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Abstract 

Injection molding is one of the major processes applied for production of thermoplastic products. 

Thermoplastic materials are used in manufacturing of dozens of products seen in everyday life, such as: 

car bumpers, children toys, bodies of electronic devices, etc. At the same time, plastic pollution is a well-

known problem. One of the sources of this pollution is plastic scrap, which might appear because of using 

faulty process parameters during production process. To decrease amount of scrap, injection molding 

needs to include better process and quality control routines. Quality of a product can be defined in 

different ways and product dimensions can be one of criteria for accepting or declining a product. The 

following paper applies machine learning (ML) methods to predict width and thickness of the injection 

molded HDPE dogbone specimens with 4 mm thickness based on process parameter values used to 

produce the parts. Data used for creation of regression models with help of ML methods was acquired 

during an experiment, which included 160 machine runs during which 47 machine and process 

parameters were logged. Application of ML methods for training of product dimensions prediction 

models will increase overall intellectual level of injection molding machines and their compliance with 

Industry 4.0 standards. Beforehand prediction of product’s dimensions will allow to decrease amount of 

scrap and energy consumption. This will contribute to more environmentally conscious use of 

thermoplastic materials and more sustainable design of manufacturing systems. 
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1 INTRODUCTION 

In the last thirty years, the popularity of the injection 

molding (IM) process had an increasing growth due to 

new applications in the fields of appliances, packaging and 

automotive industry [1]. As a result, today injection 

molding is one of the most frequently used processes for 

the production of thermoplastic parts in high volume and 

low cost. 

Injection molding includes only four main phases: 

plasticization, injection, cooling and ejection, however, it 

is a rather complicated process due to the presence of non-

linearities [2]. At the same time, due to its use for mass 

production, high process repeatability is extremely 

important [3] and keeping quality of the products as high 

and as similar as possible is a “must”. 

Depending on the application of the manufactured 

product, its quality can be defined in different ways. 

Usually, the good quality of the part means desired 

mechanical performance, dimensional consistency and 

proper appearance [1]. “Dimensional consistency is a 

critical attribute for injection molded part quality and is 

highly dependent on various processing parameters” [4]. 

Product dimensions can be one of the criteria for accepting 

or declining a thermoplastic product.  

The part quality, including dimensional accuracy, can be 

influenced by a significant number of factors such as 

general condition of the injection molding machine 

(IMM), mold that is in use, input material condition, 

drifting of the process parameter settings or the machine 

operator’s fatigue [5]. Some of the process parameters that 

may cause product quality variations are melt temperature, 

mold temperature, holding pressure, cooling time, etc. [6]. 

Because of the faulty setting of some of those parameters, 

such defects as warpage, sink mark, air traps, and weld 

lines might occur. As a result, prediction of final parts 

quality using certain process parameter values and 

“optimal setting of injection molding process variables 

plays a very important role in controlling the quality of 

the injection molded products” [7, 8]. 

The optimal process parameter settings were used to be 

determined by engineers and IMM operators based on 

their experience, intuition and trial-and-error [9, 10]. 

However, due to the increasing quality requirements new 



 

 

approaches for optimization of the plastics injection 

molding are being continuously developed. “Researchers 

introduced the design of experiment (DOE), Taguchi 

orthogonal array and flow analysis software such as 

Moldflow Plastic Insight” [11]. 

Apart from statistical process control, design of 

experiments and Taguchi approach, machine learning 

methods show all of the necessary capabilities for the 

development of predictive models for the quality of the 

injection molded products [11]. Moreover, they have been 

proven to be better at dealing with non-linearities in 

comparison to conventional statistical methods such as 

linear regression [3]. 

Quality requirements are not the only challenge that the 

thermoplastics injection molding industry faces today. 

Another important issue is plastic pollution, which became 

a problem for the whole world. Keeping process 

parameters under control and beforehand prediction of 

quality of the plastic products can decrease amounts of 

produced plastic scrap and energy consumption, 

contributing to the more environmentally conscious use of 

the plastic materials.  

This paper uses data from 160 machine runs during which 

47 machine and process parameters were logged while 

producing dogbone specimens type A defined by ISO 527-

2 [12]. REPTree (decision tree), random forest, k-nearest 

neighbors (kNN) and multilayered perceptron (MLP) 

machine learning algorithms were applied to create 

models for prediction of width and thickness of the focus 

parts. The results are discussed in terms of the ability to 

accurately predict the part’s quality and interpretability of 

the chosen methods. 

