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Abstract

The need for rigorous and timely health and demographic summaries has pro-

vided the impetus for an explosion in geographic studies in low and middle in-

come countries. Many of these studies present fine-scale pixel-level maps in an

attempt to answer the needs of the current era of precision public health. How-

ever, even though household surveys with a two-stage cluster design stratified by

region and urbanicity are a major source of data, cavalier approaches are taken

to acknowledging the survey design.

We investigate the extent to which accounting for the sample design affects

the predictive performance at the aggregate level of interest for health policy

decisions. We consider various commonly-used models and introduce a new

Bayesian cluster level model with a discrete spatial smoothing prior. The in-

vestigation is performed through a simulation study in which realistic sampling

frames are created for Kenya, based on population and demographic information,
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with a survey design that mimics a Demographic Health Survey (DHS). We find

that including stratification and cluster level random effects can improve predic-

tive performance. Spatially smoothed direct (weighted) estimates and area level

models accounting for stratification were robust to the underlying population and

survey design. Continuous spatial models showed some promise in the presence

of fine scale variation; however, these models require the most “hand holding”.

Subsequently, we examine how the models perform on real data, estimating the

prevalence of secondary education for women aged 20–29 and neonatal mortality

rates, using data from the 2014 Kenya DHS.

KEY WORDS: Survey design; spatial statistics; small area estimation; integrated

nested Laplace approximations; geostatistical models.

1 Introduction

Complex, multi-stage household surveys play an important role in producing a variety

of estimates of health and demographic quantities of interest, especially in low and

middle income countries (LMICs). Examples of surveys in this context include De-

mographic Health Surveys (DHS) (USAID, 2019), Multiple Indicator Cluster Surveys

(MICS) (UNICEF - Statistics and Monitoring, 2012), AIDS Indicator Surveys (AIS)

(DHS Program, 2019), and Living Standard Measurement Surveys (LSMS) (World

Bank, 2019). The lack of high quality vital registration (VR) and administrative data

often necessitates the use of these household surveys in LMICs (Li et al., 2019; Wagner

et al., 2018; Sandefur and Glassman, 2015; Jerven, 2013; Devarajan, 2013), particularly

in the context of precision public health, which is the practice of using data to guide

public health interventions targeting specific subgroups or entire populations more ef-

fectively (Khoury et al., 2016; Desmond-Hellmann et al., 2016; Dowell et al., 2016). For
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instance, it has been estimated that only 4% of neonatal deaths (deaths in the first 28

days of life) are recorded via high quality VR data (Lawn et al., 2014). In addition, in

a comparison across 46 surveys and 21 African countries, growth in primary education

enrollment from 1991 to 2011 was found to be higher in administrative statistics by

a third on average relative to DHS data, with the largest discrepancies occurring in

Kenya and Rwanda (Sandefur and Glassman, 2015).

The Sustainable Development Goals (SDGs) specify targets for a variety of health

and demographic outcomes (United Nations, 2019). In particular, SDG 3 calls for an

end to preventable deaths of newborns and children under 5 years of age and states

that all countries should aim to reduce neonatal mortality to below 12 deaths per 1,000

live births by 2030. Additionally, SDG 4 calls for improved education for all, for all

people to complete their secondary education, and for the elimination of inequalities

in education due to gender or location. Hence, developing statistical models that can

accurately account for the sampling design while also producing spatial estimates at

subnational scales is of great importance.

Classical techniques for analyzing survey data that can account for the survey

design often have difficulty producing estimates at the required spatial resolutions

(interventions are often made at the Admin2 level, which is the second subnational

area level commonly referred to as counties). For example, weighted (direct) estimates

from DHS data are often practically unavailable at the Admin2 level, as there are

areas with no data, or areas with data that produce estimates with unacceptably large

variances. To improve estimation in such situations, a number of small area estimation

(SAE) methods have been proposed (Rao and Molina, 2015) including those that extend

upon the seminal Fay-Herriot model (Fay and Herriot, 1979). These methods not only

acknowledge the survey design, but also “borrow strength” from data in nearby areas

to produce reliable estimates with smaller uncertainty intervals (Marhuenda et al.,
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2013; Chen et al., 2014; Mercer et al., 2015; Congdon and Lloyd, 2010; You and Zhou,

2011; Porter et al., 2014; Vandendijck et al., 2016; Watjou et al., 2017; Li et al., 2019).

These approaches are all based on discrete spatial models, which employ arbitrary

neighborhood structures that may be more or less realistic depending on the context

and geography.

A number of papers have used continuous spatial models to analyze health and

demographic outcomes using survey data (Wardrop et al., 2018; Gething et al., 2016;

Golding et al., 2017; Utazi et al., 2018; Gething et al., 2015; Osgood-Zimmerman

et al., 2018; Graetz et al., 2018; Diggle and Giorgi, 2016; Giorgi et al., 2018; Diggle and

Giorgi, 2019). Included in this list are publications from WorldPop and the Institute

for Health Metrics and Evaluation (IHME), both of which are large scale producers

of health and demographic maps. In these references, all of the models ignore the

stratification when analyzing survey data, with WorldPop also routinely ignoring the

cluster sampling as well. In general, ignoring the design results in biased estimates and

inaccurate uncertainty intervals. No study has been conducted to explore the effects

of ignoring design stratification and cluster level correlation in the LMIC context, and

here we aim to fill this gap in the literature, by comparing a variety of spatial modeling

approaches, under different levels of stratification and clustering.

We explore the performance of different design- and model-based methods, when

applied to simulated data. We also apply these methods to the analysis of two outcomes

recorded in the 2014 Kenya DHS, the proportion of women between the ages of 20

and 29 who have completed their secondary education, and the neonatal mortality

rate (NMR). Section 2 describes the data we will use in this analysis and Section 3

introduces the models that we compare and apply. Section 4 describes the simulation

study, and in Section 5 we apply the models to the secondary education outcome and

NMRs, reporting predictions, uncertainties, and using cross validation to assess the

4



out of sample performance of each of the models. We discuss the results and provide

our conclusions in Section 6. Lastly, Appendix A gives details on how we aggregate

model-based predictions to the county level.

