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ABSTRACT. The paper is concerned with a shape optimization problem, where
the functional to be maximized describes the total sunlight collected by a
distribution of tree leaves, minus the cost for transporting water and nutrient
from the base of trunk to all the leaves. In a 2-dimensional setting, the solution
is proved to be unique and explicitly determined.

1. Introduction. In the recent papers [7, 9] two functionals were introduced, mea-
suring the amount of light collected by the leaves, and the amount of water and
nutrients collected by the roots of a tree. In connection with a ramified transporta-
tion cost [1, 14, 18], these lead to various optimization problems for tree shapes.

Quite often, optimal solutions to problems involving a ramified transportation
cost exhibit a fractal structure [2, 3, 4, 12, 15, 16, 17]. In the present note we analyze
in more detail the optimization problem for tree branches proposed in [7], in the
2-dimensional case. In this simple setting, the unique solution can be explicitly
determined. Instead of being fractal, its shape reminds of a solar panel.

The present analysis was partially motivated by the goal of understanding pho-
totropism, i.e., the tendency of plant stems to bend toward the source of light. Our
results indicate that this behavior cannot be explained purely in terms of maximiz-
ing the amount of light collected by the leaves (Fig. 1). Apparently, other factors
must have played a role in the evolution of this trait, such as the competition among
different plants. See [6] for some results in this direction.

The remainder of this paper is organized as follows. In Section 2 we review
the two functionals defining the shape optimization problem and state the main
results. Proofs are then worked out in Sections 3 to 5. Finally, in Section 6 we show
the sharpness of the assumptions used in Theorem 2.5 and discuss various possible
extensions.

2. Statement of the main results. We begin by reviewing the two functionals
considered in [7, 9].
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FIGURE 1. A stem ~; perpendicular to the sun rays is optimally shaped
to collect the most light. For the stem 72 bending toward the light source,
the upper leaves put the lower ones in shade.

2.1. A sunlight functional. Let p be a positive, bounded Radon measure on
R‘i = {(z1,2,...,24); xq > 0}. Thinking of u as the density of leaves on a tree,
we seek a functional S(u) describing the total amount of sunlight absorbed by the
leaves. Fix a unit vector

n ¢ S = {zeR?; |2 =1},

and assume that all light rays come parallel to n. Call Ef the (d — 1)-dimensional
subspace perpendicular to n and let 7, : R? = E;- be the perpendicular projection.
Each point x € R? can thus be expressed uniquely as

X = y+sn (1)

with y € Ef and s € R.
On the perpendicular subspace Ei consider the projected measure u®, defined
by setting

pt(A) = ,u({x eRY; mu(x) € A}) (2)

Call ™ the density of the absolutely continuous part of g™ w.r.t. the (d — 1)-
dimensional Lebesgue measure on .

Definition 2.1. The total amount of sunlight from the direction n captured by a
measure 4 on R? is defined as

0 = [ (1-ep{-e"w)}) ay. 0

More generally, given an integrable function n € L'(S97!), the total sunlight ab-
sorbed by p from all directions is defined as

() = /S ( /E (1-ew{-0mw)}) dy> n(n) dn. (4)

In the formula (4), n(n) accounts for the intensity of light coming from the
direction n.
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Remark 1. According to the above definition, the amount of sunlight S™(u) cap-
tured by the measure p only depends on its projection u™ on the subspace perpen-
dicular to n. In particular, if a second measure g is obtained from p by shifting
some of the mass in a direction parallel to n, then S™ (i) = S™(u).

2.2. Optimal irrigation patterns. Consider a positive Radon measure ;. on R?
with total mass M = pu(R%), and let © = [0, M]. We think of ¢ € © as a Lagrangian
variable, labeling a water particle.

Definition 2.2. A measurable map
X:O xRy — R? (5)
is called an admissible irrigation plan for the measure p if

(i) For every & € O, the map t — x(&,t) is Lipschitz continuous. More precisely,
for each ¢ there exists a stopping time T'(§) such that, calling

) 0
the partial derivative w.r.t. time, one has
1 for a.e. t € [0,T(E)],
X 0] =
0 for t > T'(¢).

(ii) At time ¢ = 0 all particles are at the origin: x(£,0) = 0 for all £ € ©.

(iii) The push-forward of the Lebesgue measure on [0, M] through the map & —
X(&,T(£)) coincides with the measure p. In other words, for every open set
A C R? there holds

p(4) = meas({€ € ©; (6T () € A}). (7)

One may think of x(&,t) as the position of the water particle £ at time ¢.
To define the corresponding transportation cost, we first compute how many
particles travel through a point 2 € R%. This is described by

lz], = meas({f €0; x(t) =z for some t > O}) (8)

(6)

We think of |z|, as the total fluz going through the point x. Following [13, 14], we
consider

Definition 2.3. For a given « € [0, 1], the total cost of the irrigation plan x is

() .
e = [ ( G dt) de. 9)

The a-irrigation cost of a measure p is defined as
I%(u) = mfE%(x), (10)

where the infimum is taken over all admissible irrigation plans for the measure u.

Remark 2. Sometimes it is convenient to consider more general irrigation plans
where, in place of (6), for a.e. t € [0,T(§)] the speed satisfies |x(&,t)] < 1. In this
case, the cost (9) is replaced by

() )
e = [ ( | nenly x<svt>|dt> de. (11)
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Of course, one can always re-parameterize each trajectory t — x(&,t) by arc-length,
so that (6) holds. This does not affect the cost (11).

Remark 3. In the case o = 1, the expression (9) reduces to

E%x) = /@ </]R+ [xt(&,1)] dt) d¢ = /@[total length of the path x(&,-)]d¢.

Of course, this length is minimal if every path x(-,£) is a straight line, joining the
origin with x(&,T'(§)). Hence

0 = inte() = [ e TE)ldE = [ laldn

On the other hand, when o < 1, moving along a path which is traveled by few
other particles comes at a high cost. Indeed, in this case the factor |X(§,t)’i_1
becomes large. To reduce the total cost, it is thus convenient that many particles

travel along the same path.

For the basic theory of ramified transport we refer to the monograph [1]. For
future use, we recall that optimal irrigation plans satisfy

Single Path Property: If x(§,7) = x(&',7') for some &, € © and0 < 7 < 7/,
then

x(&t) = x(€&,t) for all t € [0, 7]. (12)

Another property that will be repeatedly used in the sequel is the following.

Lemma 2.4. Let x be an admissible irrigation plan for the measure . Let C C RY
be a closed convex set containing the origin, and let pc : R4 — C be the perpendic-
ular projection. Consider the projected measure 11 supported on C, obtained as the
push-forward of u by the map pc. Then the composed map X(&,t) = pc(x(é,t))
is an admissible irrigation plan for the measure fi. Moreover, for every a € [0,1]
one has

EUX) < &%(x)- (13)
If 1 # p, then the above inequality is strict.

