
1

P4CONSIST: Towards Consistent P4 SDNs
Apoorv Shukla, Seifeddine Fathalli,

Thomas Zinner, Member, IEEE, Artur Hecker, Stefan Schmid, Member, IEEE

Abstract—The prevailing wisdom is that a software-defined
network (SDN) operates under the premise that the logically
centralized control plane has an accurate representation of the
actual data plane state. Unfortunately, bugs, misconfigurations,
faults or attacks can introduce inconsistencies between the net-
work control and the data plane that can undermine the correct
operation at runtime. Through our experiments, we realize that
P4 SDNs are no exception, and are prone to similar problems.

With the aim to verify the control-data plane inconsistency,
we present the design and implementation of P4CONSIST, a
system to detect the inconsistency between control and data plane
in P4 SDNs. P4CONSIST generates active probe-based traffic
continuously or periodically as an input to the P4 SDNs to check
whether the actual behavior on the data plane corresponds to
the expected control plane behavior. In P4CONSIST, the control
plane and the data plane generate independent reports which
are later, compared to verify the control-data plane consistency.
The previous works in the field of monitoring and verification
mostly aim to test the P4 programs through static analysis and
thus, are insufficient to verify the network consistency at runtime.
Experiments with our prototype implementation of P4CONSIST

are promising and show that P4CONSIST can verify the control-
data plane consistency in the complex datacenter 4-ary fat-tree
(20 switches) and multipath grid (4, 9 and 16 switches) topologies
with 60k rules per switch within a minimum time of 4 minutes. At
the same time, P4CONSIST scales to multiple source-destination
pairs to detect control-data plane inconsistency.

Index Terms—P4, Software-Defined Networking, Network Ver-
ification.

I. INTRODUCTION

Software-Defined Networks (SDNs) [1] introduced a novel

paradigm to networking: programmability. While SDN pro-

vides many benefits, ranging from traffic-engineering to sim-

plified centralized network management, its programmability

is limited to the remote control plane or the decision element

only. With the emergence of P4 [2], [3], the programmability

of the network data plane can be enabled without sacrific-

ing line-rate performance. The flexibility of data plane pro-

gramming allows network administrators to enable complex

custom network policies independent of the target devices,

e.g., switches. P4 is a domain-specific language that allows

the programmer to customize the functionality of the device

on the data plane. In addition to quick innovation, this opens

Apoorv Shukla is with the Technische Universität Berlin (e-mail:
apoorv@inet.tu-berlin.de), Seifeddine Fathalli is with the MPI-Informatics
(e-mail: fathalli@mpi-inf.mpg.de), Thomas Zinner is with the Department
of Information Security and Communication Technology, Norwegian Uni-
versity of Science and Technology, 7491 Trondheim, Norway (e-mail:
thomas.zinner@ntnu.no), Artur Hecker is the Director of Future Networks Re-
search at Huawei Technologies, Munich (e-mail: Artur.Hecker@huawei.com),
and Stefan Schmid is with the Faculty of Computer Science, University of
Vienna (email: stefan schmid@univie.ac.at).

Thomas Zinner and Seifeddine Fathalli were affiliated with the Technische
Universität Berlin while working on this paper.

up opportunities for novel uses of the network: e.g., in-band

network telemetry [4] and in-network caching [5], [6]. The

increased capabilities of the programmability, however, are the

harbinger of new challenges to the network correctness.

However, just like any other program, P4 programs are

prone to software or hardware bugs [7]–[13] or dataplane

faults. The faults can manifest in many ways e.g., resulting

in abnormal network behavior different from the expected

behavior or in other words, the control plane may be com-

pletely unaware of the abnormal data plane behavior caused

by the faults on the dataplane. Contrary to the prevailing

wisdom, such situation violates the premise that the logically

centralized control plane has a consistent view of actual

data plane state. Thus, it can inflict serious damages to the

network infrastructures and business units as it causes incorrect

network operation or even a security compromise. This may

incur heavy revenue losses [14]–[18] and in addition, network

debugging is a costly practice due to manual effort involved in

debugging as the existing tools like Ping, Traceroute, SNMP

are rendered insufficient in many scenarios.

As important as these issues are, we argue that the cor-

rectness crucially depends on the consistency between the

control and the data plane. Traditionally, there have been many

causes that may trigger inconsistencies at run time, including,

switch hardware failures [15], [19], [20], bit flips [21], [22],

misconfigurations [16]–[18], [23]–[25], priority bugs [26],

[27], control and switch software bugs [28]–[30]. We realize

that P4 SDNs are prone to such problems as well. When

an inconsistency occurs, the actual data plane state does

not correspond to what the control plane expects it to be.

Even worse, a malicious user may actively try to trigger

inconsistencies as part of an attack vector.

The recent works in P4 verification [7]–[12], [31] have

mostly focused on the static analysis of the P4 programs to

detect bugs in the P4 source code. Static analysis, however,

tests the program without passing any inputs and thus, is prone

to false positives. Unless populated by the control plane at run

time, the contents of the Match-Action tables are unknown.

The Match-Action rules installed by the control plane at

run time and not the P4 program determine the effect of

executing these tables on any given packet. The data plane

behavior and properties cannot be stated unless we have a

deep understanding of the control-data plane interaction and

an accurate view of the data plane. Therefore, it is important

to verify whether the actual data plane behavior corresponds

to the expected high-level network policy. Since, the target

switch does not throw any run time exceptions, detecting

bugs is an uphill battle. To elaborate further, different inputs

at run time may trigger unknown or abnormal behaviors.

The existing related works are, hence, insufficient as they

2

do not check the control-data plane consistency at runtime.

Recently, [13] performed runtime verification of a single

P4 switch leveraging reinforcement learning-guided fuzzing.

However, such approach cannot detect a P4 network-wide

control-data plane inconsistency. Therefore, there is an urgent

need for the mechanisms to verify the P4 networks, e.g., P4

SDNs, at runtime as these are missing from the current P4

network verification repertoire.

To debate about consistency in networks, there is a P4-

programmed data plane and a programmed control plane. The

challenge is three-fold: 1) elicit the data plane state, 2) gather

the control plane state, and 3) compare both of them for

detecting inconsistency. As the data plane faults may not be

reflected on the control plane, we need to get independent

reports from the control and the data plane and then, compare

them. The faults in the P4 programmed-data plane can be due

to e.g., a software bug in the P4 program which may cause the

path deviation of the input traffic on the actual data plane from

the intended network policy or the expected control plane.

Such path deviation on the data plane can possess a big threat

if it bypasses a waypoint, e.g., firewall and thus, allowing the

malicious traffic to attack the critical infrastructure. There can

be, however, a plethora of different faults resulting in abnormal

behavior of the network. In addition, consistency is hard and

complex to ensure as it applies to different packet header

space between different source-destination pairs. For instance,

in a destination-based routing, the consistency checking may

involve testing for 232 possible IPV4 destination addresses or

header space between any given source-destination pair.

Problem Statement In this paper, we ask the following

question: In P4 SDNs, for a given packet, is the control

plane consistent with the data plane between a given source-

destination pair?

In this paper, we present a system, P4CONSIST where for a

given packet (5-tuple flow) and a source-destination pair, the

control plane module proactively gathers the topology and

configuration information in the form of an expected report.

The data plane module customizes the INT (In-band Network

Telemetry) [4] with MRI (Multi-Hop Route Inspection) [32] to

continuously or periodically elicit telemetry data encoding the

forwarding behavior of each switch for the input traffic from

the input traffic generator in the form of an actual report.

Finally, the analyzer compares the two reports for detect-

ing control-data plane inconsistencies using depth-first search

(DFS) and symbolic execution. To summarize, on the basis of

independent control and data plane reports, we investigate the

control-data plane consistency aspects for critical flows (given

5-tuple flows) between any source-destination pair/s.1

To evaluate our approach, we built a prototype of

P4CONSIST using software switch: Bmv2 (behavioral model

version 2) [33] of P4 version 16 (P4-16) connected with the

remote network control plane through P4 Runtime API [34].

We conducted experiments on four different topologies and

configurations of variable scale to gauge the performance of

1Note we focus on persistent data plane faults which manifest as control-
data plane inconsistency. Transient faults are out of the scope of this paper
as control plane eventually converges to the correct view of the network.

P4CONSIST. Our results show that the proposed verification

process can uncover a broad range of faults such as con-

flicting rules added through different configuration channels,

invalid packet header reads or writes in the P4-programmed

data plane. A detailed performance analysis also shows that,

although the verification time increases with the size of the

network e.g., configurations and devices, pragmatically our

approach quickly verifies the control-data plane consistency

in various topologies and configurations of multiple scale. Fi-

nally, we initiate a discussion on the importance of consistency

verification and to what extent we can do the consistency

checks.