 

2 LITERATURE REVIEW 

In recent years new methods for quality prediction and 

optimization of the injection molding process have been 

proposed and applied. Some of the approaches include the 

application of machine learning methods [2, 13-15], the 

use of simulation approaches [16, 17] and the 

development of particular hardware solutions [4, 18].  

Machine learning methods 

Machine learning methods (ANN, genetic algorithm, self-

organizing maps, etc.) have been used for the development 

of prediction models of parts shrinkage, general parts 

quality, to find solutions for multi-objective optimization 

problem of the injection molding process parameters, etc. 

Different researchers have used numbers of samples 

ranging from 27 to 1000, some of them were collected 

through the simulation software, others during laboratory 

experiments. 

For example, in [2] the authors used a combination of a 

self-organizing map and a back-propagation neural 

network to create a dynamic quality predictor for the 

injection molding process. Nine process parameters were 

included in the model to predict the weight of the final 

part. To enhance the performance of the neural network, 

Taguchi’s parameter design was also utilized. The dataset 

included 160 samples of experimental data. Manjunath 

and Krishna [13] applied forward and reverse mapping 

ANN to predict dimensional shrinkage of the produced 

part and appropriate set of process parameters to reach the 

required dimensional shrinkage correspondingly. The 

networks were trained using 1000 samples generated in 

the simulation software using equations reported by other 

researchers. In [19] the multi-layered perceptron artificial 

neural network model and J48 decision trees algorithm is 

used to create models for prediction of injection molded 

parts quality. Data from 160 machine runs is utilized to 

train the models. 

At the same time, Kuo, Su [14] applied Taguchi quality 

method to establish the design of experiment for nine 

process parameters and analysis of variance to define the 

most important factors influencing the production process, 

while back-propagation neural network model was trained 

to tune the optimum conditions received from the 

Taguchi’s quality method. The model was created using 

180 data samples. In [11] a methodology that includes 

variable complexity methods, constrained non-dominated 

sorted genetic algorithm, back-propagation neural network 

and MoldFlow analysis are applied to solve the multi-

objective optimization problem of injection molding 

parameters. The data is generated using the MoldFlow 

analysis software. 

In [20] the orthogonal experiment with Taguchi method 

was performed, and ANOVA analysis was carried out to 

define which parameters are the most influential for the 

injection molding process. In total 81 samples were 

obtained and used to train models with the help of the 

back-propagation neural network and multi-class support 

vector machine methods. Finally, the multi-objective 

optimization was performed on the obtained models using 

the nondominated sorting genetic algorithm. 

Lotti, Ueki [15] used DOE and ANNs to create models for 

prediction of shrinkage of iPP plaques based on 30 data 

samples collected. The neural network model has shown 

better results in comparison to those calculated with the 

help of the MoldFlowTM software package. In [21] 

injection process parameters optimization procedure is 

proposed. A combination of the response surface 

methodology, artificial neural networks, radial basis 

function, and Kriging surrogate is used.  

Nagorny, Pillet [22] collected thermal images of 204 

rectangular specimens, as well as signals of pressure and 

temperature sensors situated in the mold and used the data 

to train models using support vector regression, random 

forest, k-nearest neighbors, stochastic gradient descent, 

bagging decision tree, Ada boosting decision tree, as well 

as convolutional neural network and long-short term 

memory network. Neural networks models show better 

results in comparison to other regression methods for 

prediction of parts quality. While in [23] Taguchi method, 



 

 

design of experiments, analysis of variance were used to 

design the experiment and choose the most influential 

process parameters. In total 27 samples of data were 

collected and used in this study. ANN model was trained 

to predict the part’s shrinkage in injection molding.  

Simulation approaches 

Another approach to optimization of the injection molding 

process is the use of numerical simulations and different 

sorts of simulation software, such as in [16], for example. 

Here an approach based on a combination of numerical 

simulations, response surface methodology, and stochastic 

simulations is proposed to create a virtual prototyping 

environment to enable robust optimization of the IM 

process. At the same time, in [17] authors propose a 

method to simulate the influence of the early part ejection 

on its final quality using the integration of MoldFlowTM 

and AnsysTM on the contrary to the stand-alone molding 

simulation. 

