
Accuracy vs. Cost Trade-off for Machine Learning
Based QoE Estimation in 5G Networks

Susanna Schwarzmann∗, Clarissa Cassales Marquezan ‡,
Riccardo Trivisonno ‡, Shinichi Nakajima∗†¶, Thomas Zinner§

∗ Technische Universität Berlin, 10587 Berlin
‡ Huawei Technologies, Germany, 80992 München

† Berlin Big Data Center, 10587 Berlin
¶ RIKEN Center for AIP, 103-0027, Tokyo

§ NTNU, 7041 Trondheim

Abstract—Since their first release, 5G systems have been
enhanced with Network Data Analytics Functionalities (NWDAF)
as well as with the ability to interact with 3rd parties’ Application
Functions (AFs). Such capabilities enable a variety of potentials,
unimaginable for earlier generation networks, notable examples
being 5G built-in Machine Learning (ML) mechanisms for QoE
estimation, subject of this paper. In this work, an ML-based
mechanism for video streaming QoE estimation in 5G networks
is presented and evaluated. The mechanism relies on an ML
algorithm embedded in NWDAF, the collection of 5G network
KPIs, and the collection of QoE information from video streaming
service provider, i.e., the 3rd party AF. The mechanism has been
evaluated in terms of QoE estimation accuracy against the cost in
terms of required input sources and data for the estimation, and
its performance has been compared to alternative methodologies
not making use of ML. The evaluation, via simulation activity,
clearly highlights the benefits of the proposed mechanism. Based
on the derived results, the required input sources are ranked
with respect to their importance.

Index Terms—HAS, QoE, Machine Learning, 5G

I. INTRODUCTION

Online video streaming has become a very popular appli-
cation in today’s networks and consequently contributes a
large fraction of the global IP traffic. Cisco forecasts that
mobile video streaming will make up nearly 80% of the overall
mobile data traffic by 2022 [1]. Driven by business incentives,
providing a good Quality of Experience (QoE) is of up-most
importance for Mobile Network Operators (MNOs). However,
while the MNO has capabilities to perform application-aware
resource control, it is the content provider that is capable to
obtain a reliable QoE estimation based on application data.

This discrepancy can be tackled by the 5G system archi-
tecture, which introduces extended capabilities for informa-
tion exchange between MNOs and third party Application
Functions (AFs). 5G Network Functions (NFs) and AFs have
standardized interfaces that allow a content provider (CP) to
communicate application-specific information, such as QoE,
to an MNO. However, this information exchange increases
the costly control plane traffic and the MNO is depending
on the information provided by the CP, i.e., the MNO cannot
influence the type, granularity, or frequency of the received

data. To nevertheless obtain an estimation of the QoE in the
system at any point in time, MNOs of 5G networks can apply
different techniques to derive the QoE from network-level
statistics, as the newly introduced Network Data Analytics
Function (NWDAF) specifies.1

Still it is not clear which techniques are appropriate for de-
riving the QoE from network-level statistics. The applicability
of a certain technique is determined by i) the accuracy that
can be achieved and ii) the costs that are incurred. It is to
be assumed that the more network statistics, i.e., features, are
provided, the more accurate the QoE can be estimated. To
the best of our knowledge, this trade-off between costs, e.g.
expressed as the efforts for collecting network statistics, and
the accuracy has not been studied so far.

This paper aims at filling this gap by analyzing this trade-off
for QoE estimation based on a video streaming use-case. As
an enhancement to our prior work [2], we rely on a mechanism
which tunes both, the selected features and the QoE estimation
model, for a limited number of features. This allows to
evaluate the performance in terms of estimation accuracy
versus costs in terms of required input data. In order to study
and emphasize the possible benefits from ML, we compare the
proposed mechanism with two simple alternative approaches
for the sake of benchmarking. Furthermore, we reveal the
mobility of a video streaming client as an influence factor
on both, the estimation accuracy and the relevant features.