2 Data

The DHS Program uses a consistent set of sampling approaches, with methods de-

scribed in the 2012 DHS Sampling and Household Listing Manual (ICF International,

2012, Sec. 5.2, p. 80–85). The standard design is a stratified two-stage cluster sam-

pling scheme with stratification by county crossed with urban/rural classification. The

first sampling stage involves selecting enumeration areas (EAs) with probability pro-

portional to size (PPS) sampling, where the probability of sampling each EA is pro-

portional to the listed number of households in that EA, and the second stage involves

simple random sampling of (typically) 25 households within each EA. Women within

the household are then asked a number of demographic questions involving their ed-

ucation level, and mothers give information on their children’s birth dates, and, if

relevant, dates of death. The 2014 Kenya DHS (KDHS, 2014) follows the typical DHS

scheme, though it is powered to the county level, which is the level at which policies are

implemented in Kenya. Hence, sample sizes are chosen to provide sufficiently precise

county level estimates. A total of 1,612 clusters were sampled out of the 96,251 total

EAs that were in the 2009 Kenya Population and Housing Census (Kenya National

Bureau Of Statistics, 2014). Of these clusters, 995 are urban while 617 are rural, with

urban areas oversampled in the majority of the 47 counties. Mombasa and Nairobi are

entirely urban and the remaining 45 counties have both urban and rural areas, so that

there are 92 strata in total.
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3 Methods

3.1 Models

We describe the notation for NMRs, but the models are applicable to arbitrary binary

outcomes. In the case of NMR, the denominators are the number of children that were

born in the relevant period, and the response is whether a death occurred in the first

month after birth. Let Yck = 0/1 represent the binary response for child k in cluster c

with the total number of deaths in each cluster being Yc =
∑

k∈Bc Yck where Bc is the

set of indices of the children in cluster c that are sampled. We let xc be the spatial

location of cluster c. Associated with location xc is a county, which will be denoted

i[c], and the set of spatial locations that are urban is denoted U . We now describe the

different models considered, focusing on inference at the county level since this is often

relevant for public health policy decisions.

Naive: We fit a binomial model to the county-level data without accounting for the

sampling design. In this case, we assume the probability of mortality for child k in

cluster c is the same for all children in county i, and define the county specific logit

probability as,

log

(
pck

1− pck

)
= βi[c],

where the models are fitted independently to the data from each county. The targets

of inference are the county-level probabilities expit(βi), i = 1, . . . , 47.

Direct: County-level direct estimates, p̂ DIR
i , are calculated using a weighted estimator

that accounts for the survey design. The weights are proportional to the inverse proba-

bility of sampling each child. This estimator is reliable for large samples, but for small

samples, will have high variance (Rao and Molina, 2015). Weighted estimators can

yield estimates of exactly zero or one, and have variance instability in small samples.
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These problems lead to yearly estimates at the Admin2 level that are typically not

reliable when based on a DHS with around 400 clusters (a typical design).

In addition to these two classical approaches we also consider three hierarchical

Bayesian space-time models.

Smoothed Direct: Following the approach of Mercer et al. (2015) we calculate

Zi = logit(p̂ DIR
i ) along with its associated design-based variance estimate, V̂i. We

assume Zi|ηi ∼ind N(ηi, V̂i) with linear predictor,

ηi = β0 +
1√
τ

(
√
φSi +

√
1− φδi),

where β0 is the intercept, and S1, . . . , S47 and δ1, . . . , δ47 are, respectively, mean zero

county level intrinsic conditional autoregressive (ICAR) spatial terms and independent

and identically distributed (iid) Gaussian random effects. The ICAR model, described

in Besag et al. (1991), is a discrete spatial model that assumes the latent effect in each

area is Gaussian whose mean is the average of the effects in neighboring areas. We

apply a sum-to-zero constraint
∑47

i=1 Si = 0 to the ICAR terms to make the intercept

β0 identifiable.

The parameterization adopted is a variation of the model introduced in Simpson

et al. (2017), and is named the BYM2 model in Riebler et al. (2016) since it is a

reparameterization of the model originally introduced by Besag et al. (1991). The total

precision of the county level components of the model is τ , and the precision matrix

of the ICAR random effects is scaled so that φ can be interpreted as the proportion

of the BYM2 variance that is spatial. Under this approach, the posterior distribution

is obtained for the county level probabilities: p SM-DIR
i = expit(ηi), i = 1, . . . , 47. This

model was used in the context of estimating under-5 mortality rates in Mercer et al.

(2015) over space and time and in Li et al. (2019). Its predictions typically have lower
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variance than the direct estimates, but it still struggles with zero or one estimates and

undefined/unstable variances.

Model-based approaches: For the model-based spatial approaches, we assume that

Yc|p(xc) ∼ Bin(nc, p(xc)), where nc is the total number of children sampled in cluster

c. The underlying risk at location xc for cluster c is modeled as

log

(
p(xc)

1− p(xc)

)
= β0 + u(xc) + βURBI(xc ∈ U) + εc, (1)

where β0 is the intercept, u(xc) is a spatial random effect, βURB is the association

with the cluster being urban (as compared to rural), and εc is an iid Gaussian cluster

random effect with variance σ2
ε . This term is sometimes described as the “nugget” and

can represent many things including unmodeled sampling variability and small-scale

variation.

The first model-based approach is termed BYM2, and uses the spatial random effect

u(x) = 1√
τ
(
√
φSi[x] +

√
1− φδi[x]), where i[x] denotes the county to which x belongs,

and the structure of the model follows the description for the smoothed direct model.

This binomial model naturally deals with responses of 0 or nc.

The second model-based approach is termed SPDE and uses a Gaussian process

(GP) for the spatial random effect, u(·) ∼ GP(0,θ), with θ = [σ2
s , ρ]. The marginal

variance is σ2
s and the spatial range at which the correlation is approximately 0.1 is ρ.

The GP used is the solution to a stochastic partial differential equation (SPDE) ap-

proximated by a Gaussian Markov Random Field (GMRF) defined on a fine triangular

mesh (Lindgren et al., 2011).

For the BYM2 and SPDE models, we consider four variations of (1) depending on

whether or not the association with urban/rural classification and the cluster (nugget)

effects are included. Models with and without urban effects are labeled ‘U’ and ‘u’,
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respectively. Similarly, models with and without cluster effects are labeled ‘C’ and ‘c’,

respectively.

For the continuous (SPDE) model, if we knew the complete list of EA locations in

the sampling frame, we could predict at the county level using the posterior distribution

of a weighted sum of the predicted probabilities p(x), calculated from (1), at the EA

locations. The majority of EA locations are unobserved, however. In the absence of

such information, we can aggregate by integrating the spatial probability surface p(x)

with respect to population density. Let pi denote the county level estimates for county

i, then

pi =

∫
Ai

p(x)× q(x) dx ≈
mi∑
j=1

p(xj)× q(xj), (2)

where Ai is the geographical extent of area i, q(x) is the target population density at

location x normalized so that
∫
Ai
q(x) dx = 1 for each i, and mi is the number of grid

cells with centroids in area i that is used to approximate the integral. Accounting for

cluster effects when making aggregated predictions is more complicated in continuous

spatial models since p(·) varies within each stratum, and the locations of unsampled

EAs are not necessarily known. Rather than leaving out unobserved cluster effects

when producing pixel level and aggregated predictions, we integrate out the cluster

effects at each location in order to achieve the correct expectation at the pixel level

before aggregation. More information on how we integrate out cluster effects and

account for stratification for the SPDE model can be found in Appendix A.1.

