
Comparing Fixed and Variable Segment Durations for Adaptive
Video Streaming – A Holistic Analysis

Susanna Schwarzmann, Nick Hainke
TU Berlin

{susanna,nick}@inet.tu-berlin.de

Thomas Zinner
NTNU - Norwegian University of Science and Technology

thomas.zinner@ntnu.no

Christian Sieber
TU Munich

c.sieber@tum.de

Werner Robitza, Alexander Raake
TU Ilmenau

{werner.robitza,alexander.raake}@tu-ilmenau.de

ABSTRACT

HTTP Adaptive Streaming (HAS) is the de-facto standard for video

delivery over the Internet. It enables dynamic adaptation of video

quality by splitting a video into small segments and providing multi-

ple quality levels per segment. So far, HAS services typically utilize

a fixed segment duration. This reduces the encoding and streaming

variability and thus allows a faster encoding of the video content

and a reduced prediction complexity for adaptive bit rate algorithms.

Due to the content-agnostic placement of I-frames at the beginning

of each segment, additional encoding overhead is introduced. In

order to mitigate this overhead, variable segment durations, which

take encoder placed I-frames into account, have been proposed re-

cently. Hence, a lower number of I-frames is needed, thus achieving

a lower video bitrate without quality degradation. While several

proposals exploiting variable segment durations exist, no compar-

ative study highlighting the impact of this technique on coding

efficiency and adaptive streaming performance has been conducted

yet. This paper conducts such a holistic comparison within the

adaptive video streaming eco-system. Firstly, it provides a broad

investigation of video encoding efficiency for variable segment du-

rations. Secondly, a measurement study evaluates the impact of

segment duration variability on the performance of HAS using three

adaptation heuristics and the dash.js reference implementation. Our

results show that variable segment durations increased the Quality

of Experience for 54% of the evaluated streaming sessions, while

reducing the overall bitrate by 7% on average.

CCS CONCEPTS

· Information systems→Multimedia content creation;Mul-

timedia streaming.

KEYWORDS

HAS, Adaptive Streaming, QoE, Video Encoding, Testbed Measure-

ments, Variable Segment Durations, Fixed Segment Durations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMSys’20, June 8ś11, 2020, Istanbul, Turkey

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6845-2/20/06. . . $15.00
https://doi.org/10.1145/3339825.3391858

ACM Reference Format:

Susanna Schwarzmann, Nick Hainke, Thomas Zinner, Christian Sieber,

Werner Robitza, and Alexander Raake. 2020. Comparing Fixed and Variable

Segment Durations for Adaptive Video Streaming ś A Holistic Analysis.

In 11th ACM Multimedia Systems Conference (MMSys’20), June 8ś11, 2020,

Istanbul, Turkey. ACM, New York, NY, USA, 16 pages. https://doi.org/10.

1145/3339825.3391858

1 INTRODUCTION

Online video streaming has become the prevalent way of video

consumption and constitutes a large and ever-growing fraction of

the global Internet traffic [3]. The most applied streaming tech-

nology nowadays is HTTP adaptive streaming (HAS). By splitting

the video clip into small segments with multiple quality levels per

segment and by using typically the HTTP protocol for signaling

purposes, HAS allows a client-based dynamic adaptation of the

video quality to the available bandwidth. Typically, HAS services

rely on segments of 2 to 10 seconds [19], where the duration is

fixed throughout the video. Fixed segment durations thus reduce

the degrees of freedom of both, the video encoding and the video

streaming process. It allows a faster video encoding, because there

are less dependencies the encoder has to consider. In terms of video

streaming, the prediction complexity for the adaptive bit rate (ABR)

algorithm is reduced, since it can rely on a fixed increase of the

buffered playtime after a segment download has finished. Fixed

segment durations, however, also introduce additional overhead,

since keyframes (I-frames) have to be inserted in a content-agnostic

manner at the beginning of each segment.

Technically, HAS allows utilizing segments of variable durations,

as long as the segment start times, i.e., the I-frame locations, are

consistent between the different quality levels. Thus, aligning the

segment split positions with I-frames that are needed a-priori, e.g.

due to scene-cuts, creates such variable segment durations. Netflix

refers to this approach as shot-based encoding [11], and recent

papers [15, 25] provide initial insights of its potential to increase

the encoding efficiency. However, a large-scale comparative anal-

ysis, studying impact factors such as the compression rate, video

resolution, or the magnitude of segment duration variability, has

not been conducted yet. Besides, the existing works neglect the

influence of variable segment durations on the video streaming

itself. The variability of the segment durations also increases the

segment size variations, which may affect the ABR algorithm and

therewith the streaming performance [7]. Hence, to show the ap-

plicability of variable segment durations for today’s HAS systems,

MMSys’20, June 8–11, 2020, Istanbul, Turkey S. Schwarzmann, N. Hainke, T. Zinner, C. Sieber, W. Robitza, and A. Raake

it is essential to conduct a broad comparative study of the coding

efficiency and the streaming behavior for both, variable and fixed

segment durations.

This paper addresses this gap by conducting a broad compar-

ative study. In order to evaluate and compare the fixed and the

variable approach with regard to encoding-related metrics ś such

as segment durations, file size, or video quality ś we created a large

dataset consisting of roughly 2,000 encoded video sequences. For

the sake of representativeness of our results, we chose four publicly

available video sources with durations between 8 and 12 minutes,

all with a resolution of 2160p. We used H.264 and considered vari-

able bitrate encoding (VBR) as well as constant bitrate encoding

(CBR) with different constant rate factors (CRF) and target bitrates.

Evaluations with this dataset show that variable segment durations

can reduce video bitrate by up to 15%, while maintaining a com-

parable video quality, as shown by the SSIM metric. Furthermore,

we reveal the relevant factors influencing the potential for bitrate

reduction. To study the impact of variable segment durations on

HAS performance, we run testbed measurements with varying net-

work conditions for a subset of the encoded videos and estimate

the Quality of Experience (QoE) using the model from ITU-T Rec-

ommendation P.1203. The evaluation of more than 7,000 streaming

sessions using different ABRs reveals a slight increase in the me-

dian QoE of all streaming sessions when using variable segment

durations. Additionally, we make our data sets, implementations,

and measurement tools available to the public.

The rest of the paper is structured as follows: Section 2 presents

related work. Section 3 introduces HAS content preparation and de-

scribes the variable approach. Section 4 details the video encoding

process and in Section 5 we describe the influence of the proposed

approach on the video streaming process. Finally, Section 6 con-

cludes the paper.

2 RELATED WORK

The segment duration is a crucial factor for the performance of adap-

tive video streaming and the user’s satisfaction with the service [17].

Shorter video segments allow a more fine-granular adaptation of

the video quality to current network conditions. However, short

video segments lower the encoding efficiency [8] and increase the

signaling overhead. Flow-level modeling is applied in [9] to de-

velop mathematical models to analyze the performance of HAS for

different fixed segment durations in a mobile environment. The

results motivate using shorter segments, as they allow higher fre-

quencies for quality adaptations and better properties in terms of

video smoothness. To overcome the issue of increased signaling

overhead, the authors propose to request several video segments at

once. Liu et al. [10] examine how to set the segment duration so as

to optimize the client’s TCP throughput estimation, which in turn

allows an optimized bitrate adaptation for rate-based heuristics.

The selection of segment durations in live-streaming scenarios

is discussed in [21]. The paper evaluates the trade-off between

high responsiveness in terms of quality adaptation and a higher

encoding overhead when selecting a suitable segment duration.

The authors show that streaming with segments of a sub-second

duration allows to reduce the start-up delay and camera-to-display

delay. By using the HTTP/2 push feature, they overcome the issue

of increased signaling overhead.

The work presented in [20] proposes to use different segment

durations, depending on the current HAS phase. The HAS videos

are segmented several times so to obtain several representations

in terms of segment duration. During the start-up phase, the client

requests very short video segments. With increasing buffer size,

longer segments are fetched from the server. Using this method,

the authors combine the advantages of a low start-up delay (due

to short segments) with encoding efficiency resulting from longer

segments during a steady playout phase. The idea of providing the

video content not only in different qualities, but additionally split in

segments of different durations, is also presented in [22]. A similar

approach is presented in [6], which proposes to provide several

video representations, some having long and some having short

segment durations. Accordingly, an ABR algorithm is proposed

which does not only choose the next segment’s bitrate, but also the

segment’s duration. A weakness of this approach is the constrained

possibility for switching between representations with longer and

shorter durations, as this is only possible where the segments’

starting points are synchronized.

Although the works above consider several representations with

different segment durations, the durations within these represen-

tations are fixed. The idea to improve the alignment of the video

segments with the video content has initially been proposed and

compared with fixed video segments in [1]. In 2018, Netflix pro-

posed shot-based encoding in theirDynamic Optimization approach,

which utilizes variable segment durations and thereby allows for

improved rate-distortion optimizations for each shot [11]. Simi-

larly, [25] investigates the impact of variable segment durations in

terms of video bitrate, quality degradation, and the number of result-

ing segments for different types of video content. Those evaluations

are also performed in [15]. This work goes one step further than

the previous ones by also considering the impact of variable seg-

ment durations on the video streaming performance. The authors

show by means of an analytical model that the bitrate reduction,

achieved by using variable segment durations, might also result in

a lower stalling probability as compared to fixed segment durations.

The theoretical investigations are, however, not backed up with

measurements using today’s state of the art implementations.

To summarize, the available body of related works indicates an

improved coding efficiency of variable segment durations compared

to fixed segment durations, but does not provide a large-scale com-

parative analysis. Hence, it is not yet understood how factors like

video resolution, compression rate, or the granted range of seg-

ment duration variability, influence the performance. Furthermore,

related work misses studying the impact of variable segment dura-

tions on video streaming quality from an end-user’s perspective.

The impact of segment durations is already complex in case of fixed

lengths, mainly due to the non-trivial trade-off between quality

adaptation frequency and encoding overhead. Variable segments

may therefore increase the complexity of the system and result in

a higher variability, particularly in a practical streaming scenario.

Our paper goes beyond the state-of-the-art by providing a full pic-

ture on comparing fixed and variable segment durations, taking

into account the implications for video streaming and the resulting

QoE.