Our Contributions:

• We identify the need for verifying the control-data plane

consistency through example scenarios (§II);

• To address the example scenarios, we present the design of

a novel system: P4CONSIST that aims to detect the control-

data plane inconsistency by comparing the independent reports

from the control and the data plane in an automated manner

(§III);

• We develop and prototype P4CONSIST in the software

switch behavioral model version 2 (BMv2) of P4 version16

(P4-16), and evaluate it on multiple topologies of variable

scale and configurations. Our results show that P4CONSIST

can detect control-data plane inconsistency within a minimum

time of 4 minutes in the complex datacenter 4-ary fat-tree (20

switches) and multipath grid (4, 9 and 16 switches) topologies

with 60k rules per switch (§IV).

• To ensure reproducibility and facilitate the follow up work,

we release the P4CONSIST software and experiments at:

https://gitlab.inet.tu-berlin.de/apoorv/P4CONSIST.

Organization: In the rest of this paper, we will first give more

background on the P4 language and P4 Runtime and then,

identify the example scenarios of the control-data plane incon-

sistency (§II). Next, we present an overview of P4CONSIST

system (§III). Then, we give details on the implementation

of P4CONSIST and evaluate its performance (§IV). After

discussing the limitations and future work (§V), we go through

the related work (§VI). Finally, we initiate a discussion on

the extent of consistency checks (§VII) to conclude the paper

(§VIII).

II. BACKGROUND & MOTIVATION

This section briefly reviews the P4 language, P4 Runtime

and P4 SDNs in general and motivates the scenarios of control-

data plane inconsistency in P4 SDNs. Based on this motiva-

tion, we later present the design (§III) and implementation

(§IV) of P4CONSIST to detect such inconsistencies.

A. Background on P4

1) P4 Language: P4 is a domain-specific language [2], [3]

that came into existence to enhance SDN as in SDNs, the SDN

switch could only be configured and switch chip was fixed-

function and supported limited protocols due to fixed parser.

With P4, one can program the switch chip as the parser can be

programmed, to implement customised protocols. P4 is based

3

Packet
Replication

Engine
(PRE) Packet

Egress
Parser

Egress
Match-Action

Egress
Deparser

Ingress
Deparser

Buffer
Queuing
Engine
(BQE)

Ingress Parser Ingress
Match-Action

Figure 1: P416 packet processing pipeline. [3]

on an abstract forwarding model called protocol-independent

switch architecture (PISA) [35], comprising of packet-

processing abstractions, e.g., headers, parsers, tables, actions,

and controls. Unless programmed, the P4 device or switch

does not understand any protocol and thus, it is protocol-

independent. The language has two main versions, P414
and P416. As shown in Figure 1, in P416 packet processing

pipeline, there are six programmable blocks in green,

namely, ingress parser, ingress match-action,

ingress deparser, egress parser, egress

match-action, and egress deparser. Note, packet

replication engine (PRE) and buffer queuing

engine (BQE) are non-programmable and target dependent

(in gray color in Figure 1).

P4 pipeline. The ingress parser transforms the packet from

bits into headers according to a parser specification provided

by the programmer and decides what packet headers are

recognized and in what order. After parsing, an ingress

match-action (also called ingress control function) decides

how the packet will be processed. Then, the packet is queued

for egress processing in the ingress deparser. Upon dequeuing,

the packet is processed by an egress match-action (also called

egress control function). The egress deparser specification

dictates how packets are deparsed from separate headers into

a bit representation on output, and finally, the packet leaves

the switch.

A P4 program is written in P414 or P416 and then compiled

via P4 compiler called p4c [36] to be deployed to run on

a P4 switch. At the runtime, via the control plane or an

SDN controller or even manually, the match-action rules are

populated on the match-action table of a P4 switch. To draw

a comparison between P4 and SDN, it is worth noting that in

P4, excluding an SDN controller, the usual SDN entities such

as OpenFlow and the non-programmable SDN switches, e.g.,

OpenvSwitch (OvS) get replaced by P4 Runtime [34], [37]

and programmable P4 switch platforms, e.g., behavioral model

(bmv2) [33], [38], Tofino [39], etc. respectively. Figure 2

illustrates as P4 SDN where P4 Runtime controls the P4

switches on the data plane via SDN Controller. P4 Runtime

channel pushes the configuration in the form of forwarding

rules from the SDN Controller in the control plane to the P4

switches in the data plane.

B. Motivating Examples

In this section, we motivate the need for P4CONSIST

through two practical example scenarios of the control-data

SDN Controller

P4 Runtime

P4 switches

Figure 2: P4 SDN where SDN Controller controls the P4 switches (running
the compiled P4 programs) on the data plane via P4 Runtime.

plane inconsistency rooted within existing network manage-

ment practices. These scenarios are easy to reproduce and the

inconsistency is undetectable by the existing verification tools

in P4.

Example Scenario 1 — Problem of multiple configuration

channels: Figure 3 illustrates an example scenario of control-

data plane inconsistency. The SDN controller installs the

P4 program and populates the Match-Action tables with the

corresponding rules through the P4 Runtime API. The packets

are expected to be forwarded through the expected path S1-

S3-S2-S4 (shown by the dashed blue arrows). If an attacker

maliciously or a network administrator accidentally modifies

a rule in S1 through switch CLI (the thrift API debugging

channel), it causes the traffic to go through the actual path

S1-S2-S4 (shown by the dashed red arrows) and thus, bypass

the firewall on switch S3. This allows malicious or malformed

packets to reach the critical server and inflict serious damages.

We realized in such a case, no notification is sent to the SDN

controller about the modified rule and thus, the controller stays

unaware of the modified rule. Therefore, the state at the data

plane is inconsistent with the state at the control plane resulting

in inconsistency. We reproduced such scenario with the P4

software switch bmv2 target: simple_switch_grpc where

we modified a rule through the thrift API debugging channel

of the switch without the SDN controller getting notified.

Traditionally, OpenFlow is prone to such problems when

rules are modified using ovs-ofctl switch CLI [40]. For

OpenFlow-based SDNs, [22], [26] have hinted at this problem.

In addition, Priority faults [41] are another reason for such

incorrect forwarding where either rule priorities get swapped

or are not taken into account. The Pronto-Pica8 3290 switch

with PicOS 2.1.3 caches rules without accounting for rule

priorities [27]. The HP ProCurve switch lacks rule priority

4

Control Plane

S1

S2

S4

S3

 P4 Runtime

change a rule

through CLI

code.p4

Critical Server

Figure 3: Example scenario where the P4 switches were initially provisioned
by the control plane through the P4Runtime channel; installing the P4
program and populating the Match-Action table with the corresponding rules;
then maliciously or accidentally the rules were modified through the switch
debugging CLI channel (Thrift API) causing control-data plane inconsistency
where the packets instead of expected path (in dashed blue arrows) through
firewall take a different actual path (in dashed red arrows) bypassing the
firewall.

actual

expected

Control Plane

Analyzer

telemetry data

telemetry data

Traffic

generator

S1

S2

S4

S3

{P4}

Sampling

{P4 Runtime}

telemetry data

Figure 4: P4CONSIST architecture.

support [26]. Furthermore, priority faults may manifest in

many forms e.g., they may cause the trajectory changes or

incorrect matches even when the trajectory remains the same.

Action faults [20] can be another reason where, e.g., a bitflip

in the action part of the rule may result in a different trajectory.

We have seen priority faults and action faults in OpenFlow-

based hardware, however, we expect the similar problems with

the P4-based hardware.

Example Scenario 2 — No runtime exceptions in a P4

switch: A P4 switch does not throw any runtime exceptions

and, therefore, it is incredibly hard to catch or localize a bug

at runtime. There are many issues that can throw runtime

exceptions such as if an uninitialized packet header field is

read, the P4 switch behavior is unspecified, i.e., an incoming

packet may get modified in an unspecified manner. This im-

plies that the packet could either be dropped or a quasi-random

value is returned. P4 language specification [3] explains that

the behavior of the program implementing firewall may be

undefined on certain kinds of packets as reading or writing an

invalid header produces an arbitrary result on the data plane

which is unknown to the SDN controller and thus, causing

inconsistency. Such a scenario is possible when the acl table

can correctly match and filter away IPv4 packets sent by

external hosts, however, it might incorrectly forward other

types of packets, e.g., IPv6. Such scenarios may cause control-

data plane inconsistency which can be non-trivial to detect

if one relies on the prevailing wisdom, i.e., SDN controller

has an accurate view of the network and incorrectly takes the

controller view as the ground truth.

Data plane
module

Analyzer Control plane
module

Input traffic generator

Reachability
Graph

DFS

Symbolic
execution

Yes

No
inconsistency

detected

Inconsistency
detected

True False

Error! No

[Packet, Src., Dst., Path]

sampling

[Packet, Src., Dst.]

Send Packet,
Src,Dest

Figure 5: P4CONSIST workflow. Red: Control Plane Module, Blue: Data plane
Module, Green: Analyzer and its components: DFS & Symbolic Execution,
and Black: Input Traffic Generator.