In order to generate maps of urbanicity and population density as given in the

right panel of Figure 1, we use 1km × 1km gridded population density surfaces from

WorldPop (Stevens et al., 2015; Tatem, 2017). The 2010 and 2015 population density

is interpolated, assuming a constant rate of population growth, to produce the 2014

population density map used throughout this paper. The 2009 Kenya Population
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Figure 1: Left: WorldPop based population density estimates. Right: urban areas in
Kenya used in this analysis are depicted in blue. Locations are determined to be urban
versus rural based on thresholding population density.

and Housing Census provides information on the proportion of the population within

each county that is urban and rural, and we generate urbanicity classifications by

thresholding the population density maps within each county at the level required to

achieve this proportion.

For the BYM2 model, a population density surface is not needed since the proba-

bilities are modeled as constant within each area, and we can use,

pi = expit

(
β0 +

1√
τ

(
√
φSi +

√
1− φδi

)
Qi

+ expit

(
β0 + βURB +

1√
τ

(
√
φSi +

√
1− φδi

)
(1−Qi),

where Qi =
∫
AiR

q(x) dx, with AiR representing the rural portion of Ai, is the propor-

tion of the target population in county i that is rural. Further details of accounting

for the cluster effects and performing the spatial aggregation for the BYM2 model are

given in Appendix A.2.
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WorldPop and IHME use a continuous GP model when analyzing household sur-

vey data. When aggregating to the county level, IHME simulates one cluster effect per

pixel rather than integrating them out, while WorldPop does not include a nugget. The

WorldPop and IHME models do not adjust for stratification. Hence, while WorldPop

uses a ‘uc’ model, IHME uses a modified ‘uC’ model at the pixel level, but including

slightly more variation. Both WorldPop and IHME, however, include pixel level co-

variates in their models that may fortuitously pick up part of any existing urban/rural

association. Although the considered BYM2 models that include fixed effects for ur-

banicity account for stratification if the effect of urbanicity is the same in each county,

this is an oversimplification. In addition, it is important to be clear that the model-

based approaches we consider do not account for within stratum variations in the

sampling weights, such as those due to nonresponse or PPS sampling in the case that

nonresponse and EA size are associated with the latent probability surface p within

strata.

3.2 Inference

Penalized complexity (PC) priors were introduced in Simpson et al. (2017), and pe-

nalize a model’s “distance”, on an appropriate scale, from a simple “base” model. For

example, for iid random effects arising from a zero mean Gaussian distribution with

variance σ2, the base model corresponds to σ = 0. Following Fuglstad et al. (2019), we

set a joint PC prior on the continuous spatial standard deviation and effective range

parameters σs and ρ, respectively. We use the joint PC prior described by Riebler

et al. (2016) on the BYM2 standard deviation 1/
√
τ and the proportion of variation

that is spatial, φ. We also set a marginal PC prior on the cluster effect standard devi-

ation, σε. The priors in the simulation study and in the application are set so that the
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median of the prior for ρ is one fifth the diameter of the spatial domain, and so that

P (σs > 1) = P (1/
√
τ > 1) = P (σε > 1) = 0.01. This results in the continuous spatial

effects, BYM2 effects, and cluster effects for the spatial smoothing models each having

a roughly 95% prior chance of lying between 0.5 and 2 on an odds scale. The PC prior

for the spatial proportion in the BYM2 model, φ, is given a 2/3 prior probability of

being less than 1/2, implying that we slightly favor the iid county level effects when

apportioning residual variation. We choose this prior on φ in order to promote less

complex models with a smaller spatial contribution.

All design-based estimates were obtained using the svyglm function within the

survey package (Lumley, 2004, 2018) in the R programming language. Each of the

spatial models can be fitted using the integrated nested Laplace approximation (INLA)

approach introduced in Rue et al. (2009), a method for fitting Bayesian models without

the computational difficulties of Markov Chain Monte Carlo (MCMC) and implemented

in the INLA package in R. The direct, smoothed direct and binomial BYM2 models are

available in the SUMMER package (Martin et al., 2018). Code to reproduce the results

can be found at https://github.com/paigejo/NMRmanuscript, and the 2014 Kenya

DHS data can be requested from https://dhsprogram.com/.

4 Simulation Study

4.1 Comparison Measures

In this section, we describe an extensive simulation study in which we compare various

models, in particular with respect to the inclusion of strata and cluster effects. We do

this for multiple simulated populations and survey designs in order to test the models

under a variety of circumstances. As in Section 3, the nominal response is a binary
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indicator of whether or not death occurred within the first month of life.

We evaluate the model predictions at the county level using bias, mean squared

error (MSE), the continuous rank probability score (CRPS), coverage of 80% intervals,

and width of 80% intervals. All scoring rules are calculated on the probability scale.

Note that CRPS is a strictly proper scoring rule (Gneiting and Raftery, 2007) that

accounts for both predictive accuracy as well as accuracy of the uncertainty of the

predictive distribution. Given the cumulative distribution function of the predictive

distribution of a proportion in the finite population, F , and an empirical proportion

response y/n, the CRPS is defined as:

CRPS(F, y) =
n∑
ỹ=0

(F (ỹ/n)− 1{ỹ ≥ y})2.

Small values of CRPS are desirable.

The reported scoring rules are calculated using predictive distributions that have

been calculated at the county level. The reported scores are the averages over counties

and repeated surveys, and the full set of calculated scoring rules for all simulated

populations and scenarios are given in the online supplementary material 3.3.

4.2 Simulation Setup

In order to generate a true, underlying population from which we can draw surveys, we

first spatially partition Kenya into urban and rural zones by thresholding population

density so that the proportion of population in each county that is urban matches the

2009 Kenya Population and Housing Census. We then simulate all 96,251 census EA

locations such that the number in each of the 92 strata matches the true number, as

given in the 2009 census. The EA locations in our simulated population are drawn

proportional to population density within each strata. This information is all available
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in the Kenya DHS final report (KDHS, 2014).

The number of households in each EA, as well as the number of mothers per house-

hold and children born per mother per year, are simulated based on the corresponding

empirical distributions in the true population stratified by urban/rural. In order to

estimate the empirical distribution for the number of households per EA, we take the

maximum household ID sampled per cluster in the 2014 Kenya DHS as an estimate

for the number of households in each EA.

