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ABSTRACT

We present the results of a subjective experiment where
we measured detection thresholds for 2◦-wide noise targets
placed in 23 different natural scenes. Unlike previous stud-
ies on visual masking, we focus particularly on dissociating
cases of low-level and high-level masking. That is, cases
where the target is not perceived predominantly due to limits
of either early or late vision. To that end, we exploit the
change blindness paradigm and analyse detection rates, times
and primed subjective ratings of target visibility. Our results
are of significance for developing advanced models of human
vision for signal quality/fidelity assessment, particularly in
the context of compression.

Index Terms— Image Quality Assessment, Perception,
Visual Memory, Change Blindness.

1. INTRODUCTION

Being able to predict what people perceive as a good im-
age quality is an important objective for such applications as
compression or cross-media reproduction. However, despite
decades of research in understanding the Human Visual Sys-
tem (HVS), the perception and interpretation visual signals by
humans is still not well understood. Generally, the problem
can be summarised in four main research questions:

• What can we see?

• What do we expect to see?

• What do we think we see?

• What do we make of what we think we see?

Most research efforts to date have been towards answer-
ing the first question. Indeed, current approaches to predicting
subjective assessments of visual quality are mostly based on
modelling the eye and the primary visual cortex, i.e. the early
visual system. However, in a recent series of publications
[1, 2], we demonstrated a significant effect of higher-level
mechanisms of visual working memory in masking effects.
We have proposed that visual masking can be of two dis-
tinct kinds: low-level (masking occurs in early vision and the

masked target cannot be seen even though one knows where
it is) and high-level (masking occurs beyond early vision and
the masked target cannot be seen until the observer knows
where it is). The latter can be overcome by focused attention,
but not the former.

Even if state-of-the-art models (see e.g. [3, 4]) predict
Mean Opinion Scores (MOS) on popular benchmarks with
high accuracy, we are still not able to answer the aforemen-
tioned questions with certainty, particularly the last three. We
believe that understanding what one can see is only part of
what is required to build a robust model of subjective qual-
ity/fidelity assessment. While low-level masking comes from
limits of early vision, high-level masking comes from limits
in attention and memory. Our limited memory capacity is the
main reason why we require attention mechanisms, to select
and prioritise visual attributes so they can be processed by
decision-making mechanisms. If we had unlimited working
memory, one could argue that we would not need attention as
all the information in our visual field could be instantly inte-
grated and processed. Instead, it has been proven that limits
in our memory capacity renders us incapable of efficiently
comparing complex patterns (see literature on crowding [5]
and texture masking [6]) suggesting a significant influence
of memory in quality assessment, though most recent works
have focused only on information encoding and processing in
areas V1, V2 and V4 of the visual cortex [7, 8].

Predicting the visibility of artefacts (compression, gamut
mapping, noise, blur...) and how they influence our overall
judgment remains a challenge. When the artefacts are not
salient, we talk about a near-threshold distortion. In such
case, observers engage in a visual search to find these arte-
facts [6]. We previously hypothesised similarities between
this kind of strategy in image fidelity assessment and in the
change blindness paradigm [9]. Change blindness, as a type
of high-level masking, can then be harnessed for example to
significantly increase quantisation in complex image regions
and save in size, without compromising visual quality on ac-
count of high-level masking.

In this paper, we propose a new experimental design to
measure the respective effects of high- and low-level visual
masking in subjective fidelity assessment for compressed im-
ages. We present the results of a subjective experiment in
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which observers had to locate a single noise target (a com-
pression artefact) in a scene, by comparing it to the pristine
image. Our approach is similar to that used by Alam et al.
[10]. However, we used a change blindness paradigm, real
compression artefacts as noise targets and, more importantly,
we measured and analysed the time required for people to no-
tice the target (allowing for a maximum of 30 seconds). Our
results demonstrate that detection times are moderately con-
sistent across observers and correlated with primed subjective
ratings of the target visibility.

