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Abstract

Recent advances in smart grid technologies have highlighted demand response (DR) as an important tool to alleviate electricity
demand-supply mismatches. In this paper, a real-time price (RTP)-based DR algorithm is proposed for industrial facilities, aiming
to minimize the electricity cost while satisfying production requirements. In particular, due to future price uncertainties, a data-
driven approach is adopted to forecast the future unknown prices for supporting global time horizon optimization, which is realized
by long short-term memory recurrent neural network (LSTM RNN). With the aid of predicted prices, the industrial facility energy
management is formulated as a mixed integer linear programming (MILP) problem, which is then solved by Gurobi over a rolling
horizon basis. Finally, an entire practical steel powder manufacturing process is selected as a case study to verify the RTP-based
DR scheme. Numerical simulation results show that the proposed scheme is able to effectively shift energy consumption from peak
to off-peak periods and reduce the electricity cost of the facility, while satisfying all of the operating constraints. The performance
of the presented data-driven RTP forecasting approach is compared to different prediction methods, and error sensitivity analyses
are also conducted to evaluate the impact of the RTP uncertainties and the robustness of the proposed RTP-based DR algorithm.
Moreover, the DR capability to RTPs is investigated.
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1. Introduction

Over the past few decades, there has been growing global
concern over resource scarcity and climate change, since the
energy consumption has increased by more than 25% in the last
20 years and a further 15.35% increase is expected by 2030 [1].
Among various energy consumers, the industrial requirement
accounts significant percentage, i.e., for 50% of total power
consumption on Earth, and 70% of the power requirement in
China is due to industrial appliances, corresponding to more
than 38% of direct and indirect greenhouse gas emissions [2].
This has pushed many politicians to develop new national en-
ergy management strategies. To achieve this target, demand re-
sponse (DR) is a promising approach that motivates consumers
with flexible loads to vary their energy consumption in response
to dynamic electricity prices or other incentives [3]. As a key
smart grid technology, DR can effectively balance the supply
and demand of electricity in the power systems, thereby im-
proving energy efficiency [4], reducing carbon emissions [5],
lowering user costs and enhancing grid stability [6].
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However, only a few studies to date have investigated the
benefit and feasibility of industrial DR. For example, the work
of [7] proposed a DR energy management scheme for indus-
trial facilities based on day ahead prices (DAP), in which a
part of the oxygen generation process is used to evaluate the
DR scheme. The authors of [8] demonstrated an intelligent
energy management framework with time of use (TOU) price-
based DR capability for a section of a tire manufacturing fa-
cility. Similarly, another study in [9] established an electric-
ity and natural gas driven production-scheduling model for a
manufacturing system with 6 stations and 5 buffers under TOU
prices. To some degree, all of these DR models focused on
an incomplete manufacturing scenario and did not consider the
operational sequence of different machines in the production
line, which is not realistic in practice [10]. In one study [11],
an energy management system (EMS) model for an oil refinery
was built based on DAP to minimize the electricity consump-
tion cost, where interdependencies in the operating constraints
of the mass flow and steam demand were considered; however,
the EMS model did not integrate storage units for intermediate
materials. In addition, another two efforts have been devoted re-
cently to discuss the design of industrial DR mechanisms, i.e.,
[12] introduced a multi-objective DR optimization model for
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Nomenclature

Abbreviations
DR demand response

RTP real time price

LSTM long short-term memory

RNN recurrent neural network

MILP mixed integer linear programming

DAP day ahead price

TOU time of use

EMS energy management system

ANN artificial neural network

ARIMA autoregressive integrated moving average

FFNN feed forward neural network

NSL non-shiftable load

STL shiftable load

CRL controllable load

MAE mean absolute error

MAPE mean absolute percentage error

RMSE root mean square error

Variables and Parameters
n machine index

Mn machine representation

Bn buffer representation

p operating point

h hour index

Ih
n,p status for operating point p of machine n in hour h

P the total number of operating points

Eh
n energy consumption of machine n in hour h

en,p energy demand of machine n on operating point p

Eh total energy consumption of all machines in hour h

N the total number of working machines

Emax the maximum electricity that can be purchased

Gh
n produced quantity of machine n

Ch
n+1 consumed quantity of machine n + 1

gn,p production rate of machine n with operating state p

cn+1,p consumption rate of machine n + 1 with operating
state p

S h
n the storage of a buffer for machine n during hour h

S min
n lower bound of buffer capacity

S max
n upper bound of buffer capacity

πh real time price at hour h

πτ future price at hour τ

S tar the required final target production output

S H
N the total amount of final product

ct a separate hidden memory cell

ft the forget gate

it the input gate

ot the output gate

W the weight of each corresponding cell

b the bias of each corresponding cell

πτf or the forecasted price

πrea the actual price

K the total number of samples

πerr the prediction error

σ standard deviation

labor- and energy-aware industrial production scheduling; [13]
proposed a DR management scheme to promote the interac-
tion between energy supply and demand for industrial systems.
However, these two DR mechanisms were designed by deter-
ministic models: that is, assuming next day electricity prices
(e.g., TOU or DAP) are available to the facility, then the opti-
mal energy consumption plan can be predefined accordingly by
minimizing the daily costs or other objectives.