Comparing Fixed and Variable Segment Durations for Adaptive Video Streaming MMSys’20, June 8–11, 2020, Istanbul, Turkey

3 VARIABLE SEGMENT DURATIONS FOR
ADAPTIVE STREAMING

This section introduces the state-of-the art mechanisms for prepar-

ing HAS video content with fixed segment durations. Afterwards,

we explain the major differences of using the variable approach.

Finally, we shortly describe requirements and best practices when

using variable segment durations for adaptive streaming.

3.1 State-of-the-Art Video Preparation for HAS

In video codecs, intra-frames (I-frames) contain all information

required for decoding and do not reference other frames. They

typically have a larger size than predicted (P-) or bidirectionally

predicted (B-)frames and should be used sparingly as refresh points

for the decoder. At scene cuts, however, the placement of I-frames

can yield lower file sizes, as predicting from a previous picture

would be less efficient, that is, it would require more bits to code

the difference than to simply create another I-frame.

In HAS, all encoded video segments must be playable indepen-

dently, which requires them to start with an I-frame ś more specif-

ically, an instantaneous decoder refresh (IDR frame) ś which is

inserted during the segmentation process. Typically, it is recom-

mended to encode videos for HAS using strictly fixed I-frame in-

tervals. Depending on the used technology and intended encoding

latency, these intervals range from 2 to 10 seconds [19, 24]. Choos-

ing fixed intervals has practical reasons, since scene-cut detection

can be disabled, and the encoder canwork in a łset and forgetž mech-

anism. This approach, however, lowers the encoding efficiency, as

more I-frames are needed, particularly in the case of very short

segments. Aligning the segment durations with existing I-frames

ś which are needed anyway due to scene-cuts ś could reduce this

overhead. This would result in video segments that have different

durations. From a technical point of view, variable segment dura-

tions can be used for HAS, but there are some practical challenges

associated with this method, as we will describe in the following.

3.2 Variable vs. Fixed Segment Durations

Figure 1 represents the first 45 seconds of the Big Buck Bunny video

with 24 frames per second and highlights the differences between

fixed and variable segmentation. In this example, we assume a

maximum segment duration of 10 seconds (240 frames) for the

variable approach, to avoid segments of too long durations. For the

fixed approach, we set a duration of 4.5 seconds, i.e. , 108 frames.1

The top box of the figure represents the raw video, where each

frame contains the complete image information. The second box

illustrates a compressed, but not segmented video. I-frames are

inserted for scene-cuts (frames 0, 10, 250, 285, 378, 553, 803) and

for the rest of the video, the encoder relies on cheaper P- and B-

frames, which are not shown in this figure. The third box illustrates

a segmented video using variable segmentation. Similar to the

unsegmented video, frames 0 and 10 are I-frames. At frame 240, the

maximum duration of 10 seconds of the first segment is reached

and a new segment has to start. Consequently, frame 240 must be

encoded as an I-frame. This I-frame (240) can then also be used to

account for the scene-cut, which is captured in the unsegmented

1Later parts of this work show that these values result in the same number of video
segments for the fixed and the variable approach, when considering the entire video.

sequence with the I-frame at position 250. Hence, frame 250 can

be encoded as a P- or B-frame with the variable approach. This

is possible because the encoder has some degree of freedom in

terms of where to place an I-frame for an efficient encoding and

segmentation. This especially holds, when a scene does not change

abruptly, but with fading effects. The next three segment beginnings

are aligned with the existing I-frames of the unsegmented video,

that is, frame 285, 378, and 553. Finally, segments are split at 793 and

1033 due to the maximum segment duration limit of 240 frames.

The bottom box depicts the fixed segmentation, where all seg-

ments have a duration of 4.5 seconds. Two of the frames (250, 803),

which used to be I-frames in the unsegmented video, can be re-

placed by a cheaper frame-type, as an I-frame was inserted nearby.

However, due to the strictly fixed segment duration of 108 frames,

I-frames are placed at 324 and 432, despite the small differences

to their preceding I-frames, which are required because the scene

changed. Another I-frame, inserted for the sake of a constant seg-

ment duration, is 540. Roughly half a second later, i.e., after 13 more

frames, an I-frame is nevertheless needed as the scene changes

again. The total number of additionally needed I-frames, due to

video segmentation, sums up to 7 in the fixed case, while only 1

additional I-frame is needed in the variable case for the illustrated

sequence of 45 seconds.

3.3 Requirements and Best Practices for
Variable Segment Durations

The HAS principle of adapting the video quality prior to a seg-

ment’s download does not hinder the usage of variable segment

durations. Nevertheless, some requirements need to be fulfilled in

order to implement this approach in a real system: first, the segment

boundaries have to be aligned along all available quality represen-

tations, that is, video bitrates and resolutions. Even the slightest

deviation will provoke a skip or a repetition of frames at quality

switches, which may impair the user’s experience. Furthermore,

the player implementation must be agnostic to changing segment

durations, that is, it has to consider each segment’s duration individ-

ually. During our tests, we found that player implementations often

rely on fixed segment play times. The TAPAS player [4], which is

intentionally kept simple to ease the integration of own heuristics,

only captured the duration of the first segment and assumed all

other segments to have this duration, resulting in wrong buffer

computations. Another similar issue was found with the dash.js

reference player version 2.9.3. When the insufficient buffer rule2

rule was triggered, it mapped the current segment’s duration to

the 10 subsequent segments, to estimate their download duration.

As this estimation was based on the wrong segment durations, the

player over- or under-estimated the download duration, resulting

in a too optimistic or too pessimistic behavior in terms of quality

selection. The issue has been addressed with version 3 of dash.js.

Finally, a practical maximum segment duration should be de-

fined. The longer a segment’s duration becomes, the longer it takes

to download it. If the download duration exceeds the buffered time,

it will cause video stalling. A dedicated maximum duration fur-

thermore guarantees that an I-frame is placed after a certain time

interval, which maintains quality and adaptability of the stream.

2https://github.com/Dash-Industry-Forum/dash.js/wiki/ABR-Logic

MMSys’20, June 8–11, 2020, Istanbul, Turkey S. Schwarzmann, N. Hainke, T. Zinner, C. Sieber, W. Robitza, and A. Raake

0 10 250 285 378 553 803

0 10 240 285 378 553 793 1033

648 756 864 972

240 frames

10 s

45 frames

1.8 s

93 frames

3.8 s

175 frames

7.3 s

240 frames

10 s

240 frames

10 s

108 frames for all video segments (4.5 s)

raw video

compressed video,

not segmented

compressed and segmented

video using variable segment

durations

compressed and segmented

video using fixed segment

durations

553108 285 324 378 4322160 10 540

Figure 1: Illustration of I-frame placement for compressed videos without, with variable, and with fixed segmentation. Red

frames indicate I-frames at the beginning of a video segment.

Table 1: Parameter settings for video encoding.

Characteristic Value

Videos BBB, TOS, MER, ELF

Resolutions 240p, 480p, 720p, 1080p, 2160p

Encoding method VBR, CBR

CRF values (VBR) 16, 22, 28, 34

Target bitrates (CBR) Average bitrates resulting from VBR encoding

Segment durations VAR and EM: 4s, 6s, 8s, 10s

NA: Average durations resulting from VAR

5 6 1 3 2 4 3

4 4 4 4 4 4

6 6 6 6

VAR (avg = 4s, max_dur = 6s, 7 segments)

NA (fix, 4s =avg (VAR), 7 segments)

EM (fix, 6s = max_dur (VAR), 4 segments)

Figure 2: Illustration of the comparison options NA and EM.

Bars denote video segments and their durations in seconds.

4 VIDEO ENCODING AND SEGMENTATION

This section compares the variable approach against the fixed-

duration one with respect to encoding efficiency. We first present

the methodology, including the encoding process and the parame-

ters used. Afterwards, we focus on different characteristics of the

resulting video segments and evaluate the encoding overhead for

the fixed and the variable approach.

4.1 Methodology

This subsection describes our methodology for the video encoding

and segmentation with the variable and the fixed approach. We

apply a wide range of encoding options, which are summarized

in Table 1. All relevant parameters for the encoding process are

discussed in the following.

4.1.1 Terminology for comparing the fixed and the variable ap-

proach. When using the variable approach, we define a maximum

duration (max_dur) for the video segments. The encoder can freely

choose a segment’s duration within the range from 0 tomax_dur .

In the following, we use two methods to compare the performance

of the variable and the fixed approach, as illustrated in Figure 2. In

the first approach, we evaluate fixed-segment sequences against

those variable-segment sequences which have (nearly) the same

average segment duration, with a granularity of half a second. For

instance, if the variable approach withmax_dur = 6 yields an aver-

age segment duration of 4.3 seconds, this is compared to the fixed

segmentation with a duration of 4.5 seconds, if it yields an aver-

age segment duration of 3.9 seconds, this is compared to the fixed

segment duration of 4.0 seconds. We refer to this option as near-

est average (NA). The second approach consists of comparing the

variable-segment encodes against the fixed-segment encodes which

have the same duration as the specifiedmax_dur . For instance, the

variable approach withmax_dur = 6 is compared to the fixed ap-

proach with a segment duration of 6 seconds. Accordingly, we refer

to this approach as equal max (EM). The NA comparison yields

(nearly) the same number of video segments, and hence has the

same signaling overhead when it comes to video streaming. With

EM, the total number of segments is lower for the fixed duration

video. As a consequence, an EM video can be streamed with lower

signaling overhead, but the quality cannot be adapted as often as

for the video with variable segments. In the remainder of this paper,

we refer to the approach applying variable segment durations as

VAR, and use NA/EM for fixed-duration encoding.

4.1.2 Source videos. For all our tests, we used the freely available

videos Big Buck Bunny (BBB)3, El Fuente (ELF), Meridian (MER)4,

and Tears Of Steel (TOS)5. The sources are scaled from their original

dimensions to 2160p, 1080p, 720p, 480p, and 240p resolution (using

bicubic filtering), with 24 frames per second (using ffmpeg’s fps

filter). The spatial and temporal information (cf. ITU-T Rec. P.910)

3https://peach.blender.org/
4https://medium.com/netflix-techblog/engineers-making-movies-aka-open-source-
test-content-f21363ea3781
5https://mango.blender.org/

Comparing Fixed and Variable Segment Durations for Adaptive Video Streaming MMSys’20, June 8–11, 2020, Istanbul, Turkey

(a) Big Buck Bunny (b) Tears Of Steel

(c) Meridian (d) El Fuente

Figure 3: Spatial and temporal information of the source

videos. Lighter areas indicate higher density.