Proof. The first statement is obvious. As in Lemma 5.15 in [1], the inequality (13)
follows from the fact that, in the projected irrigation plan, the length of particle
trajectories decreases while the multiplicity increases. Indeed,

A </OT(§)\>?<5¢>|§‘1
-/ ( / "o n

T() -
/ ( [ e |>'<<s,t>|dt) ds = £°(x).
© 0

£*(X)

e dt) it

e 0] dt) i

IN
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2.3. The general optimization problem for branches. Combining the two
functionals (4) and (10), one can formulate an optimization problem for the shape
of branches:

(OPB) Given a light intensity function n € L!(S9"!) and two constants ¢ > 0,
€ [0,1], find a positive measure u supported on R‘i that maximizes the

payoff
() — eT*(1). (14)

2.4. Optimal branches in dimension d = 2. We consider here the optimization
problem for branches in the planar case d = 2. We assume that the sunlight comes
from a single direction n = (cos 6y, sinfy), so that the sunlight functional takes the
form (3). Moreover, as irrigation cost we take (10), for some fixed o €]0,1]. For a
given constant ¢ > 0, this leads to the problem

maximize: S™(u) — cZ (), (15)

over all positive measures y supported on the half space Ri ={x = (x1,22); x2 >
0}. To fix ideas, we shall assume that 0 < 6y < 7/2. Our main goal is to prove that
for this problem the “solar panel” configuration shown in Fig. 2 is optimal, namely:

Theorem 2.5. In dimension d = 2, assume that 0 < 6y < 7/2 and 1/2 < a <
1. Then the optimization problem (15) has a unique solution. The optimal measure
is supported along two rays, namely

Supp(p) C {(rcosﬂ,rsin@); r >0, either@zOoer@o—i—g} = TwUl'y. (16)

When 0 < a < 1/2, the same conclusion holds if either 6y = 0, or else the angle 0y
satisfies
sinfp > 12271 (17)

0

FIGURE 2. When the light rays impinge from a fixed direction n, the
optimal distribution of leaves is supported on the two rays I'op and I';.

In the case a = 1 the result is straightforward. Indeed, for any measure p we can
consider its projection 1 on I'g UT'1, obtained by shifting the mass in the direction
parallel to the vector n. In other words, for x € R? call ¢®(z) the unique point in
o UT'y such that ¢™(x) — x is parallel to n. Then let & be the push-forward of the
measure £ w.r.t. ¢™. Since this projection satisfies [¢"(z)| < |z| for every z € R%,



6 ALBERTO BRESSAN AND SONDRE T. GALTUNG

the transportation cost decreases. On the other hand, by Remark 1 the sunlight
captured remains the same. We conclude that

§™(0) — eI'(f) > S™(w) - eT' (),

with strict inequality if u is not supported on I'o U T';.

In the case 0 < a < 1, the result is not so obvious. A proof of Theorem 2.5 will
be worked out in Sections 3 and 4.

Having proved that the optimal measure p is supported on the two rays I'oUT'y,
the density of p w.r.t. one-dimensional measure can then be determined using the
necessary conditions derived in [6]. Indeed, the density uy of u along the ray Ty
provides a solution to the scalar optimization problem

[e3%

+oo +o00 +o0
maximize: Jo(u) = / sin Oy (1767"(5)/5“1 00) dsfc/ </ u(r) dr> ds.
0 0 s

(18)
among all non-negative functions u : Ry — R, . Here s is the arc-length variable
along I'y.

We write (18) in the form

+oo
maximize: Jp(u) = / {sin 0o(1 — e~ u(s)/sin 90) — cz“}ds, (19)
0
subject to

Z = —u, z(400) = 0. (20)

The necessary conditions for optimality (see for example [8, 11]) now yield
u(s) = argm%({ — e~w/simbogin gy — wq(s)} = —(sinfp)Ingq(s), (21)

w=Z

where the dual variable ¢ satisfies

g = caz® !, q(0) = 0. (22)
Notice that, by (21), v > 0 only if ¢ < 1. Combining (20) with (22) one obtains an
ODE for the function ¢ — z(g), with ¢ € [0, 1]. Namely

dz(q) sinfy ,_
= *1 1) =0. 2
) e, (1) =0 (23)

This equation admits the explicit solution

2(a) = (

Inserting (24) in (22), we obtain an implicit equation for ¢(s):

sin 00

1/« o
=) L4+qng—q'". (24)

11—«
(sinfp) =" [9 1-a
s = ; [1+tnt—t] = dt. (25)
In turn, the density u(s) of the optimal measure p along I'g, as a function of the
arc-length s, is recovered from (21). Notice that this measure is supported only on
an initial interval [0, £o], determined by

(sin ) ="

b = acl/e

1 1—a
/ [14slns—s] = ds.
0
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In particular, the total mass My along the ray T'g is computed setting ¢ = 0 in (24),
namely

Lo i 1o
Mo = / us)ds = =(0) = (0)7 (26)
0 c
\\ a=2/3
S‘T\ ——a=1/3]

0.8

FIGURE 3. Density profile u(s) for s € [0, ¢1] along the ray I'y for ¢ = 1
and o = 2/3,1/3.

The density of the optimal measure along the ray I'; is computed in an entirely
similar way. In fact, it corresponds to the special case of setting 6y = 7/2 in the
previous computations. Along I'1, the optimal measure p is supported on an initial
interval [0, £1], where

1 1-

1
= m/0 [14+slns—s] = ds,

while the total mass is given by
M, = ¢V, (27)

An illustration of how the corresponding density profile u(s) looks like for different
values of a is displayed in Fig. 3.

2.5. The case a = 0. In the analysis of the optimization problem (OPB), the case
a = 0 stands apart. Indeed, the general theorem on the existence of an optimal
shape proved in [7] does not cover this case.

When a = 0, a measure p is irrigable only if it is concentrated on a set of
dimension < 1. When this happens, in any dimension d > 3 we have §7(u) = 0 and
the optimization problem is trivial. The only case of interest occurs in dimension
d = 2. In the following, (-,-) denotes the inner product in R2.

Theorem 2.6. Let a =0, d =2. Let n € L'(S') and define

K = max /
[wl=1 Jpest

(i) If K > c, then the optimization problem (OPB) has no solution, because the
supremum of all possible payoffs is +oo.

(w, )| n(m) dn. (28)
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(ii) If K < ¢, then the mazimum payoff is zero, which is trivially achieved by the
zero measure.

A proof will be given in Section 5.

3. Properties of optimal branch configurations. In this section we consider
the optimization problem (15) in dimension d = 2. As a step toward the proof of
Theorem 2.5, some properties of optimal branch configurations will be derived.

By the result in [7] we know that an optimal measure p exists and has bounded
support, contained in R = {(z1,22); z2 > 0}. Call M = u(R%) the total mass
of pand let x : [0, M] x Ry — Ri be an optimal irrigation plan for u.

X_(X) X X+(X)

0

FIGURE 4. According to the definition (3), the set x~(z) is a curve
joining the origin to the point . The set x*(z) is a subtree, containing
all paths that start from x.

