
Procedia CIRP 97 (2020) 453–458

Contents lists available at ScienceDirect

Procedia CIRP

journal homepage: www.elsevier.com/locate/procir

Development of application programming interface prototype for

injection molding machines

Olga Ogorodnyk

a , ∗, Mats Larsen

b , Kristian Martinsen

a , Ole Vidar Lyngstad

b

a Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, Teknologivegen 22, 2015 Gjøvik, Norway
b SINTEF Manufacturing AS, P.O. Box 163, 2831 Raufoss, Norway

a r t i c l e i n f o

Keywords:

Injection moulding

Application programming interface

Cyber-Physical Systems

Industry 4.0

a b s t r a c t

This paper describes architecture and development of an open application programming interface (API)

prototype for injection molding machines (IMMs), useable for sensor and machine/process data logging

and setting necessary process parameter values. The API is based on PCMEF (presentation, control, do-

main and foundation) architectural framework and OSI 7 layer communication model. The interface al-

lows to retrieve values of up to 97 machine and process parameters. It also includes a module for ac-

quisition of data from additional sensors such as pressure and temperature sensors installed in the mold.

Industrial Raspberry Pi (RevPi) is used to perform analog-to-digital signal conversion and makes sen-

sors data accessible via the API. Logging of different parameters from the machine and from sensors is

synchronized and sampling frequency can be adjusted if necessary. Depending on chosen frequency, the

system can provide real-time or soft real-time communication. The interface allows to build a distributed

computer-based system, which gives benefit over the use of a PLC system with respect to Industry 4.0

standards.

© 2020 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

y

2

c

s

t

C

i

t

t

t

(

t

p

(

M

(

c

c

b

a

i

i

o

t

1

r

m

p

s

t

a

K

h

2

(

. Introduction

Several studies highlight the importance of collection and anal-

sis of process data from manufacturing processes (Vrabi ̌c et al.,

017). The increased attention to the concepts of Industry 4.0,

yber-physical systems (CPS), self-optimizing systems, as well as

o-called data-driven methods for creation of models for predic-

ion and classification (Yin et al., 2014) underline this. Although

PS is still mainly a concept (Kull, 2015 , Saldivar et al., 2016) and

s far from industrial implementation (Lee et al., 2014), we see a

rend of machine tool suppliers offering more sensors, data collec-

ion and simulation software. Within the CPS concept lies the po-

ential of optimization of production system behavior in real time

 Negri et al., 2017). To be able to achieve this the systems need

o provide robust and synchronized data acquisition, storage and

rocessing, external communication and intelligent process control

 Vrabi ̌c et al., 2017 , Lee et al., 2014 , Tellaeche and Arana, 2013).

odels created by data-driven methods, such as machine learning

ML) can provide necessary flexibility and robust adaptation in the

hanging production environment (Yin et al., 2014).
∗ Corresponding author.

E-mail address: olga.ogorodnyk@ntnu.no (O. Ogorodnyk).

m

t

i

u

ttps://doi.org/10.1016/j.procir.2020.07.005

212-8271/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
To reach these goals there is a need to develop extended and

ommonly accessible application programming interfaces (APIs)

etween machine tools and external systems. Such APIs must en-

ble real-time process data collection and processing. In the case of

njection molding this would include logging of data from sensors

nstalled in the injection molding machines (IMMs) and molds. The

btained data can be further used for optimizing process parame-

ers, process monitoring and control.

.1. Injection molding challenges towards industry 4.0

Quality of injection molded parts are dependent on many pa-

ameters: product design, material properties, the quality of the

old, machine tool parameters such as holding pressure, back-

ressure, cooling time, injection speed (Ogorodnyk and Martin-

en, 2018 , Zhao et al., 2014). Due to this, selection of the parame-

er settings that enable production of high quality parts has been

n important research area over the years (Huang and Tai, 2001 ,

ashyap and Datta, 2015). Similar to other industrial machines,

odern IMMs can be equipped with manufacturing execution sys-

ems (MES) which include a data logging function, usually provid-

ng monitoring of machine status, remote access to machine set-

p, data logging of machine and process parameters and display-
under the CC BY-NC-ND license

https://doi.org/10.1016/j.procir.2020.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/procir
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:olga.ogorodnyk@ntnu.no
https://doi.org/10.1016/j.procir.2020.07.005
http://creativecommons.org/licenses/by-nc-nd/4.0/