All the studies described above are based on the hypothesis
that the electricity prices of the next day are known in advance.
Once the optimal decisions have been determined, the indus-
trial facilities are forced to follow that strategy, which is lim-
ited to fixed scheduling plans and does not allow a response to
unexpected variation [14]. By contrast, real-time price (RTP)
reflects the actual online conditions of the power grid more re-

alistically, given the highly dynamic parameters associated with
energy generation and price signal [15]. A comparison of DAP
and RTP indicates that the high-resolution RTP will be of more
benefit to power systems in terms of flattening the load profile
and reducing peak demand [16]. Hence, it is imperative to de-
vise innovative industrial DR algorithms that can accommodate
the volatility and uncertainty of dynamic RTPs.

Several portable RTP-based DR energy management
schemes have been proposed to help electricity users make
timely decisions as a response to received RTPs, such as, [17]
presented a DR algorithm for smart grid systems under RTPs,
aiming at helping the utility company to purchase resources
from its customers to balance energy fluctuations and enhance
grid reliability; [18] designed a RTP based demand side man-
agement framework for microgrids to minimize operation cost
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and maintain power balance, considering the uncertainties of
renewable energy profiles; [19] developed a RTP setting poli-
cies for DR consumers to produce desirable usage behaviors
and flat demand curves, taking into account their characteristics
with changing degrees of responsiveness to price adjustments at
different time slots. However, these works were all designed for
independent load scheduling or grid-level controlling. It is dif-
ficult to apply these DR schemes to industrial facilities directly,
because an industrial manufacturing process is usually com-
posed of different correlated and consecutive tasks that are in-
herently function together: different types of equipment in pro-
duction lines must follow particular operational sequences [20].
Modeling DR problems in industrial sectors should capture the
physical interactions of different machines, for instance, that a
machine cannot start unless its feed is provided by the feed-
ing machine [21]. A recent work [22] enabled industrial loads
to fully achieve their potential as DR resources in the face of
instantaneously varying RTPs, by utilizing an artificial neural
network (ANN) model to predict future price signals. Although
this work handled future uncertainties using the ANN method,
the prediction errors pertaining to future unknown prices were
not addressed. When using forecasting in electricity prices for
DR energy management, it is important to note that there exist
some errors in forecasting due to the uncertainty of weather in-
formation in energy generation and the randomness of user be-
haviors in energy consumption related to the electricity prices
[23]. Therefore, the prediction errors should be considered
when designing a DR scheme. Otherwise, the performance of
the DR scheme will be not guaranteed because of the prediction
errors [24]. In fact, the prediction errors existing in the future
prices could potentially threaten the quality and robustness of
the DR scheme [25].

Another critical issue is that although some previous work
has been conducted on RTP-based DR, the price forecasting
approaches in these studies used statistically based linear pre-
diction methods, i.e., [26] introduced an autoregressive inte-
grated moving average (ARIMA) model to the price forecasts,
with the objective of helping electricity participants to submit
corresponding DR strategies to maximize their profits; whereas
the relationship between electricity price and its related fac-
tors is usually nonlinear [27]. The statistical methods fore-
cast the price using a linear mathematical combination of pre-
vious prices and exogenous factors, such as historical demands,
weather information, or fuel prices, which requires the analy-
sis of a large amount of data and complex mathematical mod-
els; this increases the computational burden [28]. Recently,
deep learning, a data-driven approach, has been utilized to ad-
dress the uncertainties in price forecasting, and has been found
to be capable of identifying complex nonlinear relationships
perfectly between multiple inputs and outputs without acquir-
ing previous knowledge or understanding physical processes
[29]. The work of [30] presented a deep neural network based
methodology to predict electricity prices and the performance
performed better than statistic time-series models, such as the
ARIMA model. Similarly, the authors in [31] proposed a
deep learning based modeling framework for electricity price
forecasting and verified how to improve the predictive accu-

racy. With more accurate electricity price forecasting, the DR
schemes can efficiently manage the energy consumption of in-
dustrial facilities.

Given all the factors mentioned before, this work proposes an
RTP-based DR scheme for industrial facilities to balance power
fluctuation and enhance grid reliability. Specifically, to manage
future price uncertainties, a framework based long short-term
memory recurrent neural network (LSTM RNN), which is the
latest and one of the most popular deep learning techniques, is
adopted to both tackle the tricky price forecasting issue and sup-
port global real-time optimization. The proposed framework is
tested on a real publicly available power grid data set, and the
performance is comprehensively compared to various bench-
marks including the state-of-the-art in the field of price predic-
tion. The presented LSTM RNN approach is demonstrated to
outperform the other rival methods. Furthermore, in coopera-
tion with the forecasted future prices, the decision making pro-
cedure of RTP-based DR scheme is formulated as a mixed inte-
ger linear programming (MILP) problem, which is then solved
using a Gurobi solver over a rolling horizon basis; the obtained
solution yields optimal operation points for each industrial ma-
chine. Finally, case studies are carried out over an entire practi-
cal steel powder manufacturing process with different designed
scenarios. The comparative cases articulate the advantages of
the developed algorithms and their validity in terms of reducing
electricity costs, mitigating peak demand, and improving grid
reliability.