We compared the models under 3 spatial parameter scenarios, 4 different popula-

tions for each scenario, and 2 different survey designs for each population. The four

populations simulated per scenario have the following associated names: constant risk

(Popsuc), spatially-varying risk (PopSuc), spatially-varying risk with an urban associa-

tion (PopSUc), and spatially-varying risk with an urban association and a cluster effect

(PopSUC). Note that in the subscript labels for the populations, we again use U/u

and C/c to indicate the presence of urban and cluster effects respectively, and we use

S/s to indicate presence of a continuous spatial effect. In the case where we include

spatial, urban, and cluster effects, we simulate NMRs at all 96,251 spatial locations

using the SPDE model described above, with parameters depending on the population

and scenario. In the first scenario, for the PopSUC population we simulate NMRs at all

96,251 spatial locations using the SPDE model described above with an effective cor-

relation range of 150km, and with parameters β0 = −1.75, σ2
s = 0.152, σ2

ε = 0.12, and

βURB = −1. For “typical” rural/urban areas, with random effects of zero, the preva-

lences are 17%/6%. In the second scenario, the spatial range is decreased to 50km, and

in the third scenario the spatial range is 150km, but the spatial variance is increased

to 0.32. Only one Popsuc population is simulated, since it includes no spatial effect.

There are therefore 10 different simulated populations in total across all scenarios.

Within each simulated population we carry out “Unstratified” and “Stratified” sam-
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pling, always taking 1,612 clusters to match the 2014 Kenya DHS. In the Unstratified

design, we fix the total number of clusters in each county to be the same as in the

Kenya DHS, and choose the average proportion of urban and rural clusters within each

county to match the proportion of the urban and rural population in that county. The

number of urban or rural clusters in any given stratum randomly varies by at most 1

from survey to survey if the proportion of urban population and urban clusters could

not be matched exactly. This resulted in sampling 430 urban and 1182 rural clusters on

average. In the Stratified design, we sample urban and rural clusters at different rates

for each county so as to match the proportion of urban clusters in each county of the

2014 Kenya DHS, obtaining 995 and 617 urban and rural clusters respectively. Condi-

tional on the total number of urban and rural clusters for each of the 92 strata, we use

PPS sampling to determine which clusters are included in the surveys, sampling clus-

ters with probability proportional to the number of households in each strata. Within

each EA, 25 households are chosen at random to be included in the cluster sample.

The simulated population and a single simulated survey based on the Stratified design

are shown in Figure 2. We simulate 250 surveys for each design and each population,

with naive and direct estimates being fit to all 250 of the surveys, and the other models

being fit only to the first 100 due to computational constraints.

4.3 Simulation Results

In the following section, we discuss the first simulation scenario, where populations

including the spatial effect were simulated with 150km spatial range and 0.152 spatial

variance, unless otherwise stated. A more detailed analysis of the other scenarios is

given in Section 3 of the supplementary material. The scoring rules summarizing the

main results for the stratified design are plotted in Figure 3, and parameter summary
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Figure 2: Simulated population of Kenya and associated NMRs at EAs (left), and at
sampled clusters (right) for an example simulated dataset based on the “Stratified”
design.

statistics are given in the supplementary material in Section 3.3. Scoring rules for

additional model variations and designs are illustrated in the supplementary material

in Section 3.2. When interpreting these scoring rules, it is important to keep in mind

that SDG 3 calls for a reduction in NMRs to 12 deaths per 1,000 children, which

corresponds to 120 ×10−4 children. When absolute bias is large relative to this number,

it is an indicator of poor model performance. Since we are especially interested in the

performance of the models in a feasible scenario in which spatial, urban and cluster

effects must be accounted for, we will be discussing PopSUC under a Stratified design

unless we state otherwise.

Of the direct, smoothed direct, BYM2UC, and SPDEUC models, the BYM2UC model

performed the best or very close to the best in terms of CRPS, MSE, coverage, and

CI width across all populations and scenarios. Although the BYM2UC model was

slightly positively biased, the precision of its central predictions and the well-calibrated

16



predictive distribution and uncertainty intervals led to accurate coverages and good

predictive performance.

Interestingly, although the SPDEUC model matched the model used to simulate the

data, it did not perform well in terms of MSE. Its MSE was 1.24 × 10−4 compared

to 0.41 × 10−4 for the BYM2UC model, 0.63 × 10−4 for the smoothed direct, and

0.72 × 10−4 for the estimates. Although SPDEUC model estimates were somewhat

positively biased, the high level of MSE was mainly due to lack of predictive precision.

In spite of this, the SPDEUC model had a CRPS of 4.7× 10−3, which was comparable

to the value of 4.6×10−3 for the smoothed direct model, and was better than the direct

estimates’ value of 4.9 × 10−3. Additionally, the coverage of the SPDEUC model was

82%, second in accuracy only to the BYM2UC model. Hence, although the predictions

of the SPDE model were a little imprecise, the uncertainty of the posterior distribution

was well-calibrated.

The direct, smoothed direct, and BYM2Uc estimates had the smallest magnitude

bias. An advantage of the smoothed direct model is that, regardless of the population

and survey scheme considered, the model performed well from the standpoints of MSE,

CRPS, bias, and coverage. Although the coverage for the Popsuc (constant risk) popu-

lation was over 90% for 80% nominal coverage intervals, that was also the case for the

BYM2 models. Additionally, the constant risk setting is not realistic, and therefore

should not be focused on too much. Overall, the smoothed direct model was robust in

terms of its predictive accuracy and uncertainty.

Models that did not account for urbanicity either indirectly via sampling weights

or directly as a covariate had relatively poor performance from MSE, bias, CRPS, and

coverage standpoints. Even for populations without urban associations or under the

unstratified design, there was little downside to including urban effects so long as the

proportion of children in urban and rural areas was not poorly estimated (so that the
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area averaging was poorly performed). Including urban effects led to MSE, bias, CRPS,

credible interval width, and coverage that was on average either better or nearly equal

to the corresponding models without urban effects throughout all simulated populations

and designs. The benefit of including urbanicity as a covariate was increased under the

Stratified design relative to the Unstratified design since urban and rural areas were

not sampled proportionately in that case.

The scoring rules in Section 3.2 in the supplementary material shows the inclusion

of a cluster effect led in general to better or equally good predictions for the BYM2

model in terms of MSE and CRPS. Although the MSE and bias of the BYM2uc and

BYM2uC models were essentially the same, the inclusion of the cluster effect led to a

dramatic improvement in coverage from 55% to 68%, indicating that cluster effects can

lead to more accurate measures of uncertainty. Although the BYM2Uc model arguably

performs slightly better than the BYM2UC model in terms of its MSE and CRPS,

the coverage of the BYM2UC model is better, and the uncertainty intervals are more

conservative. The SPDE predictions were relatively more affected by the inclusion

of the cluster effect, and its predictive performance was overall the most variable.