Liau, Lee [24], on the other hand, explain that simulation 

should not be based only on the historical data, but needs 

to include current process data to make a meaningful 

decision. Their solution is a framework for the 

development of a digital twin for injection molding that 

models the entire process and allows bidirectional control 

of the physical process. In [9] fractional factorial design of 

experiments was used to screen some of the injection 

molding process parameters obtained from the process 

simulation in the MoldFlowTM software. Later the 

parameters were used to create a mathematical model with 

the help of central composite design and finite element 

simulation to predict warpage during the plastic injection 

molding. 

Hardware solutions 

Some other researchers use hardware development to 

enhance control and prediction of the outcomes of the IM 

process. For example, in [4] the authors propose a button 

cell type in-mold shrinkage sensor. The sensor’s 

performance was validated and compared to traditional 

shrinkage prediction methods. “The sensor signals 

acquired during each molding cycle were analyzed to 

validate the sensor performance in a design of 

experiments as a function of packing pressure, melt 

temperature, cooling time, and coolant temperature” [4]. 

In [18] an auxiliary process controller for online 

multivariate optimization of the injection molding process 

is proposed. The objective function includes terms related 

to process variation and energy control. 

 

3 EXPERIMENTAL SETUP 

The research described in this paper includes the 

following steps: 

Step 1: Process data collection. To collect the data design 

of experiment has been used, namely Latin Hypercube 

sampling technique [25]. 32 combinations of holding 

pressure, holding pressure time, backpressure, cooling 

time, injection speed, screw speed, barrel temperature, 

and mold temperature process parameters were included 

in the DOE. Each of these combinations has been 

launched five times, resulting in 160 machine runs in total 

and 320 HDPE dogbone specimens, since during each run 

two of them are produced. This should be sufficient for the 

application of machine learning algorithms, as the 

minimum recommended number of samples according to 

[26] is 50.  

The use of DOE resulted in the following ranges for width 

and thickness [mm] for the dogbone specimens 1 and 2: 

thickness1 ∈ [3.3, 3.84]; thickness2 ∈ [3.32, 3.84]; width1 

∈ [9.02, 9.95]; width2 ∈ [8.84, 9.96]. According to the 

CAD model of the target parts, the width is 10 and the 

thickness is 4 mm. However, 3-3.5% shrinkage rate is 

considered a regular shrinkage rate for the HDPE, thus 

resulting in a width of 9.65-9.7 mm and thickness of 3.86-

3.88. It is possible to say that the use of the design of 

experiments allowed to vary the width and thickness of the 

parts quite significantly covering values close to the best 

possible ones, as well as those significantly lower. 

During the experiment “ENGEL insert 130” vertical 

injection molding machine with CC300 control unit has 

been used and 47 machine and process parameters from 

the built-in by the machine manufacturer sensors were 

logged. The logging system has been developed using the 

Python programming language to be able to establish a 

connection with the machine and access all the necessary 

process parameter values.  

Step 2: Data pre-processing. The logged experimental 

data included values of different machine and process 

parameters for every 0.5 seconds during every production 

cycle. However, some of the signals vary less than the 

others during one production cycle but change a lot from 

one cycle to another. As a result, the logged data needed 

certain “pre-processing” before any further use. Pre-

processing resulted in one value of a process parameter 

per production cycle, some of the parameter values were 

averaged, some were taken the maximum or minimum 

value of, etc. An example of the structure of the data after 

the “pre-processing” is shown in Table 1. The top row 

includes names of the logged parameters and each 

following row corresponds to one data sample. The “pre-

processing” has been done using scripts developed in the 

Python programming language. 

  

Table 1: Experimental data  

ID 
Max screw 

speed 

Pressure at 

switchover 

Cushion size 

after holding 

pressure 

1. 239.18 1058.69 4.90 

2. 239.40 1059.35 4.92 

3. 239.52 1059.62 4.98 

 



 

 

Step 3: Quality data collection. After the production of the 

focus parts, the quality data needed to be obtained. Since 

dimensional consistency is one of the important criteria 

for the part’s acceptance, the produced dogbone 

specimens were measured using ZEISS DuraMax 

coordinate measuring machine [27].  

The measurements have been done according to the “ISO 

16012: Plastics - Determination of linear dimensions of 

the test specimens” [28], the accuracy of the machine in 

the temperature 18 – 22 0C is ± 2.4 µm. The precision 

error doesn’t exceed ± 0.02 mm for dimensions <10 

(thickness) and ± 0.1 (width) for ≥10. Fig.1 depicts one of 

the specimens being measured by the coordinate 

measuring machine.  