To highlight major differences of the proposed scheme with
existing literatures, a comparative analysis is carried out with
respect to 6 aspects as given in Table 1, including time horizon,
application scenario, manufacturing process, electricity pricing,
price forecasting technique and whether considering prediction
errors or not. In summary, the main contributions of this paper
are:

First, an innovative data-driven RTP-based DR scheme is
proposed for industrial facilities energy management, wherein
an entire practical steel powder manufacturing process is used
to demonstrate the performance of the scheme.

Second, LSTM RNN is adopted to overcome future price un-
certainties in presence of the rapidly updated RTPs, and several
different price forecasting approaches are utilized to compare
the performance.

Third, the decision making process of energy management
scheme is formulated as a MILP problem by bridging cur-
rent and future time slots together, which is then solved over
a rolling horizon basis with the aid of the predicted prices.

Fourth, error sensitivity analyses are conducted to evaluate
the impact of the RTP uncertainties, showing that the proposed
RTP-based DR algorithm has good robustness towards predic-
tion errors.

Fifth, the electricity cost with and without RTP-based DR are
compared, indicating that the proposed DR scheme can reduce
the electricity cost significantly, and the DR capability to RTPs
is also investigated.

The remainder of this paper is organized as follows. Section
2 describes the problem formulation for industrial facilities, and
the proposed RTP-based DR algorithm is introduced in Section
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Table 1: Comparison of the Proposed Work with Other Literatures

References
Time Application Manufacturing Electricity Price Forecasting Considering

Horizon Scenario Process Pricing Technique Prediction Errors

Ref [7, 8, 9, 11, 12, 13] day-ahead industrial facility incomplete DAP/TOU - -

Ref [17, 18] real-time grid-level - RTP deep neural network no

Ref [19] real-time residential load - RTP time series model no

Ref [22] real-time industrial facility entire RTP ANN no

Ref [26] - - - - ARIMA no

Ref [30] - - - - deep neural network no

Ref [31] - - - - deep learning no

This work real-time industrial facility entire RTP LSTM RNN yes

Figure 1: A common industrial manufacturing process.

3. Case study results are reported and discussed in Section 4.
Finally, Section 5 presents conclusions and future work.

2. Problem Formulation

In this section, a decision making problem is constructed for
an industrial facility, which takes part in an RTP-based DR pro-
gram. The facility is assumed to be equipped with an EMS that
receives the RTP from the utility company periodically (1 h is
used as an example time interval throughout this paper) and is
responsible for managing the energy consumption of multiple
devices with various characteristics. Fig. 1 shows a common
industrial manufacturing process [32], where Mn and Bn rep-
resent the machine and buffer, used to produce the final goods
and store the intermediate product, respectively. The mathe-
matical formulations of the energy and production model and
various operation constraints, as well as the objective function,
are depicted in the next subsections.

2.1. Energy Model and Constraints
Industrial machines can be regarded as a complex of different

consecutive electricity loads. According to their characteris-
tics and priorities under different specific operating conditions,
these loads are usually divided into three categories [33]: non-
shiftable load (NSL; once it starts operation it must work con-
tinuously), shiftable load (STL; it has two operating states, “on”
and “off”), and controllable load (CRL; it can work at different
operating levels with different power demands). Ih

n,p is a binary
variable that indicates the status of operating point p for ma-
chine n during hour h. Thus, Ih

n,p = 1 if machine n is operated
with operating point p, and Ih

n,p = 0 otherwise. Then, during 1
h, a machine can only be executed at one operating point, which
is constrained as follows:

P∑
p=1

Ih
n,p = 1 (1)

where P is an integer representing the total number of operating
points, i.e., P = 1 for NSL, P = 2 for STL, and P ≥ 3 for CRL.

After choosing an operating point, the energy consumption
of machine n during hour h is:

Eh
n =

P∑
p=1

Ih
n,p · en,p (2)

where en,p indicates the energy demand of machine n at operat-
ing point p.

Thus, the total energy consumption of the entire manufactur-
ing process during hour h is:

Eh =

N∑
n=1

Eh
n (3)

where N denotes the total number of working machines in the
production line.

For industrial facilities energy management, peak demand is
generally considered as a critical factor, because many man-
ufacturing processes are subject to maximum electricity con-
sumption restrictions, as shown below:

Eh ≤ Emax (4)

where Emax indicates the maximum electricity that can be pur-
chased, constrained by physical limitations or a contract signed
with the utility company [34].

2.2. Production Model and Constraints
During the manufacturing period, there is supposed to be a

buffer between every two consecutive machines, which acts as
storage to provide an opportunity for coordination between two
different machines. As shown in Fig. 1, if the production rate of
Mn is higher than the consumption rate of Mn+1, the surplus re-
sources will be saved in the middle storage buffer Bn for future
use. By contrast, if the production rate of Mn is lower than the
consumption rate of Mn+1, the latter machine will enter the off

mode until enough resources have been augmented in the stor-
age. The material storage S h

n of a buffer for machine n during
hour h is calculated as follows:

S h
n = S h−1

n + Gh
n −Ch

n+1 (5)
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Gh
n =

P∑
p=1

Ih
n,p · gn,p (6)

Ch
n+1 =

P∑
p=1

Ih
n+1,p · cn+1,p (7)

where S h−1
n is the storage at hour h − 1, Gh

n (Ch
n+1) denotes the

produced (consumed) material quantity of machine n (n + 1),
and gn,p (cn+1,p) indicates the material production (consump-
tion) rate of machine n (n + 1) in operating point p.

