
Exploring the Computational Cost of Machine Learning at the Edge for Human-Centric
Internet of Things

Oihane Gómez-Carmonaa, Diego Casado-Mansillaa, Frank Alexander Kraemerb, Diego López-de-Ipiñaa, Javier Garcı́a-Zubiac

aDeustotech - University of Deusto, Spain
bDepartment of Information Security and Communication Technology - Norwegian University of Science and Technology, NTNU

cFaculty of Engineering - University of Deusto, Spain

Abstract

In response to users’ demand for privacy, trust and control over their data, executing machine learning tasks at the edge of
the system has the potential to make the Internet of Things (IoT) applications and services more human-centric. This implies
moving complex computation to a local stage, where edge devices must balance the computational cost of the machine learning
techniques to meet the available resources. Thus, in this paper, we analyze all the factors affecting the classification process and
empirically evaluate their impact in terms of performance and cost. We put the focus on Human Activity Recognition (HAR)
systems, which represent a standard type of classification problems in human-centered IoT applications. We present a holistic
optimization approach through input data reduction and feature engineering that aims to enhance all the stages of the classification
pipeline and integrate both inference and training at the edge. The results of the conducted evaluation show that there is a highly
non-linear trade-off to make between the computational cost, in terms of processing time, and the achieved classification accuracy.
In the presented case of study, the computational effort can be reduced by 80 % assuming a decline of the classification accuracy of
only 3 %. The potential impact of the optimization strategy highlights the importance of understanding the initial data and studying
the most relevant characteristics of the signal to meet the cost-accuracy requirements. This would contribute to bringing embedded
machine learning to the edge and, hence, creating spaces where human and machine intelligence could collaborate.

Keywords: Internet of Things, Edge Computing, Machine Learning, Cost-Accuracy, Edge Intelligence,

Embedded systems

1. Introduction

Connecting everyday objects with sensors to create smart
environments is transforming human lifestyles in domains like
the workplace [1] or the city [2]. In these domains, we can ob-
serve how the Internet of Things (IoT) can enhance health [3],
wellness [4] or promote sustainable practices [5]. Smart en-
vironments sense the physical world, give meaning to the ob-
tained information and trigger suitable reactions. For example,
a workplace augmented with IoT can detect and classify un-
healthy habits like bad postures or inadequate hydration, and
notify those harmful practices to end users [6]. For that, data
need to be processed for decision-making, which often involves
inference and machine learning techniques. Following the clas-
sic IoT architecture, such computation is performed on dedi-
cated cloud services [7]. While this might be the typical ar-
chitecture to implement, it increases the human adoption gap
of IoT due to privacy concerns such as the loss of control over
personal data [8] and the feeling that classic IoT-based systems
leave the user involvement aside from the equation [9].

To reduce this gap and improve the interweaving between
human beings and technology, some scholars [10, 11] demand

∗Corresponding author
Email address: oihane.gomezc@deusto.es (Oihane Gómez-Carmona)

more human-centric approaches for sensing the physical world
that enable confident spaces where human and machine intelli-
gence ally. For Garcia et al. [12], this also means to include hu-
mans in the control loop, making them part of the decision pro-
cess and giving them increased control over the management
of the information they generate. Edge computing deserves
attention in this human-centric endeavor as it moves the pro-
cessing power closer to the data source, that is, to a local stage
that boosts what is called privacy-by-design [13]. This provides
users with local control which is a suitable means to lower the
reluctance towards emerging technologies’ adoption. On top of
these positive aspects, edge architectures have to cope with their
own flaws. As an example, while cloud computing platforms
can easily scale up if temporary demand for resources requires
it, edge computing platforms are typically resource-constrained
and cannot just increase their computational power. Thus, the
computational need of data processing tasks is a critical factor
to consider in such edge designs, and new strategies have to be
devised.

To overcome the presented issues, most of the reviewed
body of literature adopt hybrid architectures in which demand-
ing tasks are relegated to the cloud or distributed devices (e.g.,
model (re)training is outsourced to powerful devices and in-
ference is performed in tiny equipment on the edge) [14, 15].
Although we acknowledge that this solves the computing prob-

Preprint submitted to Journal of Future Generation Computer Systems January 14, 2021

This	is	the	authors'	version	of	the	accepted	article.	The	publisher's	version	is	
available	via	https://doi.org/10.1016/j.future.2020.06.013

lems, in the vision of this new human-centric IoT, externalizing
this personal and sensitive data may compromise the privacy of
the user [12]. Therefore, in this article, we continue the work
presented in [16] and extend it proposing a new computational
model that preserves the data on the edge of the network, both
in the training and inference phases. Specifically, we put the
focus on Human Activity Recognition (HAR) systems which
represent a standard type of classification problems in human-
centered IoT applications [17]. The presented case of study
refers to a drinking monitor system on the edge where accel-
eration data, obtained from a wrist-located inertial sensor, is
processed to detect the drinking activity of the user in an office
environment.

From a methodological point of view, we identified and
broke down the different factors that take part in all the stages
of the machine learning process (our pipeline includes training
and inference). Based on this analysis, we present a holistic op-
timization strategy through data reduction that combines those
factors. Then, we measure the computational cost in terms of
execution time, also known as computation latency, and the
classification performance, in terms of accuracy, when we ap-
ply the proposed strategy. We evaluate these metrics in two
well-known resource-constrained devices (Raspberry Pi 3B+

and Raspberry Zero W).
Throughout the manuscript, we show that we can mitigate

the limitations of constrained devices if an optimization pro-
cess is carried out from the early stages of the classification
pipeline (i.e., reducing the data size to simplify the input and
applying feature engineering techniques). Besides, we analyze
how small reductions in the prediction accuracy can potentially
enable substantial improvements in the computational cost, par-
ticularly for the training stage of the different supervised meth-
ods tested. Our results are promising to preserve the personal
data on the edge and still provide good inference results. Thus,
to find optimal solutions that meet the hardware requirements
of the edge. In essence, the aim of this article is to contribute
to the community with empirical data to demonstrate the op-
portunities that the optimization of the pipeline can provide to
(i) match the available resources of edge devices for a balanced
cost-accuracy trade-off and; (ii) to be able to integrate both in-
ference and training at the edge instead of the cloud, avoiding
extra threats on compromising private data.

The rest of the paper is organized as follows. Section 2
outlines the literature on embedded machine learning and edge
intelligence. Section 3 describes the different variables and fac-
tors that take part in the classification pipeline. Section 4 ex-
plains the procedure and the experimental setup followed to
measure the performance of the activity recognition system.
The obtained results, in terms of classification efficacy, accu-
racy and their trade-off, are presented in Section 5 and discussed
in Section 6. Finally, Section 7 draws some conclusions and fu-
ture work.

2. Related Work

The idea of combining edge computing and artificial intelli-
gence is an emerging research area. It aims to make intelligent

applications less dependent on the centralized cloud and bring
them closer to the users [18]. This transition from the cloud to
the edge requires to bring complex computation, including ma-
chine learning algorithms, to embedded devices [19]. Nonethe-
less, despite the possibilities offered by modern hardware plat-
forms, the limitations in the computational capabilities of edge
devices hinder the execution of machine learning techniques on
them [20]. To tackle this open challenge, early research stud-
ies mainly focused on verifying the feasibility of edge devices
to run machine learning applications [21], and estimating the
theoretical computational cost of classification algorithms [22].
In the former case, Lane et al. identified execution bottlenecks
and provided some initial insights about how models could be
scaled down. In the latter, Jensen et al. referred to this char-
acterization as the accuracy–cost conflict, in which embedded
classification systems must not only consider the classification
rate but also be able to balance the cost of each classifier.

Similarly, other investigations have approached embedded
intelligence evaluating the suitability of the Raspberry Pi plat-
form to implement Machine Learning inference tasks on the
edge [23]. In the same line, Desraches et al. [24] considered
the simplification of the classification problems to shed light
on the feasibility of embedding simple yet accurate probabilis-
tic models on constrained devices. In fact, machine learning
frameworks are being adapted to this new edge scenario. For
instance, Tensorflow [25] has incorporated a variant that im-
proves on-device inference and provides tools to include pre-
trained AI models in resource-constrained devices.

However, finding the optimal balance between the cost and
the accuracy implies identifying how the available resources
could be used more effectively [26]. In this line, what is needed
is the development of techniques that optimize the execution
of the machine learning tasks. The existing literature follows
two main approaches to reduce the gap between the computa-
tion complexity and the available resource capacity: (i) imple-
menting more efficient and lightweight representations of the
learning methods and (ii) optimizing different parts of the clas-
sification pipeline to lower the amount of processed data, while
reducing the complexity of the classification systems and the
final models.