Step 4: Important parameters selection. After obtaining 

both process and quality data, it was necessary to 

understand which parameters should be included in the 

quality prediction model. First, all parameters that had 

constant values during all 160 runs were excluded. 

Secondly, six parameters (machine time, shot counter, 

good parts counter, bad parts counter, parts counter and 

machine date) were eliminated, because they do not 

contain any necessary information about the process.  

Thirdly, feature selection algorithms were applied to 

define which parameters out of 25 that were left are the 

most influential. According to the Correlation-based 

feature selection algorithm with the Best First search 

algorithm only seven parameters should be included in the 

model: cushion after holding pressure, plasticizing time, 

holding pressure time, cushion smallest value, injection 

work, holding pressure and tool temperature. If Greedy 

Stepwise search algorithm is used instead of the Best First 

one, then the same seven parameters were chosen, as well 

as the last ejector position parameter. 

ReliefF algorithm, on the other hand, doesn’t exclude 

unnecessary in its opinion parameters but ranks all the 

parameters. The higher the ReliefF score gets a parameter, 

the more important it is. If the ReliefF score is negative, it 

means that the parameter is unimportant. Parameters that 

scored lower than 0.02 were considered unimportant, thus 

resulting in 18 parameters that were to be included into the 

width and thickness prediction models (cushion after 

holding pressure, tool temperature, holding pressure, 

backpressure, injection speed, cushion smallest value, 

cushion average value, cooling time, holding pressure 

time, barrel temperature, average temperature in the zone 

2 of the nozzle, pressure at the switchover, maximum 

screw speed, screw speed, plasticizing time, last cooling 

time, flow number and injection work). 

Step 5: Training of the width and thickness prediction 

models. The last step includes training the predictive 

models for the width and thickness of the focus parts. 

Separate models for prediction of width and thickness are 

built for the first and the second dogbones produced 

during a single cycle. This results in four models per 

method (model for prediction of the thickness of dogbone 

1, the width of dogbone 1, the thickness of dogbone 2 and 

width of dogbone 2) and the number of parameters 

included. Decision trees, random forest, k-nearest 

neighbors and artificial neural network algorithms are 

used to create the models.  

 

 

 

4 BRIEF DESCRIPTION OF THE USED 

MACHINE LEARNING METHODS 

The ML algorithms used in this study (REPTree decision 

tree, random forest, k-nearest neighbors and multilayer 

perceptron) were induced and evaluated using WEKA – 

WAIKATO Environment for Knowledge Analysis [29]. 

10-folds cross-validation was used to estimate the skill of 

the model on the new data. The correlation coefficient, 

mean absolute error and root mean squared error was used 

to estimate the difference between the measured and 

predicted values of width and thickness of the dogbone 

parts. 

4.1 REPTree (decision tree) 

REPTree stands for Reduced Error Pruning Tree. It is a 

decision tree algorithm that follows the regression tree 

logics through the creation of multiple trees in different 

iterations [30], information gain is used as a splitting 

criterion in this case. The best tree from all the generated 

ones is then chosen and considered as representative. 

Pruning of the tree is done using the mean square error on 

the predictions of the tree. The result of the algorithm 

application is a predictive model in the form of a decision 

tree or a set of if-then rules. In this study minimum 

number of instances in a leaf has been tested to see how it 

would influence the prediction quality of the obtained 

model. 

4.2 Random forest 

Random forest is an ensemble learning algorithm that 

includes many separate learners [31]. Each tree is created 

using a random sample of cases from the dataset. The 

collection of several tree predictors, in this case, is called a 

forest. In the case of regression, the model’s output “is the 

average of the responses over all the trees in the forest” 

[30]. In the experiment, different numbers of trees in the 

forest are tested. 

 

Fig.1: Coordinate measurement of the specimens 



 

 

4.3 k-Nearest Neighbors 

The k-nearest neighbors algorithm uses parameter 

similarity to predict values of the new data points [32]. 

The new point is assigned value depending on the values 

of instances closest to it. The number of closest instances 

is the k input parameter of the algorithm. In the case of 

regression, the average value of the closest data points is 

taken as the model’s output. Euclidean distance is used in 

the experiment to calculate distances between the data 

points, a different number of nearest neighbors is also 

used to build the models. 

4.4 Multilayer Perceptron  

The last algorithm used in this experiment is the 

Multilayer Perceptron (MLP) ANN. It is one of the classic 

ANN models and is based on the sequence of layers of 

neurons interconnected between each other with weights. 