Table 2: Source video characteristics.

Video Mean SI Mean TI Duration Category

BBB 49.923 17.575 10:34 Cartoon

ELF 28.994 20.194 07:57 Documentary

MER 28.541 8.732 11:58 Mystery

TOS 45.307 21.027 12:14 Action

for the different videos are illustrated in Figure 3. It shows the ranges

for the spatial and temporal complexity of the four videos in the test

set. The according average values and further video characteristics

are summarized in Table 2. Besides the varying spatio-temporal

complexity, these videos have been chosen due to their different

categories and due to their durations of at least about 8 minutes.

4.1.3 Encoding methods. We applied the following two different

encoding/rate control methods, to either achieve a target quality or

a target bitrate for the encoded bitstreams:

• Variable Bitrate Encoding (VBR): one-pass, using the x264

Constant Rate Factor (CRF), which results in a roughly con-

stant quality.6

• Constant Bitrate Encoding (CBR): two-pass, using a tar-

get bitrate (br) and Virtual Buffer Verifier (VBV) constraints

ofmaxrate = 1.25 · br and bu f size = 2 · br .7

VBR encoding has a lower variation in quality over time, but

leads to higher bitrate variations, which may impair the stream-

ing performance. CBR, on the other hand, keeps the bitrate static,

within constraints, along the video, resulting in possible quality

degradations in scenes that are more spatio-temporally complex.

6https://slhck.info/video/2017/02/24/crf-guide.html
7https://slhck.info/video/2017/03/01/rate-control.html

We use VBR with four CRF settings, i.e., cr f ∈ {16, 22, 28, 34}.

The lower the CRF, the higher is the resulting video quality, whereby

a value of 16 can be considered as visually lossless. An increase of

the CRF value by 6 will roughly halve the resulting bitrate.8 To de-

termine the target bitrates for the CBR approach, we first encode all

videos in all resolutions and specified segment durations using VBR

encoding with the four specified CRF values. For each four-tuple

{video/resolution/CRF/duration}, the average resulting bitrate is

then used as the target bitrate for CBR, leading to similar average

bitrates of the VBR and CBR videos.

4.1.4 Segment durations. To ensure that segments of variable du-

ration do not become too large, and to also compare the efficiency

of different variable segment lengths, we choose four upper bounds

for the variable durations, i.e.,max_dur ∈ {4, 6, 8, 10} seconds. For

the fixed durations, we used the values according to NA and EM

resulting from the variable segmentation.

For the encoding with fixed segment durations, the ffmpeg op-

tion force-key-frames is used, and scene-cut detection is deacti-

vated. To determine the variable durations for a given maximum

duration, we choose for each video its 2160p resolution as the ref-

erence. This reference is encoded and segmented with the force

keyframe option set tomax_dur , i.e., keyframes are only forced if

no keyframe was set sincemax_dur seconds. Furthermore, we do

not specify any segment duration with the seg_duration option.

This allows the encoder to freely choose the segment durations

between 0 andmax_dur seconds. All frame positions, at which the

encoder decides to split the video, are logged during the encoding

of the reference. These logged positions are then used as an ffmpeg

input when encoding and segmenting the remaining video repre-

sentations, to ensure that we split at exactly the same positions

along each resolution and target bitrate or quality. The described

procedure turned out to be necessary, as in rare cases, the split

positions deviated by a few frames from one resolution to another.

This was caused by the scene-cut detection of the encoder treating

inter-frame differences differently at lower resolutions.

4.1.5 Encoding architecture and quality calculation. In order to sup-

port encoding on any platform and to easily distribute the encoding

and evaluation process on several computing nodes, the tasks were

encapsulated within a Docker9 container.10 Each Docker instance

obtains one task, defined by the source video ID and a combina-

tion of encoding parameters. These parameters are summarized

in a job description that includes the segmentation option (fixed

vs. variable), the encoding option (CBR vs. VBR), the (maximum)

segment duration, and a target bitrate or CRF value. When the video

segmentation and encoding is completed, the container analyzes

the resulting video and determines several parameters:

• encoding quality-relevant metrics, such as Structural Sim-

ilarity (SSIM) [23] metric and Peak Signal-to-Noise Ratio

(PSNR), calculated against the 2160p source via ffmpeg11

• the resulting bitrates and frame characteristics

• a timeline of segment durations and their sizes

8https://trac.ffmpeg.org/wiki/Encode/H.264
9https://www.docker.com
10https://github.com/fg-inet/docker-video-encoding
11https://github.com/slhck/ffmpeg-quality-metrics

MMSys’20, June 8–11, 2020, Istanbul, Turkey S. Schwarzmann, N. Hainke, T. Zinner, C. Sieber, W. Robitza, and A. Raake

(a) Big Buck Bunny (b) Tears Of Steel

(c) Meridian (d) El Fuente

Figure 4: Segment durations resulting from VAR with dif-

ferent maximum duration settings. Green markers and the

numbers on top denote the average segment duration.

4.2 Evaluation

In the following, we present the results from our evaluation of

the encoded and segmented videos for variable and fixed segment

durations. We consider various characteristics, such as the seg-

ment durations themselves, resulting bitrates and quality, as well as

factors influencing the performance of variable segment durations.

4.2.1 Resulting segment durations. Figure 4 illustrates the variable

segments’ durations for several settings of the maximum duration.

In the case of Big Buck Bunny (Figure 4a), Tears Of Steel (Figure 4b),

and Meridian (Figure 4c), the median durations hardly change be-

tween the different maximum durations. However, longer segments

are used if allowed, leading to increased average durations when

increasing the maximum duration setting. With a maximum dura-

tion of 4 seconds, the longest average durations can be observed for

Meridian and El Fuente, as for these videos, the median duration

corresponds almost to the maximum duration. El Fuente results in

the largest average duration among the investigated videos for any

of the configured maximum durations. This indicates that there are

fewer scene-cuts and consequently less possibilities for the encoder

to split at existing I-frames. As a result, I-frame placements and

splits, which are required due to the specified duration limit, occur

more often for the ELF clip, than for the other clips.

As described above, we compare the variable approach against

the fixed one based on the average duration (i.e., NA), and based

on the same maximum duration (i.e., EM). Table 3 summarizes the

information retrieved from Figure 4 to allow a quick lookup of the

fixed segment durations corresponding to the variable approach

according to VAR and NA.

4.2.2 Reduction of I-frames. In the following, we investigate the

number of I-frames that can be reduced by using the variable ap-

proach for the different videos. Figure 5a illustrates the number

of I-frames needed when using VAR with a maximum segment

Table 3: Resulting fixed durations based on EM and NA for

variable segmentation with different maximum durations.

BBB TOS MER ELF

VAR EM NA EM NA EM NA EM NA

0-4 4 3 4 3 4 3 4 3

0-6 6 3.5 6 3.5 6 4 6 4.5

0-8 8 4 8 4 8 4.5 8 5

0-10 10 4.5 10 4.5 10 5 10 6

duration of 10 seconds and the number of I-frames needed when

considering the respective NA fixed segment duration. Note that

for the same segment duration setting of a video, the number of

I-frames is equal along all resolutions and bitrates, as well as for

VBR and CBR encoding. Although both, VAR and NA segmentation,

result in practically the same number of video segments, VAR re-

quires less I-frames. For example, for the video BBB, VAR reduces

the number of I-frames by 130, compared to NA. Hence, the VAR

approach can economize 46% of the expensive frames in this case.

Figure 5b and Figure 5c illustrate the impact of the I-frame re-

duction on the overall file size for two exemplary encodings with a

resolution of 720p and CRF values of 16 and 34, whereby 16 is the

highest quality we consider during our encoding evaluations, and

34 the lowest quality, respectively. The different colors denote the

total file size made up by a specific type of frame. The height of the

blue bars can roughly be halved for all cases by VAR, that is, the

fraction of file size, which is contributed by I-frames, can roughly

be halved.

4.2.3 Reduction of encoding overhead. Figure 6 illustrates the re-

duced video encoding overhead for the videos resulting from all

parameter combinations. The x-axis denotes the percentage reduc-

tion that can be achieved with the proposed approach compared

to the fixed approach. The y-axis shows the empirical cumulative

distribution (ECDF). Figure 6a shows that with variable segments

and CBR encoding, the bitrate can be reduced by up to 16%. This

saving can be achieved for BBB, while the lowest saving is observed

for ELF. While for BBB at least 6% of bitrate can be saved, for ELF,

not even 5% can be reached. ELF has fewer scene-cuts and the low-

est number of I-frames relative to its duration among all videos,

resulting in a lower potential of improvement for VAR.

When comparing the variable approach and the fixed approach

based on EM (Figure 6b), the saving in terms of bitrate is lower

than in the NA case. This is due to the fact that the variable seg-

mentation results in segments that are shorter compared to the

fixed duration segments, and in general, shorter segments imply

increased encoding overhead. The respective results for the VBR

encoding are illustrated in Figures 6c and 6d. Compared to CBR

encoding, the bitrate that can be reduced is lower. Nevertheless, the

bitrate can be reduced by up to 13%.

4.2.4 Impact on video quality. In order to fairly compare variable

and fixed segment durations, we need to examine whether the

I-frame reduction results in a quality degradation for variable seg-

ments. Figure 7 illustrates the absolute difference of video quality

expressed via the SSIM metric. This metric compares all frames of a

Comparing Fixed and Variable Segment Durations for Adaptive Video Streaming MMSys’20, June 8–11, 2020, Istanbul, Turkey

NA VAR
BBB

0

100

200

300

Nu
m

be
r o

f I
-fr

am
es

278

148

NA VAR
TOS

327

167

NA VAR
MER

225

139

NA VAR
ELF

139

81

(a) Absolute number of I-frames

NA VAR
BBB

0.0

0.5

1.0

1.5

2.0

2.5

Fi
le

siz
e

[G
B]

P
B
I

NA VAR
TOS

0

2

4

6

NA VAR
MER

0.0

0.5

1.0

1.5

2.0

2.5

NA VAR
ELF

0

1

2

3

4

(b) Filesize for 720p and CRF 16

NA VAR
BBB

0

100

200

300

Fi
le

siz
e

[M
B]

NA VAR
TOS

0

100

200

300

400

500

NA VAR
MER

0

25

50

75

100

125

NA VAR
ELF

0

100

200

300

400

(c) Filesize for 720p and CRF 34

Figure 5: Number of I-frames and its impact on filesize when using VBR encoding for VAR with a maximum duration of 10

seconds and for the respective NA segment duration.