O. Ogorodnyk, M. Larsen, K. Martinsen et al. Procedia CIRP 97 (2020) 453–458

i

p

a

I

c

p

n

i

i

d

e

d

t

(

o

m

m

v

(

a

a

f

p

Z

s

b

t

a

f

o

m

s

e

o

i

p

2

i

b

a

e

t

Fig. 1. API modules.

t

A

o

p

w

d

s

i

c

d

m

S

i

a

d

s

s

m

i

O

m

b

t

a

r

l

p

t

a

a

b

a

t

i

r

a

n

I

r

ng the data in a feasible way. Examples are ARBURG’s “Host com-

uter system (ALS)” (ARBURG. Host computer system (ALS) 2020)

nd MES HYDRA (MDPV 2020). These are definitely a step towards

ndustry 4.0, but there are still challenges such as real-time data

ollection, as many of the MES log parameter data only once per

roduction cycle, as well as the absence of possibility to synchro-

ize data acquisition from machine built-in and additional sensors

nstalled, for example, in a mold. One of the main reasons for this

s that the available systems have a closed architecture and pre-

efined functionality without an open API.

In addition, selection of a proper communication protocol to

stablish communication between an IMM and a PC or another

ata storage and processing unit is important. EUROMAP 63 pro-

ocol was developed in 20 0 0 and uses file based data transfer

 EUROMAP 2020). EUROMAP77 was released in 2018 and is based

n OPC/UA but is not directly connected to IMM’s control loop and

ight not be able to guarantee real-time or soft real-time com-

unication. In addition, some IMM suppliers such as ENGEL pro-

ide their own data exchange interfaces (ENGEL machine interface

EMI)). All of these protocols need to be considered if the API or

n MES is to be used with various types of IMMs.

Research literature, at the same time, offers exam ples of data

cquisition during the injection molding process, such as in-mold

orce (Tellaeche and Arana, 2013), mold temperature, screw dis-

lacement and velocity data (Zhao et al., 2014 , Zhou et al., 2017).

hang Y, Mao T (Zhang et al., 2016) are using a hydraulic pressure

ensor to estimate nozzle pressure values and increase controlla-

ility of the process. In (Charest et al., 2018) pressure transducers,

hermocouples, velocity, position and flow sensors are installed to

cquire IMM data. However, in these examples the data is acquired

rom the sensors additionally installed in the IMM. Ironically, a lot

f this data could be acquired from sensors already installed in the

achine by its manufacturer, but due to restriction of commercial

oftware and hardware, new sensors needed to be installed to get

asy access to data and analyze it.

In this paper, on the other hand, development and application

f an open API prototype applied to an IMM and in-mold sensors

s presented. Such API can be used for industrial and research ap-

lication in order to address the following tasks:

• Ability to use the API with various types of IMMs of different

manufacturers and communication protocols;

• Acquisition of IMM machine and process parameters data from

built-in sensors;

• Acquisition of IMM machine and process parameters data from

additional sensors;

• Synchronized acquisition of data from built-in and additional

sensors;

• Setting of machine and process parameters on the IMM without

hindering the IMM operational security;

• Possibility to add custom modules on top of the initially avail-

able functionality. Such modules might include implementation

of various algorithms for data analysis, parameters optimization

and intelligent process control.

. Development of a generic API

Application programming interface is a software product that

ncludes number of clearly defined methods for communication

etween different components, in our case, between an IMM, a PC

nd a data acquisition system connected to mold sensors. As an

xtension to the tasks presented in previous section, the API needs

o comply with the following requirements:

• Compatible with personal computers.

• Open with possibility to build on existing functionality.

• Soft real-time logging sampling rate faster than 2 Hz.
454
• Real-time logging for sampling rate slower and equal to 2 Hz.

• Logging of up to 97 machine and process IMM parameters.

• Logging of data from additionally installed sensors.

• Ensured synchronized acquisition of data from machine built-in

sensors and additionally installed sensors;

• Option of setting values of machine and process parameters,

where allowed, without overriding the current value if the en-

tered value is not acceptable due to being too high or too low

for secure operation of the IMM in use.