Every time a new sample of data is given to the network, 

those weights are adjusted accordingly. In addition to that, 

“layer-to-layer mapping is activated with a non-linear 

function” [19]. In this study, the sigmoid function is used 

as an activation function and the number of neurons in the 

hidden layer of the network is calculated as 

(number_of_parameters + number_of_output_neurons)/2. 

In this experiment, the MP was built using a different 

number of parameters as suggested by different feature 

selection algorithms (7, 8, 18 and 25). 

 

5 RESULTS 

Predictive models for the thickness and width of the 

injection molded dogbone specimens have been built 

using different machine learning algorithms presented in 

the previous section. Depending on the algorithm, 

parameter configurations were varied to see how they 

affect the quality of the resulting model. Fig.2 shows the 

dependence of the correlation coefficient of the measured 

and predicted values of the part’s dimensions and different 

algorithm parameters that were tested. The quality of the 

models was estimated using the 10-folds cross-validation 

procedure. 

Table 2 shows the performance of tested algorithms using 

the correlation coefficient, mean absolute error (MAR) 

and root square mean error (RSME). The numbers are 

shown for the best algorithm parameter configurations. 

For the REPTree the best minimum number of instances in 

a leaf for thickness1, thickness2, and width2 is equal to 2, 

while for width1 it is 5. In the case of the random forest 

algorithm, the number of trees that gives better results for 

thickness1 and width1 is 100, for thickness2 and width2 it 

is 200. At the same time for the kNN method the best 

numbers of neighbors are 5 and 1, the first number shows 

better results for the thickness1 and width1, while the 

second number for thickness2 and width2. For the MLP, 

on the other hand, 8 features have shown the best result 

for the width2 model, 25 for thickness2 and 18 for 

thickness1 and width1 models. 

 

 

 

5.1 Interpretation 

The only algorithm out of those used in this study that is 

easy to interpret for a human being is REPTree decision 

tree algorithm. Fig.3 shows the structure of a decision tree 

with the minimum number of instances in a leaf equal to 2 

that has shown the best results for prediction of the width 

of dogbone 1.  

Table 2: Performance of the tested algorithms 

Perf. 

meas. 
REPTree 

Random 

Forest 
kNN MLP 

Thickness 1 

Corr. 

coef. 
0.9566 0.9547 0.9226 0.9203 

MAR 0.0172 0.0171 0.0227 0.0243 

RMSE 0.0355 0.037 0.047 0.0528 

Width 1 

Corr. 

coef. 
0.8357 0.9271 0.8863 0.9014 

MAR 0.0722 0.0499 0.0788 0.0644 

RMSE 0.1172 0.0788 0.0976 0.1002 

Thickness 2 

Corr. 

coef. 
0.9811 0.9913 0.9893 0.977 

MAR 0.0144 0.0118 0.0108 0.0198 

RMSE 0.0261 0.0189 0.0194 0.0388 

Width 2 

Corr. 

coef. 
0.9017 0.9396 0.9159 0.9245 

MAR 0.0697 0.0516 0.0621 0.0785 

RMSE 0.1288 0.1012 0.1213 0.118 

 

 

Fig.2: Prediction quality of tested algorithms 



 

 

Since pruning was enabled during the algorithm’s work, 

not all the 25 parameters were included in the tree. The 

decision tree uses holding pressure, plasticizing time, 

pressure at switchover, injection time, average cushion 

value, injection work, backpressure, cushion after holding 

pressure and injection speed as parameters to take the 

decision about the value of the thickness of the dogbone 

specimen. 

For example, if looking at the tree from the very top, we 

can easily get the following: if the value of the holding 

pressure is less than 27.5, and value of plasticizing time is 

less than 1.53, then, on average, the value of the width of 

the first dogbone will be 3.39. Numbers in the brackets 

indicate the number of samples belonging to that leave and 

number of instances from the pruning.  

 

5.2 Discussion 

The results show that all the machine learning methods 

used in this study show the high capability of predicting 

the width and thickness of the focus parts. The best results 

in terms of the correlation coefficient are achieved using 

the random forest algorithm, while the second-best result 

is received through the application of the MLP. At the 

same time, REPTree decision tree performs a little bit 

better, than kNN. However, overall all four methods show 

quite high prediction capabilities on this data. Overfitting 

should not be present since the 10-folds cross-validation 

technique has been used in order to estimate skill of the 

models on the new data. 

