposed discretization method is shown in Algorithm
2. The initial breakpoint set is obtained based on the features
of the image. Based on the size of the initial breakpoint
set, the initial population is generated by chaotic mapping.
We introduce an individual replacement strategy based on
roulette selection to solve the problem of population diversity.
A dynamic multi-point crossing strategy is adopted to ensure
that each band of a high-resolution remote sensing image can
participate in the crossover operation, and the cross individuals
are combined according to the Hamming distance between
them to expand the search scope, thus avoiding premature
convergence. Finally, drawing on the idea of particle evolu-
tion in a bare bones particle swarm optimization (BBPSO)
algorithm, the number and locations of mutation points are
determined according to the absolute dissimilarity of the local
and global optimal individuals of a given chromosome in
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Algorithm 2 FRSGA Algorithm Process
Input: Decision table S = (U,R, V, f), initial

breakpoint set B = [B1, B2, . . . , Bm], number
of categories k, reflectivity of the mixed pixels
R =

{
R1

1, . . . , R
1
m, . . . , R

n
1 , . . . , R

n
m

}
, reflectivity of the

endmembers r = {r1,1, . . . , r1,m, . . . , rk,1, . . . , rk,m}
Output: Optimal discretization scheme gbest
1: Initialize the fuzzy sets C1, . . . , Ck;
2: for all x ∈ U do
3: Calculate the abundance of each endmember
p1(x), . . . , pk(x) by (17);

4: C1(x) = p1(x), . . . , Ck(x) = pk(x);
5: end for
6: Binary encoding of B;
7: t=0;
8: Initialize population P(t) by chaotic mapping;
9: Calculate the fitness of each individual in P(t) by (21) in

MapReduce;
10: Update gbest with the maximum fitness value;
11: while t is less than the user’s termination iterations do
12: Perform selection operation of adaptive genetic algo-

rithm;
13: Perform crossover operation of adaptive genetic algo-

rithm;
14: Calculate the fitness of each individual in P(t) by (21)

in MapReduce;
15: Update gbest with the maximum fitness value;
16: Perform mutation operation of adaptive genetic algo-

rithm;
17: Calculate the fitness of each individual in P(t) by (21)

in MapReduce;
18: Update gbest with the maximum fitness value;
19: P(t+1)=P(t);
20: t = t + 1;
21: end while

the form of Gaussian sampling, which makes the mutation
operator directional and improves the search efficiency of the
population. The adaptive genetic algorithm designed above
is used to select, cross, and mutate the current population
to generate the next generation population, and the above
process is repeated until the termination condition is met. The
fitness function based on a fuzzy rough model of each ge-
netic operation is computed in parallel under the MapReduce
framework. The list of local and global optimal variables is
updated after each genetic operation. In the end, the optimal
chromosome preserved by the global optimal variable is the
optimal discretization scheme.

V. EXPERIMENTAL DESIGN

We briefly introduce the experimental data source, environ-
ment configuration, and dataset used in the experiment in this
section.

A. Data Source
The experimental data used in this paper are from a GF-2

satellite image of the coastal area of the South China Sea on

Fig. 5. Area used for study.

September 16, 2016, as shown in Fig. 5. The image contains
four bands. The objects in the image are divided into the
categories of bare land, construction, farmland, water, and
woodland.

B. Configuration of Experimental Environment

To verify the effectiveness of the proposed algorithm, com-
parative experiments were carried out on an Intel Core i5-
5200U CPU at 2.2 GHz with 12 GB memory and a 512-
GB hard disk. The visualization, programming, simulation,
testing, and numerical processing of the experiments were
implemented in MATLAB R2016a. The radiometric calibra-
tion and atmospheric correction of the image, decomposition
of mixed pixels, training of the neural network classifier for
discrete results, and comparison of the classification prediction
accuracy were completed in an ENVI5.3 environment. BP
neural network with three hidden layers was selected as the
classifier. Each hidden layer had 20 nodes. Learning rate
η = 0.01. Sigmoid function was selected as the activation
function of the hidden layer. The number of nodes in the input
layer was the same as the number of bands, and the number
of nodes in the output layer was the same as the number of
land cover types.