III. SYSTEM: P4CONSIST

P4CONSIST, derived from P4 CONSISTency, checks the

control-data plane consistency between any source-destination

pair through the following steps. Figure 4 illustrates the

P4CONSIST system architecture. To explain the architecture,

it is important to understand the P4CONSIST workflow that

describes the roles of each module, i.e., Control Plane Module,

Data Plane Module, Input Traffic Generator and the Analyzer

in the P4CONSIST architecture. Hereby, Figure 5 illustrates the

P4CONSIST workflow with the role of each module. First, the

input traffic generator (sender) sends the active probe-based

traffic comprising of critical flows (5-tuple flows) intended for

a destination from a particular source. Second, every switch

pushes the telemetry data to the header stack of the packet

in real-time. Third, as the traffic reaches the destination, it

samples the packet and extracts the corresponding packet

containing path- and rule-encoded in the telemetry data to

forward them to the analyzer as an actual report. Fourth, the

control plane module generates the network graph (reacha-

bility graph) using the current topology- and configuration-

specific information (expected report) stored in the control

plane module to send it to the analyzer. Fifth, the analyzer

traverses the graph to generate all possible paths between

the source and destination. Finally, the analyzer generates a

symbolic packet with similar header (5-tuple flow) based on

the actual report, and simulates its forwarding through the

returned paths. The symbolic execution returns the status of

every path, so in order to detect inconsistencies, the analyzer

checks the status of the actual report with the results.

In particular, it consists of 4 modules on a high-level with

5

the following functions:

1) Control Plane Module: Provides the current SDN

controller information, e.g., topology and configurations

as an expected report comprising reachability graph

for a given packet and a source-destination pair to the

analyzer. (§III-C)

2) Input Traffic Generator: Generates active traffic

pertaining to critical flows (5-tuple flow) for testing the

network between a given source-destination pair. (§III-A)

3) Data Plane Module: For any given packet header

(5-tuple) and a source-destination pair, it encodes the

path and sequence of forwarding rules to generate a

sampled actual report. (§III-B)

4) Analyzer: Brain of P4CONSIST. It detects inconsistency

by comparing the expected from the control plane module

with the actual report/s from the data plane module.

(§III-D)

Now, we will take a deep dive into the modules of

P4CONSIST in a non-sequential manner for the ease of de-

scription.

A. Input Traffic Generator

P4CONSIST has no special requirements for the input traffic,

just packets that allow the data plane P4 program to stack the

telemetry data. Thus, any state of the art traffic generator [42]–

[44] would suffice. With a goal to facilitate the tracking and

filtering of the packets, avoid generating an overhead on the

links in parallel to the production traffic, and covering all

critical flows for a pair of source destination, the input traffic

generator (sender) allows manipulating and generating special

active probe traffic. Note the rate at which packets are required

to be generated is 103 pps (packets per second) and therefore,

it is ≈ 0.05% of a 1 Gbps link which is minimal link overhead.

In principle, it is possible to generate packets belonging to

diverse flows via dynamic program analysis techniques such

as fuzzing where bits in a packet are mutated in an exhaustive

fashion. Such an approach is illustrated in [45]. Furthermore,

in this paper, we are interested in detecting the control-data

plane inconsistency for the critical flows which are known and

can be generated via the Input traffic generator.

One interesting approach is P4pktgen [11]. However, it is

limited to localization of errors in the toolchains, e.g., p4c,

used to compile and run a P4 program. It uses symbolic

execution to create exemplary packets which can execute a

selected path in the program. We note that P4pktgen generates

exemplary or symbolic packets and not the real packets

generated by Input traffic generator that act as an input for

a P4 switch on the data plane to detect control-data plane

inconsistency during operation.

B. Data Plane Module

The data plane module in P4CONSIST takes advantage

of the Inband-Network Telemetry (INT) [4], [46] to collect

the telemetry data in real time and offers the flexibility of

modification to mirror the data to be checked in the control

plane. P4CONSIST generates the actual report from the data

plane by collecting the telemetry data of every switch traversed

in the path. As the traffic starts flowing through the network,

every switch parses the packets and based on the packet header

(5-tuple) and source-destination pair runs a lookup for the key

on the Match-Action table. The recovered action data from the

table plays a double role, first, it allows routing and forwarding

the packet, second, before deparsing the packet, it defines the

required telemetry data for the path to be pushed (e.g. switch

ID, matched rule ID). Thus, the telemetry data encodes the

rule- and path-related information for a given packet header

(5-tuple-flow) between a given source-destination pair and it

gets updated on each hop up to the destination. Since, we

used INT [4], [46] with Multi-Hop Route Inspection [32]

for the implementation, the details are mentioned in the

implementation (§IV-A2).

C. Control Plane Module

In principle, we can use the existing control plane mod-

eling mechanisms, including Anteater [47], HSA [48], Net-

Plumber [49] and APVerifier [50]. Inspired from [47], we

modeled the network (topology and configuration) from the

control plane. To generate the expected report, the

control plane module proactively parses the SDN controller-

specific topology and configurations. The control plane module

automatically models the network as a graph to determine the

end-to-end reachability between any source-destination pair

for a given packet. We call this graph as reachability graph.

The network graph N is modeled as a 3-tuple N = (D,E,P),

where D is the set of switches and networking devices (ver-

tices), E is the set of directed edges representing connections

between vertices. P is a function defined on E to represent

forwarding policies. For each edge (υ, ν), P(υ, ν) is the

policy for all packets (5-tuple flows) passing from υ to ν.

P is expressed as a boolean formula over a symbolic packet.

A packet can traverse an edge if and only if it satisfies the

corresponding Boolean formulas. This Boolean function or

predicate represents general policies including forwarding and

packet filtering2. It ensures matching the fields defined in

the rules with those encapsulated within the symbolic packet

representative of a 5-tuple flow in a packet from the actual

report between any given source-destination pair. For the

edges, P4CONSIST defines the network topology with globally

unique links as a combination of the switch and port IDs:

{[swID1 : portID1, swID2 : portID2, .., swIDn : portIDn]}

To elaborate further, in P4, the network configuration files

(in the form of JSON files) provide all necessary information:

1) A distinct configuration file per switch: facilitates enu-

merating the vertices of the graph.

2In principle, we can model packet rewriting but in our current implemen-
tation, we do not support it.

6

2) Switch ID: the table provides a unique switch ID swID

for every switch.

3) All Match-Action table rules: including the destination IP

address and mask, the ingress port ID and the rule ID.

Once the forwarding rules are parsed, they are saved as a

dictionary, where the key is the switch ID, and the value is a

list of all rules available in the JSON configuration file of the

switch in question.

The control plane module is decoupled from the data plane

module and, thus, due to modular design of P4CONSIST,

these are independent of each other and can be changed

independently. Therefore, how the control plane manages rules

related to each networking device on the data plane, e.g., P4

switch/NetFPGAs/SmartNICs, is orthogonal to the device on

the data plane as it can be adapted accordingly.

Indeed, JSON-based configuration files are something spe-

cific to Behavioral-Model (BMv2) switches. However, that is

just the implementation choice made by us for implementing

P4CONSIST and conducting the experiments. The design of

P4CONSIST remains general irrespective of the implementa-

tion choice. If the control plane uses a different format for

saving and storing the forwarding rules, then we just need to

adapt the parser at the control plane module. We parse the rules

on the control plane to store them as a dictionary irrespective

of a JSON or any other format.

To summarize, the control plane module stores the expected

switch configuration files and topology-specific information.

As soon as the packet (5-tuple flow) is received from the

data plane through the analyzer, it generates the correspond-

ing reachability graph pertaining to that packet and source-

destination pair, sends it to analyzer which executes graph

traversal and symbolic execution to detect control-data plane

inconsistency.

D. Analyzer

As a packet from the sampled actual report from the

data plane reaches the analyzer, it starts by first, extracting

the telemetry data comprising of the packet header (5-tuple

flow), and path taken by the packet. Based on the packet

header, it creates a symbolic packet (SP) which contains the

header corresponding to a 5-tuple flow. Second, it gets the

reachability graph from the control plane between a given

source-destination pair for that packet in the form of an ex-

pected report. Third, the analyzer generates all possible paths

between the source and the sink (destination) switches in the

reachability graph provided by the expected from the control

plane module; the source is the first switch source where the

packet first accessed the network, and the sink is the last hop

or destination in the network. This all possible path generation

is carried out via graph traversal technique: Depth First Search

(DFS) with cutoff (§III-D1). In this traversal, for a given packet

between a given source-destination pair, the path length in the

actual report is matched with the path length in the expected

report by the use of cutoffs. Finally, the analyzer compares

the actual path with the expected paths from the control and

the data plane respectively through the Symbolic Execution

technique (§III-D2) to check the consistency through path

conformity.

[[S1, S2, S4], [S1, S3, S4]]S1 S4

S2

S3

Source Sink

DFS

Figure 6: Illustration of graph traversal with the DFS algorithm. It shows
that for a given source-destination pair there are two possible expected paths:
S1-S2-S4 (blue) and S1-S3-S4 (red) from the control plane which will be
compared with actual data plane path.