0 5 10 15 20
Bitrate saving [%]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF BBB

TOS
MER
ELF

(a) Bitrate saving, CBR, NA

0 5 10 15 20
Bitrate saving [%]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

BBB
TOS
MER
ELF

(b) Bitrate saving, CBR, EM

0 5 10 15 20
Bitrate saving [%]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

BBB
TOS
MER
ELF

(c) Bitrate saving, VBR, NA

0 5 10 15 20
Bitrate saving [%]

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

BBB
TOS
MER
ELF

(d) Bitrate saving, VBR, EM

Figure 6: Bitrate saving that can be achieved by the variable approach compared to the fixed approach. Black solid lines denote

the overall bitrate saving, colored dotted lines represent the different videos.

compressed video with the respective uncompressed and distortion-

free reference frame and yields a value between 0 and 1, where 1

means equality to the uncompressed original content, i.e., highest

quality. In our case, we calculated SSIM using the respective ffmpeg

filter, with bicubic upscaling of the encoded video to the 2160p ref-

erence. For CBR encoded videos, we observe a quality degradation

for VAR videos, with an SSIM reduction of at most 0.005 compared

to both NA (Figure 7a) and EM (Figure 7b).

For VBR encoded videos, where the CRF value specifies a target

quality, the differences in terms of SSIM are lower: the maximum

difference observed for NA (Figure 7c) is below 0.003; for EM (Fig-

ure 7d) it is less than 0.0015. In general, the relationship between

SSIM and perceived quality is not linear [23]. For high qualities,

i.e., high SSIM values, already small SSIM disturbances may have a

high impact on the MOS, while for lower qualities, i.e., low SSIM

values, small disturbances are negligible. However, such effects are

generally not visible to humans when they are in the order of mag-

nitude which we observe. Hence, the quality degradations incurred

by VAR are negligible. In the next subsection, where we perform an

in-depth investigation of the factors that influence bitrate reduc-

tion and quality decrease, we will see that high quality encodings

undergo a much smaller SSIM degradation than 0.005.

4.2.5 Influence factors. The evaluations above show that when

using variable segment durations, bitrate can be saved for a slightly

lower video quality. It can also be seen from above that the potential

for bitrate saving is highly dependent on the source video, which

is in line with the observations in Figure 8a. Further, it shows that

for the video Meridian, variable segmentation yields the lowest

quality degradation. Figure 8 also illustrates how the remaining

factors, that is, CRF value, segment duration, and resolution in-

fluence the behavior of variable segment durations on bitrate and

quality for VBR encoded videos. Firstly, Figure 8b shows a clear

influence of the chosen CRF value. With higher CRF values (i.e.,

lower video quality), variable segment durations tend to degrade

SSIM to a greater extent. Nevertheless, this degradation is still too

small to be the reason for the significant bitrate reduction we ob-

serve. As shown above, the bitrate reduction can be achieved by

eliminating I-frames with the more efficient variable method. For

lower CRF values (i.e., higher video quality), the relative bitrate that

can be saved is at most 8%, and we also observe a smaller quality

degradation. As a third characteristic, we consider the segment

duration in Figure 8c. It shows that the chosen maximum duration

for variable video segments has no direct effect on the bitrate that

can be saved compared to the NA fixed segmentation. However,

there is a slight trend of lower quality degradation if the variable

segments do no exceed a duration of 4 seconds. Finally, Figure 8d

shows that the video resolution has no clearly visible influence on

how bitrate and quality of variable segmentation behave compared

to NA. To summarize, CRF and the source video itself highly impact

the performance of variable segments in terms of bitrate and quality,

while the effects of maximum durations and video resolution are

negligible.

4.2.6 Summary. The results show that variable segment durations

outperform fixed segment durations with regard to the encoding

overhead at the costs of a slightly reduced SSIM value. Even if the

bitrate saving is small in certain cases, we want to emphasize that

none of the tested configurations results in an increased bitrate with

VAR. Furthermore, we revealed that the share of bitrate which can be

MMSys’20, June 8–11, 2020, Istanbul, Turkey S. Schwarzmann, N. Hainke, T. Zinner, C. Sieber, W. Robitza, and A. Raake

-0.004 -0.002 0.000
SSIMVAR SSIMNA

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

BBB
TOS
MER
ELF

(a) SSIM diff, CBR, NA

-0.004 -0.002 0.000
SSIMVAR SSIMEM

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

BBB
TOS
MER
ELF

(b) SSIM diff, CBR, EM

-0.004 -0.002 0.000
SSIMVAR SSIMNA

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

BBB
TOS
MER
ELF

(c) SSIM diff, VBR, NA

-0.004 -0.002 0.000
SSIMVAR SSIMEM

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

BBB
TOS
MER
ELF

(d) SSIM diff, VBR, EM

Figure 7: Difference in terms of video quality, expressed as SSIM, for the variable and fixed approach. Black solid lines denote

the overall bitrate saving, colored dotted lines represent the different videos.

2 4 6 8 10 12 14
Bitrate saving [%]

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

SS
IM

 d
iff

BigBuckBunny
TearsOfSteel

Meridian
ElFuente

(a) Source video

2 4 6 8 10 12 14
Bitrate saving [%]

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

SS
IM

 d
iff

16
22
28
34

(b) CRF

2 4 6 8 10 12 14
Bitrate saving [%]

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

SS
IM

 d
iff

4 6 8 10

(c) Segment duration

2 4 6 8 10 12 14
Bitrate saving [%]

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

SS
IM

 d
iff

240p
480p

720p
1080p

2160p

(d) Video resolution

Figure 8: Impact ofVAR on bitrate and video quality for VBR

encoding depending on different video characteristics.

saved mainly depends on the source video and the compression rate,

while a direct influence of the video resolution or the configured

maximum duration could not be observed.

4.3 Limitations and Future Research Directions

To reveal relevant impact factors on the performance of VAR, we en-

coded the videos with numerous combinations of encoding- (VBR

vs. CBR), video- (CRF, resolution), and segmentation-related fac-

tors. Consequently, we had to limit the number of source videos in

order to reduce the complexity of the factorial design. Despite the

varying SI and TI values for the videos in our dataset, it may not

be sufficiently representative for a large catalogue that a Video on

Demand provider may have. Furthermore, all videos were encoded

using H.264 with the libx264 encoder implementation, and thus,

the validity of our results is limited to this codec. However, we

assume that the results are generally similar for other codecs or

codec implementations, as inefficient segmentation is a general

problem for HAS content preparation, independent from the en-

coder. Nevertheless, the performance of VAR should also be studied

for other codecs, such as VP9, H.265/HEVC, or AV1. Finally, we note

that we used ffmpeg in a very basic manner for generating vari-

able segments, and that the split positions (i.e., the scene cuts with

maximum segment duration restrictions) were only determined for

a single 4K representation of each video. More sophisticated meth-

ods to determine the split positions, for example using a deeper

analysis of the video content prior to splitting or analyzing all

resolutions, could improve the efficiency of VAR, and lead to an

optimized encoding performance over all resolutions.

5 VIDEO STREAMING

The evaluations in the previous section show that the encoding

overhead can be reduced with VAR. However, the introduced vari-

ability in terms of segment durations results consequently in an

enlarged variability of the segments’ sizes, which can negatively

affect the video streaming performance. It is not clear whether the

reduced bitrate can compensate this enlarged variability. Hence, this

section evaluates the feasibility of VAR for adaptive video streaming

based on testbed measurements.

5.1 Methodology

In the following, we describe the methodology for the video stream-

ing experiments. First of all, we present the set of videos chosen for

the measurements. Afterwards, we introduce our virtual testbed

and describe the network configurations that have been used. Fi-

nally, the ITU-T P.1203 model, which is applied to evaluate the QoE,

is described.

5.1.1 Videos for streaming evaluation. During the video streaming

evaluations, we compare the variable approach against the fixed

one based on NA, i.e., the number of downloaded segments during a

video session is practically equal. Furthermore, we used the videos

resulting from the constant bitrate encoding (CBR), as this is a more

realistic encoding method for video streaming, since VBR encoding

results in an overall higher bitrate variability.

As we showed, the video itself has a strong influence on the

performance of variable segment durations during the encoding

process (cf. Figure 8a). To account for this influence factor during

the video streaming process, we perform testbed measurements

with all of the four source videos. For each video, we use the variable

video representation with the highest maximum segment duration,

i.e. 10 seconds. Note that in terms of encoding efficiency, the effect

of the maximum duration is negligible (cf. Figure 8c) compared

to the effect of the source video or target quality. However, the

Comparing Fixed and Variable Segment Durations for Adaptive Video Streaming MMSys’20, June 8–11, 2020, Istanbul, Turkey

Table 4: Selected bitrates and resolutions for the streaming

measurements.

BBB TOS MER ELF

L Res BR Res BR Res BR Res Br

0 480p 215 kbps 240p 234 kbps 720p 164 kbps 240p 291 kbps

1 720p 406 kbps 480p 354 kbps 720p 342 kbps 480p 403 kbps

2 1080p 797 kbps 720p 689 kbps 1080p 492 kbps 720p 942 kbps

3 1080p 1.6 Mbps 720p 1.4 Mbps 1080p 2.0 Mbps 720p 2.1 Mpbs

4 1080p 3.4 Mbps 1080p 2.7 Mbps 1080p 12.6 Mbps 1080p 3.5 Mbps

VM 3 – HAS clientVM 1 – Video server VM 2 – NetEM

Figure 9: Illustration of the virtual measurement setup.

larger the maximum duration, the higher is the variability of the

resulting segments’ sizes, which negatively affects video streaming

performance [2]. Hence, the evaluations using the variable videos

with a maximum duration of 10 seconds can be seen as a łworst case

scenariož with respect to the variability of the segment durations

and size. The coefficient of variation of the segment sizes is larger

with VAR for all of the selected video clips. For the BBB clip, it

increases from 0.43 (NA) to 0.74 (VAR), and for TOS from 0.45 to

0.76. In case of MER, the coefficient of variation with NA is 0.69 and

0.77 with VAR. Finally, VAR increases the segment size variability

for ELF from 0.52 to 0.55.