Although there were some populations where the SPDEUc and SPDEUC models had

the best predictions in terms of MSE and CRPS, care must be taken when accounting

for spatial and cluster level variation. To summarize, these simulations suggest that,

amongst the BYM2 models, the BYM2UC model is an effective and robust choice for

the analysis of DHS household survey data, whereas more work must be done to ensure

continuous spatial models share those same qualities.

Patterns in the model scores for the most part remained the same across the different

simulation scenarios. The relative performances of the naive, direct, smoothed direct,

and BYM2 models were mostly the same. The main differences were in the performance

of the SPDE models. In spite of this, the SPDE models did not consistently perform

18



better than the BYM2 models in any of the scenarios, again indicating the relative

robustness of the BYM2 and smoothed direct models, and the caution necessary when

making aggregated predictions with such flexible spatial models using sparse household

surveys.

5 Mapping Health and Demographic Indicators in

Kenya

In this section, we use the 2014 Kenya DHS to estimate secondary education completion

rates for women aged 20–29 in 2014, and to estimate NMRs for the five year period

from 2010 to 2014. In the case of secondary education prevalence, we choose the

20–29 age group because most women that will complete their secondary education

have already done so by that age, and also because the 2014 Kenya DHS indicates

there are generational differences in secondary education levels. Although we find

significant evidence of association with urbanicity in the case of secondary education

completion, we did not find strong evidence of a marginal association between NMRs

and urbanicity in Kenya. Since associations between urbanicity and the response lead

to larger biases when stratification is not accounted for, we believe the secondary

education completion dataset provides especially strong evidence for the importance of

accounting for stratification in the design. Additional results for the women’s secondary

education and NMR applications are given in Sections 1 and 2 in the supplementary

material respectively.
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Figure 3: County level scoring rules plotted for each of the simulated populations and
the main models considered for the Stratified design. The labels s/S, u/U, and c/C
denote whether or not spatial, urban, and cluster effects are included in the models
respectively. The “Population model” denotes the method by which the data were
generated.
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5.1 Prevalence of Women’s Secondary Education

5.1.1 Prevalence Mapping

Central predictions as well as interval widths for the direct, naive, smoothed direct,

and the full (‘UC’) spatial smoothing models are shown in Figure 4. The top row

(point) estimates are quite similar, since there are a large number of clusters, but close

examination shows there are differences. Prevalence tended to be higher in the central,

southern, and western counties, and tended to be lower and with greater uncertainty in

the more rural counties to the north and east. Section 1 in the supplementary material

gives full numerical results and here we summarize. The odds (with associated 80%

CIs) of young women in urban clusters completing their secondary education are larger,

relative to rural clusters, by 210% (185%, 236%) or 170% (148%, 193%) as respectively

calculated from the BYM2UC and SPDEUC model parameter estimates given in Table 1.

Table 1 in the supplementary material shows that the smoothed direct, SPDEUC,

and BYM2UC models all estimate that the secondary education levels for young women

in Kenya were highest in Nairobi, with point estimates (80% CIs) of 0.54 (0.49, 0.58),

0.55 (0.51, 0.58), and 0.53 (0.50, 0.57) respectively. On the other hand, Mandera

was estimated to have the lowest secondary education levels for all models except for

the SPDEUC model (for which Turkana was estimated to have the lowest secondary

education levels) with point estimates (80% CIs) of 0.088 (0.061, 0.13), 0.081 (0.058,

0.11), and 0.085 (0.060, 0.12) respectively. While Nairobi is designated as completely

urban, approximately 18% of the population of Mandera is urban, which is very close

to the median for counties in Kenya. This suggests there are other factors in Mandera

that are reducing the secondary education prevalence for the women living there.

The credible interval widths were largest for the direct model and smallest for the

SPDEUC model. Of the displayed spatial smoothing models, the smoothed direct model

21



had the largest predictive variances. Both the smoothed direct and the BYM2 models

had relatively high uncertainties for counties with fewer neighbors, whereas the SPDE

model variances tended to be high near the edges and where the clusters were spatially

distant from each other.

Figure 5 shows the continuous, 5km×5km pixel level predictions and credible in-

terval widths for the SPDEuC and SPDEUC models. The urban effect is especially

visible in the predictions of the SPDEuC, since it oversmooths the effect of the urban

areas into nearby rural regions. Interestingly, secondary education prevalences appear

to be high not only in urban areas, but also in rural areas bordering urban centers.

Figure 5 clearly shows that care that must be taken with stratification. In order to

maintain confidentiality, the geographical locations of the DHS clusters are displaced

(jittered): urban clusters by up to 2km, and rural clusters by up to 5km, with 1% of

rural clusters jittered up to 10km. In general, we are nervous about presenting and

over-interpreting pixel level maps due to jittering, cluster level overdispersion, data

sparsity, and confounding pixel level covariates such as urbanicity. Although continu-

ous spatial models in theory allow for high resolution predictions, it is very important

when modeling demographic indicators from sparse household survey data to account

for these complicating factors.
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Figure 5: Kenya 5km × 5km pixel level 2014 secondary education predictive mean
(top) and 80% uncertainty interval width (bottom) for women aged 20–29. Results are
shown for the SPDEuC (left) and SPDEUC (right) models.
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Est SD Q10 Q50 Q90

Smoothed Direct

Intercept -1.04 0.05 -1.10 -1.04 -0.99

BYM2 Phi 0.80 0.16 0.57 0.84 0.97

BYM2 Tot. Var 0.32 0.08 0.22 0.31 0.42

BYM2 Spatial Var 0.26 0.09 0.15 0.25 0.37

BYM2 iid Var 0.06 0.05 0.01 0.05 0.13

BYM2 Tot. SD 0.56 0.07 0.47 0.55 0.65

BYM2 Spatial SD 0.50 0.09 0.38 0.50 0.61

BYM2 iid SD 0.22 0.10 0.10 0.22 0.36

5BYM2UC

Intercept -1.64 0.06 -1.72 -1.65 -1.57

Urban 1.13 0.07 1.05 1.13 1.21

Cluster Var 0.51 0.05 0.44 0.51 0.58

BYM2 Phi 0.84 0.14 0.64 0.88 0.98

BYM2 Tot. Var 0.33 0.08 0.24 0.32 0.44

BYM2 Spatial Var 0.28 0.09 0.17 0.27 0.40

BYM2 iid Var 0.05 0.05 0.01 0.04 0.11

Cluster SD 0.72 0.04 0.67 0.71 0.76

BYM2 Tot. SD 0.57 0.07 0.49 0.57 0.66

BYM2 Spatial SD 0.52 0.09 0.42 0.52 0.63

BYM2 iid SD 0.21 0.10 0.09 0.20 0.34

SPDEUC

Intercept -2.53 0.21 -2.80 -2.53 -2.26

Urban 0.99 0.07 0.91 1.00 1.08

Range 212 44 161 206 271

Spatial Var 0.84 0.24 0.57 0.81 1.16

Spatial SD 0.91 0.13 0.76 0.90 1.08

Nugget Var 0.43 0.05 0.36 0.43 0.50

Nugget SD 0.65 0.04 0.60 0.65 0.70

Table 1: Parameter and hyperparameter estimate summary statistics from the BYM2
and SPDE models including both urban and cluster effects, fit to the 2014 secondary
education prevalence data for young women from the 2014 Kenya DHS.
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5.1.2 Validation