The first approach corresponds to adapting classifiers to the
capabilities of the target hardware or creating lightweight im-
plementations of the machine learning algorithms [27]. The
different learning methods differ from each other in terms of
computation requirements, memory size, or accuracy proper-
ties. For this reason, Alam et al. [28] analyzed the applicabil-
ity of some of the most common machine learning models for
the IoT. They concluded that some traditional machine learn-
ing algorithms, such as Naive Bayes, Support Vector Machines,
Linear Regression, and Decision Trees, usually generate a rela-
tively low footprint over resources. For this reason, several ap-
proaches have been proposed for those classifiers; for instance,
optimizing Support Vector Machines [29], k-Nearest Neighbor
[30] and implementing new Decision Trees-based algorithms
for efficient prediction on IoT devices [31]. Various works have
also dealt with the optimization of deep learning models and
the ability to deploy of artificial neural networks on tiny de-

2

Pla$orm

Sampling	Frequency

Signal	Components

Features

ML	Algorithm

Classifia'on
Accuracy

Trade-OffCost	/	Accuracy	Trade-Off

Computa'onal	Cost

PreparaAon

Training

PreparaAon

Inference

rt
+
(1-rt)

Figure 1: Schematic representation of the different factors affecting the cost-accuracy trade-off.

vices [21, 32]. In this regard, Scheidegger et al. [33] analyzed
how deep neural networks can run efficiently on IoT devices
and proposed an automatic way to design deep learning mod-
els that satisfy user-defined constraints. Moreover, Wang et al.
[34] optimized the performance of multilayer perceptron meth-
ods on low power embedded devices.

The second approach comprises diverse optimization strate-
gies that, in general terms, seek to save further resources on the
different stages of the transformation of data into knowledge
[35, 36]. To do that, those strategies address the resource over-
head by reducing the data input size or the final model complex-
ity, aiming to achieve a similar classification accuracy. In this
respect, feature selection can reduce the cost associated with
the extraction of features set [37]. Since smaller number of fea-
tures could lead to a lower classification accuracy, it is essential
to profile this trade-off. This has already been addressed for
HAR systems in embedded and wearable devices by Elsts et
al. [38] and Zalewski et al. [39]. The sampling frequency is
another aspect that deserves attention to improve the final per-
formance of edge intelligent systems [40]. Together with sav-
ing resources at the edge, decreasing the sampling frequency
can also be potentially interesting to reduce end-device energy
consumption as well as communication bandwidth. Kraemer et
al. [41] evaluated the effects of the sampling intervals on both
energy consumption and accuracy, in order to save energy and
costs on the network infrastructure. Similarly, Yan et al. [42]
proposed an adaptive approach for mobile devices and Qi et
al. [43] presented a novel algorithm to determine the optimal
sampling rates according to the requirements of a multi-activity
classification and a single activity event detection. In the same
way, the number of sensors in a multi-sensor setting can be op-
timized to improve the trade-off between them and/or signal
components, and the classification accuracy. In this line, Kang
et al. [44] proposed a dynamic selection of a small subset of
sensors. Gordon et al. [45] evaluated the importance of ev-
ery sensor and compared the trade-off between the number of
sensors and the detection accuracy.

Another possibility to simplify the complexity of classifica-
tion systems is reducing the model size. This effort is geared to-
wards improving the memory impact and computational work-
load of over-parameterized deep learning models [35]. This

optimization is achieved by means of changing the data repre-
sentation strategy to reduce the number of bits that are used to
represent a number, or removing the least essential parameters
of the final model [46]. Model compression [47] and pruning
techniques [48] have proved to be suitable tools to simplify neu-
ral network topologies with a small impact on the accuracy of
the classification.

Despite the promising advances reviewed through this sec-
tion, the research on this topic still focuses on the inference
at the edge, relying on centralized servers or distributed ap-
proaches for training the models [49]. Model training is often
the most time-consuming part of the model development pro-
cess. Thus, training stages at the edge are very limited by the
performance of embedded devices. This limitation makes this
specific part of the classification pipeline a key area of focus
to bring all the stages of the machine learning process to the
local stage. Whilst initial attempts to evaluate the suitability
of embedded platforms have been conducted [50, 51], bringing
the learning phase closer to the edge and optimizing its perfor-
mance continues being understudied on the body of the litera-
ture. Hence, with this work, we aim to contribute to this open
challenge by improving, not only machine learning inference at
the edge, but also the training efficiency. In contrast to most of
the reviewed works, we present a holistic strategy, i.e., the im-
plemented system is globally analyzed, taking into account the
contribution of each part towards the final pipeline.

3. The Trade-off Between Cost and Accuracy

Detecting human behaviour through the classification of sen-
sor data involves an ensemble of computationally intensive tasks.
In the following, we want to better understand the computa-
tional cost of each of them and how these are connected to the
resulting accuracy of the classification results. For that, we have
identified five factors that affect the computational cost: (i) the
platform on which the classification is performed and the set-
up, (ii) the sampling frequency in which raw data is captured,
(iii) the number of components of the signal (for accelerometer
data), or the number of sensors that can be involved, (iv) the
number of features extracted from the data, and, finally, (v) the
machine learning algorithm used. These factors are depicted in
the center of Figure 1.

3

When calculating the cost, we should differentiate between
two main stages in the machine learning process. On the one
hand, creating a new model (training stage, also known as model
fitting), and, on the other hand, deploying this trained model to
make predictions (inference stage). Both stages, as can be ob-
served in Figure 1, involve data pre-processing (preparation),
which corresponds to analyzing the raw data and transform them
into useful inputs for machine learning algorithms. Such prepa-
ration usually relies on features calculated from the processed
data that represent the main characteristics of the initial data.

As explained in the introduction section, we foresee to also
execute the training stage at the edge and not only inference. In
this way, training also contributes to the sum of the total com-
putational cost we will calculate for the whole pipeline. De-
pending on the machine learning technique, the training cost
for a model can be several orders of magnitude higher than its
inference associated cost. However, it is true that training new
models is usually done much less frequent than inference. For
example, a HAR system could infer movements from data sev-
eral times per minute, while retraining only happens every few
days. We capture this by the training ratio rt; 0 < rt < 1, so that
the total computational cost ctotal is calculated as follows:

ctotal = rt ∗ ctraining + (1 − rt) ∗ cinference

. We will later study the influence of this ratio on the feasibility
of different solutions.

Apart from affecting the computational cost, all factors of
Figure 1, except the platform, also influence the accuracy of the
classification. Thus, all these factors condition the reliability of
machine learning algorithms when it comes to detecting human
behavior from the sensor data. This interdependence implies
a critical trade-off in the design and operation of the proposed
edge system. After the choice of the platform, which is done
during deployment and determines the available hardware, the
other parameters can be adjusted during run-time. These fac-
tors provide the possibility to adjust computational cost and ac-
curacy, which will be studied in the remainder of the article.

4. Procedure and Methodology

To evaluate the performance of several machine learning al-
gorithms, we propose a HAR classification problem where se-
quences of accelerometer data are used to relate the inertial sig-
nals to previously labeled actions. In particular, in this study,
we focus on the methodology to design a drinking activity de-
tection system, even though this optimization process can be
extrapolated to any classification problem. To this end, a stand-
alone edge architecture is proposed, where the edge devices are
in charge of both retraining the initial model as well as infer-
ring new knowledge. In this section, we cover the procedure
and methodology followed to understand the impact of the dif-
ferent factors involved in classification problems.

4.1. Initial data
From the existing human activity datasets, we selected one

that includes the drinking activity, namely, the ADL Recogni-

tion with Wrist-worn Accelerometer Data Set [52]. It is pub-
licly available in the UCI Machine Learning Repository [53].
This dataset contains 14 labeled activities of daily living in 839
recorded trials. These activities were recorded by 16 volunteer
participants (11 men and 5 women with ages between 19 and
81 years) wearing a triaxial accelerometer on their right wrists
with an output rate of 32 Hz. The accelerometer measurements
are provided as a series of data points indexed in time order, so
that activities are classified based on the signal behavior over
a period of time. As such, this is a time series classification
problem.

The selected dataset was binarized to represent two classes:
drink activity (100 instances) and the rest of the activities (739
instances). Even though this might create an unbalanced dis-
tribution of classes, the available data still provide a suitable
framework to perform the comparative analysis of the classifi-
cation solution. Thus, to maintain the classification pipeline as
standard as possible for evaluation purposes, no specific balanc-
ing method was applied to the data. Note that performing any
balancing method (under-sampling or over-sampling strategies)
would have an impact on the computational cost, which should
also be considered when balancing the cost-accuracy trade-off.
Therefore, we did not introduce such a phase in our proposal.

4.2. Data pre-processing

Within the preparation phase, we applied a 3-point median
filter to smooth the signal. This avoids big spikes and anomaly
values induced by noise. This is a simple yet effective method
to reduce high-frequency noise that usually is combined with
low-pass filters [54]. In this case, after checking that there
were no significant improvements in classification results, no
frequency-domain filter was implemented to reduce the compu-
tational complexity. Thereafter, every filtered sequence of data
goes through a segmentation process. The entire window of the
data sequence is divided into five segments (or sub-windows)
of equal length without overlapping.

Algorithms usually rely on features calculated from raw
data for classification. This study primarily focuses on time-
domain statistical features that exhibit better cost-benefit prop-
erties than frequency-domain features [55]. The selected set of
features includes mean, min, max, standard deviation, median,
kurtosis, skewness, variance and mean absolute deviation. This
selection represents the most commonly used features for activ-
ity recognition problems according to the literature [56]. These
nine statistical features are calculated for every component of
the signal (X, Y, and Z), for each of the five segments in which
the signal is divided and also for the entire sequence. This sums
a total of 162 initial features that are vectorized to characterize
every sequence of the dataset. Then the features are scaled into
a [0-1] interval using max-min normalization.