Python3 programming language was chosen to create a pro-

otype of the proposed application programming interface. The

PI’s architecture is designed based on PCMEF (Maciaszek and Li-

ng, 2004 , Kurose and Ross, 2010) layered architectural framework

roviding easy interaction with the IMM. Benefit of this frame-

ork is its stability and modularity, which is possible since only

ownward dependencies between the layers are allowed. As a re-

ult, “changes in higher layers don’t create a cascade of modifications

n lower layers” (Madeyski and Sochmialek, 2005). The framework

onsists of four main layers: presentation, control, domain and foun-

ation (Maciaszek and Liong, 2004).

Communication design of the proposed application program-

ing interface was created following OSI 7 layer model. It is Open

ystems Interconnection model that generally includes the follow-

ng levels: application, presentation, session, transport, network, link

nd physical (Kurose and Ross, 2010). The general communication

esign of ENGEL EMI data exchange protocol used in the API’s

erver-side is also structured after OSI 7 layer model. The server-

ide is implemented by ENGEL and includes all 7 layers of the

odel. The authors of the paper concentrated on the client-side

mplementation which includes layers number 5, 6 and 7 of the

SI model. Our Application layer is with “get and set methods” for

achine parameters. Our Presentation layer includes Python’s XML-

yte stream implementation for data interpretation from the IMM

o construct an XML-byte stream. This layer must guarantee read-

bility of server on the IMM, meaning that server has to react on

equest by a method defined in the XML-byte stream. The S ession

ayer is based on socket Python library and is multi-client com-

atible. The developed API includes three main modules: IMM in-

erface, Data acquisition system for additional sensors (DAQ Interface)

nd database , as shown on Fig. 1 . Here the general API is depicted

s a green block, while three software modules it includes are in

lue blocks, while the orange blocks include hardware that the API

nd its modules are connected to. IMM interface is part of the API

hat is used for establishment of connection with injection mold-

ng machine in use and requesting and setting corresponding pa-

ameter values. DAQ interface is used for acquisition of data from

ny additionally installed machine and mold sensors. Database is

eeded for organized storage and easy access to the sampled data.

f necessary, additional modules for testing data processing algo-

ithms and IMM control routines can be added.

O. Ogorodnyk, M. Larsen, K. Martinsen et al. Procedia CIRP 97 (2020) 453–458

Fig. 2. Mold for production of dog bone specimens.

3

s

d

2

2

i

i

I

T

f

m

f

l

(

t

T

A

T

d

3

a

m

t

r

s

R

t

c

t

T

d

c

e

p

r

E

c

“

P

c

h

T

b

T

I

a

u

s

q

(

p

D

d

“

I

t

c

s

o

a

t

o

u

d

m

u

r

f

t

l

e

n

r

a

p

o

s

3

i

c

t

l

t

a

e

t

u

3

f

v

d

m

a

p

b

t

. API application on ENGEL IMM

The developed API prototype was tested with an ENGEL in-

ert 130 vertical IMM with CC300 control unit. Focus parts are

og bone specimens for tensile stress testing with 170 mm length,

0 mm width and 4 and 15 mm thickness, according to ISO 527-

 (ISO 2012). The mold for production of the 15 mm thick parts

s shown on Fig. 2 . It has two Kistler 4021B10H1P1 multi-sensors

nstalled for monitoring mold temperature and pressure.

We have selected Raspberry Pi RevPi Core3 and RevPi Analog

nput Output (AIO) modules for the digital sampling of the signals.

he modules are connected through PiBridge. RevPi allows per-

orming Delta Sigma Conversion using analog-to-digital converter

odel ADS1248 with 24-bit resolution. Unlike commercial DAQs

rom manufacturers like NI and HBM, RevPi is an open, modu-

ar industrial PC which provides flexibility of software alternatives

 RevPi - Industrial Raspberry Pi 2020). The sampling rate is unfor-

unately low, in practice about 125 Hz due to load on the PiBridge.

his will lead to about 5 ms update time on the PiBridge for each

IO module connected, which is, however, sufficient for our case.

he computer networking device that is used to connect all the

evices together is a 10 0 0 Mbps switch.

.1. Data acquisition from machine built-in sensors

The IMM interface is the API module responsible for getting

nd setting parameter values from machine built-in sensors. The

ain tasks of this module are establishment of connection with

he IMM, periodical checks that the connection is up and running,

eading of requested machine and process parameters data and its

torage in a first-in-first-out (FIFO) queue.