During any hour, to satisfy the operation of processing ma-
chines, it is necessary to maintain a minimum amount of mate-
rial flow. Moreover, the stored material cannot exceed a max-
imum capacity limitation. Therefore, S h

n is constrained as fol-
lows:

S min
n ≤ S h

n ≤ S max
n (8)

2.3. Objective Function

For an industrial application, the objective is to minimize the
energy cost of the whole time horizon while satisfying the pro-
duction requirement. The total electricity cost includes the cost
of the current slot (given the RTP πh at hour h) and the aggre-
gate cost of future slots (with the assumption of future prices
πτ, πτ+1, ..., πH , where τ = h + 1):

min

Eh · πh +

H∑
τ=h+1

(Eτ · πτ)

 (9)

The reason for considering the remaining H − h slots of the
scheduling horizon is to maintain adaptability, as the consecu-
tive electricity loads of an industrial manufacturing process are
interdependent and cannot be treated independently. Using an
extended scheduling horizon, the proposed model could avoid
a possibly jumpy, unfeasible, and hard-to-implement solution
[35].

It is also usually necessary to keep a minimum amount of fi-
nal product when the scheduling horizon finishes. The required
final target production output is denoted as S tar, which should
satisfy the following criteria:

S H
N ≥ S tar (10)

where S H
N denotes the total amount of final product produced

by the last machine N during the end hour H.

3. Real-Time Price-Based Demand Response Algorithm

As the proposed DR scheme is based on RTP, only one cur-
rent price can be obtained at each hour. Thus, future price in-
formation is needed to minimize the global energy cost. This
section contains the data-driven approach for price forecasting
utilized to support the whole time horizon scheduling, and the
automated DR algorithm used to minimize the electricity cost
of the industrial facilities while satisfying the production re-
quirement.

Figure 2: Long short-term memory recurrent neural network.

3.1. Data-Driven Price Forecasting
It should be mentioned that the objective function (9) in Sec-

tion 2 is not formally defined because the πτ, πτ+1, ..., πH are
unknown values. To manage this situation, a data-driven ap-
proach is adopted to handle the future price uncertainties, which
is implemented by LSTM RNN, as shown in Fig. 2.

RNN is a kind of deep neural network that is good at process-
ing sequence data. In contrast with a traditional neural network,
RNN consists of a feedback loop, allowing the network to ac-
cept a sequence of inputs, where the outcome from step t − 1
is fed back into the network to affect the output of step t, and
so on for each succeeding step (left side of Fig. 2). RNN has
a chain-like structure with repeating modules, for the purpose
of utilizing these modules as a memory to save important in-
formation from previous processing steps (right side of Fig. 2).
However, the information loops repeat, leading to huge updates
to neurons, resulting in an unstable network when the input se-
quence is long, because of the accumulation error during the
course of updating. This phenomenon is known as gradient
exploding or vanishing [36], which makes it difficult to learn
long-term dependencies within the time series. The LSTM net-
work [37] illustrated in Fig. 3 was proposed to overcome this
issue. LSTM is an efficient RNN architecture for time series
forecasting. In addition to the internal hidden state ht, it main-
tains a separate hidden memory cell ct, to keep short-term in-
formation and long-term information, respectively. The LSTM
network also includes three gating mechanisms to control the
information flow throughout the learning procedure, which are
the forget gate ft, the input gate it, and the output gate ot. With
the assistance of these three gates, the memory cell ct can for-
get, delete, and update internal information selectively, bring-
ing about a better understanding of long-term dependencies in
the sequences. The LSTM transition processes are updated as
follows:

ft = σ
(
W f [ht−1, Xt] + b f

)
(11)

it = σ (Wi [ht−1, Xt] + bi) (12)

ot = σ (Wo [ht−1, Xt] + bo) (13)

gt = tanh
(
Wg [ht−1, Xt] + bg

)
(14)

ct = ct−1 × ft + it × gt (15)
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Figure 3: Long short-term memory network unit.

ht = ot × tanh (ct) (16)

All weights (W) and biases (b) of the corresponding cells
stated in the above equations are learned by minimizing the
gaps between the LSTM outputs and the actual values. Com-
pared to the original RNN, LSTM RNN adaptively controls
how much information flows through these gates. It is based on
the idea of creating paths through time that have derivatives that
neither vanish nor explode, and these cells accumulate informa-
tion (such as evidence for a particular feature or category) over
a long duration. Therefore, LSTM captures the long-distance
dependencies among sequence data.

Since the quantity and quality of input features influence
the forecasting performance, considerable efforts have been de-
voted towards the extraction and selection of inputs, based on
methods such as correlation analyses and principle component
analyses [38]. Generally, electricity price can be forecasted by
evaluating a variety of features, i.e., electricity demand, gener-
ator supply, weather, temperature, calendar, and so forth [39].
An ideal electricity price forecasting model should include all
the possible features that affect the final electricity price. How-
ever, in reality, it is impossible and unnecessary to include all
those features [40]. For example, features of generator status,
representing the current failure or operating mode of a gener-
ator, in many deregulated electricity markets are confidential
information, and thus such data cannot be directly obtained on-
line [41]. Moreover, the most important factor for a successful
LSTM RNN learning is to find out a set of “fit” training data.
Considering too much or too little related information will have
a crucial impact on the prediction accuracy [42]. Specifically,
during one LSTM RNN training process, if too few features
are considered, there will be not sufficient samples to fit the
training, and this is called underfitting. On the contrary, if too
many features have been considered in the training data, the real
valuable features are difficult to play a guiding role among the
disturbances items, and this is called overfitting [43]. Both un-
derfitting and overfitting will decrease the prediction accuracy.