Next, consider the set of all branches, namely
B = {x €Ry; |z|, >0} (1)

By the single path property, we can introduce a partial ordering among points in
B. Namely, for any z,y € B we say that z < y if for any £ € [0, M] we have the
implication

X&) =y = x(#,&) =z for some t' € [0,1]. (2)

This means that all particles that reach the point y pass through x before getting
to y.

For a given x € B the subsets of points y € B that precede or follow x are defined
as

X (2) = {yeB; y=a}, X"(2) = {yeB; z =y}, (3)
respectively (see Fig. 4).

We begin by deriving some properties of the sets x*(z). Introducing the unit
vectors e; = (1,0), e2 = (0, 1), we denote by Re; the set of points on the z;-axis.
As before, n = (cos g, sin 0y) denotes the unit vector in the direction of the sunlight.
Throughout the following, the closure of a set A is denoted by A, while (-, ) denotes
an inner product.
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FIGURE 5. If the set x* () is not contained in the slab I'; (the shaded
region), by taking the perpendicular projections 7t and 7° we obtain
another irrigation plan with strictly lower cost, which irrigates a new
measure 1 gathering exactly the same amount of sunlight. Notice that

here P is the point in the closed set x+(x) N Re; which has the largest
inner product with n.

Lemma 3.1. Let the measure p provide an optimal solution to the problem (15),
and let x be an optimal irrigation plan for u. Then, for every x € B, one has

xT(z) € Iy = {yeRi; (n,y) € [am,bz]}a (4)

where a, = (n,z), while b, is defined as follows.

o If xt(z) NRey =0, then by = a; = (n,x).
o If xt(z)NRey # 0, then

b, = max {a,b}, b = sup{(n,z); 26X+(1‘)ﬂRe1}.

Proof. The right-hand side of (4) is illustrated in Fig. 5. To prove the lemma,
consider the set of all particles that pass through z, namely

0, = {£€[0,M]; x(1,€) = for some 7 >0}.

1. We first show that, by the optimality of the solution,
(n, x(&:1) > aq forall £ € ©,, t > 7. (5)
Indeed, consider the perpendicular projection on the half plane
iR = ST = {yeR®; (ny) > a.)
Define the projected irrigation plan
7o x(t, &) ifEe®,, t>,
X6 =
x(t, &) otherwise.

Then the new measure puf irrigated by x* is still supported on Ri and has exactly
the same projection on Ei as u. Hence it gathers the same amount of sunlight.
However, if the two irrigation plans do not coincide a.e., then the cost of x* is
strictly smaller than the cost of x, contradicting the optimality assumption.
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2. Next, we show that
(n, x(&1) < by forall£ €0, t>T. (6)
Indeed, call
b = sup {(n,z>; zG)ﬁ(x)}.

If b < b, we are done. In the opposite case, by a continuity and compactness argu-
ment we can find 4 > 0 such that the following holds. Introducing the perpendicular
projection on the half plane

R o 87 = {yeR?; (ny) < V-0,
one has
{=*(v); yext(x)} C R:. (7)
Similarly as before, define the projected irrigation plan

™ o x(t,€) ifeeco,, t>r
(€ = {
x(t, &) otherwise.

Then the new measure p” irrigated by x° is supported on Ri N S” and has exactly
the same projection on E as u. Hence it gathers the same amount of sunlight.
However, if the two irrigation plans do not coincide a.e., then the cost of x” is
strictly smaller than the cost of y, contradicting the optimality assumption. This
completes the proof of the Lemma. O

Xy A

\ w,=T2-§

)

FIGURE 6. After a rotation of coordinates, the sunlight comes from the
vertical direction. Here the blue lines correspond to the set B* in (8).

Based on the previous lemma, we now consider the set
B* = {z € B; xt(z) NRey # 0}. ()

It will be convenient to rotate coordinates by an angle of /2 — 6y, and choose new
coordinates (z1, 22) oriented as in Fig. 6. In these new coordinates, the direction of
sunlight becomes vertical, while the positive x;-axis corresponds to the line

S = {(2172’2); 21 >0, zgz—)\zl}, where X =tanf,. (9)
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Calling (zl(f, t), z2(&, t)) the corresponding coordinates of the point x(&,t), from
Lemma 3.1 we immediately obtain

Lemma 3.2. Let x be an optimal irrigation plan for a solution to (15). Then

(i) For every & € [0, M], the map t — z1(,t) is non-decreasing.
(ii) If z = (z1,22) ¢ B*, then x*(Z) is contained in a horizontal line. Namely,

xt(2) c {(z1,5); s € R}. (10)
To make further progress, we define

2" = sup{z1; (21, 22) € B*}.

Moreover, on the interval [0, 2]"**[ we consider the function
o(z1) = sup{s; (21,8) € B*}. (11)

Se i Z

P’ Pnl

Z2 (p(Z] ) O a b
FIGURE 7. The construction used in the proof of Lemma 3.3.

max

Lemma 3.3. For every z; € [0, 2]"*[, the supremum ¢(z1) is attained as a mawi-
mum.

Proof. 1. Assume that, on the contrary, for some z; the supremum is not a max-
imum. In this case, as shown in Fig. 7, there exist a sequence of points P, — P
with P, = (21, 8,), P = (21, 22), Sn T Z2. Here P, € B* for every n > 1 but P ¢ B*.
Without loss of generality, we can assume that all points P, lie on distinct branches
(i.e., there is no couple m # n such that P, < P, or P, < P,,). Otherwise, we
could group all these points into finitely many horizontal branches. But since every
horizontal branch intersects the horizontal line through P in a closed interval, this
would already imply that the supremum in (11) is attained.

2. Choose two values a, b such that
—-AzZ1 < b < a< @(21).

By construction, for every n > 1 the set x+(P,) intersects S. Therefore we can find
points

P, < A, X B,
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all in B*, with

An = (tn,a), B, = (t;mb)a z1 <t, < t;L < Zvlwaa: .

3. Since the total mass M is finite, we have

D Aal < M = p(RE).

n>1
We can thus find N large enough so that the amount of particles ey = |An|y
going through Ay is so small that
clb—a)aey ™t > 1. (12)

Consider the modified transport plan X, obtained from x by removing all particles
that go through the point By. More precisely, X is the restriction of x to the domain

0 = ©\{¢; x(&,7) =By for some 7> 0}.

Let 1z be the measure irrigated by X.
Calling o¢ > 0 the total amount of particles going through By, since i < p, the
total amount of sunlight gathered by the measure 1 satisfies

S™(u) = S*() < (- DR = 0. (13)

We now estimate the reduction in the transportation cost, achieved by replacing

p with fi. Let v : [s4,sB] — R? be an arclength parameterization of the branch
from Ay to By. Along this arc, when all the particles reaching By are removed,

the multiplicity (8) decreases from |y(s)|y to |y(s)|y — oo. The transportation cost
through ~ is reduced in the amount

[ rekts— [ (o) - o) as

SA SA

|;71~00 > (b—a)acy top.