2. USER STUDY

2.1. Participants

A total of 10 people with normal or corrected-to-normal
vision participated in the study in Palmerston North, New
Zealand. Colour vision was tested for each participant with
a Ishihara test. Ages ranged between 22 and 34, 80% were
male and various cultural backgrounds were represented. No
one was given any indications as to the research goals of
the experiment before it. A standard screening [11] revealed
that all participants were valid (no outliers based on detec-
tion times). Participants all signed a consent form and were
compensated with a supermarket voucher worth 10 NZD.

2.2. Stimuli

Stimuli were selected from the CID:IQ database [12] and
were displayed in pairs. Original stimuli were 800×800
pixels in size. Following the change blindness paradigm,
each pair was seemingly identical, but in fact there was
a significant change: a single noise target (a compression
artefact) was blended into one of them. The artefacts were
sampled from heavily distorted (level 5 in CID:IQ) JPEG
and JPEG2000-compressed images, over a circular region
with a diameter corresponding to about 2◦ of the visual
field. The spatial location of the centre of the circular re-
gion was sampled randomly from the final feature map of
the MSiCID fidelity measure [13]. On this map, higher pixel
values correspond to larger perceived differences across five
scales (as in the MS-SSIM index) and in terms of bright-
ness, contrast, structure, chroma, hue, chroma-constrast and
chroma-structure. Regions of large estimated difference were
then more likely to be selected for artefact sampling.

The targets were then blended into the pristine image by
means of a Gaussian kernel to create a seamless blending.
The kernel bandwidth was set to 1◦ of the visual field (see
example in Figure 1). For each scene, four artefact-ridden
versions were created: two with JPEG artefacts (at different
random locations), two with JPEG2000 artefacts (also at dif-
ferent random locations). These four stimuli were the same
for each observers. A total of 92 stimuli were created (23
scenes).

Fig. 1. Pristine (left) and artefact-ridden (right) images. The
target (a JPEG artefact) is in the alley, in the lower central
region. The reader may need to magnify this figure in order
to notice it.

2.3. Apparatus and viewing conditions

We used an Eizo ColorEdge CG2420 display, of size 61cm/24.1”
and calibrated with an X-Rite Eye One spectrometer for a
colour temperature of 6500K, a gamma of 2.2 and a luminous
intensity of 80cd/m2. All stimuli were encoded in standard
RGB. The experiments were carried out in a dark room. The
distance to the screen was set to 60 cm.

2.4. Methodology

Participants were asked to locate the artefact and to click on
it as soon as they saw it. They were informed that they could
click only once and that they had 30 s to do so for each pair.
If they clicked within the 2◦-diameter circle, we recorded a
true positive (TP) case. If they clicked outside, we recorded
a false positive (FP) case. Otherwise (no click), we recorded
a negative (N) case. The pristine and artefact-ridden stimuli
were shown one at a time, with a flicker paradigm (0.8 s on,
0.1 s off). Once a click was recorded or 30 s passed, the so-
lution was displayed by removing the 0.1 s blank interval and
highlighting the location of the target with a red circle. At that
point, observers were asked to rate the visibility of the target
as either ’Clearly visible’, ’Barely visible’ or ’Invisible’. This
allowed us to measure the extent of low- and high-level visual
masking: if a target is rated as ’clearly visible’ even though
it was not detected within 30 s, it indicates a strong high-
level masking effect. On the other hand, if a target is rated as
’invisible’ (and was not detected within 30 s), it indicates a
low-level masking effect.

After each sequence of 5 pairs of stimuli, participants
were given the opportunity to take a short break in order to
reduce visual fatigue, particularly due to the flickering. They
just had to press a key to carry on at their convenience. The
sessions were supervised and lasted about 46 minutes on av-
erage (including breaks). The sequence of stimuli was com-
pletely randomised for each observer. The very first image
seen by each observer was considered a trial and removed
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from the results.