In this work, we use widely accepted features: the dynamic
energy demand and electricity price series in the previous three
time intervals and the corresponding hour in each of the previ-
ous two days (i.e., 1, 2, 3 h earlier and the current hour, as well
as 1 and 2 h earlier, from 1, 2 days prior); the varying current

and lagged weather temperatures in the previous 3 h; and static
calendar effects such as the hour of the day, day of the week, and
holiday/non-holiday indicator. These features allow the LSTM
RNN to capture both the correlations and variation in the price
information. The output is the predicted price in the target time
interval. To evaluate the performance of the forecasting ap-
proach, three widely used statistical indictors are selected to
compare the predicted values with real values: the mean abso-
lute error (MAE), mean absolute percentage error (MAPE) and
root mean square error (RMSE).

MAE =
1
K

K∑
k=1

∣∣∣π f or − πrea

∣∣∣ (17)

MAPE =
1
K

K∑
k=1

∣∣∣π f or − πrea

∣∣∣
πrea

× 100% (18)

RMS E =

√√√
1
K

K∑
k=1

(
π f or − πrea

)2
(19)

where π f or and πrea are the forecasted and actual price; and K
is the total number of samples.

Algorithm 1 Price forecasting with LSTM RNN
1: Collect historical dataset D from electricity market;
2: Clean and pre-process the dataset D;
3: Divide the dataset into training set Dtr, validation set Dva

and testing set Dte;
4: Initialize the training network parameters, i.e., network

depth d, hidden units amount n and so on;
5: Set the maximum number M of epochs.
6: for m = 1 to M do
7: Build LSTM RNN with the initialized network param-

eters (d, n) on Tensorflow;
8: Train the LSTM RNN by minimizing the loss function

with a stochastic gradient descent method on training data
set Dtr;

9: Evaluate the trained LSTM RNN performance on vali-
dation data set Dva;

10: Early stop if the validation performance is not im-
proved.

11: end for
12: Compute the MAE, MAPE and RMSE of the well-trained

LSTM RNN on testing data set Dte;
13: Compare forecasting performance with other prediction

methods.

The detailed procedure of adopting LSTM RNN for price
forecasting is given as Algorithm 1. The process starts with data
preprocessing of the inputs, and in the data preparation stage,
any non-number data are replaced by the average of the data at
the same time period from 1 day ahead and 1 day later. After
formulating the input and output data, the dataset is split into
three parts for training, validation, and testing. Then the algo-
rithm moves into the training stage, and the network is first built
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with configuration parameters, i.e., the network depth, number
of hidden units, and input and output sequence size. After ini-
tiation, the network is trained using a stochastic gradient de-
scent method with an adaptive learning rate to minimize the
loss function until the performance stabilizes. In this training
procedure, the maximum training epoch is defined, but an early
stopping mechanism is also utilized to prevent the model from
overfitting. Specifically, if the monitored validation loss does
not drop any further, the training process should be terminated.
Finally, the well-trained network is tested on the testing data
set and the evaluation criteria are used to assess the predictive
accuracy. The performance is also compared to several other
price prediction methods.

3.2. Automatic Demand Response Algorithm
As we know, in practical terms, there will always be some

mismatches between forecasted and actual values. Thus, the
future price πτ is calculated from the forecasted price πτf or plus
the prediction error πerr [35]. In this way, the objective function
(9) can be reformulated as follows:

min

Eh · πh +

H∑
τ=h+1

[
Eτ ·

(
πτf or + πerr

)] (20)

where the prediction error is supposed to follow a Gaussian dis-
tribution πerr ∼ N

(
0, σ2

)
, which has an expectation value of 0

and a standard deviation σ.
Based on the problem formulation and price forecasting de-

scribed above, an automated RTP-based DR scheme is devel-
oped in Algorithm 2. At each hour h, the EMS receives the
RTP from the utility company, and then updates the related in-
puts (i.e., the current hour h, the current electricity price and en-
ergy demand, and so forth), as well as utilizes the well-trained
LSTM RNN to predict the prices for remaining H − h hours.
After obtaining the future forecasted prices, a new schedule for
the entire industrial facility is generated. The objective func-
tion (20) together with the constraints of equations (1)-(8) and
(10), are formulated into an MILP optimization problem that
can be effectively solved using a commercial tool (i.e., Gurobi).
The output consists of the optimal operating point for each ma-
chine, and the total minimum energy cost. It should be pointed
out that the problem is optimized at each hour h to acquire en-
ergy consumption decisions for the current and remaining slots.
However, only the decisions for the current hour are applied to
the industrial loads, which provides the facility with optimal
energy management instructions for the present slot. Then the
horizon is shifted forward by one time step and the optimization
is carried out anew. This process is repeated each time a new
price is received until reaching the final hour H. Such an it-
erative procedure therefore enables the RTP-based DR scheme
to be robust to measurement errors, missing information, and
inaccurate forecasts, ensuring that the control policy dynami-
cally adjusts and is self-correcting as new information arrives
and changes in the operating environment occur.