The remainder of this paper is structured as follows. Sec-
tion II presents background and related work. Section III
details on our methodology. Afterwards, Section IV presents
the results and Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

Machine learning is widely applied in the context of clas-
sifying QoE influence factors, such as bitrate, resolution, or
stallings, from encrypted network traffic. For example, the
capabilities of different ML-based algorithms to classify such
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influence factors are studied in [3]–[8]. Instead of classifying
specific QoE influence factors, the works presented in [9]
and [4] aim at classifying an overall QoE score on MOS
scale, using the standardized ITU-T P.1203 model [10]. QoE
estimation focusing mobile networks is given in [11], which
studies the performance of various classifiers and the impact
of the used features retrieved from network- and application-
related data. However, it is desirable to estimate the QoE
solely using network-related features, as such data is typically
available to an MNO. Such a solution is presented in [12],
focusing on LTE networks.

Applying machine learning in 5G gains an ever-increasing
interest, e.g. for predicting the number of active users [13], for
traffic forecasting [14], or cognitive networking [15]. A first
QoE-centric approach provides a service quality prediction
model for UHD real time video streaming [16] and a network
resource allocation system for autonomous QoE-aware 5G
network management is discussed in [17].

In our previous work [2] we proposed a possible integra-
tion of an ML-based QoE estimation workflow into the 5G
architecture, making use of the newly introduced network
functions NWDAF and AF. We evaluated the performance
of two basic regression methods for an increasing number of
features, following a greedy approach. Based on this, we now
use a more sophisticated method, which retrieves an optimal
set of features for a given cost limit, i.e. the number of features.
This allows to analyze the trade-off between the costs, e.g.
expressed as the number of input features, and the estimation
accuracy. We furthermore highlight the benefits of using more
complex ML-based approaches over simple QoE estimation
techniques, such as least-square fittings.

III. METHODOLOGY

In our previous work [2], we proposed a three step approach
for estimating QoE in 5G networks. Firstly, ground-truth QoE
is received via the AF and made available to the NWDAF.
Next, the QoE values and NWDAF statistics are used to reveal
relevant features, train models, and evaluate the performance
of regression methods for different sets of input features.
Finally, the QoE can be estimated using the trained model
and NWDAF network statistics.

In this work, we detail on the second step and propose to
use the more sophisticated method least absolute shrinkage
and selection operator (LASSO) [18], which finds optimized
feature sets and models given a limited number of features to
be used. In the following, we describe LASSO and two bench-
mark approaches which require less data analytics. Afterwards,
we introduce the simulative experiments, the collected data,
and show how we quantify the costs in terms of monitoring
efforts.

A. Feature Selection and QoE Estimation Using LASSO

Our goal is to estimate the QoE y from a limited number
of features as accurate as possible under a limited total
cost of making the necessary features available (in the run
time). This can be expressed in a standard machine learning

formulation, called the regularized linear regression. Let cd be
the computation/communication cost of the d-th feature xd.
Then, we want to solve the following problem to minimize
the regression error with regard to weights:

min
w

L ≡ (y −
∑D

d=1 wdxd)
2 (1)

subject to
∑D

d=1 cdδ(wd ̸= 0) ≤ λ0.

Here, w = (w1, . . . , wD) ∈ RD is the regression parameter,
λ0 > 0 is the total cost budget, and δ(·) is the indicator
function giving one if the event is true and zero otherwise.
Unfortunately, the problem (1) is known to be intractable (NP-
hard) because of the non-convex constraint, for which a convex
surrogate is often used:

min
w

L = (y −
∑D

d=1 wdxd)
2 (2)

subject to
∑D

d=1 cd|wd| ≤ λ1,

where y and x = (x1, . . . , xD) are assumed to be standard-
ized, so that the means and the standard deviations of y and
{xd; d = 1, . . . , D} are all zero and unity, respectively. The
problem (2) is now convex, and can be simplified as

min
w

L ≡ (y −
∑D

d=1 wdxd)
2 + α∥w∥1, (3)

for the regularization parameter α > 0 (which should be
appropriately set so that it matches λ1) and the pre-processed
features such that the means and the standard deviations of
{xd} are zero and c−1

d , respectively. ∥w∥1 ≡
∑D

d=1 |wd| is
called the ℓ1-norm, which is often used in machine learning
in order to induce sparsity—many of {wd} get exactly zero as
α grows. It was proven that the solution of the problem (3) is
piece-wise linear to α, and various efficient solvers have been
developed and are available online.2

The number
∑D

d=1 δ(wd ̸= 0) of used features is monoton-
ically decreasing with respect to α, providing the best feature
set for each number of used features. When the total cost bud-
get λ0 is given, we evaluate the total cost

∑D
d=1 cdδ(wd ̸= 0)

for each of those best feature sets, and choose the one giving
the lowest regression error under the budget.