C. Preparation of Experimental Datasets

High resolution makes the number of pixels corresponding
to the same size area more than that of low- and medium-
resolution, correspondingly, the number of pixel values is
more, resulting in a large number of candidate breakpoints. In
addition, each mixed pixel records the comprehensive spectral
information of a variety of surface features [9]. These all
reflect the characteristics of big data [4]. We randomly selected
several areas covering the categories of bare land, construction,
farmland, water, and woodland from the image, and used
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the pixels of these areas as the experimental data, including
training and test samples. The training set contained 10,000
samples, including 1853 bare land samples, 1014 construc-
tion samples, 1324 farmland samples, 2084 water samples,
and 3725 woodland samples. The testing set contained 1016
samples, including 207 bare land samples, 200 construction
samples, 201 farmland samples, 202 water samples, and 206
woodland samples. We used the linear spectral decomposition
model [48] to extract the abundances of each endmember
in each mixed pixel in the training set, then we sorted the
pixel values and deleted the duplicate values in each band
to obtain the initial breakpoints of the four bands, which
were 6738, 7114, 8039, and 8367, respectively, totaling 30,258
and constituting a candidate set of breakpoints. We used the
proposed method to select breakpoints from the candidate
set to discretize the pixel values of the training set, and we
compared this with the results of other algorithms.

VI. RESULTS AND DISCUSSION

First, we compare our method to four discretization al-
gorithms using a heuristic search strategy on running time
and search efficiency. These are the classical GA based on
the consistency principle of the decision system in the early
stage [58], multivariate discretization based on evolutionary
cut points selection (EMD) [53], potential particle swarm
optimization (PPSO) algorithm [26], and ACO based on
information distance criterion [54]. We then compare the
optimal set of breakpoints obtained by our method with the
discretization results of the current mainstream supervised
discretization algorithms, mainly based on the evaluation of
the number of intervals and the consistency of the data. These
are entropy-based discretization for ranking (EDiRa) [25],
ChiMerge [59], 1R [21], NCAIC (Novel Class-Attribute In-
terdependency Discretization Algorithm) [60], FUDC (Feature
Discretization Method Accommodating Uncertainty in Clas-
sification Systems) [27], CVD [28], and Chi2 [61]. Finally,
we train the neural network classifier with the discretization
results of all the methods, and the effectiveness of the proposed
method is verified by comparison to the classification accuracy
obtained by each method.

A. Time Efficiency

The essence of the FRSGA, GA, EMD, PPSO, and ACO
algorithms is to find the best individual by simulating their
evolution process. The core operations are based on the eval-
uation of the individual fitness. Therefore, the time overhead of
these algorithms mainly comes from calculating the individual
fitness function.

To compare the time efficiencies of the five algorithms,
they all had the same population size of 30. We divided the
population file generated by FRSGA into five slices, each
with six chromosomes. Table I compares the running times
of the algorithms in one iteration. FRSGA ran the fastest
because it used MapReduce to parallelize the fitness function.
The time overhead of FRSGA was less than twice that of
GA, was slightly less than that of ACO, and had the lowest
time complexity. GA and EMD must perform three genetic

TABLE I
COMPARISON OF RUNNING TIME IN ONE ITERATION

Method Population size Iterations Running time

FRSGA 30 1 1530 s

GA 30 1 3622 s

EMD 30 1 2335 s

PPSO 30 1 2255 s

ACO 30 1 1779 s

ACO = ant colony optimization; EMD = multivariate discretization based on
evolutionary cut points selection; FRSGA = fuzzy rough sets-based genetic
algorithm (ours); GA = genetic algorithm; PPSO = potential particle swarm
optimization.

10 20 30 50 100

FRSGA 6660 12360 18060 29088 57588

GA 25222 49222 73222 121464 243334

EMD 15835 30835 45835 76770 158995

PPSO 12450 23820 35190 57930 114780

ACO 9537 18234 26931 44325 87810
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Fig. 6. Time overheads of five algorithms at different iterations.

operations (selection, crossover and, mutation) in an iteration,
and the crossover and mutation both must calculate the fitness
function. However, due to the chromosome reduction mech-
anism [53], the running time of EMD was slightly reduced.
PPSO and ACO each had just one evolutionary operation, so
GA generates the highest time overhead.

Fig. 6 shows the time overhead values of the five algorithms
at different iterations. FRSGA showed a significant improve-
ment in the running speed due to the parallel computation
of the fitness function by MapReduce. Although its time
complexity was similar to that of PPSO [62], and it involved
one more fitness calculation than PPSO and ACO per iteration,
the time overhead was always smallest. EMD, PPSO, and ACO
initially maintained similar time overhead values, but with the
number of iterations increasing, the gap between EMD, PPSO,
and ACO increased, and the time overhead of GA was always
largest.