In summary, this automated DR algorithm allows industrial
facilities to both interact intelligently with the utility company
in response to the RTP, and to generate dynamically optimized

operating schedules for the machines, minimizing the electric-
ity cost and meeting production requirements.

Algorithm 2 Automated DR with RTP
Input: the energy demand en,p and production rate gn,p of all

machines; the buffer capacity
[
S min

n , S max
n

]
; the target pro-

duction output S tar; the maximum purchased electricity
Emax; and the prediction error πerr related parameters, i.e.,
the standard deviation σ.

Output: the optimal operating point p of each machine, and
the total minimum energy cost.

1: for h = 1 to H do
2: Receive the RTP πh for the current hour h;
3: Update the inputs of LSTM RNN;
4: Utilize the well-trained LSTM RNN (Algorithm 1) to

predict future prices πτ, πτ+1, ..., πH;
5: Formulate the objective Eq. (20) and constraint Eqs.

(1-8, 10) into a MILP problem;
6: Use a commercial tool to solve the optimization prob-

lem;
7: Output the optimal solutions, i.e., the optimal operating

point p for each machine;
8: Only the decisions for the current hour will be executed.
9: end for

4. Case Studies And Numerical Results

This section presents case studies and numerical results to
demonstrate the effectiveness of the proposed RTP-based DR
scheme.

4.1. Case Configuration

4.1.1. Price Forecasting Setup
Realistic hourly power grid data on energy demands, elec-

tricity prices and temperature from PJM [44], as well as calen-
dar information are collected to train and test the LSTM RNN.
The data are split into three non-overlapping subsets for differ-
ent purposes, namely, the training set (from January 1, 2019 to
July 20, 2019), the validating set (from July 21, 2019 to August
24, 2019), and the testing set (August 25-31, 2019). The pa-
rameters of the LSTM RNN structure are as follows: the size
of input layer is equal to the input data length with a value of
24; the number of hidden layers is set to 3 with a deeper archi-
tecture and each hidden layer has 40, 20, and 10 recurrent neu-
rons, due to the fact that a network with more layers can obtain
more compact representations of an input-output relationship
[36, 37]; and the size of the output layer is 1, indicating the
future price for next time step. The price forecasting simula-
tions are carried out on hardware of a laboratory computer with
4 Intel Cores i5-2400, 3.10 GHz CPU, 16 GB RAM, and soft-
ware in the Python environment with Tensorflow package. To
train the network efficiently, the Adam optimizer with an adap-
tive learning rate is used to minimize the loss function. The
maximum number of epochs is set to 200 and early stopping is
employed to avoid overfitting during training and validation.
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Table 2: Parameters of Different Loads

Name Category
Operati- Product- Energy Buffer

ng point ion rate demand capacity

Reduction NSL on 15 75 100

Atomizer STL
off 0 0

180
on 30 60

Dehydrator STL
off 0 0

100
on 15 10

Dryer STL
off 0 0

150
on 15 30

Separator STL
off 0 0

100
on 10 10

Crusher CRL

1 0 0

1002 10 15

3 15 20

Classifier CRL

1 0 0

1502 10 15

3 20 25

Blender CRL

1 0 0

2002 10 6

3 15 10

4.1.2. Industrial Manufacturing Process
An entire practical steel powder manufacturing process [45]

is selected for the case study, as shown in Fig. 4, to illustrate the
performance of the proposed RTP-based DR algorithm. From
raw material (iron water) to final product (steel powder), the en-
tire industrial manufacturing process includes 10 processes and
8 kinds of machines. According to the functionality and charac-
teristics of each machine, they are classified into the three cate-
gories defined in Section 2, including one NSL (Reduction Fur-
nace), four STLs (Atomizer, Dehydrator, Dryer, and Magnetic
Separator), and three CRLs (Crusher, Classifier and Blender).
Table 2 lists the parameters of these three types of loads, i.e.,
the production rate (Ton/h), energy demand (kWh) and buffer
capacity (Ton), where the parameter values are generally taken
from [22, 46]. The final product requirement is chosen as 80
Ton, and the maximum amount of electricity Emax that can be
drawn from the grid is set at 500 kWh [47]. The DR manage-
ment simulations are conducted on a rolling basis for each hour,
as explained in Section 3, and the formulated MILP problem is
solved using the Gurobi solver [48] on the same computer de-
scribed above. The computation time for working out a single-
slot optimized solution is on average 2 s, which fully meets the
time requirement for deploying RTP-based DR management in
industrial facilities.

4.2. Simulation Results

4.2.1. Performance of the Price Forecasting Approach
To validate the efficiency of the proposed LSTM RNN, an-

other two classic price forecasting approaches, including au-

Table 3: The Statistical Indicators of Different Approaches

Approaches MAE MAPE RMSE

LSTM RNN 2.05 7.56% 7.29

FFNN 4.06 19.71% 8.03

ARIMA 5.82 34.67% 9.27

toregressive integrated moving average (ARIMA), and a single
hidden layer feed forward neural network (FFNN) are used for
comparison and assessed under the preceding calculated indic-
tors (MAE, MAPE, and RMSE). In ARIMA (p, d, q), p is the
autoregressive term, q is the moving average window, and d is
the degree of differencing (the number of times the data have
had past values subtracted). In FFNN, the active function is a
sigmoid, and a backward propagation algorithm is used to train
the network. When conducting simulations, d is set to 2, p and
q are determined from the autocorrelation graph and partial cor-
relation graph of the price data, and the number of hidden nodes
in FFNN is set to 30. These parameters are calibrated carefully
for a fair comparison.