We calculate a number of scoring rules at the cluster level to evaluate the spatial

smoothing models. We compute the scoring rules by leaving out data from one county

at a time and averaging the scoring rules over all 47 such experiments. We carry out

the validation at the county level, since this is generally the target of inference. In

addition to calculating MSE (broken down into variance and bias and in urban as

well as rural areas) we also compute CRPS, the deviance information criterion (DIC),

and the conditional predictive ordinate (CPO). The naive, direct, and smoothed direct

models are fit at the county level, so we did not include their validation results, since

they are not comparable with the cluster level data models.

The SPDEUc and SPDEUC models had the two best average MSEs, and the SPDEUc

model has the best CPO and CRPS. The SPDEUC had better MSE than the Uc model,

but it had worse CPO and CRPS. In terms of MSE and CRPS, the BYM2Uc model also

performed well, and had the smallest magnitude bias. The good performance of the

SPDE models may be due to their ability to model continuous changes in secondary

education near the borders of each county, whereas the BYM2 models are unable to

distinguish between clusters at the border of a county versus clusters in the center.

Section 1 in the online supplementary material shows that the spatial standard devia-

tion (SD) of the SPDEUC model is estimated to be 0.91, whereas the cluster effect is

estimated to have a SD of 0.65. This is a higher proportion of variability going into the

spatial term than in the BYM2UC model, which estimates the total variance of county

level random effects to be 0.57 and the cluster variance to be 0.71. This suggests the

ability of the SPDE model to predict continuously through space gives it an advantage

when making predictions at the cluster level.
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BYM2 SPDE

uc uC Uc UC uc uC Uc UC

MSE (×10−2)
Average 5.9 6.0 5.1 5.2 5.6 5.4 5.0 4.9
Urban 7.2 7.2 6.2 6.2 7.1 6.8 6.2 6.0
Rural 5.0 5.2 4.5 4.5 4.6 4.5 4.2 4.2

Var (×10−3)
Average 59 59 51 52 56 53.8 50 49
Urban 61 62 62 62 63 60 62 60
Rural 45 45 45 45 45 42 42 42

Bias (×10−3)
Average 6.0 10.5 1.0 5.6 -15.0 -6.2 -3.6 -3.2
Urban -105 -103 11.1 8.3 -93 -91 1.0 3.1
Rural 77 83 -5.4 4.0 35 48 -6.5 -7.2

CPO
Average 0.22 0.21 0.25 0.24 0.26 0.25 0.27 0.26

CRPS
Average 0.17 0.21 0.16 0.18 0.17 0.18 0.15 0.17

Table 2: Validation results calculated at the cluster level when leaving out one county
at a time for the 2014 Kenya DHS secondary education data for women aged 20–29.
The worst entries in each row are in italics, while the best entries in each row are
in bold. In the table, the figures are rounded, but minimum and maximum were
evaluated with more significant figures.

Figure 6: Empirical average of neonatal mortality rates in Kenya from 2010-2014 based
on data from the 2014 Kenya DHS. Values are shown at both the cluster (left) and
county levels (right).
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5.2 Prevalence of Neonatal Mortality

5.2.1 Prevalence Mapping

We now estimate neonatal mortality rates (NMRs) for children in Kenya from 2010–

2014 based on data from the 2014 Kenya DHS plotted in Figure 6. The figure shows

that the vast majority of clusters have empirical NMRs very close to zero, though there

are some clusters that have much higher NMRs with some even above 30%. Central

NMR estimates, and 80% uncertainty interval widths in Figure 7, and individual county

level predictions are given in Section 2 of the supplementary material along with upper

and lower predictive quantiles at the county level. The largest NMRs were estimated

to be in several counties just northwest of Nairobi as well as in central eastern Kenya,

and the lowest NMRs were estimated to be in the counties near the central western

and southwestern borders. Although we expected to find a significant urban effect,

we found little evidence suggesting any difference in NMRs between rural and urban

areas. Additionally, there is much less spatial variation relative to cluster level variance.

For instance, the BYM2UC and SPDEUC models estimate the spatial effect variance

to respectively be 0.060 and 0.069, whereas the estimated cluster effect variances were

respectively 0.18 and 0.23. We found little difference in the quality of predictions of the

models when we validated them using the same method as above, indicating that the

low signal-to-noise ratio in this application makes improvement in spatial estimation

difficult.

The fitted smoothed direct, BYM2UC, and SPDEUC models had smaller spatial ef-

fect variances relative to the predictive uncertainties when compared to the analysis of

secondary education prevalence. For the SPDEUC model, for instance, this is evidenced

by the fact that the median 80% credible interval width for the NMR data is 0.0074,

whereas the point estimates have a range of 0.0098. The equivalent values in the sec-
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ondary education application, which are respectively 0.062 and 0.476, indicate much

greater variability across space. The estimated variances of the county level random ef-

fects are also relatively small, and are estimated to be 0.059 and 0.060 for the smoothed

direct and BYM2UC models, respectively. The variance of the spatial component of the

SPDEUC model was estimated to be 0.069. The cluster effect variance, however, was

estimated to be comparatively larger, with BYM2 and SPDEUC estimates of 0.183 and

0.225 respectively, further indicating the large amount of noise relative to any spatial

signal in the data. In spite of the lack of spatial signal, the spatial smoothing models

helped to reduce the predictive uncertainties relative to the naive and direct models as

evidenced from the plotted credible interval widths of the predictions in Figure 7.