B. Search Efficiency

We kept the population size of the five algorithms at
30 and set the number of iterations to 50, running them
independently 10 times. The simulation results showed that
the five algorithms could obtain the optimal discretization, but
the fitness values differed due to the different fitness functions.
Thus, we used the average relative deviation as an evaluation
index, calculated as:

Avgdev =
Maxfv −Efv

Maxfv −Minfv
, (23)
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TABLE II
OPTIMAL SOLUTIONS OF FIVE ALGORITHMS

Method Number of
simulations

Times to obtain maximum
of fitness values

Maximum of
fitness values

FRSGA 10 9 0.9686

GA 10 6 3.4686

EMD 10 6 0.963

PPSO 10 7 0.9090

ACO 10 5 67.5919

TABLE III
AVERAGE RELATIVE DEVIATION OF THE FIVE ALGORITHMS

Method Maximum
of fitness

values

Minimum
of fitness

values

Mathematical
expectation of
fitness value

Average relative
deviation

FRSGA 0.9686 0.9594 0.9677 0.0978

GA 3.4686 3.4594 3.4662 0.2609

EMD 0.963 0.9591 0.9618 0.3077

PPSO 0.9090 0.8589 0.8946 0.2874

ACO 67.5919 50.7487 62.5216 0.3010

where Maxfv and Minfv are the maximum and minimum
of the fitness values of all optimal solutions, respectively,
and Efv is the mathematical expectation of the optimal
solution fitness value. A smaller Avgdev means the fitness
value independently obtained by an algorithm was closer to
the maximum, i.e., the solution performance was better.

Table II compares the optimal solutions, and Table III
shows the average relative deviations of the algorithms. In the
experiment, we set the weight coefficient u of FRSGA at 0.1;

Fig. 7. Iterations of five algorithms needed to obtain optimal solution.

TABLE IV
CONVERGENCE SPEED OF FIVE ALGORITHMS

Method Iterations Average iterations to
reach optimal solution

Search efficiency

FRSGA 50 30.6 0.388

GA 50 35.3 0.294

EMD 50 31.7 0.366

PPSO 50 32.4 0.352

ACO 50 43.4 0.132

the weight factors α and β of GA to 1 and 2.5, respectively;
the weight factor of EMD to 0.7; the crossover rate pc and
mutation rate pm of FRSGA, GA, and EMD to 0.6 and 0.1,
respectively; the weight factor µ of PPSO to 0.5; the control
variables of the pheromone and heuristic value of ACO to 1
and 2, respectively; and the volatility ρ of the pheromone trace
to 0.1. Since the number of classes of a given training samples
was five, the uniform class conditional probability vector
pe =

{
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

}
in the ACO algorithm [54]. Because the

smaller the fitness function (Fitness ∈ [0, 1]) of EMD is, the
higher the discretization quality is. In the other four methods,
the higher the fitness is, the higher the discretization quality
is. In order to compare the five algorithms according to (23),
we used Fitness′ = 1− Fitness as the new fitness function
of EMD. The larger Fitness′ is, the higher the quality of dis-
cretization is. In ten independent simulations, ACO obtained
the maximum fitness value of the optimal solutions five times,
the least of the five algorithms. FRSGA obtained the maximum
fitness value of the optimal solution nine times, most among
the algorithms. Its mathematical expectation of the optimal
solution was 0.9677, and its average relative deviation was the
smallest at 0.0978. PPSO obtained the maximum fitness value
of the optimal solution seven times, which was second only
to FRSGA. EMD accelerated the convergence rate through
chromosome reduction mechanism, but the negative effect
of chromosome reduction was that it was easy to fall into
local optimum. Although EMD created population diversity
by means of reseeding in mutation operation [53], the number
of times to obtain the maximum fitness value of the optimal
solution was consistent with that of GA, which was six times.
Fig. 7 shows the number of iterations for the five algorithms to
reach the optimal solution for the first time in 10 independent
experiments. Table IV compares the convergence rates of the
algorithms. The search efficiency is

Effsearch = 1− AI

TI
, (24)

where AI is the average number of iterations to obtain the
optimal solution, TI is the total number of iterations, and
Effsearch is the search efficiency. The larger the value of
Effsearch is, the faster the convergence speed is. Table IV
shows that the average number of iterations for ACO to obtain
the optimal solution was the largest at 43.4, and its search
efficiency was the lowest at 0.132. The average number of
iterations for FRSGA to obtain the optimal solution was the
smallest at 30.6, and its search efficiency was the highest at
0.388.