As illustrated in Table 3, the LSTM RNN outperforms the
other two approaches under each statistical indicator. This
proves that the proposed method provides more accurate point
forecasts, for the reason of LSTM RNN can precisely learn
complex nonlinear relations of different price factors, and main-
tain memory states for prediction based on the information
learned. To visualize the prediction results, Fig. 5 shows a
comparison of the predictive performance over the testing data
set, where the blue line denotes the actual values and other lines
denote a series of forecasted quantiles. Intuitively, the predic-
tion results of LSTM RNN are quite well compared with the
original time series. It can effectively capture the trends and
fluctuations, except for only a few large or sudden changes.
In these highly volatile price profiles, the performance of the
other methods considered is generally unsatisfactory. Although
FFNN captures the general trend of the price time series, the
forecasting results are quite spurious, resulting in large error
indictors. ARIMA also does not work well in this longer hori-
zon forecasting problem due to the non-stationarity of the price
time series.

Summing up the above analyses, the LSTM RNN approach
takes its advantages of memorizing long-term historical data
and learning more complex nonlinear relationships, leading to
the best prediction accuracy. Thus, in the DR decision making
process, we use the price forecasting results of the LSTM RNN
method.

4.2.2. Performance of the Demand Response Algorithm
To demonstrate the performance of the proposed RTP-based

DR scheme for the energy management of industrial facilities,
a benchmark without DR is designed where fixed flat prices
(equal to the average value of dynamic prices) are applied to the
objective function (9), that just simply minimize the daily cost
by aggregating the cost of each hour. Figs. 6 and 7 show the ag-
gregated energy consumption of all machines without and with
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Figure 4: An entire practical steel powder manufacturing process.

Figure 5: Comparison of the predictive performance over testing data set.

DR on August 31, 2019, respectively. Clearly, the industrial fa-
cility has no motivation to reduce or shift its electricity demand
when the fixed flat prices are applied, but simply schedules the
electricity demand at the beginning to complete the daily pro-
duction target (referring to Eq. (10)) as early as possible.

In comparison, the electricity consumption is scheduled ap-
propriately when the RTP-based DR scheme in Section 3 is
used. It can update the scheduling plan in time based on the ac-
tual received price and accurate prediction information, which
reduces the effects of uncertain factors on scheduling results.
Specifically, the entire electricity demand of STLs and CTLs
is scheduled to off-peak slots, i.e., the machines consume more
energy at 1-14 h, and reduce their demand at 15-19 h (high-
est electricity price periods). This is because there is enough
storage in each buffer, so the STLs and CTLs stop running at
15-19 h (only NSL consumes energy) to reduce the electricity
cost. Due to the capacity limitation of each buffer, the machines
cannot stop producing for a long time, and the STLs and CTLs
start running again at 20 h to meet the production output re-
quirement. Thus, the overall electricity demand is maintained
at quite a low level during peak slots, and only the NSL needs
to operate, with the two other types of loads ceased, confirming
that the proposed DR algorithm can manage energy consump-
tion properly. It can also be seen that the energy consumption
increases slightly during hours 20 and 22, and the reason for this
is that the RTP suddenly decreases compared to hours 19 and
21. This small variation in energy consumption further proves
the established optimization model is able to respond to instan-
taneously varying RTPs in an effective way, indicating that the
RTP-based DR can play a significant role in peak shaving and
valley filling for a power grid.

To gain insights into the manufacturing process under the
proposed DR scheme, the storage amount of final steel pow-
der is selected to illustrate the production procedure throughout
the whole time horizon. As shown in Fig. 8, more steel pow-
der is produced and stored in low-price periods, as the CRLs

Figure 6: Aggregated energy consumption of all machines without DR.

Figure 7: Aggregated energy consumption of all machines with DR.

and STLs are operated at a high energy consumption operating
point. Then, it can be seen that the storage amount remains
unchanged when the electricity prices are high, because the
CRLs and STLs are scheduled to work at a low energy con-
sumption operating point to reduce the electricity cost. After
that, the storage amount increases continuously when RTPs are
low again. Such a stacking process is correlated with the opti-
mal load scheduling result in Fig. 7, which not only alleviates
the stress on the power grid, but also reduces the cost of the
industrial facilities.
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Figure 8: Storage amount of final steel powder.

Figure 9: Electricity cost with varying standard deviation.

In the previous analyses, the results are derived based on
the assumption that accurate information is available for price
forecasting, including historical electricity prices, energy de-
mands and ambient temperature. In practice, mismatches in
RTP forecasts are inevitable, and these mismatches may un-
dermine the performance of the schedules obtained by the DR
scheme. Therefore, an error sensitivity study is conducted to
examine the impact of the mismatches and the robustness of
the proposed DR algorithm. In keeping with previous work
[49, 50], the prediction errors of RTPs are assumed to follow a
normal distribution, with a mean of 0 and standard deviations
of 5%, 10%, and 15%, respectively. Then, the future prices
used in the simulations are assumed to be the forecasted value
plus the prediction error sampled from the normal distribution
with different standard deviations. Fig. 9 shows the electric-
ity cost with varying standard deviations under different target
production outputs. The first column bar charts represent the
expected cost if the forecast is 100% accurate (σ = 0), and the
second to fourth column bar charts denote the actual costs con-
sidering the forecasting error, where σ= 5%, 10%, 15%, sep-
arately. It can be seen that, even with mismatches considered,
the actual costs increase slightly with a growing of σ, but they
are still very close to the expected cost under different target
production settings, demonstrating the good robustness of the
proposed RTP-based DR algorithm.