> (s —sa)a sup|y(s)
S

This yields
() < E¥X) < I%(w) — (b—a)acy too. (14)
If (12) holds, combining (13)-(14) one obtains

S*(p) — eZ%(p) < S™(p) — cI%(p).
Hence the measure p is not optimal. This contradiction proves the lemma. O

By the previous result, the graph of ¢ is contained in one single maximal tra-
jectory of the transport plan x. As in Figure 8, we denote this curve by 7, which
provides the left boundary of the set B*.

Along the curve v, we now consider the set of points C; = (21,5, 22,;) where some
horizontal branch bifurcates on the left. A property of such points is given below.

Lemma 3.4. In the above setting, for every j, one has
o(s) < 22, forall s <z ;. (15)

Proof. If (15) fails, there exists another point C = (21 ;, 22 ;) along the curve 7,
with 2] ; < 21,;. We can now replace the measure y by another measure p obtained
as follows. All the mass lying on the horizontal half-line {(z1;,s); s > 22} is
shifted downward on the half-line {(27 ;,5); s > 22;}. Since the functional S™ is
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z, ;
e e (0
>|< \ __,——"';‘—
P:‘/'”"—:,p* Y
o) \Qj 1 S
! ) 3
40 77777 CJ \n/2—90 §
Z ‘ * ‘ -
2 [32 0 q2

FIGURE 8. The thick portions of the curve «y are the only points where
a left bifurcation can occur. If a horizontal branch ¢ bifurcates from Cj,
all the mass on this branch can be shifted downward to another branch
0" bifurcating from Cj. Furthermore, if some portion of the path ~
between P* and @ lies above the segment v* joining these two points,
we can take a projection of v on v*. In both cases, the transportation
cost is strictly reduced.

invariant under vertical shifts, we have S™ (1) = S™(u). However, the transportation
cost is strictly smaller: Z%(i) < Z%(u). This contradicts the optimality of . O

Next, as shown in Fig. 8, we consider a point P* = (p},p5) € v where the
component zo achieves its maximum, namely

p; = max{z; (21,22) €7} = 0. (16)

Notice that such a maximum exists because « is a continuous curve, starting at the
origin. If this maximum is attained at more than one point, we choose the one with
smallest z{-coordinate, so that

p1 = min{z1; (21,p3) €7} (17)
Moreover, call
¢; = inf{zg; (21,22) € Supp(p)},
and let @* = (¢7,q3) € S be the point on the ray S whose second coordinate is ¢;.
Recalling the notation of Lemma 3.1, we note that ¢f = b,, for x = (0,0). We claim

that, by the optimality of the solution, all paths of the irrigation plan y must lie
within the convex set

Y= {(z1,22); 21 €10,47), 22 > g3}
Otherwise, call 7* : R? — X* the perpendicular projection on the convex set X*,
and let p* be the push-forward of p by the map 7*. By Lemma 2.4 the composed
map
X&) = 7 (x(&1))

is an irrigation plan for p* and satisfies £*(x*) < £*(x). Hence
SUpt) = SMw), I < (X)) < €00 = IT%(w),
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contradicting the optimality assumption.
By a projection argument we now show that, in an optimal solution, all the
particle paths remain below the segment v* with endpoints P* and Q*.

Lemma 3.5. In the above setting, let

*

7 = {(21,22); 21 = a+ bz, 2 € (g5, p3)}
be the segment with endpoints P*, Q*. If

is an optimal irrigation plan for the problem (15), then for a.e. £ € © we have the
implication

22(£7t) € [q;7p§] = Zl(gvt) S a+b22(§7t)' (19)

Proof. 1. It suffices to show that the maximal curve 7 lies below ~*. If this is not
the case, consider the set of particles which go through the point P* and then move
to the right of P*, namely

Q= {f € [0, M]; x(&t") = P* for some t* > 0, 22(&,t) < p3 for t > t*}. (20)

Notice that, by the single path property (see Section 7.1 in [1]), all these particles
follow the same path from the origin to P*. Hence the length ¢* of this path is the
same for all £ € Q.

2. Consider the convex region below ~*, defined by
S = {(erm); 0< s <atbn,  me ()
Let 7 : R2 — X be the perpendicular projection. Then the irrigation plan

Xt = ”(X(S’t)) ife e, ¢>1, (21)
’ x(&t) otherwise,

has total cost strictly smaller than y. Indeed, for all x and a.e. £,¢ we have
[m(@)] o > |zl X&) < X&) (22)

Notice that, in (22), equality can hold for a.e. £,t only in the case where y = xF.

x T

3. We now observe that the perpendicular projection on ¥ can decrease the
zp-component. As a consequence, the measures p and pf irrigated by y and x!
may have a different projections on the z, axis. If this happens, we may have
S () # S™(uh).

To address this issue, we observe that all particles & € Q* satisfy x(¢,t*) =
x(&,t*) = P*. In terms of the 21, 2o coordinates, this implies

E) = (6 t7) = ph, Z(ET©) < 26 T©) < p3. (23)

By continuity, for each £ € Q* we can find a stopping time 7(£) € [t*,T(£)] such
that

(7)) = (&, T(E)).
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Call Y the truncated irrigation plan, such that
X&) if € e, t <7(),
X(&t) = ¢ x(&7(9) if £ €, t>7(), (24)
x(&1) if & ¢ Q.

By construction, the measures p and g irrigated by x and x have exactly the same
projections on the zp axis. Hence S™(g) = &™(p). On the other hand, the
corresponding costs satisfy

) < &) < .

This contradicts optimality, thus proving the lemma. O

4. Proof of Theorem 2.5. In this section we give a proof of Theorem 2.5. We
recall that the functional (15) to be maximized is the difference between a payoff,
i.e. the sunlight S™(u) absorbed by the measure p, and the ramified transportation
cost ¢Z%(u). Together with the measure p, at various steps of the proof we shall
construct a second measure i, obtained by shifting part of the mass in a direction
parallel to n. As in Remark 1, this will not change the sunlight gathered: S™(n) =
S™(w). On the other hand, the irrigation cost of 1 is strictly smaller: Z%(fx) < Z%(u).
We shall conclude that p is not optimal.

As shown in Fig. 8, let P* = (pf, p3) be the point defined at (16). We consider
two cases:

(i) P*=0¢€R2?,

(ii) P* #0.

Assume that case (i) occurs. Then, by Lemma 3.4, the only branch that can
bifurcate to the left of v must lie on the z;-axis. Moreover, by Lemma 3.5, the path
~ cannot lie above the segment with endpoints P*, Q*. Therefore, the restriction
of the measure u to the half space {22 < 0} is supported on the line S. Combining
these two facts we achieve the conclusion of the theorem.

The remainder of the proof will be devoted to showing that the case (ii) cannot
occur, because it would contradict the optimality of the solution.

To illustrate the heart of the matter, we first consider the elementary configu-
ration shown in Fig. 9, left, where all trajectories are straight lines. Water is first
transported from the origin to the point P*. Then, an amount ¢ > 0 is moved
horizontally to the point @, while an amount x > 0 is moved to P;. This yields a
transport plan x, which irrigates the measure p consisting of a mass ¢ at @ and a
mass K at Pj.