4.3. Feature selection

Feature selection is a discriminating process to find impor-
tant features that have more weight in the model. It consists in
reducing the dimension of the feature matrix removing the irrel-
evant features and obtaining the subset of them that contributes

4

the most on the prediction. Thus, this stage of feature selec-
tion is essential when simplification is needed to optimize the
classification process and reduce training and inference time.
The feature selection strategy can be chosen based on consid-
erations such as simplicity, stability or classification accuracy
and it may entail substantial differences on the final classifica-
tion results [57]. In this work, we apply a Chi2 filtering method
that evaluates the correlation between variables (features and
target classes) and ranks them according to their contribution
to the prediction [58]. This is a computationally light strategy
that provides a good balance between its potential results and
its simplicity [59].

Table 1: The most representative features and their correlation score values
indicating the strongest dependency.

Position Feature Score

1 Min X 3 86.121
2 Min X 80.993
3 Mean X 3 66.046
4 Median X 3 62.846
5 Min X 2 44.452
6 Mean X 2 36.978
7 Mean X 36.236
8 Median X 2 34.839
9 Median X 32.655
10 Mean X 4 29.103

The 10 most representative features are listed in Table 1.
Every feature is named by its statistical property, its accelerom-
eter component and the segment of the time series sequence to
which the feature corresponds. As observed, in this feature se-
lection method, the top-10 features were captured from acceler-
ation data in X, that proved to be the most representative one for
the drinking activity. The higher scores of the top-ranked fea-
tures indicate how relevant this short subset of characteristics
is in the classification results. This makes it feasible to reduce
the number of features without an entailed substantial loss of
accuracy on the detection.

We obtained this reduced subset of characteristics applying
the feature selection process to the whole dataset. However,
to evaluate the accuracy of algorithms, the most representative
features for each model are repeatedly calculated within the val-
idation process using only the training data.

4.4. Experimental setup

According to Dhar et al. [26], understanding how machine
learning algorithms can contribute to edge intelligence is a cru-
cial challenge for on-device training. Traditional methods are
especially interesting for building edge learning capabilities,
particularly when the computation power is low and the mem-
ory is limited. Hence, there is a need to explore the traditional
machine learning approaches for implementing on-device train-
ing. For this reason, this study focused mostly on various su-
pervised machine learning methods that are implemented for
the classification problem: Logistic Regression (LG), Random
Forest (RF), K-nearest Neighbors (KNN), Naive Bayes (NB) -
Gaussian, Linear Support Vector Machine (SVM), Multilayer
perceptron (MLP), and Decision Trees (DT).

In terms of hardware, we evaluated three different platforms.
A laptop computer works as a baseline device for compari-
son. Its specifications include an Intel Core i7-975H processor
with a base frequency of 2.60 GHz, equipped with 16 GB of
RAM. For the IoT devices, two Raspberry Pi Foundation low-
cost single board minicomputers were chosen: the Raspberry
Pi 3 model B+ and the Raspberry Zero W. The former (that
has higher computational capabilities) incorporates a quad-core
A53 (ARMv8) 64-bit-based System on Chip (SoC) at 1.4GHz
and 1 Gb of RAM. The latter (which is more limited in terms
of hardware) includes a single-core ARM11 (ARMv6) 32-bits-
based SoC at 1 GHz and 512 Mb of RAM. Even though both
devices belong to the same family, judging by their characteris-
tics and performance (in terms of processing power and mem-
ory), there are significant differences between them. In fact,
taken into account that both devices are compatible with the
same software tools and, thus, they are evaluated under the
same conditions, the paper provides an equitable comparison
between two distinct enough devices.

For the sake of fairness, all experiments are executed solely
on CPU with no other application running at the same time.
The classification solution software relies on the Python library
Scikit-learn [60], which includes efficient versions of the most
common algorithms. The experimental process includes the
training and the inference phase, as well as the validation of the
models for each of the selected machine learning algorithms.
The materials used for the evaluation experiments are publicly
available 1.

5. Analysis and Results

The results presented in this section can be divided into
three different categories: the evaluation of the classification ac-
curacy, the computational cost of machine learning techniques
(measured as the necessary time to perform the classification
process), and the trade-off between them. In both cases, the
impact of the described factors (sampling frequency, number of
signal components, number of features and the algorithm) are
measured for each of the selected hardware platforms. Finally,
in this section we present a selection of cost-accuracy optimal
solutions obtained through the process of data analysis and re-
duction combined with a multi-objective optimization strategy.

5.1. Classification accuracy

This subsection evaluates the accuracy of the machine learn-
ing models according to the validation procedure explained in
Figure 2. We perform this evaluation through a 5-fold-cross-
validation procedure. Such validation was repeated 100 times to
obtain more robust results. Four metrics are used to measure the
predictive performance of algorithms: Precision, which mea-
sures the true positives among all positive results; Recall, which
computes correctly labeled positives based on all the correct
positive and negative events; F1 Score, the harmonic mean of

1https://github.com/OihaneGomez/Exploring_Computational_

Cost_ML_IoT

5

https://github.com/OihaneGomez/Exploring_Computational_Cost_ML_IoT
https://github.com/OihaneGomez/Exploring_Computational_Cost_ML_IoT

Figure 2: Schematic representation of the model training phase and its evalua-
tion through a 5 cross-validation process.

precision and recall metrics; and Accuracy, the ratio of correct
prediction over the total number of predictions. Macro average
results are provided for the first three metrics.

The first step in the optimization process is to quantify the
influence of reducing the data input on the classification capa-
bilities. Thus, we consider the three factors upon which the
accuracy depends on and we evaluate them for each of the ma-
chine learning algorithms. The influence of the sampling fre-
quency is analyzed by downsampling the original data to lower
frequencies. For the number of components, we compare the
performance of the models that use all the accelerometer sig-
nal components (XYZ) with models that only receive the most
representative one (X). This component was selected according
to the ranking of features (see Table 1) that revealed X as the
most representative component. Finally, we analyze the effects
of the number of features on the classification output compar-
ing the results for all the original features set (162), a subset of
the top 10, and the 3 top-ranked features.

Table 2: Average F1 results for several sampling frequencies.

All Features 10 Features 3 Features

32 Hz
(Initial)

95,60
(SD=1,86)

94.83
(SD=3,72)

92.55
(SD=4.06)

16 Hz
95.60

(SD = 1.28)
94.07

(SD=2,24)
88.66

(SD=2,90)

8 Hz
94.91

(SD =1.84)
93.52

(SD=2,32)
88,31

(SD=2.54)

4 Hz
94,87

(SD=1,73)
93,52

(SD=1.90)
86,45

(SD=3,48)

With regard to the sampling frequency, Table 2 resumes the
average F1 results for the sum of all the learning methods. This
tables compared initial results with the ones obtained by reduc-
ing the original 32 Hz sampling rate to 16 Hz, 8 Hz and 4 Hz.
It can be noted how lower frequencies decrease the classifica-
tion performance but still maintain acceptable detection rates.
In this particular application, this means that it is feasible to
lower the frequency up to 4Hz. However, these results could
be biased for the stationary nature of the target class (drinking
activity) and may not be extrapolated to standard classification
problems. For this reason, we have decided to cut off this reduc-

tion and keep 16 Hz as the reference downsampled ratio, since
this frequency belongs to the 15 Hz–20 Hz range, which is con-
sidered as appropriate for HAR systems [61]. Therefore, in Ta-
bles 3 and 4 we summarize the performance of all the analyzed
supervised machine learning approaches for the original sam-
pling data (32 Hz) and for the downsampled data (16 Hz). In
both cases, the results for XYZ and X (the most representative
component) are included. As can be observed, the classification
rates yield average values over 90 % in almost all cases.

Figure 3 illustrates the influence of the number of features
on the accuracy for the regular sampling. In particular, this fig-
ure highlights how the detection rates increase quickly at the
beginning of the graph and reach values over 92 % with the first
20 features. This indicates that a good balance between the
number of characteristics and the accuracy of the classification
can be obtained with few features irrespective of the classifi-
cation method. As can be observed, adding more features to
the models can improve the performance in some cases while
decreasing it in others, since the feature selection process is in-
dependent of the algorithm.

Figure 3: Model performance evolution, measured by the F1-Score, according
to the selected number of features.

A thorough analysis shows that K-nearest neighbor performs
slightly better than the other algorithms when the classification
depends on all the 162 features. Naive Bayes scores are worse
for a larger number of features than for a small number of them.
This can indicate that the features are not independent enough
by themselves, something opposite to the intrinsic modelling
assumption of Naive Bayes, which assumes that the presence
of a specific feature is completely unrelated to the presence of
any other [62]. For this reason, we still include it for the anal-
ysis of the cost-accuracy trade-off, but we consider it an outlier
for average calculations of Tables 5 and 6.

In Table 5 and Table 6, we show the final impact of every
of the evaluated factors compared to the baseline performance
(original sampling frequency, XYZ signal components, and 162
features). The results indicate small differences when decreas-
ing the sampling frequency to 16 Hz. Moreover, the classi-

6

Table 3: Performance of the supervised machine learning algorithms for the original sampling frequency (32Hz).