In later parts of this work, we refer to the ML-based LASSO
approach as ML. Please note that adapting α allows to tune
the number of input features used for the estimation model,
and as a consequence, the obtained estimation accuracy. We
will detail on two special feature set sizes obtained with the
LASSO. The first one is the feature set which yields the
highest estimation accuracy among all feature sets, which we
refer to as MLopt. The second one is to use only one single
feature, which we refer to as ML1.

B. Benchmarking and Performance Metrics

Besides LASSO, we consider two further approaches for
QoE estimation, which require less data analytics and come
with a significantly lower complexity. They are used as a
baseline against the ML approach. We denote the first option as

2We used python’s sklearn implementation for our studies:
scikit-learn.org/stable/modules/generated/sklearn.linear model.Lasso.html



average (AVG). The QoE estimation is in any case the average
QoE of the input training data, i.e. the average of a subset
of the ground-truth QoE values. Hence, it always returns the
same value for the estimated QoE and does not require any
input features at all. The second option is the least-square fit
(LSF). It estimates the QoE based on a least-square fit of the
average UE downlink throughput and the ground-truth QoE
of the training set. The average UE downlink was chosen as
it turned out to be the most powerful feature for estimating
QoE. From our data, 70% are used for training the models
or generating the fitting functions and 30% are used to apply
the models and evaluate their QoE estimation accuracy. We
perform a ten-fold cross-validation. The accuracy is evaluated
using the metrics mean squared error (MSE), median absolute
error (MedAE), and the coefficient of determination (R2).

C. Simulation Environment and Experiments

To simulate the video clients and the network, we use
OMNeT++ [19] and the frameworks INET and SimuLTE.3 We
have a single mobile cell which is serving 80 clients to gen-
erate a decent load in the system. We run several experiments
that differ in terms of the clients’ movement characteristics.
Basically, we consider two different types of clients. While the
stationary clients do not move during their video sessions, the
moving clients are constantly moving within the cell. Thereby,
the clients either move along with the speed of a pedestrian or
with vehicle speed, which are assumed to be 3 kmph and 50
kmph, respectively. Our scenarios cover several distributions
of the different client types. We consider having only static
clients, having only moving clients, and some mixed scenarios.
In order to obtain a realistic behavior of the moving clients, we
use the small world in motion (SWIM) mobility model [20], to
determine the paths of the clients between their initial positions
and one or more points of interest (POI). We consider four
different POI settings: a single POI which is located at the
edge of the cell, a single POI which is very close to the access
node (AN), and 10 and 100 POIs, which are randomly placed
within the mobile cell. Each configuration, i.e. setting of POI
and client type distribution, is simulated using several seeds,
whereby the seed determines the (initial) UE placement.

D. Collected Data and Network Features

We collect video streaming KPIs, such as video quality,
initial delay, and number and duration of video interruptions
as application-level data. From these KPIs, we compute the
QoE score ranging from 1 to 5 for each video session using
the ITU-T P.1203 model [10], [21]. We refer to this data as the
QoE ground-truth. The network-related data monitored in the
simulation is summarized in Table I as so-called monitoring
types. In total, we have eight different monitoring types, which
yield time-series on a per-second scale. Furthermore, the table
shows the statistics applied on each of the time series in order
to generate features. These features are later used together
with the QoE ground-truth to train models, that allow a QoE

3The simulation environment used in this work is available on Github.
github.com/fg-inet/vagrant-omnet-simulation-mobility

TABLE I: Monitored data and statistics for feature generation.

M
on
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d
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Monitoring Type Description
AN Tp Dl Access Node downlink (Dl) throughput
AN Tp Ul Access Node uplink (Ul) throughput
UE Tp Dl UE Dl throughput
UE Tp Ul UE Ul throughput
CQI Dl Dl channel quality indicator (CQI)
CQI Ul Ul CQI measured at UE
M RTT Measured RTT at the UE
S RTT Smoothed RTT using a moving average

St
at

is
tic

s average, minimum, maximum, 25th percentile, 75th per-
centile, median, standard deviation (std), variance, coefficient
of variation (cvar), kurtosis, skewness, unbiased standard error
of the mean (sem)

estimation only based on network-related features. In total, we
obtain 96 different features.