Next, as shown in Fig. 9, right, we consider a point P along the segment 0P*. A
new transport plan X is defined, where water is first transported from the origin to
P. Then, an amount ¢ is moved horizontally to a point @ located along the same
vertical line as ). The remaining amount x is moved in a straight line from P to
P;. Notice that the new transport plan Y now irrigates a measure [ consisting of a
mass o at @ and a mass k at P;.

To fix ideas, we denote the lengths of the segments PP* and P*P; as

¢, = |P— P7|, 4 = |P— Pl (1)
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z, 2y
i 4
*K 0 .
Q o P \% Q, P/
..:. c /1
p 0 Q] P
a
z, 0 Zy 0

FIGURE 9. Left: an irrigation plan for a measure p with two masses at
Q@ and at P;. Right: an irrigation plan for a modified measure i with
two masses at Q and at P;. The lengths of the segments PP* and P* Py
will be denoted by 4., £», respectively.

The angles between these segments and a horizontal line will be denoted by 6,, 05,
respectively. The next lemma provides a comparison between the costs of the two
irrigation plans x and X.

Lemma 4.1. Let 0 > 0, k > 0 be given, together with angles 6, € [0,7/2] and
Oy € [0,7/2[. Let x,X be the irrigation plans defined above, as shown in Fig. 9. If
0 < o < 1/2 and 0y satisfies the additional bound

cosf, > 1—2%"1 (2)
or if a > 1/2, then there exists € > 0 such that £, /¢, < € implies
&) < €00- (3)

Proof. 1. To compute the difference between the quantities in (3), notice that the
old transportation cost along PP* and P*P;,

(k+0)%y + K%,

is replaced by the new cost

KN+ 82— 2040, c5(0 + 0) + 0™y cos B (4)

Notice that the last term in (4) accounts for the fact that an amount o of particles

need to cover a longer horizontal distance, traveling along the segment P@ instead
of P*Q.
The difference in the cost is thus expressed by the function

flla ty) = E%(0) —€7(X)

= (k4 )y — 00, cos By + K [zb — VT B 20,0, cos(0, + 0p)| -

2. Introducing the variables

Ly
E—E, L = Ly, el = L,
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we obtain

flet, o) = ¢ [E(K +0)* —eo®cosb, + na(l — /14 &% —2¢ccos(f, + 917))}

= 54(& +0)* —0%cosf, + k¥ cos(0, + 0,) + O(1) - 5} .

(5)
Setting
A= —2— € [0,1],
K+o
we are thus led to study the function
F(\0,,0,) = 1—X*cosb, + (1 —X)“cos(b, + 6p) (6)

and to find conditions which imply the positivity of F.

3. The function F in (6) can be written in terms of an inner product:

F(X\04,0,) = 1—cos0, [A* — (1 — X)*cosbp] —sinf,(1 — X)*sinb,

=1- < (cosb,, sinb,) , ()\a —(1=XN%cosbp, (1—=XN)* sinﬂb)>.
(7)

To prove that F' > 0 it thus suffices to show that the second vector on the right
hand side of (7) has length smaller than one, namely

A2 4 (1= A2 —20%(1 — \)¥cos B < 1.
This inequality holds provided that

2O (1 A2 - 1
Dl Na ®)

Two cases must be considered. If & > 1/2, then
M4 (1-XN)? <1 forall A€ 0,1].

Hence (8) trivially holds for all 6, < 7/2.
On the other hand, if & < 1/2, consider the function

cosf, >

o) = Mool 1+(/\“—(1—/\)“)2—1
TV = Toxe(t N T (1 —ne
We observe that, for 0 < o < %, one has
1 _
0 < g\ < 9(5) = 1-2%"1 9)

while

1. == 1 = .
g, 93 = lim o) =0

From (9) it now follows that the condition (12) guarantees that (8) holds, hence
F >0, as required.
Summarizing the previous analysis, for any A €]0,1[ and 6, € [0,7/2], we have
proved:
(i) When a >1/2, one has F(X,04,0,) > 0 for all 6, € [0,7/2].
(il) When 0 < o < 1/2 one has F(X,04,0,) > 0 provided that 0y satisfies the
additional bound (12).
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4. Combining (5) with (6), we obtain
Lo

f(0a,00) = La(k+0) |F(A 04,0,) +O(1) - 0| (10)
By the previous step, in both cases (i) and (ii) the right hand side of (10) is strictly
positive provided that the ratio ¢, /¢, is sufficiently small. This yields (3). O
Zy
k
pl

FIGURE 10. A more general configuration, considered in Lemma 4.2.

We now consider a more general irrigation plan x, shown in Fig. 10. Water is
transported from the origin along a straight path ~, up to the point P*. Then the
flux is split into a finite number of straight paths. One goes horizontally to the left,
with flux ¢ > 0, reaching a point ). The other paths go to the right, with fluxes
K1,...,Kn > 0, at angles

0< 0, < - < 0y < 0y, (11)

until they reach points Pi,..., P,. This provides an irrigation plan for the mea-
sure concentrating a mass ¢ at the point ) and masses K1,..., Kk, at the points
Py,...,P,. As shown in Fig. 10, we assume that all points P; lie on the same
straight line 7, which intersects v at a point P.

We compare this configuration with a modified irrigation plan X defined as fol-
lows. First, the plan x¥ moves all the mass from the origin along the straight line
~ up to the point P. Then an amount of mass ¢ is moved horizontally to the left,
until it reaches a point é on the same vertical line as (). The remaining mass
K =K1+ -+ kp is moved along the segment 7, until it reaches the various points
Py,..., P,. Notice that X is an irrigation plan for a measure g which concentrates
a mass o at the point @) and masses k1,..., Kk, at the points Py,..., P,. As shown
in Fig. 10, we call 6, € [0,7/2] the angle between v and a horizontal line, and let
B € [0,7/2] be the angle between 5 and a horizontal line.

Lemma 4.2. Let the masses ¢ > 0 and Ki,...,k, > 0 be given, together with
angles 0, € [0,7/2] and 0; € [0,7/2[ as in (11). Let x,X be the irrigation plans
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defined above, as shown in Fig. 10. If 0 < a < 1/2 and 01 satisfies the additional
bound

cosf; > 1—2271 (12)
or if a > 1/2, then there exists € > 0 such that 0 < § — 61 < € implies
&) —&*(x) > 0. (13)

Proof. 1. The left-hand side of (13), describing the difference between the old and
the new transportation cost, can be expressed as

P — P*| <o—+§:;’:1fsj) + Y RSP — Py — 0% cos 0, P — P*|
_Z;'lzl (Ele “1> [Pj+1 — Pyl
where, for notational convenience, we set P, 1 = P. According to (14) we can write

£ —€%(X) = A+ 5n, (15)

(14)

where

e [

= PP |[o+Y k| —ocosta| + Dk <|p*_P1\—|P—P1|),
L <

(16)

= imﬁ‘lP*_ﬂI—(inj)a(|p*_P1|—|Pn+1—P1|>—§n: (ZJ:M)&\Pjﬂ_pj\,
J=1 j=1 j=1 =1

(17)