All Components (XYZ)
All 162 Features 10 Features 3 Features

Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy
LG 94.73 96.36 95.40 98.10 90.20 93.95 91.75 96.70 82.87 91.03 86.09 94.77
RF 95.66 98.14 96.78 98.70 96.19 96.89 96.46 98.53 93.18 94.54 93.72 97.41
KNN 97.78 96.40 97.01 98.72 98.07 96.70 97.32 98.85 95.61 96.33 95.89 98.29
NB 92.91 76.58 81.26 89.38 94.89 81.00 85.77 92.51 96.22 86.48 90.36 95.33
SVM 95.51 94.67 94.99 97.87 92.99 94.33 93.49 97.30 92.10 93.11 92.47 96.88
MLP 95.40 95.48 95.34 98.04 94.45 94.43 94.31 97.60 94.57 94.17 94.26 97.56
DT 94.62 93.89 94.10 97.48 95.31 96.15 95.62 98.18 93.19 92.82 92.84 96.97

Most Representative Components (X)
All 54 Features 10 Features 3 Features

Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy
LG 93.66 95.07 94.22 97.62 90.20 93.95 91.75 96.70 82.87 91.03 86.09 94.77
RF 96.05 97.70 96.78 98.68 96.19 96.89 96.46 98.53 93.18 94.54 93.72 97.41
KNN 97.33 96.85 97.02 98.74 98.07 96.70 97.32 98.85 95.61 96.33 95.89 98.29
NB 94.98 83.85 88.05 94.03 94.89 81.00 85.77 92.51 96.22 86.48 90.36 95.33
SVM 95.35 94.73 94.94 97.86 92.99 94.33 93.49 97.30 92.10 93.11 92.47 96.88
MLP 95.43 95.17 95.20 97.97 94.45 94.43 94.31 97.60 94.57 94.17 94.26 97.56
DT 94.74 94.84 94.68 97.76 95.31 96.15 95.62 98.18 93.19 92.82 92.84 96.97

Table 4: Performance of the supervised machine learning algorithms for half the sampling frequency (16 Hz).

All Components (XYZ)
All 162 Features 10 Features 3 Features

Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy
LG 94.95 96.47 95.57 98.18 88.28 93.47 90.43 96.25 79.90 89.00 83.32 93.84
RF 95.84 97.89 96.76 98.68 95.71 96.24 95.89 98.29 88.75 90.77 89.53 95.72
KNN 97.77 95.99 96.80 98.62 97.35 96.48 96.85 98.66 90.02 89.91 89.78 95.69
NB 92.98 76.72 81.42 89.50 94.46 79.81 84.63 91.76 94.94 82.63 87.13 93.45
SVM 96.16 95.02 95.48 98.07 92.23 94.87 93.34 97.29 91.42 90.55 90.80 96.08
MLP 95.65 95.97 95.71 98.20 94.23 94.68 94.32 97.62 92.69 89.79 91.03 96.08
DT 93.49 93.40 93.29 97.17 93.39 94.03 93.56 97.31 87.48 87.95 87.48 94.76

Most Representative Components (X)
All 54 Features 10 Features 3 Features

Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy
LG 93.66 95.46 94.42 97.71 88.28 93.47 90.43 96.25 79.90 89.00 83.32 93.84
RF 95.82 97.45 96.54 98.58 95.71 96.24 95.89 98.29 88.75 90.77 89.53 95.72
KNN 97.58 96.45 96.94 98.69 97.35 96.48 96.85 98.66 90.02 89.91 89.78 95.69
NB 95.11 84.37 88.46 94.27 94.46 79.81 84.63 91.76 94.94 82.63 87.13 93.45
SVM 93.68 93.26 93.33 97.18 92.23 94.87 93.34 97.29 91.42 90.55 90.80 96.08
MLP 94.29 94.68 94.35 97.64 94.23 94.68 94.32 97.62 92.69 89.79 91.03 96.08
DT 93.41 94.07 93.58 97.33 93.39 94.03 93.56 97.31 87.48 87.95 87.48 94.76

Table 5: Average F1 results comparison for the original sampling (32 Hz). XYZ
and the most representative component (X) are included.

All Features 10 Features 3 Features Decrease

XYZ 95,60 94,83 92,55 3,199 %
X 95,47 94,83 92,55 3,058 %

Decrease 0,135 % 0 % 0 %

Table 6: Average F1 results comparison for half the original frequency (16 Hz).
XYZ and the most representative component (X) are included.

All Features 10 Features 3 Features Decrease

XYZ 95,60 94,07 88,66 7,259%
X 94,86 94,07 88,66 6,535 %
Decrease 0,774 % 0 % 0 %

fication results are not drastically penalized when the number
of features is reduced to 10 and even 3. However, decreasing
the number of features has a more significant impact on lower
sampling frequencies. For the original sampling provided by
the dataset, using only the top 3 features penalized the results
in a 3.19 %. For half of the sampling rate, the decreasing was
7,259 %. Furthermore, considering only the most representative
component of the signal (X) does not affect the overall results
significantly: 0.135 % for the regular sampling and 0.774 % for
the downsampled data. The results are the same when consid-
ering only the top 10 and top 3 features in classification. This
means that only X-related features are in this top.

5.2. Computational cost
In this subsection, we evaluate how the design parameters

affect to the model in its two stages: training and inference.
Figure 4 represent the experimental sequence in both cases. We

7

measure the computational cost of each process as the neces-
sary time to accomplish all the tasks it encompasses.

Figure 4: Representation of the training and inference phases.

5.2.1. Training process
Training a machine learning model corresponds to one of

the most computationally intensive processes within an activ-
ity recognition application. The main reason is that it involves
processing large amounts of data. The training process can be
divided into two parts, the common pre-processing steps ap-
plied to the whole dataset and the algorithm-dependent model
fitting task. Table 7 presents the elapsed time for the initial pre-
processing stage when all the dataset information is read, and
the features are calculated. These results were obtained after
repeating the process at least 15 times (3 runs of 5 loops) and
calculating the average running times. They are also displayed
in Fig. 5, that compares the evolution of the processing time
according to the number of features.

Table 7: Computational cost of processing all the dataset for the training pro-
cess using the original sampling frequency (32 Hz).

XYZ X

Laptop Rpi Rzero Laptop Rpi Rzero

All Feat. 16s 2min 5s 12min 32s 5.3s 52s 5min 5s
10 Feat. 7,1s 43,6s 4min 6s 3.1s 25s 2min 18s
3 Feat. 7s 41,4s 3min 56s 3.0s 22,5s 2min 9s

Decrease 56,32 % 66,94 % 68,61 % 44,05 % 56,78 % 57,73 %

At first sight, it can be noted how the computational time
shows a quadratic growth when the data input (the number of
features) increases. This is particularly relevant for the scala-
bility of the classification system, and may heavily penalize the
performance of less powerful devices. For this reason, a more
in-depth analysis of the percentage reduction shows that more
significant performance improvements are obtained in those plat-
forms. As expected, the laptop computer outperformed the
other devices in absolute terms. In relative terms, the laptop
decreased its running times in a 56,32 % for XYZ, while the

Figure 5: Evolution of the elapsed time for processing all the instances of the
dataset for training.

same data reduction achieved a decrease of 68,61 % on the ex-
ecution times for the Raspberry Zero platform. Moreover, from
the baseline parameters (all features and all the signal com-
ponents) to the final simplified stage (3 features and only the
most representative component) the time reduction was 81,24 %
for the laptop (from 16 seconds to 3 seconds), 82,05 % for the
Raspberry Pi (from 2 min and 5 seconds to 22,5 seconds) and
92,32 % for the Raspberry Zero (from 12 min and 32 seconds
to 2 min and 9 seconds).

Table 8: Computational cost of processing all the dataset for the training pro-
cess and half the original sampling frequency (16 Hz).

XYZ X

Laptop Rpi Rzero Laptop Rpi Rzero

All Feat. 15.98s 2min 5s 12min 19s 5.38s 49.34s 5min 10s
10 Feat. 7.72s 42.92s 4min 5s 3.13s 24.4 4s 2min 18s
3 Feat. 7.43s 40.79s 3min 44s 3.01s 22.1s 2min 8s

The effect of the remaining factor, the sampling frequency,
is evaluated in Table 8, which includes a comparison of the pre-
processing times for 16 Hz. In this case, contrary to what in-
tuitively could be expected, a lower sampling frequency did
not substantially affect the time measurements. A more de-
tailed analysis shows that only little differences are found for
the largest number of features compared to Table 7. In some
cases, because of the non-deterministic nature of the timing
measurements, the performance was even slightly worse. This
lack of improvement can be a consequence of the baseline re-
source overhead associated with data management. Another
possible reason is the length of the data window, which is not
large enough to have noticeable improvements when it is re-
duced. Therefore, in our evaluated case of study, this may in-
dicate that the number of computations (e.g, how many charac-
teristics of the signal are obtained) has a greater impact on the
pre-processing stage than the effect of the data length. How-
ever, this particular conclusion cannot be generalized to similar
applications. Thus, it would be necessary to look at the effect
of the sampling frequency in applications with larger data sets,
longer data streams, more complex filtering stages or frequency-
domain features. In the following, we will continue the analysis
using only the original sampling frequency (32 Hz), since the

8

Figure 6: Comparative between the number of features and the elapsed time for fitting the model. MLP and RF are out of this representation since they have a
significantly greater duration than those included.

model created with the downsampled data is more sensitive to
decreasing the number of features.