All these algorithms require certain tuning to receive a 

model of the highest quality. For kNN it is important to 

find the best matching number of nearest neighbors, 

multilayer perceptron requires choosing the proper 

number of layers, neurons, selecting the learning rate, etc. 

In the case of decision trees, the minimum number of 

instances in a leaf is an important parameter, while for the 

random forest choosing the correct number of trees is 

crucial. However, out of the methods tested in this study 

MLP is probably the hardest to tune. 

When it comes to the interpretability of the chosen 

methods, it is only the decision trees algorithm that is 

easily interpretable for a human. Models obtained through 

the use of the other algorithms are not as easy to interpret, 

especially the multilayered perceptron and the random 

forest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reliability of the proposed methodology can depend 

on the quality of data, computational tools used to induce 

the methods, as well as the correct interpretation of the 

results. The data used in this study was obtained through 

the above-mentioned laboratory experiment. The 

experiment was designed and planned in a way that would 

exclude the possibility of getting missing or erroneous 

data. Unfortunately, that might not always be the case, 

especially when the data is obtained from manufacturing 

companies. As mentioned before, the use of DOE helped 

to vary dimensions of the produced parts quite 

significantly. This allowed obtaining a dataset that 

includes dimension values close to the ideal ones, as well 

as those remarkably lower.  

Use of different knowledge discovery platform or 

application of variation of any machine learning algorithm 

 

Fig.3: Obtained structure of a decision tree for prediction of thickness1 



 

 

presented might lead to receiving results that are slightly 

different from the ones presented in this study. The ability 

to correctly interpret obtained results is also crucial, as a 

misunderstanding of certain model quality measures might 

lead to missing important aspects related to the model’s 

performance capabilities. 

The models presented in this study are capable of 

predicting dimensions of only the dogbone part since the 

dataset they are trained on doesn’t include samples related 

to any other products. To create models for the prediction 

of dimensions of other products, the corresponding dataset 

needs to be obtained at first. At the same time, it is hard to 

say how accurate will the models’ predictions be if the 

mold for production of the dogbones is changed. 

However, it is possible to assume that if mold has 

properties similar to the one used in the experiment, the 

models’ predictions should be of similar quality. Such an 

approach could be a good starting point for manufacturing 

industries, including thermoplastics injection molding, to 

start analyzing and interpreting their data.  

Amounts of data logged through manufacturing execution 

systems, enterprise resource planning systems, etc. 

continue to grow. There might be interesting and 

unrecognized at the moment patterns, that could 

potentially improve the quality of manufactured products, 

the overall flow of the production process, decrease 

amounts of produced scrap and energy consumption.  

Future work includes obtaining more data, possibly for 

products of different geometry and material and testing 

machine learning methods on larger amounts of data. In 

addition to the real production or experimental data, 

simulated data can be used to pre-train the prediction 

models for further use of transfer -learning, as shown in 

[33]. This might help to increase the generalization 

abilities of the models so that they are able to predict 

dimensions and final quality not only for the dogbone 

specimens from HDPE but for a bigger variety of products 

and materials. It is also planned to do extended 

optimization of the model’s parameters to possibly 

increase the prediction quality. 

 

6 CONCLUSION 

Injection molding is one of the major processes for the 

manufacturing of products from thermoplastic polymers. It 

is easily suited for the production of large amounts of 

plastic parts of different shapes and sizes [7]. However, 

the final quality of the plastic product depends on many 

factors, such as injection molding machine, mold in use 

and parameter settings [20]. Choosing the correct 

production parameters might be a complicated task 

leading to production of large quantities of scrap. That is 

why it is important to predict the final part quality based 

on the chosen process parameters.  

This study presents an approach that involves the 

application of the machine learning methods, such as 

REPTree decision tree, random forest, k-nearest neighbors 

and multilayer perceptron ANN to create prediction 

models for the thickness and width of the HDPE dogbone 

specimens.  

The model assessment is based on the application of 10-

folds cross-validation, as well as correlation coefficient, 

mean absolute error and root square mean error. For all the 

algorithms some of their parameters were varied to see 

how it would influence the quality of the obtained 

prediction model. The results of the study indicate that 

such an approach has the potential to facilitate the process 

of finding optimal production conditions and decrease 

amounts of produced plastic scrap in the field of 

thermoplastics injection molding. 
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