3. RESULTS

3.1. Features

We extracted 11 features from each stimulus pair in order to
facilitate the analysis of the collected data. These features are
noted F1 to F11 and are defined as follows:

• F1: Entropy of pixel values in the CIELAB colour-
space (three-way entropy),

• F2 and F3: Achromatic edge energy (global and local,
respectively), calculated on the L� channel of CIELAB
as the average number of zero-crossings after filtering
with a Laplacian of Gaussian filter,

• F4 and F5: S3 sharpness [14] (global and local, respec-
tively),

• F6 and F7: Local salience, with the IKN [15] and SDSP
[16] models, respectively,

• F8: MSiCID [13] local predicted similarity across
scales and features (MSiCID is a colour image dif-
ference measure based on the SSIM index, with 7
features: lightness, contrast, structure, hue, chroma,
chroma-contrast and chroma-structure),

• F9: Salience imbalance (between pristine and artefact-
ridden stimuli) calculated as the Hamming distance be-
tween signature maps as in [17] and [18],

• F10: Salience imbalance calculated as RMSE between
SDSP maps,

• F11: Deep learning-based prediction of visual masking
thresholds from a modified pre-trained VGG16 archi-
tecture [19]. The model predicts the detection thresh-
olds for patches of size 80x80x3 pixels. In this study,
we calculated the predictions in patches centered at the
center of the target.

These features pertain to the complexity of the mask as
well as the salience and magnitude of the target. The local
features were extracted using only pixels within the 2◦-wide
circle around the target. Note also that the results we obtained
revealed no significant correlation between the position of the
target and detection times/accuracy.

3.2. Inter-observer variability

Looking at the proportion of observers who detected the tar-
get in a given stimulus s, noted pd(s), we found that it varied
significantly across stimuli. On average, 51.3% of partici-
pants detected it (mode: 73.2%, min: 0%, max: 100%). For
10.9% of the stimuli, all observers found the target whereas,
in 13.0% of the cases, none of them found it. This indicates

Fig. 2. Scenes with slowest (left) and fastest (right) average
detection times.

that there was no variability in terms of detection accuracy for
23.9% of the stimuli. On the other hand, this variability was
highest for 17.4% of the stimuli where pd(s) was between
40% and 60%, with 50% being the case of highest variability
where only half of the observers found the target. We also
determined that pd(s) correlates positively with F8, F10 and
F11 (linear correlation coefficients: 0.50, 0.54 and 0.58 re-
spectively). This shows that these three features predict well
the probability of an observer noticing the target.

In terms of detection times, inter-observer variability was
generally significant, even though the time required to gaze
at the location of the change can vary greatly from person to
person due to the idiosyncratic and fundamentally stochas-
tic nature of eye movements. The largest linear correlation
found between detection times of any two participants was
0.61 (min: 0.21, mean: 0.43, mode: 0.52). The largest Spear-
man rank order correlation was 0.66 (min: 0.21, mean: 0.43,
mode: 0.45). Furthermore, for 17% of the stimuli, the stan-
dard deviation of detection times was smaller than or equal
to 5.0s. Overall, we measured a minimum of 1.1s, an aver-
age of 7.6s (mode: 8.8s) and a maximum of 12.0s. We also
found that the distribution of detection times is non-normal in
52% of cases (Anderson-Darling test, 95% confidence). This
indicates that the sample mean of decision times may not be
the most representative statistics to analyse and predict our
data. Consequently, we elected to use the mode, rather than
the mean, to represent the distribution in the next section as
in [18].

3.3. Inter-scene variability

Figure 2 shows the images that resulted in the slowest and
fastest detection times overall. Respectively, their average de-
tection time were 25.4s (σ2 = 4.1) and 12.0s (σ2 = 3.2).
We found a maximum linear correlation of 0.85 between the
detection times of any two scenes (min: -0.57, mean: 0.09,
mode: -0.02). This shows that there is little consistency in de-
tection times based on the scene only. Generally, verbal feed-
back from participants after the experiments indicated that
scenes that were more ’visually complex’ made it more dif-
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Fig. 3. Correlation of extracted features with mode detection times: Pearson linear, Spearman Rank Order and Pearson linear
after logistic mapping of the predictions to the data.

ficult to detect the targets.