The ENGEL Insert 130 IMM used in this study supports EU-

OMAP63 and ENGEL Machine Interface (EMI) data exchange pro-

ocols. To satisfy the need for soft real-time and real-time data ex-

hange, EMI data exchange protocol is used in the API, as due to

he authors’ experience it is much faster than the EUROMAP63.

his module includes an interface class specifically designed for

ata exchange with the help of EMI data exchange protocol and

annot be used as a general interface class for all types of data

xchange protocols. If, for example, EUROMAP77 needs to be im-

lemented, a new interface class has to be added to follow cor-

esponding protocol specifications. In private communication with

NGEL the Uniform Resource Identifiers (URIs) necessary for ac-

essing different values on the IMM were obtained.
455
The module uses Pyro4 (Python Remote Objects),

xml.etree.ElementTree”, socket, thread, queue and datetime

ython libraries. Pyro4 library is used to enable distributed

omputing between network-based objects, as Pyro4 is able to

andle automatic locating of remote calls based on the URIs.

he “xml.etree.ElementTree” library was used to construct XML

yte-streams and for the conversion of byte-streams into strings.

his is necessary since EMI is based on XML exchange between

MM and a PC. The socket library, in its turn, is used to establish

 client-server connection between a PC and the IMM, as EMI

ses TCP/IP protocol for communication. Thread library is neces-

ary for the development of high-level threaded interfaces, while

ueue library “implements multi-producer, multi-consumer queues”

 PythonSoftwareFoundation 2020) and is useful for threaded

rogramming and safe data exchange between different threads.

atetime library, on the other hand, is used to retrieve machine

ate and time and ease operations with it.

The API prototype can log data in three different modes “Idle”,

Fixed cycles” and “Flexible cycles” depending on the application.

n the “Idle” mode controller ensures that connection is up and

hat application is able to access the interface’s methods for asyn-

hronous interaction, while the “Fixed cycles” mode is a periodical

ampling mechanism of parameters from the IMM that samples all

f the parameters simultaneously. The sampling results are avail-

ble in the queue for the application process. “Flexible cycles” mode

akes care of the unbalanced update sampling frequencies to avoid

versampling. Machine parameters on the IMM can have different

pdate frequencies depending on the sampling limitations of the

ata acquisition system on the IMM. These frequencies can also be

anipulated by the user via the IMM’s general user interface. The

pdating frequencies typically vary from 10 to 10 0 0 ms. At the first

un in the “Flexible cycles” mode, the interface acquires sampling

requency of each parameter from the IMM and groups parameters

hat have the same update rate. In this mode, interface checks the

ast datetime (using datetime Python library), when each param-

ter group was updated, and determines if it is time to acquire a

ew portion of data from the IMM.

Another function of the module is to load user-requested pa-

ameters provided in a .csv file. Data from the file is loaded into

 “ParameterList” parameter and is then used to specify the map-

ing between Uniform Resource Identifiers of different parameters

n the IMM and set, as well as actual parameter values. The de-

cription of “ParameterList” structure is provided in Table 1 .

.2. Data acquisition from additional sensors

The logging of data from both built-in and additional sensors

s synchronized. To do this API uses one of the deployed methods

alled event_sample() . It needs to be triggered for both IMM and

he data acquisition system in use (in our case RevPi). The data is

ogged only when the machine mold is closed in order to minimize

he amount of memory used for data storage. In this case, the data

cquisition of both IMM parameters and additional sensors param-

ters starts simultaneously when the IMM mold closes. To detect

he mold closing, a “mold force” parameter is used. The software

nit waits until the mold force parameter reaches a value of ≥
00 kN and then starts data collection. It stops when the mold

orce parameter value becomes lower than the above-specified

alue. Each injection molding machine has a similar parameter to

etect the mold closing, therefore, synchronization based on this

ethod is robust enough to use it with IMMs of different types

nd manufacturers. The list of obtained parameter values is then

rovided in a .csv, .json or .pickle file format saved in a specified

y a user folder.

This research included the use of a mold with two pressure and

emperature multi-sensors. This is what the DAQ module of the

O. Ogorodnyk, M. Larsen, K. Martinsen et al. Procedia CIRP 97 (2020) 453–458

Table 1

“ParameterList” description.

Column name Column name description Example

name Name of a specific parameter, name defined by user. Plasticizing_time

path_act_value Mapping to a predefined URI address on the IMM. This URI returns

actual value of the specific parameter given by the column “name”.