0

1

2

3 4

5

6

7

default DFS

0

1

2 3

4

5

cutoff = 2

Cutoff

Figure 7: Illustration of a graph traversal through DFS with and without the
use of a cutoff. The cutoff approach fixes the path lengths of the expected
possible path to the path length of the actual path and thus, filters off
unnecessary paths.

In the following, we will explain the graph traversal and

symbolic execution in detail.

1) Graph traversal: Depth First Search with cutoff: By

definition, a graph traversal is a certain pattern of visiting the

vertices of a graph [51]. The analyzer implements the graph

traversal technique to generate all possible paths between the

given source and sink vertices for a given packet header (5-

tuple flow). And to simulate the packet forwarding from source

to sink nodes through the network, it defines the paths as a

set of lists of vertices interconnected through edges starting

from the source and ending at the sink switches (Figure 6).

{[Path1], [Path2], ..., [Pathn]}

The analyzer implements the Depth First Search (DFS)

search algorithm for graph or tree traversal [52]. The algorithm

starts at the root node and goes continuously down a given

branch before backtracking. Note, in the case of a tree-like

network topology, for example, the case of fat-tree topology

mostly used in the data center networks, DFS may encounter

path explosion problem and may require substantial time to

generate all paths.

To improve the performance of DFS, we use an algorithm

allowing the use of cutoffs. A cutoff is a maximum depth

(path-length) that the algorithm can reach within a branch.

When the algorithm reaches a cutoff, it breaks and continues

with the next branch. The idea is, as a packet is received, the

actual path is supposed to be identical to the expected one

on the control plane. Thus, it limits the graph traversal to the

length of the actual path. Therefore, every time a packet is

received from the data plane, the analyzer measures the path

length and fixes it as a cutoff for the DFS (Figure 7).

2) Symbolic execution: Once all the expected paths be-

tween the source and sink (destination) switches are generated,

the analyzer conducts the symbolic execution. It simulates

7

Algorithm 1: Symbolic execution (Consistency checking)

Input : The network configuration Rules, the expected paths between a

source-destination pair Paths, and the symbolic packet SP .

Output: The consistency status of the actual path Status.

// a path is a list of switches (vertices in the network

graph)

1 for path ∈ Paths do

2 for switch ∈ path do

// //check if the switch is the last switch on

the path.

3 if (switch is the last switch) then

4 for rule ∈ Rules do

// check if it is the last rule in the

switch

5 if rule is the last rule then

// apply the Boolean policy function

6 if policy(SP, rule) == True then

// path can forward SP

7 Status(path)← True

8 Go to the next path

9 else

// switch and thus, path can not

forward the packet

10 Status(path)← False

11 Go to the next path

12 else

13 if policy(SP, rule) == True then

// path can forward SP

14 Status(path)← True

15 Go to the next path

16 else

17

18 Go to the next rule

19 else

20 for rule ∈ Rules do

21 if rule is the last rule then

// apply the Boolean policy function

22 if policy(SP, rule) == True then

// switch can forward SP

23 Status(switch)← True

24 Go to the next switch

25 else

// switch and thus, path can not

forward the packet

26 Status(path)← False

27 Go to the next path

28 else

// apply the Boolean policy function

29 if policy(SP, rule) == True then

// switch can forward SP

30 Status(switch)← True

31 Go to the next switch

32 else

33

34 Go to the next rule

the forwarding of a symbolic packet (SP) belonging to the

same flow (5-tuple flow) as the actual packet received from

the sampled actual report from the data plane through every

path in the list of possible paths from the control plane.

The consistency checking algorithm (Algorithm 1) applies

the Boolean policy function against the symbolic packet and

the rules of every switch in the path sequentially (Figure 8).

To simulate the behavior of an actual network switch, the

symbolic execution has to preserve the first matching order

of the rules. In this case, if a rule matches, the switch is

marked as forwarding: True and the symbolic packet fields

are updated.

After, the checking program looks for the next switch and

the new switch receives the same checking treatment as the

[[S1, S2, S4], [S1, S3, S4]]

[S1, S3, S4]

S1:{rule1, rule2, …, rulen}

S2:{rule1, rule2, …, rulen}

S4:{rule1, rule2, …, rulen}

[S1, S2, S4]

S1:{rule1, rule2, …, rulen}

S3:{rule1, rule2, …, rulen}

True False

Figure 8: Illustration of the forwarding of the symbolic packet through all
possible paths using symbolic execution. Blue shows the correct or consistent
path, i.e., S1-S2-S4 and red shows the incorrect or inconsistent path, i.e.,
S1-S3-S4 respectively.

S1 S4S2

S3

Source Sink

S5

Multiple possible paths

[S1, S2, S4]

S1 S4

S3

Source Sink

S2

Same paths,
different telemetry data

1

12

2

[S1, S2, S4]

Figure 9: Illustration of multipath scenarios showing the possible cases
detectable by the analyzer symbolic execution: multiple possible paths (left)
and same paths (i.e., switches) but different ports (right) and thus, different
telemetry data for a given packet and a source-destination pair. The blue
dashed arrows show the actual path from the actual report.

previous one but with the new updated version of the symbolic

packet (new ingress port). If the checking of the rules fail and

none of the rules forward the packet, then checking breaks,

the current switch is marked as not forwarding: False and

accordingly the whole path is marked as False.

Figure 9 illustrates the multipath scenarios where for a given

packet and a source-destination pair, the control plane returns

multiple paths for a given packet and a source-destination pair.

We show and later evaluate (§IV) that even in the complex case

of multipaths (left in Figure 9) or a scenario of same paths

in terms of switches but different inports of such switches

(right in Figure 9), the symbolic execution can determine the

inconsistency as it matches not just switch IDs but also the

corresponding inport IDs and rule IDs for any path.

Note blackholes [53] for critical flows can be detected

as the analyzer generates an alarm after a chosen time of

some seconds if it does not receive any packet pertaining

to that flow3. For localizing silent random packet drops,

MAX-COVERAGE [54] algorithm can be implemented on the

analyzer.

Overall, the symbolic execution evaluates all the expected

paths from the control plane by matching them with the

actual path from the data plane. The path returning True

is consistent while the path returning False is inconsistent.

IV. PROTOTYPE & EVALUATION

A. Prototype

This section presents the tools used for the implementation

of various modules in the P4CONSIST prototype. The input

traffic generator uses Scapy [55] to forge the packets, the

3Blackholes for non-critical flows can be detected and localized through
polling of the switches.

8

###[Ethernet]###
 dst = 00:00:00:00:08:10
 src = 00:00:00:00:08:11
 type = 0x8100
###[802.1Q]###
 prio = 0
 id = 0
 vlan = 10

 type = 0x800
###[IP]###
 version = 4
 ihl = 6
 tos = 0x0
 len = 35
 id = 1
 flags =
 frag = 0
 ttl = 64
 proto = udp
 chksum = 0xd235
 src = 172.16.8.101
 dst = 172.16.40.10
 \options \
 |###[MRI]###
 | copy_flag = 0
 | optclass = control
 | option= 31

 | length = 4
 | count = 0
 | \swtraces \
###[UDP]###
 sport = 1234

 dport = 4321

 len = 11
 chksum = 0xf129
###[Raw]###
 load = 'Ok!'

Figure 10: Example of an input packet.

data plane module comprising of P4-16 BMv2 (Behavioral-

Model version 2) software switches [33] and uses MRI (Multi-

Hop Route Inspection) [32] which is a specific version of

INT [4] for encoding telemetry data on the input packets,

and the analyzer uses Python library NetworkX [56] for graph

modeling. Note all of the P4CONSIST modules run in Vagrant

[57] development environment.

1) Input Traffic Generator Implementation: Currently,

P4CONSIST generates IPv4 based packets, since the MRI [32]

P4 program requires the IPOption header field to stack

the telemetry data. But to facilitate the tracking and filtering

of the packets, and avoid generating an overhead, we forge

a special UDP active traffic covering all the custom MRI

P4 program requirements including: UDP source port 1234
and UDP destination port 4321, IPOption field type 31 and

802.1q header for VLAN tagging. Figure 10 illustrates the

input packet header generated via input traffic generator.

Scapy [55] is a Python powerful interactive packet manip-

ulation program largely used among the network community.

It enables the user to forge, send, sniff and dissect network

packets. By default, it supports a wide number of protocols,

which allows construction of tools that can probe, scan or

attack networks. We used Scapy to forge the active traffic sent

from the sender to the receiver.

2) Data Plane Module Implementation: This section briefly

reviews In-band network telemetry (INT), a P4 data plane

monitoring tool, in addition to its scaled-down version called

Multi-Hop Route Inspection (MRI), and Behavioral Model

Version 2 (BMv2) used in the implementation of the data plane

module.

INT: In-band Network Telemetry (INT) [4] is a monitoring

technique conceived to allow the data plane to collect and

report the network state. It introduces header fields in the

packets interpreted as “telemetry instructions” by network

devices. When a packet with INT instructions is received, the

INT-capable device collects the required data and writes it into

the packet as it transits the device (Figure 11). The instructions

can be embedded in normal data packets or in special probe

packets.