3.4. JPEG vs JPEG2000

On average over all observers, 67% of JPEG artefacts were
detected as opposed to only 35% of JPEG2000 artefacts. Av-
erage time for JPEG artefacts: 15.7 s (σ2 = 6.6). Average
time for JPEG2000 artefacts: 26.0 s (σ2 = 5.8). In assessing
these results, one must keep in mind that the CID:IQ database
was not designed so that distortion levels are equivalent in
terms of visibility across distortion types. In other words, a
level 5 JPEG distortion may not have the same visibility than
a level 5 JPEG2000 distortion. However, JPEG2000 compres-
sion is known to create artefacts that are generally considered
less ”annoying” than the blocking and other structural degra-
dation induced by JPEG artefacts. Our results confirm this.

3.5. Subjective evaluation of visibility

The subjective ratings were collected after priming the partic-
ipant, i.e. after that the solution was shown. Participants were
specifically instructed to make their judgement not based on
the time it took them to find the target, or whether or not they
did find it, but solely on their opinion after being primed.

The minimum and maximum standard deviations of sub-
jective ratings were found to be 0 and 0.83 (27% of the as-
sessment scale), respectively. On average, this variability was
found to be 0.44 (15% of the assessment scale), which indi-
cates a significant agreement between observers. For 98% of
stimuli, the distribution of subjective ratings was found to be
non-normal (Anderson-Darling test, 95% confidence).

The average linear correlation with detection times was
0.52, which indicates a moderate, yet significant correlation
between target visibility before and after priming. More
specifically, for 11.2% of stimuli with a target rated as
”clearly visible” and including all observers, we recorded
either no detection or a false positive detection. In 12.6% of
the same cases, we recorded a true positive with a detection
time larger than 20s. These cases of strong high-level vi-
sual masking then represent a total of 23.8% of the recorded
ratings. On the other hand, 17% of targets received an ”invis-
ible” rating, corresponding to low-level masking cases.

3.6. Prediction of detection times

Figure 3 shows the correlation of each of the 11 aforemen-
tioned features (F1 to F11) with mode detection times. Three
features stand out: the MSiCID local predicted similarity
(F8), as well as salience imbalance (F10) and the deep model
(F11) with linear correlations of 0.36, 0.42 and 0.53, respec-
tively. Using the Fisher r-to-z transformation, we found that
there is no significant difference between these three values
at the 95% confidence level. It is also noteworthy that lo-
cal sharpness (F5) yielded a significant correlation as well,
although only after logistic mapping. Other features do not
seem to correlate (< 0.2) with the mode decision times.

Furthermore, we previously demonstrated that high-level
visual masking in a change blindness paradigm is signifi-
cantly dependent on the experience and expectations of the
observers. As the experiment goes on, participants tend to
become better at spotting the target, as they gradually fine-
tune their search strategies. This seems to be the case even
when the stimuli are presented in a completely randomised
sequence. However, in our results, we found no significant
correlation between the position of a stimulus in a sequence
and detection accuracy or time.

4. CONCLUSIONS

In this paper, we analysed the effect of high-level visual mask-
ing of image compression artefacts. We presented a user study
design based on the change blindness paradigm, where par-
ticipants have to locate a single noise target, hidden in the
scene. Our results indicate that detection times were mod-
erately consistent across observers. Importantly, we found
evidence of strong high-level visual masking for 24% of all
stimuli and low-level masking in 17% of cases. Mode de-
tection times correlate moderately with local quality differ-
ence (with MSiCID features), salience imbalance, as well as
the masking threshold predictions of a deep model trained on
subjective data. Future work should focus on improving the
prediction accuracy of current image quality/fidelity models
and on characterising more finely the distribution of detection
times and inter-observer variability
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