URI for Plasticizing time actual value

path_set_value Mapping to a predefined URI address on the IMM. This URI is setting

user-given value of the specific parameter given by the column “name”.

URI for Temperature in heating

cylinder set value

enable Defines if the specific parameter given by the column “name” is enabled

or disabled.

0 or 1

description User’s description of a parameter. Plasticizing time of the molding

process

unit Predefined unit of a parameter. s

Table 2

Statistics of overhead measurement for RevPi.

Sampling rate [Hz] Mean [s] Std. dev. [s] Max. [s] Min. [s] Overhead over 0.025 s [%]

100 0.015363 0.020718 0.467 0 0.96

50 0.006215 0.024150 0.262 −0.01 1.29

33 0.000007 0.0241035 0.448 −0.2 1.14

2 0.000603 0.0007935 0.006 −0.004 0.00

p

w

i

p

p

f

s

T

m

o

p

i

3

r

i

A

a

s

c

a

4

t

p

r

t

h

q

A

r

t

t

I

c

t

s

t

c

r

-

h

s

r

a

g

h

t

I

I

E

t

v

D

p

a

w

t

s

o

t

t

t

t

s

l

P

c

“

G

d

t

u

I

m

t

s

roposed API is needed for. However, the API can also be utilized

ith other types of additional sensors.

As described previously, Industrial Raspberry Pi (RevPi) consist-

ng of two modules, RevPi Core3 and RevPi AIO, was used as a

hysical data acquisition system for this purpose. A simple Python

rogramming language script is used to convert sensor signals

rom analog to digital and synchronize logging with data acqui-

ition from the machine built-in sensors to provide data integrity.

his is significantly easier than using DAQs from National Instru-

ents (NI) or HBM to acquire sensor data, as they require the use

f commercial “black box” software that needs to be additionally

urchased such as, for example, LabView or CatMan, while Python

nterpreters are usually open source and free of charge.

.3. Database

Currently, data from each production cycle is written to a sepa-

ate file of a user-specified type (.csv, .json, .pickle) and is stored

n a folder chosen by a user on the PC connected to the IMM.

 proper database management unit needs to be developed and

dded to the system in future versions, providing a better way of

toring big amounts of process data. This unit will enable users to

reate, structure and update a database with necessary parameters,

s well as to structure larger datasets for their further analysis.

. Validation of the developed prototype

Before using the API for acquisition of production or experimen-

al data, it is necessary to investigate whether the developed API

rototype complies with the specified real-time and soft real-time

equirements.

All modules of the API were installed on the RevPi, where

hree different processes needed to be handled: handling the IMM,

andling Kistler sensors signals and synchronization of data ac-

uisition from the injection molding machine and mold sensors.

ll tests were conducted at length of 4900 samples for sampling

ates at 100, 50, 33 and 2 Hz. The experiments measure the la-

ency/overhead compared to the desired sampling rate.

The results of the statistical summaries of the overhead dis-

ribution for RevPi are presented in Table 2 and summaries for

MM’s DAQ in Table 3 . In the table, the “Sampling rate” column

ontains the used sampling rate value, “Mean” is the average of

he overhead in seconds, “Std. dev” is the standard deviation in

econds, “Max” is the highest overhead time in seconds, “Min” is
456
he lowest overhead time and “Overhead over 0.025s” is the per-

entage of samples with overhead over 0.025 s. The used sampling

ate is subtracted from the period between samples, (sample_n + 1

 sample_n) - sampling_rate in the results to calculate the over-

ead/latency.

The results shown in Table 2 and 3 , show that real-time re-

trictions of the system apply. For the test with 100 Hz sampling

ate, the mean values are around 0.0154 for sampling on both IMM

nd the RevPi. This means that the system cannot comply with the

iven sampling rate. 10 ms logging frequency and an average over-

ead of 0.015366 provide 39.4 Hz real sampling rate.

Examining results from sampling at 50 Hz, it is possible to see

hat the system performs better than with 100 Hz sampling rate.

n this case, the overhead mean value is around 0.0062 s (for both

MM and the RevPi) which gives a system response at 38.1 Hz.

ven better results can be seen at sampling rate at 33 Hz. Here,

he average overhead tends to zero, while the number of overhead

alues over 0.025% is 1.14 and 1.73 for the RevPi and the IMM’s

AQ respectively. This indicates that 33 Hz can be one of the ap-

ropriate sampling rates for the proposed API.