MRI: Multi-Hop Route Inspection (MRI) is a scaled-down

version of INT introduced by the P4 community [32]. As the

packet is forwarded through the network, it collects switch

IDs and queue depth of every switch hop, allowing the

users to get an overview of the path and the occupancy of the

queues. MRI is implemented as a P4 program, which collects

the data and appends it to the header stack of every packet. It

is implemented based on a basic L3-forwarding P4 program,

extended with an extra MRI header. The default MRI header

is constructed with two 32-bit fields (switch ID, queue

depth) gathered from every switch hop in the path. These

headers are carried inside the IP Options header. To indicate

the presence of the MRI headers, a special IP Option “type”

with the value 31 was defined.

To offer a more rigorous verification, P4CONSIST requires

more specific data related to the control plane configuration

in the SDN context (e.g. ingress port ID and matched

rule ID). Accordingly, we implement a custom MRI code

where we replace the queue depth by the ingress

port ID included in the default P4 metadata. As a result, we

offer the possibility to use ingress port-based routing, where

the switch is capable of taking routing decisions not only based

on the destination IPv4 Address but also the ingress port on

which the packet was received. In addition, the ability to check

the consistency of this information, when collected by the MRI

program.

For rule checking, i.e., if the actual matched rule from the

switch Match-Action table on the data plane is the same as

the expected match from the control plane (i.e., the switch

configuration). Unfortunately, the design of the P4 language

does not allow the P4 code to manipulate the Match-Action

table and consequently get access to the rule ID. Only the

controller has access to this information. P4CONSIST stores

this information as an action in the Match-Action table. One

can manually define a rule ID for every entry in the Match-

Action table and the P4 program when the rule is matched will

parse the action parameters including destination MAC

address, egress port ID and rule ID.

Finally, P4CONSIST design allows verifying packets from

different sender hosts by extracting the path between a source-

destination pair or pairs and running the verification process.

To include the case of multiple senders, sharing the same

ingress port on the same source switch when sending to the

same destination respectively, we tag the packets in a way that

the receiver can uniquely distinguish the senders. To reduce

the amount of data pushed inside the MRI header, we opt for

implementing the VLAN tagging. It allows adding a 32-bit

field between the source MAC address and the EtherType

9

INT-capable

network devices

Header

Payload

Header

Payload

td1

td: INT telemetry data

Header

Payload

td2

td1 Header

td2

td1

td3

Header

Payload

Monitoring

Figure 11: Collection of telemetry data at each switch by INT.

fields of the original frame in the P4 program. It is identified

by the EtherType value 0x8100.

BMv2: The Behavioral-Model version 2 (BMv2) [33] is a P4

software switch introduced by the P4 consortium for devel-

opers, to facilitate implementing their own P4-programmable

architecture. From the available BMv2 P4 software switch

targets, the simple_switch_grpc is used as it is the only

target that implements the official P4 Runtime API, but also

supports the default thrift API channel, as a side channel

for debugging [38]. The debugging channel is accessible

through the command: runtime_CLI. Overall, using the

simple_switch_grpc for the experiments fulfills all the

pre-requisites for introducing the data plane faults.

3) Control Plane Module & Analyzer Implementation: For

the implementation of the control plane module and analyzer,

we used the Python language. For the graph generation, we

chose NetworkX [56]: a Python library for the creation, ma-

nipulation, and study of the structure, dynamics, and functions

of complex networks. It introduces a standard and suitable

programming interface and graph implementation, and enables

loading and storing networks in standard and non-standard

data formats, generating random and classic networks, ana-

lyzing network structure, building network models, designing

new network algorithms.

B. Experimental Setup

We evaluate P4CONSIST on 3 grid topologies of 4, 9 and

16 switches (Figure 12), and a datacenter 4-ary fat-tree with

20 switches (Figure 13). The Experiments were conducted

with 15k, 30k and 60k rules on each switch, and sFlow [58]

sampling rate of 1/100. Each experiment was conducted 10
times. The CPU machine is an 8 core 2.4GHz Intel-Xeon CPU

machine and 64GB of RAM. The controller and the switches

run inside vagrant machines configured with 1 CPU core and

1GB of RAM. The receiver hosts are provisioned with 2 CPU

cores and 2GB of RAM. As the sender hosts have no special

requirements, 1 CPU core and 512MB of RAM is allocated.

To automate the active traffic generation, we create pcap files

for every source-destination pair, which will be replayed in a

loop onto the network using Tcpreplay [59] with a throughput

of 103 pps (packets per second). For the custom P4 Runtime

configuration JSON files, we use a custom script to generate

the required number of rules for every scenario. The rules are

generated in a way that the P4 program will keep checking

S1

S2

S3

S4

S5

S6

S7

S9

S8

S1

S2

S3

S4

S5

S6

S7

S9

S8

S10

S11

S12

S13

S14

S15

S16

S1

S2

S3

S4

Src Dst

Dst

DstSrc

Src

Figure 12: Illustration of 4, 9 and 16 switches grid experimental topologies.

C1 C2 C3 C4

S1 S2

T1 T2

S3 S4

T3 T4

S5 S6

T5 T6

S7 S8

T7 T8

Src Dst

(a) Single source-destination pair.

C1 C2 C3 C4

S1 S2

T1 T2

S3 S4

T3 T4

S5 S6

T5 T6

S7 S8

T7 T8

Src 2Src 1 Dst Src 3

(b) Multiple source-destination pairs.

Figure 13: The datacenter 4-ary fat-tree experimental topology with single
(13a) and multiple (13b) source-destination pairs.

them sequentially till it reaches the rules in question, and the

controller is able to populate them in the Match-Action table

without errors.

Bug Injection: We randomly inject 20 bugs to be detected

by P4CONSIST in every experiment. The bugs are distributed

randomly through different hops of the path and cover different

rule modifications scenarios, such as different paths or same

path but with every time different VLAN IDs, Rule IDs or

ingress port IDs.

To automate the triggering of the bugs, we implement

custom bash scripts, which while the traffic is flowing through

the network will modify the rules in the switches and save the

error triggering timestamp in a file. Finally, using a custom

Python script, we measure the time-difference between the

triggering of the bug and the detection of the same bug. Note

each experiment was conducted 10 times.

10

C. Evaluation Strategy

To evaluate P4CONSIST, our action plan is to parametrize

our experiments with different network sizes ranging from 4

to 20 switches allowing different path numbers and maximum

path lengths, as the configuration varies from 15k to 60k rules

per switch. We aim to evaluate the performance gain of the

the depth first search with cutoff during the graph traversal

and the symbolic execution time for any given packet. Thus,

our metrics of interest are the detection time of the bugs

for single and multiple source-destination pairs, the duration

of the symbolic execution to check the received packet, the

graph traversal time with and without cutoff, and the dataplane

overhead.

In particular, we ask the following questions:

Q1: How much time does P4CONSIST take to detect control-

data plane inconsistencies between a single source-destination

pair? (§IV-C1)

Q2: How much time does P4CONSIST take to detect

control-data plane inconsistencies between multiple source-

destination pairs? (§IV-C2)

Q3: How much time does P4CONSIST take to compute all

possible paths at the analyzer and how many paths are

available with and without cutoff? (§IV-C3)

Q4: How much time does P4CONSIST take to execute

symbolic execution at the analyzer over different topologies

and configurations of varying scale and complexity? (§IV-C4)

Q5: How much dataplane overhead does P4CONSIST incur?

(§IV-C5)

1) Inconsistency detection time — single source-destination

pair: This section discusses the first question (Q1) and

evaluates the capacity of P4CONSIST to detect errors. To

answer this question, we run the experiments with the different

topologies and configuration mentioned in §IV-B and measure

the time between the bug was triggered and the time when it

was detected.

In Figure 14, we plot the cumulative distribution function

(CDF) of the bugs detected in the experiments. As expected we

were able to detect all 20 bugs for all experiments conditions.

The plots illustrate that for the different configurations the

detection finishes first in the 4 switches topology, then 9

switches and finally 16 switches. We observe that for 4 and

9 switches 75% of the bugs were detected in a maximum

of 4 minutes for all kinds of configuration scales. For 16

switches, considering the number of possible paths and the

number of rules, P4CONSIST is able to detect 75% of the

bugs were detected in a minimum of 3 minutes (for 30k

rules per switch) and a maximum of 13 minutes (for 60k

rules per switch). For the 4-ary fat-tree topology (Figure 13a),

P4CONSIST performed as expected detecting 75% of the bugs

in a minimum of 3 minutes (for 15k rules per switch) and a

maximum of 17 minutes (for 60k rules per switch). As the

experiment was conducted ten times, the time taken is the

mean of the ten values to detect an inconsistency. We omitted

confidence intervals as they are small after 10 runs. In all

cases, the detection time difference was marginal.
2) Inconsistency detection time — multiple source-

destination pair: This section discusses the second question

Topology source & destination switches
Number of paths

Cutoff No-cutoff

4 switches S1-S4 (Figure 12) 2 2

9 switches S1-S9 (Figure 12) 6 12

16 switches S1-S16 (Figure 12) 20 184

4-ary fat-tree T2-T3 (Figure 13a) 20 1360

Table I: This table illustrates the number of possible paths for every topology
(Column 1), for every source-destination pair within the topology (Column
2), and if generated with or without the use of a cutoff (Columns 3-4). We
observe that as the topologies grow in scale, the cutoff helps to reduce the
number of paths and hence, the detection process considerably to improve the
overall inconsistency detection time of P4CONSIST.