Considering the difficulty of including cluster level variation when aggregating

SPDEUC predictions to the county level, combined with the fact that a substantial

majority of the variation in the data occurs at the cluster level as opposed to spatial

level variation, we believe the smoothed direct and BYM2 models might be better

suited for this particular application. Not including variation due to cluster effects in

the spatial aggregation, aside from integrating out cluster level variation, is probably

what leads the SPDEUC model predicted NMRs to have such narrow credible intervals

relative to the other models.
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Est SD Q10 Q50 Q90

Smoothed Direct

Intercept -3.85 0.07 -3.94 -3.85 -3.76

BYM2 Phi 0.30 0.25 0.04 0.23 0.70

BYM2 Tot. Var 0.06 0.04 0.02 0.05 0.11

BYM2 Spatial Var 0.02 0.02 0.001 0.01 0.05

BYM2 iid Var 0.04 0.03 0.009 0.03 0.08

BYM2 Tot. SD 0.23 0.08 0.13 0.22 0.33

BYM2 Spatial SD 0.11 0.07 0.04 0.10 0.22

BYM2 iid SD 0.19 0.08 0.09 0.18 0.29

BYM2UC

Intercept -3.99 0.09 -4.11 -3.99 -3.87

Urban 0.08 0.11 -0.07 0.08 0.22

Cluster Var 0.18 0.10 0.07 0.17 0.31

BYM2 Phi 0.42 0.31 0.044 0.36 0.88

BYM2 Tot. Var 0.06 0.04 0.02 0.05 0.11

BYM2 Spatial Var 0.02 0.02 0.002 0.02 0.05

BYM2 iid Var 0.04 0.03 0.004 0.03 0.08

Cluster SD 0.41 0.11 0.27 0.41 0.56

BYM2 Tot. SD 0.24 0.07 0.15 0.23 0.33

BYM2 Spatial SD 0.14 0.07 0.05 0.13 0.23

BYM2 iid SD 0.17 0.08 0.07 0.17 0.29

SPDEUC

Intercept -4.00 0.09 -4.12 -4.00 -3.89

Urban 0.08 0.11 -0.06 0.08 0.22

Range 241 195 79 178 451

Spatial Var 0.07 0.06 0.02 0.05 0.14

Spatial SD 0.24 0.10 0.13 0.23 0.38

Nugget Var 0.23 0.10 0.11 0.21 0.37

Nugget SD 0.46 0.11 0.33 0.46 0.61

Table 3: Parameter and hyperparameter estimate summary statistics from the BYM2
and SPDE models including both urban and cluster effects, fit to the 2010-2014 NMR
data from the 2014 Kenya DHS.
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5.2.2 Validation

We validate the spatial smoothing models that produce predictions at the cluster level

by once again leaving out data from each county, one county at a time, and making

predictions at the cluster level. Equivalent scoring rules to those used in Section 5.1.2

are calculated for the NMR dataset in Table 4, which shows that the SPDEUC model

performs just as well as any of the other spatial smoothing models when making cluster

level predictions. In fact, all of the models perform very similarly, again suggesting

that variation in the NMR data is primarily at either the cluster level or at spatial

scales too fine to easily identify.

6 Discussion and Conclusions

Direct estimators remain the gold standard, provided there are sufficient data for an

associated variance that is of acceptable size. The smoothed direct estimator can

reduce the variance using the totality of data, albeit with an introduction of some

bias due to the smoothing. This bias disappears, however, as sample size increases.

When the direct estimates are unreliable, one is led to modeling at the cluster-level,

and it is important to use a model that is consistent with the design. In this paper,

we introduced a binomial sampling model with discrete spatial random effects, and

it performed well in the simulations and real applications. The BYM2 random effects

capture different levels in the regional strata. Hence the random effects should be nested

within the regional strata to allow for different levels for the different sampling strata.

Our method is designed for situations in which the sampling probabilities depend on

stratification. Extending the methods to account for more complex sampling plans,

non-response, and calibration will be the subject of future research.

We have also been experimenting with a beta-binomial model that allows for

32



BYM2 SPDE

uc uC Uc UC uc uC Uc UC

MSE (×10−4)
Avg 24.5 24.6 24.6 24.6 24.6 24.6 24.6 24.6
Urban 29.6 29.6 29.6 29.7 29.6 29.6 29.7 29.7
Rural 21.3 21.4 21.3 21.4 21.4 21.4 21.4 21.4

Var (×10−4)
Avg 24.5 24.5 24.6 24.6 24.6 24.6 24.6 24.6
Urban 29.6 29.6 29.6 29.6 29.6 29.6 29.6 29.7
Rural 21.3 21.3 21.3 21.3 21.4 21.4 21.4 21.4

Bias (×10−4)
Avg 8.2 26.0 8.8 27.1 4.1 3.3 5.1 7.5
Urban -0.1 17.7 11.0 29.0 -3.0 -4.0 8.0 10.9
Rural 13.4 31.3 7.4 25.9 8.6 7.9 3.2 5.3

CPO
Avg 0.657 0.649 0.657 0.649 0.659 0.662 0.659 0.660

CRPS
Avg 0.024 0.025 0.024 0.025 0.024 0.025 0.024 0.025

Table 4: Validation results calculated at the cluster level when leaving out one county
at a time for the 2014 Kenya DHS NMR data from 2010-2014.

overdispersion (within-cluster variation). Such approaches with discrete spatial mod-

els do not deal well with combining data at different geographical resolutions, and this

is where the continuous spatial model is appealing. Unfortunately, aggregation with

continuous models is the most difficult, since a population surface is required, and the

model and population surface must, in general, be stratified by urban/rural.

In the simulations and application, we found that accounting for the design nearly

always improved predictions in the case that strata were associated with the response,

and did not reduce predictive performance otherwise. This was true whether the design

was accounted for using sampling weights or by including stratification indicators as

covariates. Although not included in our results, we have found that when the propor-

tions urban required for aggregating strata predictions to the county level were biased,

including stratification effects in the BYM2 model sometimes made the predictions
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worse. This implies that not only must design stratification be accounted for, but in

the case where it is included as a covariate, it is important to make an effort to obtain

high quality estimates of the proportions of the studied population in each strata. In

practice, this may be difficult.

Although we expected the SPDE models without urban effects to have better pre-

dictions than BYM2 models without urban effects since urbanicity is a spatial variable,

we instead found that the spatial component of the SPDE models without urban ef-

fects had difficulty handling the sharp changes of urbanicity over short distances. As

mentioned previously, WorldPop and IHME do not adjust for the urban/rural strati-

fication, and WorldPop does not account for cluster level overdispersion, but they do

include extensive covariates such as population density, which will, to some extent at

least, adjust for urban/rural.

A remaining open avenue of research is to determine how best to include cluster

effects in area-level aggregated predictions from spatial models. Since the SPDE model

predictions are aggregated to the county level by numerically integrating predictions

on a spatial grid, whereas cluster effects are modeled discretely at cluster and EA point

locations, it is unclear how to accurately proceed when the EA locations are unknown.