E. Quantifying the Costs for QoE Estimation

In order to compare the costs for the ML-based QoE estima-
tion approach and the benchmark approaches, we rely on two
simple quantities. The first one is the number of input features.
The second one is the number of different monitoring types
that are needed in order to generate the respective features.
For example, if a model requires as input features mean
UE Tp Dl, std UE Tp Dl, and std AN Tp Dl, the number
of monitoring types reduces to two, as mean UE Tp Dl and
std UE Tp Dl both can be retrieved by monitoring a UE’s
downlink throughput.

In the context of costs, we want to emphasize that certain
features are more expensive than others. For example, mon-
itoring the throughput of an AN is cheaper than monitoring
the throughput per UE, given that more than one UE is active
in a cell. Thereby, the margin increases with the number
of active clients in the system. Furthermore, there are costs
for processing the data to generate features, as well as costs
for transmitting and storing the data. These cost factors are
omitted in this work.

IV. EVALUATION

In the following section, we compare the cost and accuracy
for LASSO against the benchmark approaches and thereby
consider the user mobility as a possible influence factor.
Next, we analyze the cost-accuracy trade-off for the ML-based
approach in more detail and present the relevant features for
exemplary feature set sizes. The section concludes with a short
discussion of the results.

A. Costs and Accuracy: LASSO vs. Benchmarks

Table II shows the results obtained when estimating the
QoE either as the average (AVG) of the training data, based
on the least-square fit (LSF) using the average UE downlink
throughput, or applying machine learning using one feature
(ML1) or the optimized feature set (MLopt). In terms of
estimation accuracy, there is no significant difference between
applying AVG or LSF. However, LSF comes with increased
costs, as it needs to monitor the UE downlink throughput.

When relying on the average UE downlink throughput only,
but using the more complex ML approach (ML1) instead of the



TABLE II: Accuracy of different QoE estimation techniques.
#MT denotes the number of monitoring points.

Dataset Performance Cost
MSE MedAE R2 #features #MT

AV
G all 0,59933 0,50238 -0,00014 0 0

stationary 1,03077 0,80394 -0,00083 0 0
moving 0,46028 0,42191 -0,00079 0 0

L
SF

all 0.59576 0.50855 0.00354 1 1
stationary 1.07177 0.83727 0.00189 1 1
moving 0.47096 0.43967 -0.00182 1 1

M
L

1 all 0.57159 0.49499 0.04616 1 1
stationary 0.59413 0.64491 0.42312 1 1
moving 0.29409 0.34732 0.36056 1 1

M
L

op
t all 0.14820 0.18207 0.75269 33 8

stationary 0.18016 0.23412 0.82507 35 8
moving 0.12682 0.17998 0.72425 36 8

basic least-square fit, the estimation accuracy can be increased
for the moving and the stationary clients. For the stationary
set, the MSE can be reduced from 1.07 to 0.59 and for the
mobile set from 0.47 to 0.29. However, if we compare LSF
and ML1 for the whole data set, i.e. all, the improvement by
using machine learning is not significant.

All performance metrics can be significantly improved when
using the optimized feature sets obtained by LASSO (MLopt).4

While we obtain an MSE of roughly 0.6 with AVG, LSF, and
ML1 in the complete dataset, i.e. all, this value can be reduced
to less than 0.15 with MLopt. However, the costs in terms of
number of features increases to more than 30. Obtaining these
features requires monitoring all of the eight monitoring types.

Another observation from the table is the increased estima-
tion error for the stationary clients, compared to the moving
ones. When using LSF or AVG, the QoE of the moving clients
can be estimated with an MSE below 0.5. In case of the non-
mobile, i.e. stationary clients, the MSE is above 1.0. This issue
is investigated in more detail in the following paragraph.

B. Impact of Mobility on QoE Scores

As discussed above, for estimating the QoE of moving
clients, we obtain significantly lower errors than for estimating
the QoE of those clients who do not move. This indicates an
easier QoE estimation for moving clients. To investigate this
issue in more detail, we run additional experiments, whereby
we consider 80 clients, all moving with a speed of either 0, 3,
50, or 120 kmph. To vary the (initial) UE placement, we use
6 different seeds.