(Q2) and evaluates the detection performance and scalabil-

ity of P4CONSIST for multiple source-destination pairs as

compared to single source-destination pair. Hereby, we run

the previous experiment for the fat-tree topology with three

different sources sending traffic simultaneously as illustrated

in Figure 13b. Therefore, we have 3 source-destination pairs.

In Figure 15, we plot the CDF of the detection time for a single

(Figure 13a) and multiple (Figure 13b) source-destination pairs

in 4-ary fat-tree topologies. We expect to detect 20 bugs for

single and 60 bugs (20 bugs per source-destination pair) for

the multiple source-destination pair case. While the single-

source destination pair performed as expected detecting 75%

of the bugs in a minimum of 3 minutes (for 15k rules per

switch) and a maximum of 17 minutes (for 60k rules per

switch), we observe that the analyzer was able to cover the

15k and 30k rules per switch with 3 source-destination pairs,

with a minor performance degradation to detect all 60 bugs

in ≈ 1 hour. In the experiment of 60k rules per switch and 3

source-destination pairs, 50% of the errors detected in almost

30 minutes with a minor performance degradation to detect all

60 bugs in ≈ 3 hours. As the experiment was conducted ten

times, the time taken is the mean of the ten values to detect

an inconsistency. We omitted confidence intervals as they are

small after 10 runs. In all cases, the detection time difference

was marginal. Therefore, this shows that P4CONSIST scales

to more than one source-destination pair. However, since, the

traffic is sent from multiple ingress points in parallel so in case

of ATPG-like [20] all-pairs analysis, we run out of memory on

our Analyzer VM as there is an exponential number of flows

to be analyzed at the same time.

3) Graph traversal time: This section discusses the third

question (Q3) about the amount of time that P4CONSIST takes

to compute all possible paths and the effect of using cutoff on

the number of available paths.

In Figure 16, we measure the graph traversal time with and

without using cutoff, between a fixed source and destination

switches as explained in the Table I, which also shows the

number of possible paths in both scenarios.

Even if the graph traversal takes between 0.1 and 0.7

microseconds for the worst case, we still have a clear dif-

ference between using the cutoff and the default algorithm

without cutoff. The graph traversal takes less time with cutoff,

although this may not directly affect the duration of the

global verification process with few microseconds in non-

scalable settings, but if we consider that in the case of 16

switches and 4-ary fat-tree, we go down from checking 184

11

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
Detection Time (s) − 15k rules

C
D

F

4 switches
9 switches
16 switches
fat−tree 0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Detection Time (s) − 30k rules

C
D

F

4 switches
9 switches
16 switches
fat−tree 0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
Detection Time (s) − 60k rules

C
D

F

4 switches
9 switches
16 switches
fat−tree

Figure 14: Detection time CDF of 20 bugs measured for the 4 experimental topologies and with 3 different configuration scale. The detection time represents
an average over 10 runs.

0.00

0.25

0.50

0.75

1.00

0 4000 8000 12000

Detection Time (s)

C
D

F

15k Single src−dst
30k Single src−dst
60k Single src−dst
15k Mult. src−dst
30k Mult. src−dst
60k Mult. src−dst

Figure 15: Detection Time CDF for the 4-ary fattree topology with a single and
multiple source-destination pairs for different configurations. The detection
time represents an average over 10 runs.

Cutoff No cutoff

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

8.00E-05

4sw

9sw

16sw

fat-tree

T
im

e
 (

s
)

Figure 16: The graph traversal time measured for the 4 experimental topolo-
gies with and without cutoff. Each bar represents an average over 10 runs.

and 1360 possible paths respectively to only 20 paths, this will

without any doubt reduce the number of checks to be run and

consequently make the verification process faster.

Furthermore, we observe that even for the same number of

paths in the case of 4 switches, the algorithm performs well

because it exits early when it reaches the maximum depth. In

addition, because of the tree nature of the fat-tree topology, and

despite the size of the topology, the DFS was more effective.

Note we omitted confidence intervals as they are small after

15000 30000 60000

0

50

100

150

200

250

300

350

4sw

9sw

16sw

fat-tree

Number of rules per switch

T
im

e
 (

s
)

Figure 17: The symbolic execution time measured for the 4 experimental
topologies. Each bar represents an average over 10 runs.

10 runs. In all cases, the time difference was marginal.

4) Symbolic execution time: In this section, we discuss

the fourth question (Q4) about the performance of symbolic

execution under different experimental topologies (Figure 12,

13) and configurations of varying scale and complexity.

Figure 17 shows the duration of the symbolic execution

of symbolic packet forwarding through the network nodes

for all possible paths. For 4 switches and only 2 possible

paths, P4CONSIST is able to keep the verification process

around 30 seconds for 60k rules/switch. The checking time

increases with the number of rules. For 9 and 16 switches

(6 and 20 possible paths respectively using cutoff), the time

kept increasing with the number of rules as expected and takes

less than 5 minutes for the max. number of rules and paths.

For the case of the fat-tree topology, although we have the

same number of possible paths (20 paths), the checking takes

slightly more time than the 16 switches experiment because

of the total number of switches in the topology (20 switches).

Note we omitted confidence intervals as they are small after

10 runs. In all cases, the time difference was marginal.

5) Dataplane overhead: To answer the fifth question (Q5),

we realize that the INT packets are strictly processed within

the fast path. The information from the data plane is extracted

and exported directly without the overhead or scale limitations

of a control plane CPU. In addition, the packets are generated

at 103 pps (packets per second) and therefore, it is ≈ 0.05% of

a 1 Gbps link which is a minimal link overhead. Thus, there

is no noticeable overhead on the data plane.

12

V. LIMITATIONS & FUTURE WORK

P4CONSIST opens new avenues for the future work and

one of them is the localization of detected faults. Currently,

we do not handle transient faults, checking of backup rules,

and TCP-based packets which we plan to address in the

future. Furthermore, development of an efficient fuzz testing

mechanism which generates packets pertaining to different

header space by mutation of packet bits belongs to the future

work. Lastly, improving multi-threading to cope with the large

number of flows efficiently and detection of performance-

related faults like throughput, latency and packet-loss lays the

groundwork for our future work.

VI. RELATED WORK

We, now will navigate the landscape of related work and

compare it to P4CONSIST in terms of the faults which cause

inconsistency during runtime (§II-B).

Consistency-based verification tools: [60]–[62] verify the

consistency of the control-data plane in SDNs. These tools,

however, need sufficient customizations or redesigning to

be applicable in the context of P4 SDNs. Such control-

data plane consistency is verified continuously or peri-

odically by P4CONSIST. Recently, [45] has proposed a

fuzzing methodology to verify the control-data plane inconsis-

tency in OpenFlow-based SDNs. This approach, however, is

OpenFlow- and OpenvSwitch-specific and in addition is prone

to false positives due to bloom filters used in tagging whereas

P4CONSIST uses symbolic execution and DFS with cutoffs to

detect inconsistencies in the P4 SDNs. In addition, one recent

work [63] has motivated the control-data plane inconsistency

in P4-enabled SmartNICs [64], however, it takes into account

performance-based properties (i.e., latency, throughput) and

not functional properties (i.e., path or rule correctness) like

P4CONSIST.

Control- or data plane-based testing tools: The related

work in the area of control plane [31], [48]–[50], [65]–

[72] either check the controller-applications or the control-

plane compliance with the high-level network policy. These

approaches are insufficient to check the physical data plane

compliance with the control plane. The data plane tools either

test the rules or the paths whereas P4CONSIST tests both

together. In the case of faults where path gets affected, i.e.,

when the path is same even if different rules are matched, path

trajectory tools [61], [73]–[78] fail. The approaches based on

active-probing [20], [22], [41], [77], [79]–[81] do not detect

the faults caused by hidden or misconfigured rules on the data

plane which may only match the active traffic. These tools,

however, only generate the probes to test the rules known or

synced to the controller. Such faults are detected continuously

or periodically by P4CONSIST.

P4-based verification tools: Recently in the area of P4-related

verification, a plethora of tools [7]–[12], [31] have surfaced.