To determine the bitrate ladder (i.e., the resolution-bitrate pairs

selected for video streaming), we utilize the selection method pre-

sented in [5]. For each video, we choose 5 different quality levels,

according to the resulting bitrate ladder. Table 4 illustrates the res-

olutions and bitrates used for the different quality levels for the

VAR videos. The quality levels for the NA videos only differ in the

sense that the bitrates are slightly higher on each level, due to the

higher encoding overhead. We omit video representations with a

resolution of 2160p, as this resolution is not supported by the P.1203

standard.12

5.1.2 Measurement environment. Our virtual testbed environment

is illustrated in Figure 9. Vagrant and VirtualBox are used to set

up three virtual machines. One of them acts as the server hosting

the videos, one as the HAS streaming client, and the third VM

acts as a network emulator. The latter connects client and server

and allows to emulate different network settings, i.e., rate limiting

using the Linux traffic control13. The client runs the browser-based

DASH reference player dash.js14 in version v3.0.0. We modified

the player so to log all relevant metrics for QoE computation, such

as playback quality or video stallings. For the sake of scalability

and to allow streaming tests without actually playing back the

12Current developments in the ITU-T P.1204 recommendation series will address
4K/UHD video but were not available at the time of writing this paper.
13https://linux.die.net/man/8/tc
14https://github.com/Dash-Industry-Forum/dash.js

video (e.g., when running on a server where no display is attached),

the browser runs in headless mode. To allow the client to request

videos in headless mode, we use Puppeteer15, which runs on top of

Node.js. Our testbed is publicly available on GitHub16 to allow the

research community to use it for further research and to facilitate

the reproducibility of our results.

5.1.3 Video player settings. The dash.js player implements the

three following ABR strategies: a buffer-based solution according

to BOLA [18], a throughput-based, and a hybrid solution.17 We run

measurements with each of the available strategies, and refer to

them as BOLA-ABR, throughput-ABR, and hybrid-ABR. We set the

initial buffer threshold to 12 seconds and the stable buffer time, i.e.,

the internal buffer target the player tries to reach, to 30 seconds.

The maximum buffer time is set to 45 seconds, i.e., the client will

pause segment requests when this threshold is reached.

5.1.4 Network settings. We test the feasibility of variable segment

durations for adaptive streaming with fluctuating bandwidth ca-

pacities, which allows to capture the behavior in a more stressful

manner. We use realistic bandwidth traces [13] and scale them so

as to achieve an average rate of the {1, 2, 4, 6}-fold of the lowest

quality’s bitrate of each of the four VAR test videos. We refer to

these bandwidth limit settings as bandwidth provisioning factor ρ,

i.e., ρ ∈ {1, 2, 4, 6}. Additionally, we limit the available bandwidth

to the 1-fold of the lowest quality’s bitrate for each NA video. The

very low bandwidth settings allow a comparison of NA and VAR in

those scenarios, where hardly any other than the lowest quality can

be downloaded and where the heuristics’s behavior is negligible

for the streaming performance. We confine on ρ = 6 as the highest

rate, as this bandwidth configuration already triggers the heuristic

to choose between different levels that yield a decent video quality.

Hence, these scenarios allow to study the impact of VAR on the

heuristic’s behavior and consequently the quality adaptation and

resulting video streaming performance.

From the trace dataset18, we choose three replicas of each of the

traces car, ferry, and tram. We furthermore define three different

start points for each of the traces, namely from the beginning, i.e.,

second 0, and two randomly chosen start points. The traces are

looped, i.e., if the end of the trace is reached, it starts again from

the beginning. For each trace replica and each start point, three

measurement runs are performed. This results in 27 streaming

session per trace, rate limit, video, and adaptation strategy, resulting

in more than 7000 testbed measurement runs in total.

5.1.5 QoE analysis. The QoE of the streamed videos is analyzed

with the standardized ITU-T Rec. P.1203 model, using the publicly

available software.19 In contrast to short-term video models, or im-

age quality metrics like PSNR/SSIM, the P.1203 model is well-suited

for HAS QoE with longer session durations of several minutes. It

has been shown to predict the real streaming QoE with high accu-

racy [12, 14]. The model includes the typical HAS QoE influence

factors, such as stalling during the playout, initial loading delay, or

video quality fluctuations over time. The video quality itself can be

15https://github.com/puppeteer/puppeteer
16https://github.com/fg-inet/DASH-streaming-setup
17https://github.com/Dash-Industry-Forum/dash.js/wiki/ABR-Logic#primary-rules
18http://skulddata.cs.umass.edu/traces/mmsys/2013/pathbandwidth/
19https://github.com/itu-p1203/itu-p1203

MMSys’20, June 8–11, 2020, Istanbul, Turkey S. Schwarzmann, N. Hainke, T. Zinner, C. Sieber, W. Robitza, and A. Raake

Table 5: Median improvements and confidence intervals (CI)

for the different QoE metrics over all runs.

Score Improvement ± CI

hybrid-ABR BOLA-ABR throughput-ABR

O23 0.034 ± 0.010 0.011 ± 0.011 0.008 ± 0.008

O34 0.048 ± 0.005 0.043 ± 0.003 0.046 ± 0.005

O46 0.035 ± 0.012 0.015 ± 0.015 0.011 ± 0.013

estimated in differentmodes. Lower modes require less information

at the cost of lower accuracy, but can be computed more easily. In

our streaming tests, since we have full access to the streamed seg-

ments, we use ITU-T Rec. P.1203.1 Mode 3, which requires decoding

of the bitstream. This mode uses video frame-level characteristics,

such as the frame types, frame sizes and the quantization parameter

(QP) values on a per-macroblock scale. Thus, mode 3 yields the

highest QoE estimation accuracy that is possible with the P.1203

model. The model returns one overall quality score and several

diagnostic quality scores on a MOS scale between 1 and 5, whereby

1 represents bad, and 5 represents excellent quality. We will use the

following scores throughout our evaluations:

• O34: Per-second audiovisual quality score

• O23: Stalling quality

• O46:Overall quality score, combines audiovisual and stalling

quality scores

As we omit the audio track for the videos, the QoEmodel per default

assumes a constant high audio quality when computing the audio-

visual quality score (O34). Furthermore, O34 yields a value for each

second of the video stream. When we refer to O34 in later parts

of this work, we mean the average of all per-second scores of a

streaming session.

5.2 Evaluation

In the following, we compare the performance of variable and fixed

segment durations for adaptive video streaming. We performed an

in-depth analysis of all three ABRs available in the dash.js reference

implementation, i.e., hybrid-ABR, BOLA-ABR, and throughput-ABR.

For our tested scenarios, we found that there are only slight differ-

ences in terms of how VAR performs compared toNA. Table 5 shows

the median improvements for the different QoE scores achieved by

VAR, i.e., QoE(VAR)-QoE(NA), using the different ABR strategies.

We furthermore denote the confidence intervals on a 95% confi-

dence level. The medians of the different QoE scores differ only

slightly and the corresponding confidence intervals overlap in most

of the cases. Particularly for the overall QoE O46, the confidence

intervals for all of the ABRs overlap, showing that the impact of

the ABR is not significant. For that reason, we limit the following

detailed streaming analysis on hybrid-ABR, which is the default

configuration of dash.js

5.2.1 QoE scores over all runs. Figure 10a illustrates the different

QoE scores obtained for all measurement runs with variable seg-

ment durations (VAR) and the respective fixed segment durations

using NA comparison and the hybrid-ABR logic. The x-axis repre-

sents the values on MOS scale, the y-axis denotes the ECDF. As the

1 2 3 4 5
QoE score

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

O46 - VAR
O46 - NA
O34 - VAR
O34 - NA
O23 - VAR
O23 - NA

(a) Absolute QoE scores

1.5 1.0 0.5 0.0 0.5 1.0 1.5
QoE score (VAR) - QoE score (NA)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

O46
O34
O23

(b) Difference of QoE scores

Figure 10: Absolute value and differences of the QoE scores

obtained from the measurements using the hybrid-ABR

.

Table 6: Average values for the different QoE scores obtained

with hybrid-ABR. Bold numbers represent the respective

higher value.

O23 O35 O46

ρ VAR NA VAR NA VAR NA

1.0 2.510 2.370 3.582 3.530 2.178 2.105

2.0 3.585 3.518 3.963 3.882 2.973 2.931

4.0 3.873 3.826 4.370 4.309 3.435 3.399

6.0 3.923 3.939 4.533 4.496 3.587 3.618

dotted lines, i.e., the values for VAR are slightly shifted, VAR tends

to increase the video streaming QoE. While the median value for

O46, i.e., the overall quality, is 2.806 for NA, this value can slightly

be increased to 2.853 by VAR. In terms of stalling quality, denoted as

O23, NA achieves a median value of 3.346, which also can slightly

be improved by VAR, which achieves a median value of 3.404. More

significant improvements using the variable approach can be seen

for O34, i.e. the audio-visual quality score. While the median for

NA is 4.0, this value increases to 4.12 for VAR.

Figure 10b illustrates the absolute differences of the QoE scores

obtained for all measurement runs. In terms of audio-visual quality,

i.e., O34, VAR improves the QoE in 75% of the tested cases. The

stalling quality (O23) can be improved for 56% of the runs, while

the overall QoE is improved in 57% of the tested cases.

Overall, the median improvement achieved by VAR with hybrid-

ABR is 0.034 ± 0.01 for O23 and 0.048 ± 0.005 for O34. The median

improvement of the overall QoE score, i.e., O46, is 0.035 ± 0.012 (cf.

Table 5). As none of the denoted confidence intervals includes 0,

we can conclude that the improvement by VAR is significant for all

considered QoE metrics.