The second step of the training stage is to feed the model
with the pre-processed data for the fitting task. This task de-
pends on the different classifiers and their parameters, together
with the amount of data used to build it. Figure 6 represents
the average computational cost of each algorithm for the model
fitting task after executing it 1000 times (100 runs of 10 loops).
Furthermore, it shows the time impact caused by creating the
model with an increasing number of features. Random forest
and Multilayer Perceptron techniques are excluded from these
plots since their duration, significantly greater than those rep-
resented, compromise the visibility of the figure. Instead, their
results are presented in Table 9 and Table 10.

Table 9: Elapsed time fitting the model for MLP and RF considering XYZ.
Laptop Raspberry Pi Raspberry Zero

Features 162 10 3 162 10 3 162 10 3
RF 181.9ms 96.4ms 80.5ms 1,6s 1.1s 970ms 7.8s 6.2s 6.1s
MLP 782.3ms 456.9ms 622.2ms 3,2s 2.3s 2.4s 20.2s 14.9s 17.6s

Table 10: Elapsed time fitting the model for MLP and RF considering X.
Laptop Raspberry Pi Raspberry Zero

Features 54 10 3 54 10 3 54 10 3
RF 136.0ms 96.3ms 80.6ms 1.3s 1.0s 991.3ms 6.8s 6.5s 6.3s
MLP 719.2ms 452.1ms 624.3ms 2.2s 2.5s 2.4s 13.2s 14.3s 15.7s

For MLP, increasing the number of features can affect pos-
itively on the timing results. In this case, from 3 to 54 features,
the efficiency of the fitting task was increased. As the MLP is

iteratively trained, depending on how fast it converges, the time
to fit the data can vary. Consequently, a larger data input size
may then improve the fitting process of the model.

The main conclusion that can be extracted from those re-
sults is that fitting task times are significantly lower than the
time needed to process all the initial data and create the input
for the model. Contrary to the pre-processing stage, here the al-
gorithm and its internal parameters play an important role when
creating the model. In general terms, the fitting task shows a
behavior close to linear when increasing the input size. This
involves a baseline computational complexity of O(nm), being
m is the number of instances and n the number of features. For
this reason, with a small number of features, all the algorithms
last similarly, but when increasing the number of features, the
computational cost is augmented. On top of that, the incre-
ments in time (the slope) of the each of the learning algorithms
depend on the complexity of the learning method itself or the
different parameters and estimators that can be adjusted on the
fitting phase. For this reason, the complexity of the machine
learning techniques can be reduced by modifying those fitting
parameters to simplify the model, but decreasing its accuracy in
return. Still, considerable improvements in the performance can
be obtained when adjusting the internal values that affect data
model. This is specifically the case for RF and MLP, which are
the most resource-demanding algorithms in this comparative.

These slopes are also affected by the platform on which this
training process is carried out. In general, under 20 features the
times of all the algorithms are within the first segment of the
Y-axis for the three platforms, being 200 ms the worst case for
the Raspberry Zero W.

9

Figure 7: Comparison between the number of features and the elapsed time for predicting a sequence of new data. KNN and RF are out of this representation since
they have a significantly greater duration than those included.

Figure 8: Evolution of the computational cost of processing 14 instances of the
dataset for inference.

Table 11: Time needed to process 14 instances of new data for the prediction
process.

XYZ Most representative component

Laptop Rpi Rzero Laptop Rpi Rzero

All Features 317 ms 2.62 s 15.9 s 125 ms 1.07 s 6.57 s
10 Features 140 ms 838 ms 5.48 s 71.2 ms 557 ms 3.61 s
3 Features 134 ms 781 ms 5.06 s 62.5 ms 500 ms 3.24 s

Decrease 58,04% 70,20% 68,25% 49,19% 53,14% 50,65%

Table 12: Prediction times for RF and KNN considering XYZ.
Laptop Raspberry Pi Raspberry Zero

Feat. 162 10 3 54 10 3 54 10 3
RF 5.6ms 5.5ms 5.5ms 46.1ms 39.9ms 39.4ms 261.5ms 260.9 ms 260.7ms
KNN 2.7ms 0.7ms 0.6ms 23.9ms 3.7ms 2.6ms 100.4ms 15.9 ms 13.4ms

Table 13: Prediction times for RF and KNN considering X.
Laptop Raspberry Pi Raspberry Zero

Feat. 54 10 3 54 10 3 54 10 3
RF 5.6ms 5.6ms 5.5ms 39.6ms 39.0ms 38.7ms 279.8ms 279.0ms 278.8ms
KNN 1.2ms 0.7ms 0.6ms 7.8ms 4.1ms 2.6ms 41.3ms 17.2ms 14.5ms

5.2.2. Prediction process
The prediction process is tested to evaluate how long it takes

to read and process a sequence of data and compare it with the
already trained model. The experiment consists of measuring
the elapsed time in the process of classifying a sample of 14
instances of the dataset. Therefore, this test resembles an online
classification system where a new sequence of data needs to be
predicted without an entailed excessive processing time. Again,
the results are divided into two parts, the common process of
reading and processing the new data and the inference task.

Table 11 shows the computational cost of reading and pro-
cessing the 14 instances of new data for a variable number of
features, computed after executing the experiment 30 times (10
runs of 3 loops). Again, it illustrates how processing times ben-
efit from the feature reduction step and the selection of the most
representative components of the signal. This is especially rel-
evant in the case of the Raspberry Pi and Zero. The total time
reduction is 80,28 % for the Laptop PC, 80,93 % for the Rasp-
berry Pi and 97,96 % for the Raspberry Zero. In particular, the
Raspberry Zero reduced its total processing times from around
16 seconds to 3 seconds. This improvement is very noticeable
and makes a difference when designing online classification
systems for low-powered devices. Figure 8 reflects the com-
putational cost tendency that shows again a quadratic growth.

Compared to pre-processing and training, the inference task

10

Figure 9: Cost-accuracy trade-off for the balanced computational cost between prediction and fitting times (left) and applying the train inference ratio (center and
right). The Pareto frontier represents the most optimal solutions.

is several orders of magnitude faster on all platforms (see Fig-
ure 7). Prediction task needs less than 0.3 ms for the laptop
device, 1,4 ms for the Raspberry Pi, and less than 8 ms for the
Raspberry Zero (mean values of 1000 runs). Random Forest
and K-nearest neighbors are out of this representation. Instead,
Table 12 and Table 13 include the results of both algorithms.

In this case, reducing the number of features does not sig-
nificantly affect the time required for inference. Few differences
can be found among all algorithms in terms of performance, ex-
cept the mentioned RF and KNN that took a slightly longer time
than the rest of them to compare the new data with the model.
Furthermore, Naive and SVM times show a steady increase,
while the rest of the algorithms show a sustained response. This
is a consequence of the constant computational complexity of
the prediction task in some of the evaluated algorithms, which
are less sensitive to the data input size. For the prediction phase,
the number of features it still is a relevant factor according to
the computational cost of pre-processing new data.

5.2.3. Cost-accuracy trade-off: a Pareto approach
The correlation between the model size and the accuracy

studied along this section lead us to draw an initial conclu-
sion: it is feasible to maintain detection rates over a 90 % when
the data input is reduced. In our case, the studied simplifica-
tion strategy was able to reduce the data input size to a small
subset of one representative component and its top-10 features,
that outperforms the baseline substantially. Moreover, the time
improvements explored in previous subsection produce an en-
hanced performance in most of the classification tasks when
data input size is reduced, regardless of the devices’ resources.
This allows bringing more complex applications to a local stage
that could not be executed in the edge otherwise. Based on the
obtained results it is expected that, in some applications, opti-
mizing early stages of the pipeline can improve the performance
of the system more than the specific learning method.

From that point, further evaluation can optimize the trade-
off between classification accuracy and computational cost. To
that end, we conduct a Pareto multi-objective optimization anal-
ysis to find the small-sized subset of solutions with the best
performance [63]. The Pareto analysis is a statistical tool for
decision-making that selects a limited number of Pareto-optimal

solution that illustrates the best trade-off between two objec-
tives, cost and accuracy in our case. Since we seek to evalu-
ate the efficiency of the model for both training and inference
stages, we include the role of each of these stages through the
train/inference ratio (explained in section 3) in the Pareto anal-
ysis.

Figure 9 represents the relationship between the total cost
(the sum of the prediction and training times without consider-
ing data processing) and the accuracy of the system (F1 values).
Every point corresponds to a certain number of features for each
of the evaluated algorithms running on the laptop device. This
figure also illustrates the effect of this weight correction on the
total cost when different train/inference ratios are applied. This
ratio is a design choice that should be made according to the
context of the classification problem. As explained in Section 3,
it gives more importance to the predominant task and sets the
frequency in which a model may be retrained in comparison
to the estimated number of times new data would be classified.
For comparative purposes, we have selected a weight correction
of r=1 (baseline ratio, no weight correction is applied), r=100
and r=1000 to show the differences. This means that the train-
ing stage may occur once every 100 or 1000 times or, in other
words, giving 100 or 1000 times more importance to the pre-
diction stage over the training phase. As we explained in initial
sections, the weighted computational cost ctotal is calculated as:
ctotal = rt ∗ ctraining + (1 − rt)cinference, with rt = 1/r. This figure
also includes the Pareto frontier that represents the most optimal
solutions and marks the points with better accuracy (highest y-
axis values) and lower computational costs (smaller values on
the x-axis).