They, however, majorly debug only P4 programs using static

program analysis techniques like symbolic execution or Hoare

logic. Runtime bugs and inconsistency which happen once the

P4 program is compiled to run on the P4 switch and subjected

Related work Context Runtime Verification C-D inconsistency

detection

PAZZ [45] SDN X X

VeriDP [61] SDN X (X)4

Cocoon [12] P4 × ×

Vera [8] P4 × ×

p4v [7] P4 × ×

P4-ASSERT [9], [10] P4 × ×

P4NOD [82] P4 × ×

P4pktgen [11] P4 × ×

P4RL [13] P4 X (X)5

P4CONSIST X X X

Table II: Relevant related work in SDN/P4 verification. Note, Xdenotes the
capability, (X) denotes a part of full capability, and × denotes the missing
capability. C-D denotes control-data plane.

to input traffic cannot be detected by these tools. Recently,

P4RL [13] has performed runtime verification of a single P4

switch via reinforcement learning guided fuzzing. However,

it applies to only a single P4 switch and not P4 SDN. In

addition, it just can detect the control-data plane inconsistency

only in the case of path deviation and not rule deviation.

P4CONSIST continuously or periodically detects such runtime

faults causing inconsistency.

VII. DISCUSSION

P4 programs direct the packet processing pipeline but not

the exact ruleset offered by the control plane that determines

the forwarding behavior. Without having a deep understand-

ing of control-data plane interactions, we cannot determine

the exact data plane behavior. P4Runtime is one positive

effort in standardizing the control-data plane interactions to

make the data plane behavior more predictable by removing

the shortcomings of OpenFlow [83] and Switch Abstraction

Interface (SAI) [84]. It allows the runtime-control of the

arbitrary forwarding planes by defining open, standard and

silicon-independent API. We realize, however, there is a big

space for improvement in verification techniques when it

comes to control-data plane interactions as the controller is an

independent software from the P4 program and how these two

independent programs interplay to enforce a common high-

level policy gets tricky as inconsistencies arise. To summa-

rize, the verification of network inconsistencies has become

increasingly indispensable.

Now, two important questions come to our mind: “How

frequently to check the inconsistencies?” and “how often to

check the inconsistencies?”. To answer the former, we need a

P4CONSIST-like continuous testing mechanism as control and

data plane programs may evolve over time. Unquestionably,

the temporal dimension aggravates the challenges to verify the

inconsistencies. To answer the latter, combinatorial complexity

caused by path explosion even in simple topologies and config-

urations may contribute to exponential delays in detecting the

inconsistencies. Thus, we need strong semantic foundations

while designing the verification methodologies.

Furthermore, detecting inconsistencies is not just about

resources to invest but about test traffic as well. Active probing

4Detects only path related inconsistency in SDNs.
5Can detect only path related inconsistency in a single P4 switch and not

a P4 SDN.

13

is a useful tool in fault detection, however, it has some inherent

drawbacks. For instance, one needs to make sure that active

traffic depicts a true picture of the network and does not

receive any differential treatment as compared to the original

production traffic. In addition, the active traffic should not

overwhelm or congest the network with multiple probes and

thus, leaving no resources for the production or passive traffic.

We, however, realise that greedily solving the minimization of

test packets, a well-known NP-complete problem for general

graphs, obtains sub optimal results.

Lastly, we understand that the abstraction of programmabil-

ity is not just a harbinger of new capabilities and flexibilities

but also new challenges. While the panoply of benefits gained

from such flexibility and customizability can improve (cost-

)efficiency and unleash tremendous innovation potentials, the

challenges get more complex. The networks are increasingly

becoming a cocktail of vendor-specific, open source, in-house

libraries and thus, exacerbating the challenges to verify the

networks. In order to deal with such a dynamic ecosystem, we

require a constant reassessment and redesign of the existing

network verification methodologies.

VIII. CONCLUSION

This paper presented P4CONSIST, a novel network verifi-

cation system that aims to detect the control-data plane incon-

sistency in P4 SDNs in an automated manner. In P4CONSIST,

the actual report from the data plane and expected report

from the control plane are compared to verify control-data

plane consistency. Our evaluation of P4CONSIST over vari-

ous network topologies and configurations of different scale

showed that P4CONSIST efficiently detects the faults causing

inconsistency while requiring minimal data plane resources

(e.g., link bandwidth and switch rules).

IX. ACKNOWLEDGEMENT

We thank Anja Feldmann for the initial discussions. We also

thank Georgios Smaragdakis and our anonymous reviewers

for their helpful feedback. This work and its dissemination

efforts were conducted as a part of Verify project supported

by the German Bundesministerium für Bildung und Forschung

(BMBF) Software Campus grant 01IS17052 and also sup-

ported by the WWTF project WHATIF (ICT19-045).

REFERENCES

[1] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[2] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 87–95, 2014.

[3] P. L. Consortium, “P4 language and related specifications,” https://p4.
org/specs/, accessed: 2019-03.

[4] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM

SIGCOMM, 2015.

[5] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“Netchain: Scale-free sub-rtt coordination,” in 15th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 18), 2018, pp.
35–49.

[6] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 2017, pp. 121–136.

[7] J. Liu et al., “P4v: Practical verification for programmable data planes,”
in Proceedings of the 2018 Conference of the ACM Special Interest

Group on Data Communication, ser. SIGCOMM ’18. New York, NY,
USA: ACM, 2018, pp. 490–503.

[8] R. Stoenescu et al., “Debugging p4 programs with vera,” in Proceedings

of the 2018 Conference of the ACM Special Interest Group on Data

Communication, ser. SIGCOMM ’18. New York, NY, USA: ACM,
2018, pp. 518–532.

[9] L. Freire et al., “Uncovering bugs in p4 programs with assertion-based
verification,” in Proceedings of the Symposium on SDN Research, ser.
SOSR ’18. New York, NY, USA: ACM, 2018, pp. 4:1–4:7.

[10] M. Neves et al., “Verification of p4 programs in feasible time using
assertions,” in Proceedings of the 14th International Conference on

Emerging Networking EXperiments and Technologies, ser. CoNEXT ’18.
New York, NY, USA: ACM, 2018, pp. 73–85.

[11] A. Nötzli et al., “P4pktgen: Automated test case generation for p4
programs,” in Proceedings of the Symposium on SDN Research, ser.
SOSR ’18. New York, NY, USA: ACM, 2018, pp. 5:1–5:7.

[12] L. Ryzhyk, N. Bjørner, M. Canini, J. Jeannin, C. Schlesinger, D. B.
Terry, and G. Varghese, “Correct by construction networks using step-
wise refinement,” in USENIX NSDI, 2017.

[13] A. Shukla, K. N. Hudemann, A. Hecker, and S. Schmid, “Runtime
Verification of P4 Switches with Reinforcement Learning,” in ACM

SIGCOMM NetAI, 2019.
[14] “Microsoft: misconfigured network device led to azure outage,”

http://www.datacenterdynamics.com/content-tracks/servers-storage/
microsoft-misconfigured-\\network-device-led-to-azure-outage/68312.
fullarticle/.

[15] “France seeks influence on telcos after out-
age,” https://theneteconomy.wordpress.com/2012/07/11/
france-seeks-influence-on-telcos-after-outage/.

[16] “Cloud leak: Wsj parent company dow jones exposed customer data,”
https://www.upguard.com/breaches/cloud-leak-dow-jones/.

[17] “Con-ed steals the ’net’,” http://dyn.com/blog/coned-steals-the-net/.
[18] D. Madory, “Renesys blog: Large outage in pakistan,” Blog, 2011.
[19] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “A Survey

Of Network Troubleshooting,” Stanford University, Tech. Rep. TR12-
HPNG-061012, 2012. [Online]. Available: http://yuba.stanford.edu/
∼peyman/docs/atpg-survey.pdf

[20] ——, “Automatic test packet generation,” in Proceedings of the 8th

international conference on Emerging networking experiments and tech-

nologies. ACM, 2012, pp. 241–252.
[21] P. Gawkowski and J. Sosnowski, “Experiences with software imple-

mented fault injection,” in Architecture of Computing Systems (ARCS),
2007.

[22] P. Perešı́ni, M. Kuźniar, and D. Kostić, “Monocle: Dynamic, Fine-
Grained Data Plane Monitoring,” in Proc. ACM CoNEXT, 2015.

[23] “The anatomy of a leak: As 9121,” https://www.nanog.org/meetings/
nanog34/presentations/underwood.pdf.

[24] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding bgp mis-
configuration,” in ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4. ACM, 2002, pp. 3–16.

[25] “Cloud leak: How a verizon partner exposed millions of customer
accounts,” https://www.upguard.com/breaches/verizon-cloud-leak?utm
campaign=Verizon%20Cloud%20Leak&utm content=57437217&utm
medium=social&utm source=twitter/.

[26] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know about
sdn flow tables,” in Proc. PAM, 2015.

[27] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in Pro-

ceedings of the Symposium on SDN Research. ACM, 2016, p. 6.
[28] J. Rexford, “SDN Applications,” in Dagstuhl Seminar 15071, 2015.
[29] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kostic, “A

SOFT Way for Openflow Switch Interoperability Testing,” in Proc. ACM

CoNEXT, 2012.
[30] M. Kuzniar, P. Peresini, and D. Kostić, “Providing reliable fib update

acknowledgments in sdn,” in Proc. ACM CoNEXT, 2014, pp. 415–422.
[31] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,

“Checking Beliefs in Dynamic Networks,” in Proc. USENIX NSDI,
2015.