5.2.2 QoE scores obtained with different rates. In order to better

understand further influence factors, we evaluate the obtained QoE

values for different bandwidth capacities. Figure 11 shows the differ-

enceQoE(VAR)−QoE(NA) for different rates, while Table 6 denotes

the average values of the QoE scores obtained with VAR and NA

using hybrid-ABR

For a bandwidth provisioning factor of ρ = 1, the overall QoE

score can be improved in 64% of the cases. The maximum improve-

ment of O46 that can be observed for this rate is 0.767, while the

worst impairment of VAR reduces the QoE by 0.297. The differences

Comparing Fixed and Variable Segment Durations for Adaptive Video Streaming MMSys’20, June 8–11, 2020, Istanbul, Turkey

1.5 1.0 0.5 0.0 0.5 1.0 1.5
QoE Score (VAR) - QoE Score (NA)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

O46
O34
O23

(a) ρ = 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
QoE Score (VAR) - QoE Score (NA)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

O46
O34
O23

(b) ρ = 2

1.5 1.0 0.5 0.0 0.5 1.0 1.5
QoE Score (VAR) - QoE Score (NA)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

O46
O34
O23

(c) ρ = 4

1.5 1.0 0.5 0.0 0.5 1.0 1.5
QoE Score (VAR) - QoE Score (NA)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

O46
O34
O23

(d) ρ = 6

Figure 11: Differences in terms of QoE scores for different bandwidth provisioning factors ρ.

in terms of O34 are relatively small, as the small bandwidth capac-

ity hardly leaves room for streaming on any other than the lowest

quality level. In contrast, the stalling quality (O23) can be increased

by up to 1.452, while it is never worsened by more than 0.52.

Figure 11b shows the absolute difference of the QoE scores for a

bandwidth provisioning factor of ρ = 2. At this rate, in 82% of the

measurement runs, the visual quality (O35) can be improved, while

still improving the stalling quality for 58%. The overall quality score

can be improved for 62% of the cases.

For an average rate corresponding to ρ = 4, as illustrated in

Figure 11c, the overall quality score (O46) is improved by VAR for

52% of the test runs, leading to a slightly increased O46 score for

VAR. Hence, the improvements achieved by VAR terms of QoE are

more significant than the degradation.

With ρ = 6, we observe the first case, where the fixed approach

outperforms the variable approach for the majority of the test

runs. In 55% of the cases, NA yields a higher O46 score than VAR.

Furthermore, the stalling quality (O23) is in 55% of the cases higher

with NA, than with VAR. However, in 62% of our scenarios, VAR still

increases the audio-visual quality score. The maximum increase is

0.42, while the worst degradation of O34 is by 0.3.

The overall QoE (O46) is mainly affected by the stallings [16].

This is also noticeable in our evaluations, as O46 and O23 have a

similar behavior for the shown cases in Figure 10b and Figure 11.

If O23 can be increased by VAR for a certain share, the share with

which O46 can be increased is similar to that. The degradation of

O46 in scenarios with increasing available bandwidth might be due

to an increase of stallings, resulting from a too optimistic quality

adaptation of the heuristic with VAR videos. The resulting higher

visual quality, however, cannot compensate the increased number

of stallings and hence, the overall QoE decreases for VAR. Table 6,

which summarizes the average QoE values obtained with VAR and

NA for different settings of ρ, indeed shows a first indication for

this behavior: The average O23 score for the ρ = 6 scenario is

decreased by VAR, while this score could be improved in any of the

other scenarios. This decrease of the O23 stalling quality results in

a lowered average overall QoE O46 with VAR.

5.2.3 Detailed investigation for ρ = 6. To further investigate this

hypothesis, we depict the average quality level and the total stalling

duration, i.e., the sum of all video interruptions in Figure 12. As

it can be seen from Figure 12a, the average quality level for VAR

is increased for all videos and all traces, except for two cases. The

BBB TOS MER ELF
car

0

1

2

Qu
al

ity
 le

ve
l

NA
VAR

BBB TOS MER ELF
ferry

0

1

2

BBB TOS MER ELF
tram

0

1

2

(a) Average quality level

BBB TOS MER ELF
car

0

5

10

15
To

ta
l s

ta
llin

g
du

ra
tio

n
[s

]
NA
VAR

BBB TOS MER ELF
ferry

0

50

100

BBB TOS MER ELF
tram

0

10

20

(b) Total stalling duration

Figure 12: Quality level and stalling duration for ρ = 6.

Green bars denote an improvement by VAR compared toNA,

red bars denote an impairment.

BBB TOS MER ELF
car

0.0

0.1

0.2

0.3

p
(b

uf
fe

r >
 2

6s
) NA

VAR

BBB TOS MER ELF
ferry

0.0

0.1

0.2

0.3

BBB TOS MER ELF
tram

0.0

0.1

0.2

0.3

Figure 13: Probability for buffer levels nearby the target

buffer.

first one is the ELF clip for the car trace, the second case is again

the clip ELF, but for the tram trace.

Figure 12b shows that for the car trace, the total stalling dura-

tion is increased for all videos, except ELF, which is the only one

where the average quality is not increased, but slightly decreased

using VAR. The same holds for the tram trace, where the stalling

duration is increased for all those videos, where the average quality

is increased using VAR.

The hybrid-ABR selects the next segment’s quality based on the

measured throughput and the buffer level. As we configured the tar-

get buffer level as 30 seconds, quality switches are likely to happen

shortly before this level is reached. Figure 13 illustrates the proba-

bility of a buffer level above 26 seconds. In all cases, the probability

MMSys’20, June 8–11, 2020, Istanbul, Turkey S. Schwarzmann, N. Hainke, T. Zinner, C. Sieber, W. Robitza, and A. Raake

of having a buffer level near the target buffer is higher for VAR than

for NA, except for the ELF clip. This strengthens our hypothesis

that with VAR, the overall QoE score (O46) decreases for higher

rates due to a too aggressive quality adaptation. As the average

bitrate for VAR is lower compared to NA, higher buffer values can

be reached faster. This triggers the heuristic to switch to a higher

quality, which can lead to stalling, especially in environments with

varying bandwidth capacity and if the downloaded segment is of

comparably long duration. Please note the increased variability in

terms of segment sizes for the VAR approach. A possible solution

to overcome this drawback is to set higher buffer thresholds for

quality switches, when segments of variable durations are used.

5.2.4 Summary. In scenarios with low bandwidth capacity, the

approach using variable segment durations can clearly outperform

the conventional approach for HASwith fixed segment durations. In

these cases, the impact of the adaptation logic and the buffer-based

quality switching thresholds are negligible, as hardly any other

than the lowest quality level can be played back. In scenarios with

sufficient bandwidth for a decent streaming quality, the variable

approach performs worse than the fixed approach for roughly half

of the measured cases. Due to the decreased bitrate for variably

segmented videos, the probability of high buffer values ś and hence

the probability to switch to a higher quality level ś is increased.

Hence, with variable segment durations, slightly higher buffer-

thresholds for quality switches should be set.

5.3 Limitations and Future Research Directions

The BOLA algorithm does not simply switch quality as soon as a

certain buffer threshold is reached, but implements more sophisti-

cated decision criteria, which might not sufficiently comply with

variable segment durations. These criteria have not been addressed

in this paper, and have also not been investigated more deeply in

terms of how they interact with variable segment durations. How-

ever, the goal of this paper is to test the performance of variable

segment duration using a state-of-the-art reference implementation

for HAS. By tuning the relevant parameters and using heuristics

with a higher potential of supporting variable segment durations,

similar to [7], which accounts for segment size variability, it can be

assumed that the streaming performance of VAR in terms of QoE

can further be increased.

The results might be biased, as we set the initial buffer threshold

to 12 seconds for any video. However, as the segment durations

vary (between VAR and NA), the number of downloaded segments

prior to video playback may differ, and consequently also the buffer

levels when the playback actually starts. As a result, this can impact

the initial delay and the probability of video stallings, the latter

one especially during the first phases of playback. Furthermore,

the experiments were conducted with relatively low bandwidth

capacities, as compared to the highest quality levels available. This

could bias the results in favor for VAR, which outperforms NA in

low bandwidth scenarios.

Future research needs to examine how the comparison with EM

performs. EM results in an increased number of video segments

and yields a lower bitrate saving than NA, as fewer I-frames can

be economized. On the other hand, VAR has no increased segment

durations when compared with EM and as a consequence, quality

adaptation can be done on the same, or even on amore fine-granular

scale. Furthermore, the maximum duration for variable video seg-

ments, which has been limited to 10 seconds in this work, should

be studied. Finally, factors such as the number of provided qual-

ity levels or concurrent video streams can have an impact on the

performance and should be investigated in the context of variable

segment durations.

6 CONCLUSION

Using video segments of variable durations for HAS videos can re-

duce the encoding overhead compared to the conventional approach

which uses fixed segment durations. In this work, we encoded a

small set of videos using numerous encoding options, that is, dif-

ferent segment durations, CRF values, resolutions, and CBR and

VBR encoding. Based on the resulting dataset, consisting of about

2,000 encoded video sequences, we quantified the bitrate saving

and showed that using variable segment duration can be up to 15%

more efficient than the fixed approach.

To evaluate the performance of variable segment durations for

adaptive streaming, we performed more than 7,000 testbed mea-

surement runs with different network settings. Here as well, the

testbed is made publicly available. It uses the standardized ITU-T

P.1203 QoE model in order to quantify the impact of the encod-

ing decisions on user-experienced quality. In scenarios with low

bandwidth capacity, the variable approach clearly outperforms the

fixed approach in terms of QoE, which is attributed to the reduced

bitrate, whilst maintaining a comparable visual quality. In scenarios

with high bandwidth, we observed several cases where the QoE

was degraded by the variable approach. We found that in these

cases, the player switched more aggressively to a higher quality

level when streaming the video with variable segment durations.

In turn, stallings occurred more often. In order to eliminate such

drawbacks, one might consider to tune player parameters such as

buffer thresholds, or to design a heuristic which is dedicated for

variable segment durations. For example such a heuristic would

decide not to download the next segment in a higher quality, al-

though the current buffer level allows it, if the next segment has a

comparably large duration.

To conclude, due to the reduced bitrate, HAS can profit from

variable segment durations with a similar to slightly better QoE.

However, further research is required on the design of heuristics

and buffer thresholds that do not suppress the benefits of vari-

able segment durations, while eliminating the drawback of a too

aggressive quality adaptation.

ACKNOWLEDGMENTS

We thank our shepherd Hermann Hellwagner and all anonymous

reviewers for their valuable feedback, as well as Bruno Péjac and

Hendrik von Kiedrowski for their continuous support with the

streaming setup.

Comparing Fixed and Variable Segment Durations for Adaptive Video Streaming MMSys’20, June 8–11, 2020, Istanbul, Turkey

REFERENCES
[1] Velibor Adzic, Hari Kalva, and Borko Furht. 2012. Optimizing video encoding for

adaptive streaming over HTTP. IEEE Transactions on Consumer Electronics 58, 2
(2012), 397ś403.