2. Notice that the quantity A in (16) would describe the difference in the costs
if all the mass kK = k1 + - - - + K, were flowing through the point P;. We claim that

A > |P— P {(04—/@')0‘—Uacos9a+/<a°‘cos(9a+91)—2||PP*||} (18)
=

Indeed, the last two terms within the square brackets in (18) are derived from

X X P—p* e
P =P =[PP = [P~ Pi| 1= /1= 2[5 cos(0 + 1) + 52T
* —P" pP_p|?
> P = Py [1 = (1= 5] cos(0a + 01) + S50 )|
Using Lemma 4.1, we can now choose ¢’ > 0 small enough such that, if

P — P /

— < g, 19
then the right hand side of (18) is strictly positive. It now suffices to observe that,
given all the angles 0,,601,...,0,, by choosing £ > 0 small enough one achieves the
implication

|P — P~ /
-0, < == — < €. 20
f—b < ¢ PP (20)

In turn, this implies the strict inequality

A > 0. (21)
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3. To complete the proof of the lemma, it remains to prove that S, > 0. This
will be proved by induction on n. Starting from (17) and using the inequalities

n n—1
P, — Pi| < |P*— P, (>om) < met+(Xm)

i=1 1=1

we obtain
S, :Z@%\P*—Pj\—( 5) (IP" =Pl =P, — P1])
: i -

n—1 7

Z(Z’ﬂ) |Pj+1— b

j=1 =1
n—1

> kp|P* = P,|+ Y K§|P* - P

] 1

(“ +(Z_: ) )IP* Py|—|P, — P1|)
(; 5i) 1B P uZ(Z 5:) 1P~ P

Jj=1 =1

:Zn;f\p*fpj\f(z ) (1P* = Pi| = [Py — P))
j=1 j=1
n—2 7

=3 (3 w) 1P~ Bl s (1P Pl 4 |Pu— Pi| [P~ P
j=1 =1

— Spi 4 ng(|P* Py —|P*— P|+|P, - P1|> > 8,1,
(22)
where in the second equality we have used |P,—1 — P1| = |P, — P1| — |Pn — Prn-1].
Repeating this same argument, by induction we obtain

Sp > Sp1 > -0 281
Observing that
S1 = k{|P*—Py| - fﬂi’(\P* — Pi| - |P —P1|) —Kk{|P— P =0,
the proof of the lemma is completed. O

Remark 4. Assoon as all the masses 0, k1, ..., k, and all the angles 8, 3,61, ...,60,
have been assigned, the difference between the two irrigation costs in (13) is a
positive homogeneous function of the distance |P; — P*|. We can thus replace (13)
with the inequality

() —&€(X) > cl|Pr— P, (23)
for some ¢y > 0 depending on all the above constants. Notice that, by continuity,

the bound (23) remains valid if 6, is replaced by some other angle 0/, with |6/, —6,|
sufficiently small.
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4.1. Completion of the proof. Let p be an optimal measure, maximizing the
functional (15), and let x : © x Ry + R? be an optimal irrigation plan for pu.
According to (6), we assume that all paths are parameterized by arc-length.

As remarked at the beginning of this section, a proof of Theorem 2.5 can be
achieved by showing that, for an optimal solution, the point P* = (pi,p}) intro-
duced at (16) must coincide with the origin. We recall that by definition we must
necessarily have p5 > 0 since the maximal curve « contains the origin. Moreover,
p5 = 0 implies p] = 0, since by a projection argument, this leads to a lower irri-
gation cost. Throughout the following we shall thus assume p; > 0 and derive a
contradiction.

1. Call
0" = {£€0; x(&t*) =P for some t* >0} (24)

the set of particles that move through P*. Notice that, by the single path property,
there exists a unique path « : [0,¢*] = R? such that

~(0) = 0, ~y(t*) = P, x(&t) = ~(t) for all £ € ©F, t € [0,t"]. (25)

As a consequence, in (24) the time ¢* is the same for all £ € ©*.
Within the set ©* of all particles reaching P*, we distinguish the ones which
proceed to the left or to the right of P*, namely

0" = O,U0,. (26)
Here ©; denotes the set of particles that, after reaching P*, move along the hori-
zontal line {(z1, 22); 21 = p}, 22 > p3} to the left of P*. Moreover, ©, = ©*\ ©; is

the set of particles which, after reaching P*, move to the right. For all £ € ©,. and
t > t*, we thus have

x(t,&) € {(21,22); 21 > pf, 22 <p3}. (27)
For future use, we denote

o = meas(0;), Kk = meas(O,). (28)

2. In connection with the path v at (25), consider the set (the shaded region in
Fig. 11)

A = {(21, z9); there exists 21 < z; and ¢ € [0,¢*] such that (Z1, 22) = 'y(t)}.
(29)
We claim that the measure p cannot concentrate any mass on the open set A.
Indeed, if p(A) > 0, then we consider the measure i obtained by vertically shifting
all the mass in A until it touches some point on the curve I'. More precisely, let
¢ A {y(t);t € [0,t*]} be a measurable map such that ¢(z1,22) = (Z1, 22), with
z1 as in (29). Furthermore, outside the set A we extend the map by the identity,
that is, ¢(z1, 22) = (21, 22). Let i be the push-forward of the measure p by the map
¢. This new measure p would then satisfy

SMp) = S%(w),  I%(p) < I%(w),

contradicting the optimality of u.
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FIGURE 11. Left: in the shaded region A above the curve 7, the mea-
sure p cannot concentrate any mass. Otherwise, by shifting this mass
downward until it hits a point on -, we would obtain a second measure
1 which gathers the same amount of sunlight, but has a lower irrigation
cost. As a consequence, by the interior regularity property, the flow out
of P* is locally supported on a finite number of line segments. Right:
the construction used in steps 4—6 of the proof of Theorem 2.5.

3. The previous argument shows that there are no sinks inside A. Hence all
particles £ € ©, continue to move to the right of P*, eventually crossing the z;-
axis. For £ € ©, we can thus define the stopping time

7(€) = min{t > t*; x(&,t) = (#1,0) for some 21 > pi},

and introduce the measure [z, supported on the zi-axis, defined by

(V) = meas{¢ € ©,; x(&,7(§) €V},
We observe that the restriction of x to the set
{&1); ceop, telt', (9]}

yields an optimal transport plan from a point mass located at P* to the measure
.

By the interior regularity property (see Theorem 8.16 in [1], or Theorem 4.10
in [19]), outside a neighborhood of the support of T, the optimal transport plan
is supported on a finite union of line segments. In particular, restricted to the set
{z2 > p3/2}, all paths x(¢,-), with £ € ©,, t > t* are contained within finitely
many line segments.

4. By the previous step, within a neighborhood of P*, all particle paths which
move out of P* are contained in finitely many straight lines starting at P*.