The train/inference ratio is particularly relevant for those al-
gorithms with an unbalance performance between training and
inference tasks, such as KNN and MLP. The former has a great
performance on training (See Figure 6) while the inference times
are worse than the average (Tables 12 and 13). MLP, on the
contrary, performs well for inference (Figure 7), but its com-
plexity demands higher times to create the model (Table 9 and
Table 10). As the train/inference ratio grows, we can observe
how KNN is penalized, increasing its total weighted compu-
tational cost, and MLP moves to the left, closer to the Pareto

11

Figure 10: Cost-accuracy trade-off and Pareto optimal points for the reduced
data input achieved during the optimization process on the Raspberry Pi 3 de-
vice.

frontier. Higher train/inference ratio values would increase this
difference in those applications where training times are partic-
ularly big compared to the inference time (e.g., when dealing
with larger datasets).

Figure 10 shows the Pareto analysis performed only for the
final reduced solution (top-10 features and X component) when
applying a 1:1000 ratio and for the Raspberry Pi 3 device. In
this case, the computational cost included also the pre-processing
times for training and inference. Again, the dashed line high-
lights the Pareto optimal points, where the small set of options
that have the most efficient balance between the classification
rates and the computational cost are included. Table 14 in-
cludes the values associated with each of these points, where
total times are the sum of data processing for training and in-
ference together with the fitting or prediction tasks times. The
final step in the optimization process is to select the one that
better meets the initial design requirements from this selection,
either prioritizing accuracy or performance.

5.3. Limitations

Before concluding based on the experimental results, we
want to address the possible limitations of this study. The main
goal of this work is to analyze the different factors involved in
the machine learning pipeline and optimize their influence on
the cost-accuracy trade-off. Thus, the significance of this work
relies on the comparison of the relative results obtained when
each of these factors are evaluated. Additional elements affect-
ing the absolute results such as the machine learning frame-
work, the programming language, or the hyperparameter opti-
mization are out of the scope of this comparative analysis. For
example, the way the different tasks are implemented may have
an impact on the execution of the system. For this reason, opti-
mizing general characteristics of the code, such as the way the
information is processed (e.g., vectorizing computations over
data structures [64]) can improve the general performance of
the system. We take this into account in the evaluated solution,
but we do not benchmark code optimization mechanisms.

Table 14: Final optimal Pareto solutions with the best cost-accuracy trade-off

for the Raspberry Pi 3.

Alg N Features F1 Total inference time (s) Total training time (s)

LG 1 81.73 0.503349 21.680870
NB 1 92.58 0.503824 21.676447
SVM 1 92.20 0.503571 21.686039
DT 1 91.88 0.503432 21.675802
KNN 2 95.40 0.514883 21.811192
KNN 3 95.93 0.522636 22.030610
DT 4 92.69 0.513096 22.578788
KNN 6 96.11 0.528342 22.926632
KNN 7 96.70 0.533877 23.088214
KNN 8 96.90 0.544137 23.593250
KNN 9 97.18 0.554919 23.781464
KNN 10 97.19 0.561269 23.153416

Besides, there are other aspects in the pipeline such as the
data filtering method or the feature selection algorithms; the
comparison of different strategies for those aspects is out of the
scope of this paper. Therefore, we explain the decision crite-
rion to choose them. However, we do not delve into the anal-
ysis of the consequences that these decisions may have in the
classification results. We note that it would be interesting for
future work to evaluate the potential improvements that alter-
native strategies could entail.

Finally, we evaluated the computational cost in terms of the
elapsed time for each of the different stages of the classifica-
tion problem. Despite running these tasks in isolation, they can
be sensitive to internal processes or routines of the device, and
hence be non-deterministic. To overcome this issue, we took
a large number of measurement samples and provided average
results based on a large number of iterations.

6. Discussion

Some intelligent environments, such as smart homes, smart
cities or smart workplaces, are especially challenging scenarios
where privacy concerns regarding data protection and security
are critical issues. In those spaces, the concept of privacy is also
related to the ability of the user to determine how, when, and to
whom personal information can be disclosed.

In this sense, the edge computing paradigm proposes a con-
cept that brings closer human and machine intelligence and en-
visages scenarios where positive interactions through privacy-
by-design might be created. Data still needs to be captured and
processed to create contextual services, but the physical prox-
imity of the users and their data can reduce the critical barriers
regarding the acceptance of intelligent environments. From a
human being perspective, this ensures that the collected sensi-
tive information remains on personal devices and not on third-
party servers, which favors privacy and trust.

Beyond that, creating spaces where human and machine in-
telligence collaborates is also related to the role of the user, that
needs to be carefully considered to reduce their reluctance to
be part of this new scenario [65]. More than creating reliable
and efficient solutions, such spaces demand an increased con-
trol of the users over the system and their data, preventing the
threat of intelligent environments taking control over them [66].

12

For this reason, human-centric approaches should also engage
the users to actively collaborate with the machine intelligence
[67]. This falls within the concept of human-in-the-loop where
approaches like interactive machine learning make possible for
end-users to interact with the learning process to tune the sys-
tem according to their preferences, or even to feed it with more
data [68]. In supervised approaches, the user can create per-
sonalized human activity recognition systems by providing new
annotations [69] while in semi-supervised ones, the model can
also be fed with raw time-series data. [70]. Thus, machine intel-
ligence can be adaptively adjusted in terms of human goals. In
this scenario, integrating the training stage in the edge can give
an answer to the need for privacy of new smart spaces while
increasing users’ perceived level of trust in the system [71].

The main problem that we have observed throughout this
study arises when demanding applications compromise the com-
putational capability of the edge devices. Some scholars have
pointed out that pre-trained models are easily deployable in
constrained nodes and, hence, inference can run on them. How-
ever, processing new data and training new models are compu-
tationally intensive tasks that are still insufficiently investigated
in edge devices. Thus, if a model needs to be retrained to fit
better to the user preferences or to integrate new data, the usual
answer to overcome this drawback is to move the training stages
to cloud servers, something against the benefits of edge comput-
ing architectures in terms of privacy. So, the next stage of an
intelligent edge is to find new ways to integrate the whole clas-
sification pipeline at the edge to perform on-site training and
decrease data exposure.

The presented case of study deserves attention to illustrate
the potential impact of the optimization strategy that address
this piece or research. In its evaluation, the experimental results
suggest that, in some applications, the specific processing times
for each algorithm can be practically negligible concerning the
time required to capture the data and process it. This empha-
sizes the relevance of understanding the characteristics of the
data and its impact in the performance and cost, particularly for
the training phases.

Since the importance of this methodology relies on pro-
filing the different factors affecting the classification pipeline,
this holistic approach can be extended to other solutions. By
way of illustration, personalized healthcare or smart home do-
mains are some other examples where the adaptation of envi-
ronments and resources should be in line with individual hu-
man needs. In those examples, the different factors of the data
collection and processing may produce an optimization oppor-
tunity that allows to perform those adjustments and re-train
the models in consequence. There, applications like heart-rate
ECG monitoring involve high-frequency signals which increase
the computational cost [72]. Other solutions such as energy
forecasting and smart metering applications for smart homes
usually involve complex processing techniques and obtaining
frequency domain features for modeling energy consumption
patterns [73].

Even considering the specific particularities of the different
classification applications, an important step to meet this objec-
tive is to find the right balance between the computational cost

and the final accuracy of the obtained knowledge. To that end,
this analysis seeks to assist in providing a strategy for optimiz-
ing similar problems and bringing advanced processing capa-
bilities to the edge of the network.

7. Conclusions and Future Work

In this work we have presented a methodology to meet a sat-
isfactory cost-accuracy trade-off on the execution of the whole
pipeline of machine learning techniques. This is motivated by
the challenge of improving the feasibility of resource-constrained
devices to perform inference and training tasks at the edge, con-
tributing to a more human-centric IoT. To that end, we have em-
braced a holistic approach based on understanding the different
factors that take part in the whole classification process (from
data acquisition to the final fitting and prediction stages). Be-
sides, we have empirically analyzed and compared the perfor-
mance of these training and inference phases concerning HAR
algorithms within two resource-constrained platforms.

In the evaluated case of study, the proposed strategy has
been able to reduce by more than 80 % the baseline process-
ing time of the machine learning techniques in all the evaluated
platforms. Furthermore, acceptable detection rates are main-
tained, with an accuracy consistently over 90 %, and assuming
a decline of classification accuracy of only 3 %. We stress that
the selection of the machine learning algorithm is not the only
important factor to consider in the classification on the edge.
The process of understanding the initial data and optimizing
the process from the early stages of the classification pipeline
is vital to meet the cost-accuracy requirements.