[2] Valentin Burger, Thomas Zinner, Lam Dinh-Xuan, Florian Wamser, and Phuoc
Tran-Gia. 2018. A generic approach to video buffer modeling using discrete-time
analysis. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 14, 2s (2018), 33.

[3] Cisco. 2018. Cisco Visual Networking Index: Forecast and Trends, 2017ś2022.
White Paper.

[4] Luca De Cicco, Vito Caldaralo, Vittorio Palmisano, and Saverio Mascolo. 2014.
TAPAS: a Tool for rApid Prototyping of Adaptive Streaming algorithms. In Pro-
ceedings of the 2014 Workshop on Design, Quality and Deployment of Adaptive
Video Streaming. ACM, 1ś6.

[5] Jan De Cock, Zhi Li, Megha Manohara, and Anne Aaron. 2016. Complexity-based
consistent-quality encoding in the cloud. In 2016 IEEE International Conference
on Image Processing (ICIP). IEEE, Phoenix, AZ, USA, 1484ś1488.

[6] Iheanyi Irondi, Qi Wang, and Christos Grecos. 2016. Optimized adaptation
algorithm for HEVC/H.265 dynamic adaptive streaming over HTTP using vari-
able segment duration. In Real-Time Image and Video Processing 2016, Vol. 9897.
International Society for Optics and Photonics, Brussels, Belgium, 98970O.

[7] P. Juluri, V. Tamarapalli, and D. Medhi. 2015. SARA: Segment aware rate adap-
tation algorithm for dynamic adaptive streaming over HTTP. In 2015 IEEE In-
ternational Conference on Communication Workshop (ICCW). IEEE, London, UK,
1765ś1770. https://doi.org/10.1109/ICCW.2015.7247436

[8] Stefan Lederer, Christopher Müller, and Christian Timmerer. 2012. Dynamic
adaptive streaming over HTTP dataset. In Proceedings of the 3rd Multimedia
Systems Conference. ACM, Chapel Hill, North Carolina, USA, 89ś94.

[9] Yu-Ting Lin, Thomas Bonald, and Salah Eddine Elayoubi. 2016. Impact of chunk
duration on adaptive streaming performance in mobile networks. In 2016 IEEE
Wireless Communications and Networking Conference. IEEE, Doha, Qatar, 1ś6.

[10] Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. 2011. Segment duration for
rate adaptation of adaptive HTTP streaming. In 2011 IEEE International Conference
on Multimedia and Expo. IEEE, Barcelona, Spain, 1ś4.

[11] Megha Manohara, Anush Moorthy, Jan De Cock, Ioannis Katsavounidis,
and Anne Aaron. 2018. Optimized shot-based encodes: Now Stream-
ing! https://medium.com/netflix-techblog/optimized-shot-based-encodes-now-
streaming-4b9464204830

[12] Alexander Raake, Marie-Neige Garcia, Werner Robitza, Peter List, Steve Göring,
and Bernhard Feiten. 2017. A bitstream-based, scalable video-quality model for
HTTP adaptive streaming: ITU-T P.1203.1. In Ninth International Conference on
Quality of Multimedia Experience (QoMEX). IEEE, Erfurt, 1ś6. https://doi.org/10.
1109/QoMEX.2017.7965631

[13] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pål Halvorsen. 2013. Com-
mute path bandwidth traces from 3G networks: analysis and applications. In
Proceedings of the 4th ACM Multimedia Systems Conference. ACM, Oslo, Norway,
114ś118.

[14] Werner Robitza, Steve Göring, Alexander Raake, David Lindegren, Gunnar
Heikkilä, Jörgen Gustafsson, Peter List, Bernhard Feiten, UlfWüstenhagen, Marie-
Neige Garcia, Kazuhisa Yamagishi, and Simon Broom. 2018. HTTP Adaptive
Streaming QoE Estimation with ITU-T Rec. P.1203 ś Open Databases and Soft-
ware. In 9th ACM Multimedia Systems Conference. ACM, Amsterdam, The Nether-
lands, 466ś471. https://doi.org/10.1145/3204949.3208124

[15] Susanna Schwarzmann, Thomas Zinner, Stefan Geissler, and Christian Sieber.
2018. Evaluation of the benefits of variable segment durations for adaptive stream-
ing. In 2018 Tenth International Conference on Quality of Multimedia Experience
(QoMEX). IEEE, Sardinia, Italy, 1ś6.

[16] Michael Seufert, Nikolas Wehner, and Pedro Casas. 2018. Studying the Impact
of HAS QoE Factors on the standardized QoE model P.1203. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS). IEEE, 1636ś
1641.

[17] Anargyros Sideris, E Markakis, Nikos Zotos, Evangelos Pallis, and Charalabos
Skianis. 2015. MPEG-DASH users’ QoE: The segment duration effect. In 2015
Seventh International Workshop on Quality of Multimedia Experience (QoMEX).
IEEE, Costa Navarino, Messinia, Greece, 1ś6.

[18] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA: Near-
optimal bitrate adaptation for online videos. In IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications. IEEE, San
Francisco, CA, USA, 1ś9.

[19] Thomas Stockhammer. 2011. Dynamic adaptive streaming overHTTPś: standards
and design principles. In Proceedings of the second annual ACM conference on
Multimedia systems. ACM, San Jose, California, USA, 133ś144.

[20] Jeroen van der Hooft, Dries Pauwels, Cedric De Boom, Stefano Petrangeli, Tim
Wauters, and Filip De Turck. 2018. Low-latency delivery of news-based video
content. In Proceedings of the 9th ACM Multimedia Systems Conference. ACM,
Amsterdam, The Netherlands, 537ś540.

[21] Jeroen Van Der Hooft, Stefano Petrangeli, Tim Wauters, Rafael Huysegems, Tom
Bostoen, and Filip De Turck. 2018. An HTTP/2 push-based approach for low-
latency live streaming with super-short segments. Journal of Network and Systems
Management 26, 1 (2018), 51ś78.

[22] Bjùrn J Villa and Poul E Heegaard. 2013. Group based traffic shaping for adaptive
HTTP video streaming by segment duration control. In 2013 IEEE 27th Interna-
tional Conference on Advanced Information Networking and Applications (AINA).
IEEE, Barcelona, Spain, 830ś837.

[23] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing 13, 4 (2004), 600ś612.

[24] Anatoliy Zabrovskiy, Christian Feldmann, and Christian Timmerer. 2018. A
practical evaluation of video codecs for large-scale HTTP adaptive streaming
services. In 2018 25th IEEE International Conference on Image Processing (ICIP).
IEEE, 998ś1002.

[25] Ondrej Zach and Martin Slanina. 2018. Content aware segment length optimiza-
tion for adaptive streaming over HTTP. Radioengineering 27, 3 (2018), 819.

MMSys’20, June 8–11, 2020, Istanbul, Turkey S. Schwarzmann, N. Hainke, T. Zinner, C. Sieber, W. Robitza, and A. Raake

A APPENDIX

This appendix shows how both, the video encoding and the video

streaming experiments described in the paper, can be reproduced.

The following page gives an overview to the provided artifacts:

https://fg-inet.github.io/acm-mmsys-2020 It links to the GitHub

repositories of the tools used in the paper and provides the Zenodo

link for the dataset.

A.1 Overview of Artifacts

Our artifacts include:

• Video Encoding Results ś The statistics for all encoded

videos used for comparing the variable and the fixed segment

durations approach.

• Videos Used for Streaming Measurement ś We provide

all encoded video sequences that have been used for the

video streaming experiments.

• Video Encoding Environment ś The code for the setup

for scalable video encoding and analysis.

• Video Streaming Setup ś The code for the setup for con-

trolled and monitored experiments with the reference player

dash.js.

Please note: For the paper, more than 6,000 streaming measurement

runs have been performed and roughly 2,000 videos (including 4K)

have been encoded and analyzed. For both the encoding environ-

ment and the streaming setup we give a step-by-step introduction

how to use them with a light, exemplary setting. However, all data

and information needed to reproduce the whole range of experi-

ments are made available.

A.2 Dataset

In the following, we describe the dataset, which can be found here:

https://zenodo.org/record/3732206.

A.2.1 Video Encoding Results. This data set contains two .csv files,

one for the encoding with constant bitrate (CBR) and one for the

encoding with variable bitrate (VBR). For each encoded video, the

result files contain the necessary source video information, such

as name, frame rate, or resolution. Furthermore, we denote the

used encoding settings, including CRF value, target bitrate, segment

duration, as well as whether a the fixed or the variable approach was

used. Finally, we provide the metrics obtained from analyzing the

encoded sequences. Among others, minimum, maximum, average,

and standard deviation are given for the resulting bitrate, segment

duration, and SSIM.

A.2.2 Videos Used for Streaming Measurements. For the streaming

measurement, the CBR encoded videos have been used. The video

directories are named as follows:

<encoding>_<title>_<segmentation>_<max_dur>

For example, CBR_BBB_VAR_10 denotes the CBR encoded version

of the BBB clip with variable segments of a maximum duration of

10 seconds. Each video folder contains the video playlist and one

subfolder for each available quality level. The subfolder’s name

represent the quality level’s resolution and CRF, i.e., quality:

<resolution>_<CRF>.

We use the following structure for a video directory:

CBR_BBB_VAR_10

playlist.mpd

1080_22

init-stream0.m4s

segment1.m4s

segment2.m4s

...

720_34

init-stream0.m4s

segment1.m4s

segment2.m4s

...

A.3 Docker Container for Video Encoding

This part details on the Docker-based encoding environment used

in this paper and available on GitHub: https://github.com/fg-inet/

docker-video-encoding. We first give a detailed description and

present the steps for a quick testing afterwards.

A.3.1 Description. In the following present the most relevant com-

ponents of the setup. Then, we describe in more detail their inter-

play and the sequence of encoding a video with this setup.

• Dockerfile ś This file is needed to create the Docker im-

age. It installs all dependencies and provides all necessary

scripts to the container. Furthermore, it defines the so-called

entrypoint, which is in our case the file video_encode.py

• video_encode.py ś Using this script, the actual video en-

coding is performed, based on a number of given parameters:

ś video ś The raw video to be encoded.

ś reference_video ś The reference video for calculating

the qualitymetrics (the reference’s resolution can be higher

than the resolution of video).