Figure 1a shows a decreasing QoE when the clients move
faster. While the non-moving UEs obtain an average QoE
score of 2.96, the score decreases to 2.68 when clients move
with a speed of 3 kmph and to 2.63 for a speed of 50 kmph.
We can also observe that for the stationary clients, different
seeds can result in significantly different QoE scores. The
smallest average QoE for non-moving clients is 2.74, the
highest average value is 3.25. For the moving clients, the seed
has a much lower influence on the resulting average QoE.

4The features included in the optimized sets can be found here:
github.com/fg-inet/vagrant-omnet-simulation-mobility

(a) Average QoE (b) QoE Standard Deviation

Fig. 1: Impact of speed of move on QoE. Dots denote results
of specific (initial) UE placements, X denotes overall results.

Figure 1b shows that the QoE values of stationary clients
have a higher standard deviation compared to the moving ones.
In the experiments with non-moving clients, the QoE standard
deviation is 0.94. This value decreases to 0.64 for clients with
a speed of 3 kmph.

From the above observations, we can conclude that moving
clients have a lower average QoE and a lower standard
deviation of QoE. This can be explained as follows. For the
stationary clients, the position in the cell is the determining
factor for the quality of their video stream. While clients that
are placed nearby the AN obtain high QoE scores, the clients
at the edge of the cell suffer of low video performance. This
effect compensates for the clients that are moving between
their initial positions and the points of interest. In Table II,
we showed that with AVG and LSF, the QoE estimation error
for the data set of moving clients is drastically lower than for
the set of stationary clients. This can now be explained with
the reduced variance in the data set of moving clients.

C. Cost vs. Accuracy Trade-off for LASSO

By tuning the α-parameter, LASSO allows to tune the
number of features that are used for estimating the QoE.
In general, a larger feature set results in a more accurate
estimation. However, from an MNO perspective, the number
of necessary features should be as low as possible. In the
following, we analyze the costs in terms of the number
of features needed and the estimation accuracy that can be
achieved with a certain number of features. Figure 2 shows
the estimation accuracy in terms of MSE and MedAE as well
as the resulting R2 score that can be achieved for different
feature set sizes. In case only a single feature is used, the
values correspond to those shown in Table II for ML1. In
all cases, when α was tuned so to obtain a single feature,
the chosen feature was the average UE downlink throughput.
The estimation errors for both, MSE (Figure 2a) and MedAE
(Figure 2b), is higher for the data set of static clients, compared
to the moving ones. We observe a contrary behavior for the R2

score (Figure 2c), which is in any case better for the stationary
clients than for the moving clients. This is due to the fact that
the variance of QoE is larger for stationary clients than for
moving clients, and implies that introducing an ML model for
QoE estimation is more effective for stationary clients, while
a more accurate prediction is achieved for moving clients.

Figure 3 illustrates the number of monitoring types needed
to generate the features leading to a certain accuracy, as shown



(a) MSE (b) MedAE (c) R2

Fig. 2: Influence of feature set size on the QoE estimation performance for the different datasets.

in Figure 2. The total number of available monitoring types
is eight (see Table I). Please note that a single monitoring
type can imply more than one feature. As described above,
whenever the QoE was estimated using only a single feature,
it was based on the average UE downlink throughput. Ac-
cordingly, having only one monitoring type implies that this
is the UE downlink throughput. In this case, the MSE values
range between 0.59 (stationary) and 0.26 (moving). As soon
as the CQI on the uplink is added as a second monitoring type,
the MSE can be reduced by roughly 0.32 for the stationary
clients’ dataset. By considering as well the downlink CQI, we
can achieve an MSE that is below 0.22 for any of the datasets.
The order of added monitoring types is the same up to the
fourth added type, which is the UE uplink throughput. For the
dataset all, the fifth monitoring type added is the AN uplink
throughput, followed by smoothed and measured RTT. In case
of stationary clients, the fifth added type is the measured
RTT. For the moving clients, the smoothed RTT comes fifth,
followed by the AN uplink throughput and measured RTT. For
all input data sets, the least relevant monitoring type is the AN
downlink throughput, which can be interpreted as the sum of
all UE’s uplink throughput.