Simply leaving out cluster effects when aggregating predictions spatially may lead to

undercoverage and also bias. Integrating out the cluster effect eliminates the bias, but

not the undercoverage, whereas using Monte Carlo methods to sample possible EA

locations and improve coverages is computationally expensive. Note that the the true

data-generating mechanism for the cluster effects should ideally be a consideration

when deciding how to handle cluster effects, and will affect the bias and coverage.

Although we assume cluster effects are true latent differences in mortality rates, and

fixed for each EA, it is possible they are due to measurement error, for instance, in

which case they should be left out of predictions.
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The simulation study and prevalence application indicated that the smoothed di-

rect model had the least dependence on the specific implementation, performing well

in nearly all circumstances, whereas the SPDE and BYM2 models that included strat-

ification and cluster effects performed particularly well when there was a stratification

effect in the population. This was especially the case if the proportion of the popula-

tion of interest (i.e., children, or women aged 20–29) that is urban in each county is

accurately known. The BYM2 model with urban and cluster effects performed the best

or nearly the best in all scenarios and with all populations in the simulation study, in

terms of MSE, CRPS, and credible interval width. The SPDE model including urban

and cluster effects performed better in the cluster level validation, but care must be

taken in selecting a prior due to its flexibility, and in generating spatially aggregated

predictions when the estimated cluster effect accounts for a large proportion of the

total variation.

In the simulation study, the DHS we emulated was powered to the Admin2 level,

which coincided with the level of inference. More commonly, DHS data are powered

to the Admin1 level and it is an open question as to what the recommendations are

in this case if inference is still required at Admin2. In other work (Li et al., 2019) we

could only perform Admin1 level inference for countries in Africa using the majority

of the DHS surveys, because there were insufficient samples to apply the direct and

smoothed direct methods at the Admin2 level.
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Appendix A: Spatial Aggregation

Appendix A.1: BYM2 Model

Although spatial aggregation for the BYM2 models without cluster effects is relatively

straightforward, it is less obvious how to produce county level estimates for the BYM2

models that include cluster effects. There may be census estimates of the proportion of

population in each county that is urban versus rural, and the number of EAs that are

urban and rural within each county may also be known; we will use this information

when calculating county-level estimates.

It is possible to account for excess-variation due to cluster effects when producing

estimates for each modeled stratum (county level estimates for BYM2uC model and

county × urban/rural for the BYM2UC model) by averaging random variation over the

known number of EAs for a given county:

p̂jS =
1

CS

∑
c : s[c]=S

p̂jc, (3)
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where p̂jS is the jth drawn predicted probability from the posterior for a given stratum

S, where stratum could be, for instance, county crossed with urban or rural designation,

s[c] is the stratum of EA c, CS is the number of EAs in stratum S, and p̂jc is the jth

drawn predicted probability from the posterior for EA c. Since the weights on each

of the EAs are equal, this assumes that each EA within the stratum is approximately

equal-sized, but if the number of EAs within any given stratum is large and their

size is iid and independent of the response, then this method will also be a good

approximation to the true county level posterior. Since the number of people in each

EA is not known in practice, it is unclear how to better aggregate cluster level results

to the modeled stratum level. For the BYM2UC model, we can denote the two strata

within each county as U and R for urban and rural with respective estimates p̂jU and

p̂jR. We can use this method to generate draws from the county level posterior for the

BYM2uC model and from the county × urban/rural level for the BYM2UC model.

For the BYM2UC model, we then use,

p̂ji =
TiU

TiU + TiR
p̂jiU +

TiR
TiU + TiR

p̂jiR,

to sample from the posterior distribution of county i, where TiU and TiR are the total

target population (i.e., children within the first month of life or women aged 20–29)

in county i that is urban and rural respectively. Note that this requires knowledge

of TiU and TiR, which might only be known approximately in practice. For Kenya,

although we do not know the target population totals, we know the number of EAs

in urban and rural strata for each county, say CiU and CiR respectively. We also use

census data to estimate the distribution of the total target population per urban or

rural EA, with expected values of EU and ER respectively. We then use T̂iU = EUCiU

and T̂iR = ERCiR as plug-in estimates for the target population totals in each stratum.
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Appendix A.2: SPDE Model

Recall,

pi =

∫
Ai

p(x)× q(x) dx ≈
mi∑
j=1

p(xj)× q(xj). (4)

We would like to aggregate predictions over the ‘target’ population in county i. The

target population might be children within the first month of birth or women aged

20–29.

Let q(·) be the population density throughout the county as a function of space,

and normalized so that
∫
Ai
q(x) dx = 1 for i = 1, . . . , 47. Ideally, we would know the

target population density rather than the overall population density, although that is

not necessarily the case. If not, we can adjust the overall population density, q, as

needed.

In particular, we would like the integral of the target population density to be

proportional to TiU and TiR in the urban and rural parts of area i so that it is more

representative of our target population. If Ai is the spatial domain of area i, we can

partition it into urban and rural parts: Ai = AiU ∪ AiR. We can then adjust the

population density surface, creating a new surface more representative of the target

population:

q̃(x) =


[∫

AiU
q(x) dx

]−1
TiU

TiU+TiR
× q(x) x ∈ AiU ,[∫

AiR
q(x) dx

]−1
TiR

TiU+TiR
× q(x), x ∈ AiR.

(5)

If TiU and TiR are not known, but the number of enumeration areas within the strata

in the area is known, as is the case with the 2014 Kenya DHS at the county level, we

can again use T̂iU and T̂iR from Appendix A.1 as estimates of the target population

totals in the urban and rural strata in area i. Plugging this adjusted density surface
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into our area level estimator, we have:

pi =

∫
Ai

p(x)× q̃(x) dx ≈
mi∑
j=1

p(xj)× q̃(xj). (6)

This is the foundation of the county level estimator that we use for predictions for the

SPDE ‘U’ models.

In order to account for the effect of cluster level random variation on the expectation

of p(x) in SPDE ‘C’ models without knowing exact unobserved EA locations, we

integrate out the cluster effect by modifying p(x) in (1) and (6) with:

p(x) =

∫ ∞
−∞

expit{β0 + u(x) + βURBI(x ∈ U) + ε} · f(ε) dε, (7)

where ε is the cluster effect for an arbitrary unobserved cluster at location x, and

f(ε) is its probability density, which, conditional on the cluster variance σ2
ε , is iid

Gaussian with mean zero and variance σ2
ε . Due to the nonlinearity of the expit function,

integrating out the cluster effect will shift p(·) towards 0.5 relative to removing the

cluster effect when generating predictions.
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