C. Interval Quality

We compared the optimal set of discrete breakpoints with
the discretization results of state-of-the-art discretization meth-
ods EDiRa, ChiMerge, 1R, NCAIC, FUDC, CVD, and Chi2.
We evaluated the interval quality from the number of inter-
vals and data consistency [21]. The interval quality of the
discretization schemes is calculated as follows:

Ediq =
ω1 × (NI −ND)

NI
+
ω2 × (NS −NF )

NS
, (25)
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FRSGA EDiRa ChiMerge 1R NCAIC FUDC CVD Chi2

Band 1 205 563 585 221 475 841 318 412

Band 2 248 594 721 267 581 658 416 514

Band 3 226 154 570 242 136 186 354 438

Band 4 270 2316 860 300 2293 2387 403 546
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Fig. 8. Number of breakpoints of eight algorithms in different bands.

TABLE V
COMPARISON OF EIGHT ALGORITHMS ON INTERVAL QUALITY

Method Intervals Inconsistencies Quality

FRSGA 949 0 0.9508

EDiRa 3627 36 0.7320

ChiMerge 2736 57 0.7242

1R 1030 78 0.7443

NCAIC 3485 68 0.6668

FUDC 4072 4 0.7804

CVD 1491 63 0.7635

Chi2 1910 59 0.7554

1R = one rule; Chi2 = second generation ChiMerge; ChiMerge = chi
square-based discretization; CVD = Cramer’s V-test discretization; EDiRa
= entropy-based discretization for ranking; FUDC = feature discretization
method accommodating uncertainty in classification systems; NCAIC = novel
class-attribute interdependency discretization algorithm.

where Ediq is the interval quality of the discretization scheme,
NI is the number of initial breakpoints, ND is the number of
discrete intervals, NS is the number of all instances, NF is the
number of data errors, and ω1 and ω2 are weight coefficients.
As shown in (25), the ideal discretization result is the best
balance between the minimum number of breakpoints and
minimum number of errors [26], [50], [58]. A larger Ediq

means a higher interval quality of the discretization scheme.
However, the ratios of ND

NI
and NF

NS
are usually quite different,

and it is difficult to determine the weight coefficients ω1 and
ω2. Therefore, we evaluate the interval quality as follows:

E′diq =

(
1− ND

SumD

)
×
(
1− NF

SumF

)
. (26)

The weight coefficients are omitted from (25), and the interval
quality is determined only by the number ND of discrete
intervals and the number NF of the data errors. SumD is
the sum of the numbers of discrete intervals obtained by all
the algorithms in the experiment, and SumF is the sum of the
numbers of data errors.

Fig. 8 shows the number of discrete intervals obtained
by eight algorithms in each band. Table V compares the
algorithms in terms of the interval quality. The number of
discrete intervals obtained by FRSGA was 949, which was
smallest of the algorithms, and there were no data errors.

TABLE VI
NUMBER OF CORRECT RECOGNITIONS OF FIVE CATEGORIES BY EIGHT

ALGORITHMS

Method Bare land Construction Farmland Water Woodland

FRSGA 207 160 105 198 202

EDiRa 197 152 95 198 173

ChiMerge 200 155 72 198 182

1R 177 138 65 180 162

NCAIC 201 148 65 198 178

FUDC 200 153 100 198 192

CVD 198 150 72 198 180

Chi2 200 155 72 198 182

Therefore, the interval quality of FRSGA, at 0.9508, was
highest. The number of discrete intervals obtained by 1R was
1030, which was smallest of all of the algorithms except
for that of FRSGA. However, the number of data errors was
largest at 78, and the interval quality was 0.7443. The number
of discrete intervals obtained by NCAIC was 3485, the number
of data errors was 68, and the interval quality was the lowest
at 0.6668. The number of discrete intervals obtained by FUDC
was the largest at 4072, but there were only four data errors,
and the interval quality was 0.7804, second only to FRSGA.