2 Hz sampling rate has the overhead mean value for both IMM

nd the RevPi at around 0.0 0 06, this is significantly lower than

ith 100 and 50 Hz sampling rates, but slightly higher than with

he 33 Hz sampling rate. Regarding real-time demands, results

how that the API is not completely predictable with a maximum

verhead of 0.14 s and a lowest overhead/latency at −0.139 s on

he IMM when sampling with the 2 Hz rate. This happens because

he system tries to compensate for the deviation. On the IMM

here are 2.34% of samples that have the overhead value higher

han 0.025 s, while on the RevPi there are none. The RevPi demon-

trates that it is able to perform real-time sampling with 2 Hz or

ower sampling rate and soft real-time on higher speeds.

The API’s unpredictability comes, among other things, from

ython’s memory management mechanism. It uses reference

ounting collector and generational garbage collector, known as

gc module” for memory reclaim (PythonSoftwareFoundation. gc -

arbage Collector interface 2020). Unlike many other languages, it

oes not necessarily release the memory back to the operating sys-

em, but instead keeps some parts of already allocated memory for

se in the future. At the same time, it is possible to see that the

MM process is more unpredictable than the RevPi process. This

ight be caused by necessity to establish the server/client connec-

ion with the IMM, while the RevPi is directly connected to the

ensors it acquires the data from.

O. Ogorodnyk, M. Larsen, K. Martinsen et al. Procedia CIRP 97 (2020) 453–458

Table 3

Statistics of overhead measurement for IMM.

Sampl. rate [Hz] Mean [s] Std. dev. [s] Max. [s] Min. [s] Overhead over 0.025 s [%]

100 0.01537 0.014904 0.341 0.007 1.67

50 0.006229 0.017871 0.217 −0.003 2.43

33 0.000007 0.020911 0.408 −0.012 1.73

2 0.000604 0.013165 0.140 −0.139 2.34

4

m

s

s

m

t

s

b

t

c

4

p

p

w

p

c

o

t

t

p

w

s

h

c

i

2

5

a

n

t

v

o

a

p

p

h

t

f

t

t

o

s

a

d

A

t

a

p

u

e

6

v

t

i

t

T

r

s

p

a

i

p

f

q

D

c

i

A

o

t

R

A

C

E

H

I

K

K

.1. Case study

The described API prototype was tested during two experi-

ents. The first experiment was injection molding of two dog bone

pecimens per cycle with 4 mm thickness. It was based on De-

ign of Experiment (DOE) created using Latin Hypercube sampling

ethod (LHS) (Seaholm et al., 1988) that consisted of 32 combina-

ions of the following parameters: holding pressure, holding pres-

ure time, backpressure, cooling time, injection speed, screw speed,

arrel temperature and mold temperature. Each of these combina-

ions was launched five times, resulting in 160 machine runs and

orresponding production cycles. During this experiment, values of

1 machine and process parameters were logged. The chosen sam-

ling rate was 2 Hz.

The second experiment was focusing on molding dog bone

arts with 15 mm thickness. Only one of the sensors in the mold

as used for logging the data, as part of the cavity was closed to

roduce only one specimen per production cycle. Here DOE was

reated using the same LHS method and included 24 combinations

f backpressure, cooling time, holding pressure, holding pressure

ime, injection speed and screw speed parameters. Each combina-

ion was launched three times, so the experiment consisted of 72

roduction cycles. This time 65 machine and process parameters

ere logged, as well as temperature and pressure from one of the

ensors installed in the mold. The data from the first experiment

as then been used in order to test application of ML methods to

reate prediction models for the quality of dog bone parts, more

nformation on how this was done is provided in (Ogorodnyk et al.,

018).

. Limitations and future work

As it is shown in the previous section the prototype API is

ble to comply with the defined requirements. Due to its open-

ess it allows the user to access the necessary process parame-

ers and log them with a chosen sampling rate. In addition, it pro-

ides possibility to add the necessary modules and classes for use

f other communication protocols or rapid prototyping of the data

nalysis algorithms of interest. Anyone familiar with the Python3

rogramming language can deploy additional modules to the API

rototype using the package provided in the following repository:

ttps://github.com/SintefManufacturing/IMM _ API .