ś CRF ś The value for the constant rate factor. The CRF may

range from 0 to 51, whereby lower values result in higher

video quality.20

ś min_length ś The minimum segment duration, specified

in seconds. This parameter is only relevant with variable

segments. (We always set the parameter to 0 in this work)

ś max_length ś The maximum segment duration, specified

in seconds. This parameter is only relevant with variable

segments. (We used values of 4, 6, 8, and 10 in this paper)

ś target_seg_length ś The segment duration, specified

in seconds, when segments of fixed duration should be

used. This parameter needs to be set to łvarž, if variable

segments should be used.

ś encoder ś The encoder to be used. Please note, the current

version supports x264 only.

20https://slhck.info/video/2017/02/24/crf-guide.html

Comparing Fixed and Variable Segment Durations for Adaptive Video Streaming MMSys’20, June 8–11, 2020, Istanbul, Turkey

ś timestamps ś Timestamps where segments should be

split.

ś cst_bitrate ś The target bitrate for the resulting video.

This is only needed for CBR encoding.

• worker.py ś A script for setting up a so-called worker. A

worker is one running Docker instance with a dedicated job,

i.e, a set of encoding parameters.

• run_workers_mmsys.sh ś A script starting the workers. It

determines the number of available CPU cores, and starts

one worker per CPU core.

• dirjobs.py ś A script for managing all encoding jobs.

In the following, we describe in detail the interplay of worker.py,

run_workers_mmsys.sh, and dirjobs.py. The setup is designed

so as to make video encoding scalable across many CPU cores.

Hence, it allows to run several encoding jobs in parallel (one per

CPU core) and maintains a job queue. A job description stores all

relevant encoding parameters as shown below.

1 { " v i deo " : " b igbuckbunny480p24x30s . y4m" ,
2 " r e f e r e n c e _ v i d e o " : " b igbuckbunny480p24x30s . y4m" ,
3 " c r f " : 16 ,
4 " min_ length " : 4 ,
5 " max_length " : 4 ,
6 " t a r g e t _ s e g _ l e n g t h " : 4 ,
7 " encoder " : " x264 " ,
8 " c s t _ b i t r a t e " : 123456
9 }

worker

waiting running faileddone

jobs

video_encode.py

video analysis

encoding

parameters

Job

1

Job

1

encoded sequenceraw video

ffmpeg encoding

3

4

Job

1

Job

1

Job

682

1

Job

1

2

videos

Job

1

5

encoding duration

analysis duration

error messages

SSIM, PSNR

segment durations

bitrate

sshf_dir results

Job

1

7 8

9

10

11

Figure 14: Illustration of the video encoding setup.

As shown in Figure 14, all pending jobs are stored in the folder

jobs/waiting (1○). A free worker fetches a job from this job queue

and can so obtain all relevant encoding parameters (2○). This trig-

gers dirjobs.py to move the respective job from jobs/waiting to

jobs/running (3○). The worker gets the raw video specified in the

job description from the videos directory (4○). Then, the worker

starts the Docker container (5○), which triggers the execution of

video_encode.py. Hence, the video is encoded using ffmpeg along

with the parameters specified in the job description (7○). As soon as

the encoding process has finished, the encoded and segmented video

is analyzed (8○). This includes statistics regarding the segment dura-

tions and bitrate, but also quality metrics, such as SSIM and PSNR.

The ladder one are obtained using ffmpeg_quality_metrics21.

The worker monitors the container during running, and logs the

21https://github.com/slhck/ffmpeg-quality-metrics

video encoding duration, the time it took for analyzing the result-

ing sequence, and possible error messages (9○). The collected logs

and statistics are then stored in the results folder. Finally, the job

description is moved to the jobs/done folder (11○). If any of the

step were not successful, the job description would be move to the

jobs/failed folder.

A.3.2 Exemplary Encoding /Quick Testing. To perform a quick test-

ing of the setup, please follow the next steps. It starts the procedure

as described above with four representative jobs. The jobs include

VBR and CBR encoding, as well as segmentation with fixed and

with variable segment durations. The chosen source video is a 30

seconds snippet of the BBB clip.

(1) In the main directory, i.e., docker-video-encoding, run

bash init_mmsys.sh. This will download the raw video

sequence and create all necessary directories.

(2) Run bash run_workers_mmsys.sh. This will initiate the

encoding process and take some time. The waiting, run-

ning, and finished jobs can be found in the respective folders

(00_waiting, 01_running, and 99_done).

(3) The encoding and video statistics are stored in the subfolder

results, the encoded videos can be found in sshfs_dir.

A.3.3 Log Files. Upon others, the following log files are produced

for each encoding job:

• video_statistics.json ś Contains the size, duration, and

bitrate for each video segment. For these metrics, it further-

more provides statistics, such as min, max, standard devia-

tion, and average values.

• timings.json ś Lists the durations for encoding the video,

analyzing SSIM and PSNR, and for gathering the remaining

statistics.

• stats.json ś Contains information about the used worker,

summarizes the encoding parameters, and lists the used di-

rectories for storing the encoded sequences and statistics.

• segments.json ś Frame-level statistics for each video seg-

ment. This includes height and width, frame type (I,P,B), key

frame, etc.

• psnr_ssim_vmaf.csv ś Quality statistics on frame-level.

A.4 Virtual Environment for Streaming
Measurements

The testbed environment is publicly available on Github: https:

//github.com/fg-inet/DASH-streaming-setup. It allows to run mea-

surements using the dash.js player in headless mode for different

network settings. The setup requires Vagrant, at least 8GB RAM and

must be run bare-metal hardware, as Virtualbox does not provide

the setup of virtual interfaces in an already virtualized environment.

A.4.1 Description. The setup consists of three virtual machines: a

server, a client, and a network emulator (netem). The client uses the

Chrome browser in headless mode to do video streaming using the

dash.js player. The client’s requests in headless mode are realized

using Puppeteer 16, which runs on top of Node.js. All relevant

files on client-side can be found in the folder DASH-setup/client,

all relevant files on server-side in the folder DASH-setup/server,

MMSys’20, June 8–11, 2020, Istanbul, Turkey S. Schwarzmann, N. Hainke, T. Zinner, C. Sieber, W. Robitza, and A. Raake

respectively. We give a brief overview on the most relevant files

and folders.

• DASH-setup/client/logs śAs soon as video has been played

back completely, its log files are stored in .json format in this

folder. This folder is shared between the client VM and the

host machine.

• DASH-setup/server/public/videos ś All videos placed

in this directory will be available at the server VM after

provisioning and can be requested by the client.

• DASH-setup/server/public/javascripts/player.js ś

The javascript file for the video player. The function called

in line 20, player.updateSettings, allows to customize

streaming settings, such as buffer thresholds, or the applied

ABR.22

All necessary files for booting the VMs can be found in the

folder DASH-setup/vagrant_files. In the following, we give a

short description on the files relevant for booting the VMs.

• Vagrantfile ś This file configures the VMs. It assigns IP ad-

dresses to the machine’s interfaces, allocates resources, pro-

vides all necessary files to the machines and defines shared

folders between the VMs and the host machine.

• setup_server.sh, setup_client.sh, setup_netem.sh ś

These are the provisioning scripts to install required pack-

ages and to define additional settings, e.g. IP routes.

Finally, we provide some scripts to allow automatized measure-

ments and setting bandwidth limits at the netem. They are as well

located in DASH-setup/vagrant_files.

• netem_start_trace.sh ś This script takes a bandwidth

trace as input parameter and throttles the bandwidth on the

netem’s outgoing interface according to the values specified

in the trace. The bandwidth values are updated each second.

• trace_killer.sh ś A cleanup script which stops band-

width being throttled at the netem.

• experiment_startup.sh ś The script for measurement au-

tomation. Via SSH, it triggers the netem to start and stop

limiting the interface. Similarly, it triggers the client to re-

quest videos. It allows to specify the number of repetitions

to be performed, the location of the trace files to be used,

and the video which should be streamed. An overview is

given in Figure 15.

server netem client

192.167.101.13

192.167.101.12 192.167.100.12

192.167.100.11

Host system

Vagrant/Virtual Box

experiment_startup.sh

trace_killer.sh netem_start_trace.sh

SSH

SSH

log.json

SSH

tc

traces

Figure 15: Illustration of the streaming measurement setup.

22Please find all possible settings for the dash.js player here: http://cdn.dashjs.org/
latest/jsdoc/module-Settings.html#~StreamingSettings__anchor

A.4.2 Exemplary Measurement Runs. In order to run exemplary

measurements, the repository provides two versions of the BBB clip

as sample sequences. One version using fixed segment durations,

one version using variable segment durations. The automation

script experiment_startup.sh is configured so to use the two

traces given in the folder test_traces, to stream both versions

of the BBB clip, and to repeat each configuration two times. This

results in 8 runs in total. To start the measurements, please follow

the next steps:

(1) Open a terminal and navigate into the following directory:

DASH-streaming-setup/vagrant_files.

(2) Run vagrant up in order to boot all virtual machines. This

will take a few minutes. All VMs are completely provisioned

when the following output is given: [nodemon] starting

node ./bin/www.

(3) Open another terminal window and navigate into the direc-

tory DASH-streaming-setup/vagrant_files.

(4) There, run bash experiment_startup.sh to initiate the

measurements. This will take some time.

(5) As soon as a run has finished, its log files are stored on the

host machine in DASH-setup/client/logs

A.4.3 Log Files. Two log files are produced for each successful

measurement run:

• segmentLog.json ś For each downloaded video segment,

the following information is given: segment index, segment

size, timestamp of segment download start, download dura-

tion.

• qualityLog.json ś Each 100ms, the following information

is logged: timestamp, buffer level, quality level, overall played

back time.

	Abstract
	1 Introduction
	2 Related Work
	3 Variable Segment Durations for Adaptive Streaming
	3.1 State-of-the-Art Video Preparation for HAS
	3.2 Variable vs. Fixed Segment Durations
	3.3 Requirements and Best Practices for Variable Segment Durations

	4 Video Encoding and Segmentation
	4.1 Methodology
	4.2 Evaluation
	4.3 Limitations and Future Research Directions

	5 Video Streaming
	5.1 Methodology
	5.2 Evaluation
	5.3 Limitations and Future Research Directions

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Overview of Artifacts
	A.2 Dataset
	A.3 Docker Container for Video Encoding
	A.4 Virtual Environment for Streaming Measurements