Adopting the same notation used in Lemma 4.2, we call ¢ = meas(0;) the amount
of mass which moves horizontally to the left of P*. As in (11), we call y,...,0,
the angles formed by the line segments to the right of P* with a horizontal line (see
Fig. 11, right). The fluxes along these line segments are denoted by k1, ..., k,. We
introduce the decomposition

O, = O1U---UB,, (30)

where ©; denotes the set of particles £ € O, that move along the i-th segment.
Notice that, with this notation, one has x; = meas(6;).
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We recall that, by Lemma 3.5, all particle paths x(&,t), £ € O,., lie below the
segment v* with endpoints P*, @Q*. This implies that all angles 6y,...,0, are
strictly smaller than 7 — 6y. By the assumption (17), we are led to consider two
cases.

CASE1l: 1/2<a<land 0<6; <7/2,

CASE 2: 0 < @ < 1/2 and

cosf; > cos (g—@o) = sinfp > 12271 (31)

5. In this step, under the assumption that p5 > 0, we construct a competing
measure fi. Using Lemma 4.2, this will eventually allow us to conclude that the
measure p is not optimal.

For t < t*, consider the unit vector

t) —(t*
Wity = 2O
[y(t) =~ (t*)]
By compactness, there exists an increasing sequence t, — t*— such that
Ul;ngo w(t,) = W, (32)
for some unit vector w = (w1, ws), with Wy < 0, Wy < 0. Call 4, € [0,7/2] the
angle between W and a horizontal line.
In connection with the masses o,%1,...,K, and the angles 61,...,6, defined

above, we now choose an angle 5 > 61, sufficiently close to 61, so that the conclusion
of Lemma 4.2 holds. In particular, by Remark 4 the inequality (23) holds.

Next, we choose v > 1 sufficiently large (its precise value will be determined
later), and consider the point P = (p1,p2) = v(t,). Again referring to Fig. 11, right,
we denote by 7 the straight line through P, forming an angle 8 with a horizontal
line. As in Lemma 4.2, we denote by Py, ..., P, the points where 7 intersects the
line segments through P*, forming angles 0 < 8,, < --- < #; with a horizontal line.

A new measure i and a new irrigation plan X are now defined as follows.

e The measure j1 is obtained from p by vertically shifting all the mass located
on the horizontal line to the left of P* downward on the horizontal line to the
left of P. More precisely, g is the push-forward of p by the map

(p1,22)  if 21 =pi, 22 > p3,
¢>(21722) =
(21, 22) otherwise.
e Recalling (26), for £ ¢ ©* we simply set x(&,t) = x(&,t) for all t > 0.
e Particles £ € ©; move along the path v up to the point P. Then the move
horizontally to the left of P, stopping at a point X (&, T(£)) on the same vertical

line as x(&,T()).

e Particles £ € ©, move along the path v up to the point P. Then they move
along ¥ until they reach the corresponding points Py, ..., P,. Afterwards, the
remaining portions of their trajectories are exactly as before.

6. By construction we have S™() = S™(u). To analyze the cost of the new
irrigation plan X, consider the set

@}: = {fe@\@*, X(£7tu):7(tu):P}'
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This is the set of particles that go through P, but do not reach P* afterwards:
either they stop along -, or they move to some other branch bifurcating from ~
before reaching P*.

We observe that, in the case where ©F = (), one can immediately apply Lemma 4.2
and conclude

I%(p) < €00 < &) = (W) (33)

The following analysis will show that the same conclusion can still be reached,
provided that P is sufficiently close to P* and

5, = meas(0]) (34)
is sufficiently small. For future use, we observe that

lim t, = t¥, lim 6, = 0. (35)

V—r00 vV—r 00

We are now ready to estimate the difference between the two irrigation costs, in
the general case.
(1) For ¢ ¢ ©* U O], we have

X(gvt) = S(i(gat% ’ (6 13 | |X 6 t ‘~ (36)

for all ¢ > 0. Hence these particles do not contribute to the difference in the
transportation cost.

(2) For ¢ € OF, the first identity in (36) still holds for all ¢+ > 0. However, the
second one holds only for ¢ ¢ [t,, 7(£)], where

7(€) = sup{t € [t,, T(&)]; x(&1) =)} < t*
is the time when the particle € either stops, or leaves the path v. We estimate the

difference
L, / (It 0|2 — [xte " )arae

7(&) _ o1 .
/@T/t ’X(fyt)‘i dtd¢ < [meas(@l)] St —t,).

b
|

(37)

IN

(3) It remains to estimate the difference in the cost for transporting particles
¢ € O, namely

T . T(e) .
B = / (/O IX(& )5 1dt—/0 X&) 1dt>d§, (38)

The estimate of B is based on the following observation. If the portion of the curve
~v between P and P* were a straight segment, and if on this segment the multiplicity
were constantly equal to o + x, then we could use Lemma 4.2 and Remark 4. By
(23) we could thus conclude

B S —Co|P1—P*|. (39)
In the general case, recalling (34), the multiplicity along v is estimated by

oc+kr < |’y(t)|X < o+kKk+0, for all t € [t,,t"].
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The presence of the additional particles £ € O, increases the multiplicity and hence
reduces the cost of x. The amount by which this cost is reduced can be bounded
above by

/ /t* [(a + /)~ (o + K+ M“‘l] dtdé
= Ji, (40)

= [(o +rK)* (0 +K+ 61,)6‘_1} (0 + &) (t* —t,).

On the other hand, the fact that the curve 7 is not necessarily a straight line
increases the cost of x in an amount which is bounded below by

(0 +5K)-(0+K+6,)"""- ((t* 1) —|P* _p|). (41)

Combining all the previous observations, from (37), (39), (40), and (41), we
conclude

EX) —€%(x) < oyt —ty) —colPr — P
+ [(0’ +r)* P~ (o0 +r+ 6,,)0‘_1} (c+kK)(t*—1t,) (42)
(o +K) (0 +K+6,)0"" ((t* ) — P - P\).

We claim that, for some choice of v > 1 large enough, the right hand side of (42)
becomes negative, thus contradicting the optimality of the measure y. We consider
two cases.

CASE 1: (t* —t,) < 2Jy(¢t,) — P*| for infinitely many integers v > 1. When this
inequality holds, (42) yields

£ (X) =€) < 205v(ty) — P*| = colPL = P7|

o+ R) = (0 +r+0,)*7 - 2(0 + K)(ty) — PI.
(43)
We now observe that the limit (32) implies an inequality of the form

|’y(tu) _P*| < C|P1 _P*|7

for a suitable constant C' and all v sufficiently large. Therefore, as §,, — 0, it is clear
that the right hand side of (43) becomes negative. This contradicts the optimality
of p.

CASE 2: (t* —t,) > 2]v(t,) — P*| for infinitely many integers v > 1. When this
inequality holds, (42) yields
E() - €700 £ B2 —t)+ [0+ KT = (04 k+8) (@ +R) (7~ 1)

—(0+K)-(c+r+8,)1- L1t —t,).
(44)
When 6, is sufficiently small, the right hand side of (44) becomes negative. Once
again, this contradicts the optimality of u.

5. The case d =2, a = 0. We give here a proof of Theorem 2.6.



26 ALBERTO BRESSAN AND SONDRE T. GALTUNG

1. Assume that there exists a unit vector w* € R? such that

o
nest

Let v = (cos 3,sin 8) be a unit vector perpendicular to w*, with 8 € [0,7]. Let u
be the measure supported on the segment {rv; r € [0, (]}, with constant density A
w.r.t. 1-dimensional Lebesgue measure.