The current API prototype version includes the following limi-

ations:

• Only class for the EMI data exchange protocol is implemented;

• Real-time logging is provided on the speed of 2 Hz or lower,

while the faster sampling speeds lead to the soft real-time data

acquisition;

• The setting function of the API implementation is limited by

the available parameter URIs and some of the parameter values

can not be set through the API due to this;

• The API prototype doesn’t include any graphical user interface;

• The API does not consider the information security aspects.

As a result, future work should include development of classes

or other data exchange protocols, such as EUROMAP77 to facili-

ate use of the interface prototype with IMMs of other manufac-
457
urers. It is of interest to test the API prototype with other types

f IMMs, data acquisition systems and additional sensors. At the

ame time, the database module needs to be developed further to

llow storage of all the necessary process data in a corresponding

atabase. Development of a graphical user interface (GUI) for the

PI is also of interest to make it more user friendly. Moreover, in

he following versions the system’s security needs to be considered

nd extensively worked on. In order to improve functionality and

erformance of the open API for IMMs and create a finished prod-

ct rather than a prototype, collaboration with IMM manufactur-

rs, as well as OPC/UA working group would be highly beneficial.

. Conclusion

This paper has provided requirements, description of the de-

elopment and capabilities of the prototype of an open applica-

ion programming interface for injection molding machines. The

nterface is open for external interaction with the machine con-

roller, allowing logging and setting values of process parameters.

he openness of the prototype API also provides possibilities for

apid algorithm prototyping and testing, when developing control

trategies in the laboratory or at a production site. The API’s ca-

ability of complying with soft real-time and hard real-time data

cquisition was tested with different sampling rates, and later the

njection molding process data was logged during two different ex-

eriments. The data from the first experiment has later been used

or application of ML methods for prediction of the produced parts

uality.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgements

This research is funded by Norwegian Research Council as part

f the “MegaMould” Project (project number: 256819) and through

he SFI Manufacturing Project (project number: 237900).

eferences

RBURG. Host computer system (ALS). 2020 [cited 2020 13.07.2020]; Available
from: https://www.arburg.com/en/products- and- services/injection- moulding/

production-management/host-computer-system-als/ .
harest, M. , Finn, R. , Dubay, R. , 2018. Integration of artificial intelligence in an injec-

tion molding process for on-line process parameter adjustment. In: 2018 Annual

IEEE International Systems Conference (SysCon),. IEEE, pp. 1–6 .
UROMAP. EUROMAP 77 – data exchange interface between injection moulding

machines and MES. 2020 [cited 2020 25.06.2020]; Available from: https://
opcfoundation.org/markets- collaboration/plastics- and- rubber- machinery/ .

uang, M.-.C. , Tai, C.-.C. , 2001. The effective factors in the warpage problem of an
injection-molded part with a thin shell feature. J. Mater. Process. Technol. 110

(1), 1–9 .
SO. ISO 527-2:2017 Plastics – Determination of tensile properties – Part 2: test

conditions for moulding and extrusion plastics. 2012 [cited 2020 13.07.2020];

Available from: https://www.iso.org/standard/56046.html .
ashyap, S. , Datta, D. , 2015. Process parameter optimization of plastic injection

molding: a review. Int. J. Plast. Technol. 19 (1), 1–18 .
ull, H. , 2015. Mass Customization: Opportunities, Methods, and Challenges for

Manufacturers. Apress .

https://github.com/SintefManufacturing/IMM_API
https://www.arburg.com/en/products-and-services/injection-moulding/production-management/host-computer-system-als/
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0002
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0002
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0002
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0002
https://opcfoundation.org/markets-collaboration/plastics-and-rubber-machinery/
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0004
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0004
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0004
https://www.iso.org/standard/56046.html
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0006
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0006
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0006
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0007
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0007

O. Ogorodnyk, M. Larsen, K. Martinsen et al. Procedia CIRP 97 (2020) 453–458

K

L

M

M

M

N

O

O

P

P

R

S

S

T

V

Y

Z

Z

Z
urose, J.F. , Ross, K.W. , 2010. Computer Networking: a Top-Down Approach. Pearson
Addison Wesley .

ee, J. , Kao, H.-.A. , Yang, S. , 2014. Service innovation and smart analytics for industry
4.0 and big data environment. Proc. CIRP 16, 3–8 .

aciaszek, L. , Liong, B.L. , 2004. Practical Software Engineering: An Interactive
Case-Study Approach to Information Systems Development. Pearson Addison

Wesley .
adeyski, L. , Sochmialek, M. , 2005. Architectural design of modern web applica-

tions. Found. Comput. Decis. Sci. 30 (1), 49–60 .