D. Classification Accuracy

We trained the neural network classifier [63] by using
the discrete samples obtained by the eight algorithms, and
compared the output for the test samples in the model with
the actual value of the label to obtain the classification
accuracy. Through the confusion matrix [64], we obtained the
overall average prediction accuracy and corresponding kappa
coefficient [65]. Tables VI and VII respectively show the
number of correct recognitions of the five categories and the
overall classification accuracy of the neural network classifier
by the analysis of the test samples after the neural network
classifier was trained by using the discrete samples of the eight
algorithms. FRSGA had the best comprehensive recognition
results in bare land, construction, farmland, water, and wood-
land. The overall accuracy and kappa coefficient of FRSGA
were respectively about 3 and 4 percentage points higher
than those of FUDC, closely following FRSGA. FRSGA
used the individual fitness function based on the fuzzy rough
model, so the mixed pixels in the same interval had similar
distributions of the endmember abundance after discretization,
which greatly improved the recognition rate of objects. Data
inconsistency also had a great impact on the classification
accuracy. FRSGA and FUDC had zero and four data errors,
respectively, with better classification accuracy, while NCAIC
and 1R had more data errors, with the classification accuracies
ranking last and second to last, respectively.

E. Scalability

We used FRSGA and reinforcement learning-based genetic
algorithm (RLGA) [20] to optimize the discretization results
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TABLE VII
COMPARISON OF CLASSIFICATION ACCURACY OF EIGHT ALGORITHMS

Method Overall accuracy Kappa coefficient

FRSGA 0.8583 0.8227

EDiRa 0.8022 0.7525

ChiMerge 0.7943 0.7426

1R 0.7106 0.6379

NCAIC 0.7776 0.7217

FUDC 0.8297 0.7870

CVD 0.7854 0.7315

Chi2 0.7943 0.7426

TABLE VIII
NUMBER OF BREAKPOINTS OPTIMIZED BY FRSGA IN GF-2 IMAGE

Method Band 1 Band 2 Band 3 Band 4

FRSGA 310 301 222 198

RLGA 310 301 222 198

MFD-mvtR 350 350 346 299

MFD-mvtR = multivariable optical remote sensing image feature discretiza-
tion applied to marine vessel target recognition; RLGA = reinforcement
learning-based genetic algorithm.

of multivariable optical remote sensing image feature dis-
cretization applied to marine vessel target recognition (MFD-
mvtR) [7] on a GF-2 image. There were 2607 training samples
in this image, including 676 boats, 742 ports, 143 buildings,
116 bare land shoals, 807 water bodies, and 123 vegetation.
We used the linear spectral decomposition model [48] to ex-
tract the abundances of each endmember in each mixed pixel in
the training set, sorted the pixel values of the training set, and
deleted the duplicate values in each band to obtain the initial
breakpoints of the four bands, which were 502, 493, 358, and
359, respectively, totaling 1712 breakpoints. The number of
breakpoints after optimization is shown in Tables VIII and IX.
MFD-mvtR obtained 1345 breakpoints and five data errors on
the GF-2 image, which was unsatisfactory compared to other
mainstream algorithms. We took the discretization scheme of
MFD-mvtR as the individual of the initial population, and on
this basis, used FRSGA to optimize it. By further optimizing
the results of MFD-mvtR, the numbers of breakpoints in bands
1C4 were reduced to 310, 301, 222, and 198, respectively.
The total number of breakpoints was 314 less than that before
optimization, and the number of data errors was reduced to
zero, similar to RLGA.

TABLE IX
QUALITY OF INTERVALS OPTIMIZED BY FRSGA IN GF-2 IMAGE

Method Intervals Inconsistencies

FRSGA 1031 0

RLGA 1031 0

MFD-mvtR 1345 5

TABLE X
CLASSIFICATION ACCURACY OF DISCRETIZATION SCHEME OPTIMIZED

BY FRSGA IN GF-2 IMAGE

Method Overall accuracy Kappa coefficient

FRSGA 95.6250% 0.9475

RLGA 91.0417% 0.8925

MFD-mvtR 85.2083% 0.8225

TABLE XI
QUALITY OF INTERVALS OPTIMIZED BY FRSGA IN LANDSAT 8 IMAGE

Method Intervals Inconsistencies

FRSGA 2247 0

RLGA 2247 0

Table X shows the classification accuracy of the neural net-
work classifier after being trained by the discretization results
of the above algorithms. After optimizing the discretization
scheme of MFD-mvtR, the classification accuracy obtained by
the confusion matrix was about 10 percentage points higher
than the original, and the kappa coefficient was 0.9475. In the
case of the same number of intervals and the same data incon-
sistencies, the classification accuracy was improved by about
5 percentage points compared to that of RLGA, which showed
that the classification accuracy decreased when the influence
of mixed pixels was not considered in the discretization. Fig.
9(a)-(j) correspond to FRSGA, RLGA, MFD-mvtR, EDiRa,
ChiMerge, 1R, NCAIC, FUDC, CVD, and Chi2, respectively.
FRSGA, RLGA, and MFD-mvtR yielded clearer textures of
the ground object information in their classification effect
maps, and more effectively identified boats in the image;
in particular, the junction between berthing ships and the
port could be well identified. Compared to other algorithms,
there were fewer patches and stripes, and the boundaries of
each category were clear. The classification effect map of
FRSGA even accurately distinguished ports, buildings, bare
land shoals, and vegetation in some local areas with complex
surface features. However, in the middle of Fig. 9(d)-(j), there
are stripes of varying degrees. There are also unrecognizable
spots in the water area, especially in Fig. 9(f), where the
boundaries between the berthing ships and the port are vague,
and there are many spots in the water area. FRSGA yielded
the highest quality classification effect map.