The DR capability is mainly reflected in the response abil-

Table 4: Electricity Cost Without and With DR

Target Without With DR

output DR (σ= 0) (σ= 5%) (σ= 10%) (σ= 15%)

80 55.91
48.47 48.79 48.97 49.26

(13.31%) (12.73%) (12.41%) (11.89%)

100 58.50
52.89 52.92 52.96 52.99

(9.59%) (9.54%) (9.47%) (9.42%)

150 66.75
64.27 64.71 64.78 64.94

(3.72%) (3.06%) (2.95%) (2.71%)

ity to the electricity prices, i.e., whether there is enough time
to adjust the working schedule to meet the production target.
We define the DR capability as the difference between the elec-
tricity cost with and without response to varying electricity
prices under different production outputs. Table 4 shows the ef-
fects of the production output requirement on DR capability in
three scenarios. Scenario one is normal target production out-
put (Ton) in a day (S tar= 80), and scenario two and three have
an increased production output of 25% (S tar= 100) and 87.5%
(S tar= 150) greater than scenario one. Relative to the case with-
out DR, the daily cost ($) with DR (σ = 0 in this situation) is
reduced by 13.31%, 9.59%, and 3.72%, respectively. And the
reduction in electricity cost with different standard deviation σ
is also listed in Table 4. It can be concluded that the RTP-based
DR can effectively reduce the electricity cost by shifting en-
ergy consumption from peak to off-peak periods, which serves
as the core motivation for industrial facilities to participate in
the RTP-based DR program. Based on the results, it can also be
observed that the greater the production to be completed within
a given period, the lower the ability to respond to prices. This
is because, with more production to be completed, all machines
have to work for a longer time, resulting in higher energy con-
sumption. In particular, when the production output require-
ment is increased to 150, the system still has a certain response
capability under the proposed DR scheme, but this is close to
the result without DR.

To evaluate the scalability and flexibility of the proposed
RTP-based DR scheme for industrial facilities energy manage-
ment, we also conduct the simulation from a single day to three
different days, wherein the electricity prices are obtained from
PJM [44] on the date from August 28 to August 30, 2019. Figs.
10 and 11 show the optimal aggregated energy consumption
of all machines under the DR case and the corresponding total
electricity cost without and with DR in these three continuous
days, respectively. As shown in Fig. 10, similar trend of energy
consumption profiles with the previous single day are repeated
on each of the three days that verifies the entire electricity de-
mand of all machines is scheduled to off-peak slots to ensure
the bill savings, which further enhances the simulation analysis
before. Fig. 11 shows the total electricity cost in the case when
proposed RTP-based DR scheme is deployed (purple bar), is
reduced significantly by 12.34%, compared to the case when
no DR is applied (yellow bar), indicating that the proposed DR
scheme can handle the industrial energy management well.
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Figure 10: Aggregated energy consumption of all machines with DR from August 28 to August 30, 2019.

Figure 11: Total cost comparison from August 28 to August 30, 2019.

5. Conclusions and Future Work

Industry energy management is of great significance in re-
ducing energy costs for industrial facilities and improving sta-
bility of power grid. This paper proposes an RTP-based DR
scheme for energy management of industrial manufacturing
processes. The RTP-based DR scheduling horizon not only
considers the current time slot, but also takes future slots into
account so as to maintain the interdependence of consecutive
tasks, and a data-driven approach (realized by LSTM RNN) is
adopted to handle future price uncertainties. The decision mak-
ing procedure with RTP-based DR is formulated as an MILP
problem, and the obtained solution yields optimal operating
point for each industrial machine. Case studies are carried
out for an entire practical steel powder manufacturing process
with different designed scenarios. Simulation results demon-
strate that the proposed RTP-based DR scheme is able to effec-
tively shift energy consumption from peak to off-peak periods
and reduce the electricity cost (i.e., 13.31% decreased), as well
as the peak demand of the facility compared to the case with-
out DR, while satisfying all operating constraints. The perfor-
mance of the presented data-driven RTP forecasting approach
is compared to other prediction methods, revealing that LSTM
RNN achieves the best forecasting accuracy. Error sensitivity
analyses are also conducted to examine the impact of RTP un-
certainties, showing that the proposed DR algorithm has good
robustness towards prediction errors. Moreover, the DR capa-
bility is investigated for a more production (i.e., 150 Ton) to
be completed within a given period, the ability of the DR to
respond to RTPs will be declined.

In the future, further analyses with the presented RTP-based
DR scheme will be conducted, to incorporate the stochastic fea-
tures of renewable energy resources and energy storage sys-
tems, and assess how will impact energy management in indus-
trial facilities. Moreover, deep assessments will be elaborated
by investigating how the grid operation status (i.e., external gra-
dient price) affect the performance of the current price forecast-
ing model.
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