[32] P. A. working group, “Mri tutorial,” https://github.com/p4lang/tutorials/
tree/master/exercises/mri, P4 Language Consortium, June 2018, ac-
cessed: 2019-03.

14

[33] P4.org, “Behavioral model repository,” https://github.com/p4lang/
behavioral-model, P4 Language Consortium, October 2015, accessed:
2019-03.

[34] P. A. working group, “Initial draft specification for p4 runtime,” https:
//p4.org/p4-runtime/, P4 Language Consortium, October 2017.

[35] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn,” ACM SIGCOMM Com-

puter Communication Review, vol. 43, no. 4, pp. 99–110, 2013.
[36] P4 Language Community, “p4c,” 2019. [Online]. Available: https:

//github.com/p4lang/p4c
[37] L. Vicisano and A. Bas, “Announcing p4runtime - a

contribution by the p4 api working group,” https://p4.org/api/
announcing-p4runtime-a-contribution-by-the-p4-api-working-group.
html, P4 Language Consortium, July 2017.

[38] P4.org, “Behavioral model targets,” https://github.com/p4lang/
behavioral-model/blob/master/targets/README.md, P4 Language
Consortium, April 2016, accessed: 2019-03.

[39] B. Networks. (2019) Tofino. https://www.barefootnetworks.com/
products/brief-tofino.

[40] OpenFlow Spec, “https://www.opennetworking.org/images/
/openflow-switch-v1.5.1.pdf,” p. 51, 2015.

[41] P. Zhang, C. Zhang, and C. Hu, “Fast testing network data plane with
rulechecker,” in Network Protocols (ICNP), 2017 IEEE 25th Interna-

tional Conference on. IEEE, 2017, pp. 1–10.
[42] J. Sommers, H. Kim, P. Barford, and P. Barford, “Harpoon: a flow-level

traffic generator for router and network tests,” in ACM SIGMETRICS

Performance Evaluation Review, vol. 32, no. 1. ACM, 2004, pp. 392–
392.

[43] N. Bonelli, S. Giordano, G. Procissi, and R. Secchi, “Brute: A high
performance and extensible traffic generator,” in Proc. of SPECTS, 2005,
pp. 839–845.

[44] G. Antichi, A. Di Pietro, D. Ficara, S. Giordano, G. Procissi, and
F. Vitucci, “Bruno: A high performance traffic generator for network
processor,” in 2008 International Symposium on Performance Evaluation

of Computer and Telecommunication Systems. IEEE, 2008, pp. 526–
533.

[45] A. Shukla, S. J. Saidi, S. Schmid, M. Canini, T. Zinner, and A. Feld-
mann, “Towards Consistent SDNs: A Case for Network State Fuzzing,”
in IEEE Transactions on Network and Service Management, 2019.

[46] P4.org, “In-band network telemetry (int) specification v0.5 and
1.0,” https://github.com/p4lang/p4-applications/blob/master/docs, P4
Language Consortium, April 2018, accessed: 2019-03.

[47] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in ACM SIGCOMM

Computer Communication Review, vol. 41, no. 4. ACM, 2011, pp.
290–301.

[48] P. Kazemian, G. Varghese, and N. McKeown, “Header Space Analysis:
Static Checking for Networks,” in Proc. USENIX NSDI, 2012.

[49] P. Kazemian et al., “Real Time Network Policy Checking Using Header
Space Analysis,” in Proc. USENIX NSDI, 2013.

[50] H. Yang and S. S. Lam, “Real-Time Verification of Network Properties
Using Atomic Predicates,” IEEE/ACM Transactions on Networking,
vol. 24, no. 2, pp. 887–900, April 2016.

[51] T.-Y. Cheung, “Graph traversal techniques and the maximum flow
problem in distributed computation,” IEEE Transactions on Software

Engineering, no. 4, pp. 504–512, 1983.
[52] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM

journal on computing, vol. 1, no. 2, pp. 146–160, 1972.
[53] Y. Zhu et al., “Packet-level telemetry in large datacenter networks,”

in ACM SIGCOMM Computer Communication Review, vol. 45, no. 4.
ACM, 2015, pp. 479–491.

[54] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, “Detection
and localization of network black holes,” in INFOCOM 2007. 26th IEEE

International Conference on Computer Communications. IEEE. IEEE,
2007, pp. 2180–2188.

[55] P. Biondi and the Scapy community, “Scapy-documentation,” https://
scapy.readthedocs.io/en/latest/, accessed: 2019-03.

[56] A. Hagberg, D. Schult, and P. Swart, “Networkx reference release 2.2,”
2018.

[57] HashiCorp, “Introduction to Vagrant,” https://www.vagrantup.com/intro/
index.html, accessed: 2019-03.

[58] S. Panchen, P. Phaal, and N. McKee, “Inmon corporation’s sflow: A
method for monitoring traffic in switched and routed networks,” 2001.

[59] A. Turner and M. Bing, “Tcpreplay: Pcap editing and replay tools for*
nix,” online], http://tcpreplay. sourceforge. net, 2005.

[60] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks.” in NDSS, vol. 15, 2015,
pp. 8–11.

[61] P. Zhang et al., “Mind the gap: Monitoring the control-data plane
consistency in software defined networks,” in Proceedings of the 12th

International on Conference on emerging Networking EXperiments and

Technologies. ACM, 2016, pp. 19–33.

[62] A. Shaghaghi, M. A. Kaafar, and S. Jha, “Wedgetail: An intrusion
prevention system for the data plane of software defined networks,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and

Communications Security. ACM, 2017, pp. 849–861.

[63] N. Gray, A. Grigorjew, T. Hosssfeld, A. Shukla, and T. Zinner, “High-
lighting the gap between expected and actual behavior in p4-enabled
networks,” IFIP/IEEE International Symposium on Integrated Network

Management Demos, 2019.

[64] “Netronome. open vswitch offload and acceleration with agilio
cx smartnics,” https://www.netronome.com/media/redactor files/WP
OVS Benchmarking.pdf.

[65] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “Buzz: Testing
context-dependent policies in stateful networks,” in Proc. USENIX NSDI,
2016, pp. 275–289.

[66] S. K. Fayaz and V. Sekar, “Testing stateful and dynamic data planes
with flowtest,” in Proc. SIGCOMM Workshop HotSDN. ACM, 2014,
pp. 79–84.

[67] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the Data Plane with Anteater,” in SIGCOMM, 2011.

[68] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Presented as part

of the 10th {USENIX} Symposium on Networked Systems Design and

Implementation ({NSDI} 13), 2013, pp. 15–27.

[69] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown,
and A. Vahdat, “Libra: Divide and Conquer to Verify Forwarding Tables
in Huge Networks,” in NSDI, vol. 14, 2014.

[70] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A NICE
Way to Test Openflow Applications,” in Proc. USENIX NSDI, 2012.

[71] C. Scott et al., “Troubleshooting blackbox sdn control software with
minimal causal sequences,” ACM SIGCOMM Computer Communication

Review, vol. 44, no. 4, pp. 395–406, 2015.

[72] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. D. Millstein, “A general approach to network
configuration analysis.” pp. 469–483, 2015.

[73] N. Handigol et al., “I Know What Your Packet Did Last Hop: Using
Packet Histories to Troubleshoot Networks,” Proc. USENIX NSDI, pp.
71–85, 2014.

[74] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker, “Compiling Path
Queries,” in Proc. USENIX NSDI, 2016.

[75] P. Tammana et al., “CherryPick: Tracing Packet Trajectory in Software-
Defined Datacenter Networks,” in SOSR, 2015.

[76] P. Tammana, R. Agarwal, and M. Lee, “Simplifying datacenter network
debugging with pathdump,” in 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2016, pp. 233–248.

[77] K. Agarwal et al., “SDN traceroute : Tracing SDN Forwarding without
Changing Network Behavior,” HotSDN 2014, pp. 145–150, 2014.

[78] P. Zhang, S. Xu, Z. Yang, H. Li, Q. Li, H. Wang, and C. Hu, “Foces:
Detecting forwarding anomalies in software defined networks,” 2018.

[79] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen, “Is every
flow on the right track?: Inspect sdn forwarding with rulescope,” pp.
1–9, 2016.

[80] Y.-M. Ke, H.-C. Hsiao, and T. H.-J. Kim, “Sdnprobe: Lightweight fault
localization in the error-prone environment,” 2018.

[81] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières,
“Millions of little minions: Using packets for low latency network pro-
gramming and visibility,” in ACM SIGCOMM Computer Communication

Review, vol. 44. ACM, 2014, pp. 3–14.

[82] N. Lopes, N. Bjørner, N. McKeown, A. Rybalchenko, D. Talayco, and
G. Varghese, “Automatically verifying reachability and well-formedness
in p4 networks,” Technical Report, Tech. Rep, 2016.

[83] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[84] “Switch abstraction interface,” https://github.com/opencomputeproject/
SAI.