DPV. Manufacturing Execution System HYDRA. 2020 [cited 2020 03.07.2020];
Available from: https://www.mpdv.com/en/products- solutions/mes- hydra/

#c2077-1 .
egri, E. , Fumagalli, L. , Macchi, M. , 2017. A review of the roles of digital twin in

CPS-based production systems. Proc. Manuf. 11, 939–948 .
gorodnyk, O. , et al. , 2018. Application of machine learning methods for prediction

of parts quality in thermoplastics injection molding. In: International Workshop

of Advanced Manufacturing and Automation. Springer, pp. 237–244 .
gorodnyk, O. , Martinsen, K. , 2018. Monitoring and control for thermoplastics injec-

tion molding a review. Proc. CIRP 67, 380–385 .
ythonSoftwareFoundation. queue — A synchronized queue class. 2020 [cited

2020 13.07.2020]; Available from: https://docs.python.org/3/library/queue.
html#module-queue .

ythonSoftwareFoundation. gc - Garbage Collector interface. 2020 [cited 2020

13.07.2020]; Available from: https://docs.python.org/3/library/gc.html .
evPi - Industrial Raspberry Pi. 2020 [cited 2020 25.06.2020]; Available from: https:

//revolution.kunbus.com/revolution- pi- series/ .
458
aldivar, A .A .F. , et al. , 2016. Attribute identification and predictive customisation us-
ing fuzzy clustering and genetic search for industry 4.0 environments. In: 2016

10th International Conference on Software, Knowledge, Information Manage-
ment & Applications (SKIMA). IEEE, pp. 79–86 .

eaholm, S.K. , Ackerman, E. , Wu, S.-.C. , 1988. Latin Hypercube Sampling and the
sensitivity analysis of a Monte Carlo epidemic model. Int. J. Biomed. Comput.

23 (1–2), 97–112 .
ellaeche, A. , Arana, R. , 2013. Rapid data acquisition system for complex algo-

rithm testing in plastic molding industry. Int. J. Mech., Aerosp., Ind., Mechatron.

Manuf. Eng. 7 (7), 1391–1395 .
rabi ̌c, R. , Kozjek, D. , Butala, P. , 2017. Knowledge elicitation for fault diagnostics in

plastic injection moulding: a case for machine-to-machine communication. CIRP
Ann. 66 (1), 433–436 .

in, S. , et al. , 2014. A review on basic data-driven approaches for industrial process
monitoring. IEEE Trans. Ind. Electron. 61 (11), 6418–6428 .

hang, Y. , et al. , 2016. A statistical quality monitoring method for plastic injection

molding using machine built-in sensors. Int. J. Adv. Manuf. Technol. 85 (9–12),
2483–2494 .

hao, P. , et al. , 2014. A nondestructive online method for monitoring the injection
molding process by collecting and analyzing machine running data. Int. J. Adv.

Manuf. Technol. 72 (5–8), 765–777 .
hou, X. , et al. , 2017. Monitoring and dynamic control of quality stability for injec-

tion molding process. J. Mater. Process. Technol. 249, 358–366 .

http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0008
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0008
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0008
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0009
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0009
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0009
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0009
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0010
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0010
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0010
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0011
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0011
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0011
https://www.mpdv.com/en/products-solutions/mes-hydra/#c2077-1
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0013
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0013
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0013
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0013
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0014
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0014
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0014
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0015
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0015
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0015
https://docs.python.org/3/library/queue.html#module-queue
https://docs.python.org/3/library/gc.html
https://revolution.kunbus.com/revolution-pi-series/
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0019
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0019
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0019
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0020
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0020
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0020
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0020
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0021
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0021
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0021
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0022
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0022
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0022
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0022
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0023
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0023
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0023
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0024
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0024
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0024
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0025
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0025
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0025
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0026
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0026
http://refhub.elsevier.com/S2212-8271(20)31489-X/sbref0026

	Development of application programming interface prototype for injection molding machines
	1 Introduction
	1.1 Injection molding challenges towards industry 4.0

	2 Development of a generic API
	3 API application on ENGEL IMM
	3.1 Data acquisition from machine built-in sensors
	3.2 Data acquisition from additional sensors
	3.3 Database

	4 Validation of the developed prototype
	4.1 Case study

	5 Limitations and future work
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References