We further used FRSGA to optimize the discretization result
of RLGA on a Landsat 8 image. The training set in this image
included 6331 samples, consisting of 935 impervious surface

TABLE XII
CLASSIFICATION ACCURACY OF DISCRETIZATION SCHEME OPTIMIZED

BY FRSGA IN LANDSAT 8 IMAGE

Method Overall accuracy Kappa coefficient

FRSGA 88.8254% 0.8334

RLGA 83.3680% 0.7503
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(d) EDiRa (e) ChiMerge

(g) NCAIC (h) FUDC (i) CVD (j) Chi2

(b) RLGA

(f) 1R

(c) MFD-mvtR

Original image

(a) FRSGA

Fig. 9. Classification effect maps of the ten algorithms.

samples, 936 construction samples, 958 bare land samples,
2324 water samples, and 1178 vegetation samples. We used
the linear spectral decomposition model [48] to extract the
abundances of each endmember in each mixed pixel in the
training set, after which we sorted the pixel values of the
training set and deleted the duplicate values in each of the
seven bands to obtain their initial breakpoints, which were
1403, 1429, 1680, 1869, 2402, 2530, and 2240, totaling 13553
breakpoints. The corresponding numbers of breakpoints after
optimization by FRSGA were 193, 214, 148, 77, 703, 475,
and 437, totaling 2247. As shown in Table XI, FRSGA and
RLGA yielded the same optimization results. Table XII shows
the classification accuracy of the neural network classifier
after being trained by the discretization results of FRSGA and
RLGA. For the same number of intervals and the same data
inconsistencies, the classification accuracy was improved by
about 5 percentage points compared to that of RLGA, which
further showed that in the process of discretization, if the
influence of mixed pixels was not considered, the classification
accuracy was reduced.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a discretization algorithm based on a fuzzy
rough model to analyze and process high-resolution remote
sensing big data. The main contributions of this work were
as follows. (1) According to the theory of the fuzzy set and

rough set, a decision table was introduced for the classifi-
cation of a high-resolution remote sensing image, and each
category of the ground object was regarded as a fuzzy set.
(2) The distance matrix and fuzzy relation matrix on the set
of pixels were obtained by calculating the Euclidean distance
between pixels according to their DN values on each band. (3)
The membership function of each fuzzy set was determined
under the linear decomposition model, and the individual
fitness function based on the fuzzy rough model was further
established. (4) We adopted a chaotic mapping to initialize
the population, and dynamically adjusted the search range
by introducing the adaptive mechanism in each stage of the
genetic operation, thus improving the search efficiency and
accelerating the convergence speed. We used MapReduce to
calculate the fuzzy-rough-based individual fitness in parallel,
which improved the efficiency of data processing. (5) We
verified the proposed method by comparing it to state-of-
the-art discretization algorithms in terms of the running time,
search efficiency, interval quality, and classification accuracy
on the authentic GF-2 and Landsat 8 images.

Although our method can effectively solve the problem of
feature discretization under the linear decomposition model of
mixed pixels, the linear decomposition model must be based
on the assumption that photons arrive at the sensor interact
with a unique spectral endmember. In the ideal situation,
each pixel in the high-resolution remote sensing image can be
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approximately regarded as a linear mixture of each endmember
in the pixel. However, there is interference from noise and
outliers, and intimate mixtures formed by particulate media
in close proximity appear in the scene. There are multiple
interactions between scatterers of the different layers, which
causes the nonlinear mixing of each endmember in a pixel. The
fuzzy rough set has great flexibility in dealing with uncertain
information. Therefore, our future research will continue to
explore how to build more accurate and practical remote
sensing image feature discretization models in the process of
the nonlinear decomposition of mixed pixels using a type II
fuzzy rough set with a stronger anti-noise performance.
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