Then the payoff achieved by p is estimated by

(w*,n)‘n(n)dn > c

SMp) —cI(n) = E./Sl <16Xp{‘<w*>\,n>’}> ’(W*7n>‘n(n)dnfc€
-(1—e?) /sl

[(1 —e MK — c} L.

Y

<W*,n>‘ n(n)dn — c?

(1)
By choosing A > 0 large enough, the first factor on the right hand side of (1)
is strictly positive. Hence, by increasing the length ¢, we can render the payoff
arbitrarily large.

2. Next, assume that K < ¢. Consider any Lipschitz curve s — 7(s), parame-
terized by arc-length s € [0, ¢]. Then, for any measure p supported on ~, the total
amount of sunlight from the direction n captured by u satisfies the estimate

S < / l\wcs)% ) ds.

Indeed, it is bounded by the length of the projection of  on the line E perpen-
dicular to n. Integrating over the various sunlight directions, one obtains

() < /Z/S

More generally, = >, j1; can be the sum of countably many measures supported
on Lipschitz curves 7;. In this case, since the sunlight functional is sub-additive,
one has

<7(8)J‘7n>‘n(n)dnds < KU¢.

S"(p) < an(lh‘) < ZK&.

Hence

SMp)—cI%(p) < Y Kli—cY € < 0.

This concludes the proof of case (ii) in Theorem 2.6. O

6. Concluding remarks. We first clarify the role of the assumption (17), used in
Theorem 2.5 when 0 < o < 1/2.

Consider the problem of irrigating two masses My, M7 > 0 from the origin. Then,
as shown in Fig. 12, left, the optimal bifurcation angle satisfies

1220 (1 ))2e My
222 (1 =N 7 Mo+ M,

cosf =

(1)
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For a proof, see Lemma 12.2 of [1]. As a consequence, we have the implications

i<a<l = cosf €]0,2271 — 1],
a:% SN cosf =0,
0<a<i = cosf € [22271 —1,0].

Notice that cos§ = 22471 —1 when My = M; and hence A\ = 1/2. As a consequence,
regardless of the relative sizes of My, M7, we have:

e When a > 1/2, a bifurcation with an angle # > 7/2 cannot be optimal.
e When o < 1/2, a bifurcation with an angle 6 such that cosf < 2271 —1
cannot be optimal.

This is the underlying motivation for the assumption (17), repeatedly used in the
proofs. Notice that a similar assumption (12) was introduced in Lemma 4.1.

It is interesting to speculate whether the conclusion of Theorem 2.5 may still
hold when o < 1/2 while the angle 6y > 0 is arbitrarily small. Consider any
measure u supported on the two half-lines I'g UT'; as shown in Fig. 12, right. The
necessary conditions derived for the problem (18) allow us to compute the total
mass concentrated by the measure p on each of these half-lines. Indeed, according
to (26) and (27), we have

My = u(To) = (Sm‘%)w, My = u(Ty) = (1)/ )

Cc

Therefore

)\ o MO _ (sin@o)l/a sin9 _ )\a
o My + M, N 1-|—(S,1119())1/0‘7 o= (].—)\)0‘.

In order for this configuration to be optimal, a necessary condition is
1— )\204 _ (1 _ )\)204
22 (1 — \)@
Indeed, if (4) fails, a better configuration could be constructed as shown in Fig. 12,
right. Here A and B are points along I'y and I'; respectively, at distance ¢ > 0
from the origin, while P is a suitable point such that the angle between PA and
PB equals 0. To uniquely determine P, we again refer to the necessary conditions
in Lemma 12.2 of [1]. Replacing the segments 0A and 0B with the three segments
0P, PA, and PB, we can obtain a new configuration where the transportation
cost is reduced by O(1) - €, while keeping the same value of the sunlight functional.
Therefore, our initial configuration where the measure u is supported on I'g U T

would not be optimal.

The inequality (4) is precisely what is needed to rule out this possibility. Namely,
if (4) holds, then the point P cannot lie inside the sector bounded by I'g and T'y.
Recalling (3), we can write (4) in the form

(3)

cosf =

> cos (90 + g) = —sinfp. (4)

1— A2 — (1—)\)2 S A
20%(1 = M) - (=N
Equivalently:
p(N) = (1 =N =) -1 < 0. (5)

We observe that ¢(0) = 0 while ¢(1) = —2. In addition,
(N = —2a[(1—=N2*"t A <0
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for 0 < A < 1. This implies that ¢(\) < 0 for 0 < A < 1. Therefore, the necessary
conditions for optimality (4) are always satisfied, even when the angle 6y is very
small.

FIGURE 12. Changing the transport plan, when 6y > 0 is very small. If
in the irrigation problem the bifurcation angle satisfies 6 > 0o + 5, then
the original configuration, where all the mass is supported along I'oUT'1,
would not be optimal. The analysis at (5) shows that this situation never
happens.

We conclude this paper by discussing possible extensions of our results.

(I) Motivated by the previous analysis, we conjecture that the conclusion of
Theorem 2.5 remains valid even without the assumption (17). Namely, for all
0 < @ < 1/2 and every 6y € [0,7/2], the optimal measure p is still supported on the
union of the two rays I'o UI';. To achieve a proof, however, an additional argument
will be needed. More specifically, the assumption (12) in Lemma 4.1 can be removed
only by imposing some additional restriction on the value of A = - € [0,1]. Our
construction in Section 4, however, does not yield such information.

(IT) In Theorem 2.5 it was assumed that sunlight comes from one single direction.
In the case considered at (4), where sunlight comes with varying intensity from
different directions, one may conjecture that a similar result still holds true. This
guess seems very reasonable if the support of the function n € L!(S!) is contained
within a small sector, say [0y — J, 0y + 6]. We remark, however, that proving such a
result will require a substantially different approach. In the proof of Theorem 2.5,
we repeatedly used the fact (highlighted in Remark 1) that, shifting part of the mass
of 1 along the direction n of sunlight, one obtains a new measure iz which collects
exactly the same amount of sunlight: S™(z) = S™(u). This crucial property fails as
soon as we replace S™ with S”, allowing sunlight to come from different directions.

(ITII) It would be interesting to analyze the optimal branch configuration in
three space dimensions. To fix ideas, assume that sunlight comes from the direction
parallel to n = (cos fy, 0,sin ), and call e = (0,0, 1) the unit vector in the vertical
direction. Then it is easy to see that the optimal measure g must be supported
within the convex closure of the two half-planes

Iy = {VERB; (v,n) >0, (v,e>:0}, I, = {VERS; (v,n) =0, (v,e)ZO}.

In addition, the Hausdorff measure of Supp(x) must be > 2. Otherwise, the col-
lected sunlight would be §™(u) = 0. A challenging question is whether the support
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of p is indeed contained in a two-dimensional surface. In this case, the optimal
irrigation plan should have a structure similar to the one studied in [16].
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