The obtained results provide us with an outlook for future
work on the area. Firstly, having applied our proposed strategy
to one specific classification problem we cannot ensure that the
results can be generalized to any dataset or application. How-
ever, we argue that the presented methodology can be reused in
similar problems and may lead to similar conclusions. There-
fore, we should explore where and how can be extrapolated.
Besides, we aim at integrating the solution in a real-world edge
architecture for validating the proposal in a online classification
scenario.

Finally, the approach presented in this article opens the door
to adopt similar mechanisms to tackle the optimization of other
applications for IoT edge devices and provides some guidelines
suitable for any other sensor data available within the Internet
of Things paradigm.

Acknowledgments

We gratefully acknowledge the support of the Basque Gov-
ernmentś Department of Education for the predoctoral funding
of one of the authors and the Deustek Research Group. We also
acknowledge the support of the the Ministry of Economy, In-
dustry and Competitiveness of Spain for SentientThings under
Grant No.: TIN2017-90042-R.

13

References

[1] C. A. Simmers, M. Anandarajan, The Internet of People, Things and Ser-
vices: Workplace Transformations, Routledge, 2018.

[2] R. Sánchez-Corcuera, A. Nuñez-Marcos, J. Sesma-Solance, A. Bilbao-
Jayo, R. Mulero, U. Zulaika, G. Azkune, A. Almeida, Smart cities survey:
Technologies, application domains and challenges for the cities of the
future, International Journal of Distributed Sensor Networks 15 (6) (2019)
1550147719853984.

[3] H. H. Nguyen, F. Mirza, M. A. Naeem, M. Nguyen, A review on iot
healthcare monitoring applications and a vision for transforming sen-
sor data into real-time clinical feedback, in: 2017 IEEE 21st Interna-
tional Conference on Computer Supported Cooperative Work in Design
(CSCWD), IEEE, 2017, pp. 257–262.

[4] J. Cahill, R. Portales, S. McLoughin, N. Nagan, B. Henrichs, S. Wetherall,
Iot/sensor-based infrastructures promoting a sense of home, independent
living, comfort and wellness, Sensors 19 (3) (2019) 485.

[5] A. Irizar-Arrieta, O. Gómez-Carmona, A. Bilbao-Jayo, D. Casado-
Mansilla, D. López-De-Ipiña, A. Almeida, Addressing behavioural tech-
nologies through the human factor: A review, IEEE Access 8 (2020)
52306–52322.

[6] O. Gomez-Carmonaa, D. Casado-Mansillaa, J. Garcıa-Zubiab, Opportu-
nities and challenges of technology-ased interventions to increase health-
wareness in the workplace, Transforming Ergonomics with Personalized
Health and Intelligent Workplaces 25 (2019) 33.

[7] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on inter-
net of things: Architecture, enabling technologies, security and privacy,
and applications, IEEE Internet of Things Journal 4 (5) (2017) 1125–
1142.

[8] S. Pearson, A. Benameur, Privacy, security and trust issues arising from
cloud computing, in: 2010 IEEE Second International Conference on
Cloud Computing Technology and Science, IEEE, 2010, pp. 693–702.

[9] D. Casado-Mansilla, P. Garaizar, D. López-de Ipiña, User involvement
matters: The side-effects of automated smart objects in pro-environmental
behaviour, in: Proceedings of the 9th International Conference on the
Internet of Things, 2019, pp. 1–4.

[10] M. Conti, A. Passarella, S. K. Das, The internet of people (iop): A new
wave in pervasive mobile computing, Pervasive and Mobile Computing
41 (2017) 1–27.

[11] S. Chen, T. Liu, F. Gao, J. Ji, Z. Xu, B. Qian, H. Wu, X. Guan, Butler, not
servant: A human-centric smart home energy management system, IEEE
Communications Magazine 55 (2) (2017) 27–33.

[12] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, E. Riviere, Edge-centric comput-
ing: Vision and challenges, ACM SIGCOMM Computer Communication
Review 45 (5) (2015) 37–42.

[13] S. Pape, K. Rannenberg, Applying privacy patterns to the internet of
things’(iot) architecture, Mobile Networks and Applications 24 (3) (2019)
925–933.

[14] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, K. Chan,
When edge meets learning: Adaptive control for resource-constrained
distributed machine learning, in: IEEE INFOCOM 2018-IEEE Confer-
ence on Computer Communications, IEEE, 2018, pp. 63–71.

[15] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, J. Zhang, Edge intelligence:
Paving the last mile of artificial intelligence with edge computing, arXiv
preprint arXiv:1905.10083.

[16] O. Gómez-Carmona, D. Casado-Mansilla, D. López-de Ipiña, J. Garcı́a-
Zubia, Simplicity is best: Addressing the computational cost of machine
learning classifiers in constrained edge devices, in: Proceedings of the 9th
International Conference on the Internet of Things, IoT 2019, Association
for Computing Machinery, New York, NY, USA, 2019. doi:10.1145/

3365871.3365889.
URL https://doi.org/10.1145/3365871.3365889

[17] Z. Hussain, M. Sheng, W. E. Zhang, Different approaches for human ac-
tivity recognition: A survey, arXiv preprint arXiv:1906.05074.

[18] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, P. Hui, A survey on edge intelli-
gence, arXiv preprint arXiv:2003.12172.

[19] F. Samie, L. Bauer, J. Henkel, From cloud down to things: An overview
of machine learning in internet of things, IEEE Internet of Things Journal.

[20] T. Adegbija, A. Rogacs, C. Patel, A. Gordon-Ross, Microprocessor op-
timizations for the internet of things: A survey, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 37 (1) (2017)
7–20.

[21] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, F. Kawsar, An
early resource characterization of deep learning on wearables, smart-
phones and internet-of-things devices, in: Proceedings of the 2015 in-
ternational workshop on internet of things towards applications, ACM,
2015, pp. 7–12.

[22] U. Jensen, P. Kugler, M. Ring, B. M. Eskofier, Approaching the accuracy–
cost conflict in embedded classification system design, Pattern Analysis
and Applications 19 (3) (2016) 839–855.

[23] M. Yazici, S. Basurra, M. Gaber, Edge machine learning: Enabling smart
internet of things applications, Big Data and Cognitive Computing 2 (3)
(2018) 26.

[24] F. Desraches, O. Kamara-Esteban, D. Casado-Mansilla, C. E. Borges,
Forecasting the usage of appliances of shared use: an analysis of sim-
plicity over complexity, in: 2018 Energy and Sustainability for Small De-
veloping Economies (ES2DE), IEEE, 2018, pp. 1–6.

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: A system for large-
scale machine learning, in: 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[26] S. Dhar, J. Guo, J. Liu, S. Tripathi, U. Kurup, M. Shah, On-device ma-
chine learning: An algorithms and learning theory perspective, arXiv
preprint arXiv:1911.00623.

[27] A. R. Neto, B. Soares, F. Barbalho, L. Santos, T. Batista, F. C. Delicato,
P. F. Pires, Classifying smart iot devices for running machine learning
algorithms, in: 45o Seminário Integrado de Software e Hardware 2018
(SEMISH 2018), Vol. 45, SBC, 2018, pp. 1–12.

[28] F. Alam, R. Mehmood, I. Katib, A. Albeshri, Analysis of eight data min-
ing algorithms for smarter internet of things (iot), Procedia Computer Sci-
ence 98 (2016) 437–442.

[29] K. Z. Haigh, A. M. Mackay, M. R. Cook, L. G. Lin, Machine learning for
embedded systems: A case study, BBN Technologies: Cambridge, MA,
USA.

[30] C. Gupta, A. S. Suggala, A. Goyal, H. V. Simhadri, B. Paranjape, A. Ku-
mar, S. Goyal, R. Udupa, M. Varma, P. Jain, Protonn: Compressed and
accurate knn for resource-scarce devices, in: Proceedings of the 34th
International Conference on Machine Learning-Volume 70, JMLR. org,
2017, pp. 1331–1340.

[31] A. Kumar, S. Goyal, M. Varma, Resource-efficient machine learning in
2 kb ram for the internet of things, in: Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, JMLR. org, 2017,
pp. 1935–1944.

[32] L. Andrade, A. Prost-Boucle, F. Pétrot, Overview of the state of the art
in embedded machine learning, in: 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE), IEEE, 2018, pp. 1033–1038.

[33] F. Scheidegger, L. Benini, C. Bekas, A. C. I. Malossi, Constrained deep
neural network architecture search for iot devices accounting for hard-
ware calibration, in: Advances in Neural Information Processing Sys-
tems, 2019, pp. 6054–6064.

[34] X. Wang, M. Magno, L. Cavigelli, L. Benini, Fann-on-mcu: An open-
source toolkit for energy-efficient neural network inference at the edge of
the internet of things, arXiv preprint arXiv:1911.03314.

[35] M. Shafique, T. Theocharides, C.-S. Bouganis, M. A. Hanif, F. Khalid,
R. Hafız, S. Rehman, An overview of next-generation architectures for
machine learning: Roadmap, opportunities and challenges in the iot era,
in: 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), IEEE, 2018, pp. 827–832.

[36] X. Fafoutis, L. Marchegiani, A. Elsts, J. Pope, R. Piechocki, I. Craddock,
Extending the battery lifetime of wearable sensors with embedded ma-
chine learning, in: 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT), IEEE, 2018, pp. 269–274.