D. Feature Relevance

Table III shows the features which were found to be relevant
for exemplary feature set sizes5 of 5 and 10. Please note that
a smaller feature set is not necessarily the subset of a larger
feature set when using LASSO. The majority of features are
generated from the UE downlink throughput (UE TP DL)
and CQI, which once more highlights the relevance of these
monitoring types.

Another observation that can be drawn from the table is
that in the dataset of moving clients, more features expressing
variability can be found. While features related to co-variance
or standard deviation neither occur in the dataset all, nor in
the stationary one, they are present several times in the dataset
of moving clients. On the other hand, the average occurs in
the dataset of all clients and in the dataset of the stationary
clients, but never in the set of moving clients. The fact of more
variability-related metrics in the set of moving clients could
indicate that MNOs need to monitor with higher granularity

5Supplementary data, giving the relevant features for any feature set size,
is available here: github.com/fg-inet/vagrant-omnet-simulation-mobility

TABLE III: Features used for QoE estimation when using
feature sets of size 5 and 10. Exponents denote the inclusion
of a feature in the set with the respective size.

Dataset
Mon. Type all stationary moving

U
E

T
P

DL

25th perc.10 25th perc.10 25th perc.5,10

median10 median5,10 median5,10

average5 average5,10 sem5,10

75th perc.5,10 75th perc.10 max10

sem5,10

UL max10

C
Q

I
DL

75th perc.10 75th perc.5,10 std5,10

average10 average5,10 co-variance10

max10 sem10

median10

min10

UL
average5,10 average5,10 co-variance5,10

25th perce.5,10

min10

S RTT max10

AN TP UL skewness10

in the case of mobile clients. Otherwise, the variations in the
time series, e.g. in CQI or downlink throughput, cannot be
captured accurate enough.

E. Discussion

Our results reveal the monitoring information an MNO
needs to collect, given possible limitations in the monitoring
infrastructure. For instance, while it is crucial to monitor
the UE’s donwlink throughput and beneficial to include the
clients’ uplink CQI, monitoring the AN downlink throughput
brings only few added value. With the mobility of clients, we
studied a possible influence factor in terms of feature relevance
and we could observe that features expressing variation gain
more importance when clients move. This indicates that in
mobile cases, a higher monitoring frequency is necessary so
that the features can reliably capture the time series’ variations.
Finally, we highlighted the benefits of applying ML in 5G
networks for QoE estimation, as it can outperform other
approaches, that do not or less rely on data analytics. Although
those mechanisms can also be applied in mobile networks
of previous generations, only 5G mobile networks provide
the relevant infrastructure for data analytics and information
exchange, e.g., via a third party AF.
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Fig. 3: Influence of number of monitoring types on the QoE estimation performance for the different datasets.

So far, our basic set-up does not consider further possible
influence factors, such as traffic from other applications than
video streaming, varying system loads, or hand-overs for
clients moving from one cell to another. In multi-cell deploy-
ments, the variations in terms of QoE for the mobile clients
might increase, as the QoE might negatively be affected for
the fraction of clients which experiences hand-overs. Varying
the number of active UEs in a cell would probably increase
the importance of features related to the AN throughput, which
remains relatively constant for the current experiments.

V. CONCLUSION

The new network functions introduced in the 5G archi-
tecture, NWDAF and 3rd party AFs, enable data-analytics
driven QoE estimation for MNOs. This work highlighted the
prospects of using machine learning, revealed the relevant
statistics that must be available at NWDAF in order to obtain
a certain QoE estimation accuracy, and examined the added
value of providing certain monitoring information to the
NWDAF. Additionally, we studied the mobility of clients as
a factor that influences the feature relevance and hence, the
accuracy vs. cost trade-off for an ML-based QoE estimation.

For future work, we plan to vary the numbers of active UEs
and to consider multi-cell deployments to study the effects
of varying system loads and hand-overs. We furthermore
plan to study the requirements on the input data, i.e., the
necessary monitoring frequency, so to still allow an accurate
QoE estimation. This enables a more in-depth evaluation of
the trade-off, which considers the impact of the monitoring
granularity on costs and estimation accuracy.
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