[37] R. Cilla, M. A. Patricio, A. Berlanga, J. M. Molina, Creating human activ-
ity recognition systems using pareto-based multiobjective optimization,
in: 2009 Sixth IEEE International Conference on Advanced Video and
Signal Based Surveillance, IEEE, 2009, pp. 37–42.

[38] A. Elsts, R. McConville, X. Fafoutis, N. Twomey, R. J. Piechocki,
R. Santos-Rodriguez, I. Craddock, On-board feature extraction from ac-
celeration data for activity recognition., in: EWSN, 2018, pp. 163–168.

[39] P. Zalewski, L. Marchegiani, A. Elsts, R. Piechocki, I. Craddock,
X. Fafoutis, From bits of data to bits of knowledge—an on-board clas-

14

https://doi.org/10.1145/3365871.3365889
https://doi.org/10.1145/3365871.3365889
http://dx.doi.org/10.1145/3365871.3365889
http://dx.doi.org/10.1145/3365871.3365889
https://doi.org/10.1145/3365871.3365889

sification framework for wearable sensing systems, Sensors 20 (6) (2020)
1655.

[40] A. Khan, N. Hammerla, S. Mellor, T. Plötz, Optimising sampling rates
for accelerometer-based human activity recognition, Pattern Recognition
Letters 73 (2016) 33–40.

[41] F. A. Kraemer, F. Alawad, I. M. V. Bosch, Energy-accuracy tradeoff for
efficient noise monitoring and prediction in working environments, in:
Proceedings of the 9th International Conference on the Internet of Things,
IoT 2019, Association for Computing Machinery, New York, NY, USA,
2019. doi:10.1145/3365871.3365885.
URL https://doi.org/10.1145/3365871.3365885

[42] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, K. Aberer, Energy-
efficient continuous activity recognition on mobile phones: An activity-
adaptive approach, in: 2012 16th international symposium on wearable
computers, Ieee, 2012, pp. 17–24.

[43] X. Qi, M. Keally, G. Zhou, Y. Li, Z. Ren, Adasense: Adapting sampling
rates for activity recognition in body sensor networks, in: 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), IEEE, 2013, pp. 163–172.

[44] S. Kang, J. Lee, H. Jang, Y. Lee, S. Park, J. Song, A scalable and energy-
efficient context monitoring framework for mobile personal sensor net-
works, IEEE Transactions on Mobile Computing 9 (5) (2009) 686–702.

[45] D. Gordon, J. Czerny, T. Miyaki, M. Beigl, Energy-efficient activity
recognition using prediction, in: 2012 16th International Symposium on
Wearable Computers, IEEE, 2012, pp. 29–36.

[46] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev, C. Forlivesi,
F. Kawsar, Squeezing deep learning into mobile and embedded devices,
IEEE Pervasive Computing 16 (3) (2017) 82–88.

[47] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin, Compression of
deep convolutional neural networks for fast and low power mobile appli-
cations, arXiv preprint arXiv:1511.06530.

[48] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convo-
lutional neural networks for resource efficient inference, arXiv preprint
arXiv:1611.06440.

[49] A. E. Eshratifar, M. S. Abrishami, M. Pedram, Jointdnn: an efficient train-
ing and inference engine for intelligent mobile cloud computing services,
IEEE Transactions on Mobile Computing.

[50] J. Liu, J. Liu, W. Du, D. Li, Performance analysis and characteri-
zation of training deep learning models on nvidia tx2, arXiv preprint
arXiv:1906.04278.

[51] P. S. Chandakkar, Y. Li, P. L. K. Ding, B. Li, Strategies for re-training a
pruned neural network in an edge computing paradigm, in: 2017 IEEE
International Conference on Edge Computing (EDGE), IEEE, 2017, pp.
244–247.

[52] B. Bruno, F. Mastrogiovanni, A. Sgorbissa, A public domain dataset for
adl recognition using wrist-placed accelerometers, in: the 23rd IEEE In-
ternational Symposium on Robot and Human Interactive Communication,
IEEE, 2014, pp. 738–743.

[53] D. Dua, C. Graff, UCI machine learning repository (2017).
URL http://archive.ics.uci.edu/ml

[54] E. Arias-Castro, D. L. Donoho, et al., Does median filtering truly preserve
edges better than linear filtering?, The Annals of Statistics 37 (3) (2009)
1172–1206.

[55] W. Dargie, Analysis of time and frequency domain features of accelerom-
eter measurements, in: 2009 Proceedings of 18th International Confer-
ence on Computer Communications and Networks, IEEE, 2009, pp. 1–6.

[56] M. Janidarmian, A. Roshan Fekr, K. Radecka, Z. Zilic, A comprehensive
analysis on wearable acceleration sensors in human activity recognition,
Sensors 17 (3) (2017) 529.

[57] G. Chandrashekar, F. Sahin, A survey on feature selection methods, Com-
puters & Electrical Engineering 40 (1) (2014) 16–28.

[58] H. Liu, R. Setiono, Chi2: Feature selection and discretization of numeric
attributes, in: Proceedings of 7th IEEE International Conference on Tools
with Artificial Intelligence, IEEE, 1995, pp. 388–391.

[59] J. Suto, S. Oniga, P. P. Sitar, Feature analysis to human activity recog-
nition, International Journal of Computers Communications & Control
12 (1) (2017) 116–130.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-
learn: Machine learning in python, Journal of machine learning research
12 (Oct) (2011) 2825–2830.

[61] N. Twomey, T. Diethe, X. Fafoutis, A. Elsts, R. McConville, P. Flach,
I. Craddock, A comprehensive study of activity recognition using ac-
celerometers, in: Informatics, Vol. 5, Multidisciplinary Digital Publishing
Institute, 2018, p. 27.

[62] P. Domingos, M. Pazzani, On the optimality of the simple bayesian clas-
sifier under zero-one loss, Machine learning 29 (2-3) (1997) 103–130.

[63] C. Qian, Y. Yu, Z.-H. Zhou, Subset selection by pareto optimization, in:
Advances in Neural Information Processing Systems, 2015, pp. 1774–
1782.

[64] S. v. d. Walt, S. C. Colbert, G. Varoquaux, The numpy array: a structure
for efficient numerical computation, Computing in Science & Engineer-
ing 13 (2) (2011) 22–30.

[65] D. Casado-Mansilla, P. Garaizar, A. Irizar-Arrieta, D. López-de Ipiña, On
the side effects of automation in iot: Complacency and comfort vs. relapse
and distrust, arXiv preprint arXiv:1911.08657.

[66] E. Kaasinen, T. Kymäläinen, M. Niemelä, T. Olsson, M. Kanerva, V. Iko-
nen, A user-centric view of intelligent environments: User expectations,
user experience and user role in building intelligent environments, Com-
puters 2 (1) (2013) 1–33.

[67] S. Amershi, M. Cakmak, W. B. Knox, T. Kulesza, Power to the people:
The role of humans in interactive machine learning, Ai Magazine 35 (4)
(2014) 105–120.

[68] F. Bernardo, M. Zbyszynski, R. Fiebrink, M. Grierson, Interactive ma-
chine learning for end-user innovation, in: 2017 AAAI Spring Sympo-
sium Series, 2017, pp. 1–7.

[69] T. Miu, P. Missier, T. Plötz, Bootstrapping personalised human activity
recognition models using online active learning, in: 2015 IEEE Inter-
national Conference on Computer and Information Technology; Ubiqui-
tous Computing and Communications; Dependable, Autonomic and Se-
cure Computing; Pervasive Intelligence and Computing, IEEE, 2015, pp.
1138–1147.

[70] H. L. Cardoso, J. M. Moreira, Human activity recognition by means of
online semi-supervised learning, in: 2016 17th IEEE International Con-
ference on Mobile Data Management (MDM), Vol. 2, IEEE, 2016, pp.
75–77.

[71] K. Yu, S. Berkovsky, D. Conway, R. Taib, J. Zhou, F. Chen, Do i trust
a machine? differences in user trust based on system performance, in:
Human and Machine Learning, Springer, 2018, pp. 245–264.

[72] O. Kwon, J. Jeong, H. B. Kim, I. H. Kwon, S. Y. Park, J. E. Kim, Y. Choi,
Electrocardiogram sampling frequency range acceptable for heart rate
variability analysis, Healthcare informatics research 24 (3) (2018) 198–
206.

[73] Y. Wang, Q. Chen, T. Hong, C. Kang, Review of smart meter data analyt-
ics: Applications, methodologies, and challenges, IEEE Transactions on
Smart Grid 10 (3) (2018) 3125–3148.

15

https://doi.org/10.1145/3365871.3365885
https://doi.org/10.1145/3365871.3365885
http://dx.doi.org/10.1145/3365871.3365885
https://doi.org/10.1145/3365871.3365885
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Introduction
	Related Work
	The Trade-off Between Cost and Accuracy
	Procedure and Methodology
	Initial data
	Data pre-processing
	Feature selection
	Experimental setup

	Analysis and Results
	Classification accuracy
	Computational cost
	Training process
	Prediction process
	Cost-accuracy trade-off: a Pareto approach

	Limitations

	Discussion
	Conclusions and Future Work

