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Source Conditions for Non-Quadratic Tikhonov
Regularization

Markus Grasmair

Department of Mathematical Sciences, Norwegian University of Science and Technology,
Trondheim, Norway

ABSTRACT
In this paper, we consider convex Tikhonov regularization for
the solution of linear operator equations on Hilbert spaces.
We show that standard fractional source conditions can be
employed in order to derive convergence rates in terms of
the Bregman distance, assuming some stronger convexity
properties of either the regularization term or its convex con-
jugate. In the special case of quadratic regularization, we are
able to reproduce the whole range of H€older type conver-
gence rates known from classical theory.
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1. Introduction

In the recent years, considerable progress has been made concerning the
analysis of convex Tikhonov regularization in various settings. Existence,
stability, and convergence have been treated exhaustively in different set-
tings including that of non-linear problems in Banach spaces with different
similarity and regularization terms. Moreover, starting with the paper [1],
the questions of reconstruction accuracy and asymptotic error estimates
have gradually been answered.
The setting of [1], which we will also pursue in this paper, is that of the

stable solution of a linear, but noisy and ill-posed, operator equation

Fu ¼ vd

by means of Tikhonov regularization

uda ¼ argmin
u

�
1
2
kFu� vdk2 þ aRðuÞ

�
, (1)
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with a quadratic similarity term but the convex and lower semi-continuous
regularization term R: It was shown in [1] that the source condition

n† ¼ F�x† 2 @Rðu†Þ,

with u† being the solution of the noise-free equation, implies the error esti-
mate

Dn†ðuda, u†Þ� d

for a parameter choice a� d: Here Dn† denotes the Bregman distance for
the functional R, which is defined as

Dn†ðuda, u†Þ ¼ RðudaÞ�Rðu†Þ�hn†, uda�u†i:

This result can be seen as a direct generalization of the classical result for
quadratic regularization with RðuÞ ¼ 1

2 kuk
2, where we have the conver-

gence rate

kuda � u†k� d1=2 if u† ¼ F�x†,

again for the parameter choice a� d: This is due to the fact that the sub-
differential of the regularization term consists in this case of the single
element u†, and the Bregman distance is simply the squared norm of the
difference of the arguments. The classical results, however, are in fact sig-
nificantly more general, as they can be easily extended to fractional source
conditions leading to rates of the form

kuda � u†k� d
2�

2�þ1

if the source condition

u† ¼ ðF�FÞ�x† (2)

holds for some 0<� � 1 and the regularization parameter a is chosen
appropriately.
In order to generalize these results to non-linear operators F, the paper

[2] introduced the idea of variational inequalities, which were later modi-
fied in [3,4] in order to deal with lower regularity of the solution as well.
As alternative, the idea of approximate source conditions was introduced
first for quadratic regularization [5] and then generalized to non-quadratic
situations [6]. In their original form, both of these approaches dealt, in the
non-quadratic case, only with lower order convergence rates; in the quad-
ratic setting, this would roughly correspond to the classical source condi-
tion (2) with � � 1=2: However, modifications were proposed for
approximate source conditions in [7,8] and for variational inequalities in
[9] in order to accommodate for a higher regularity as well, roughly corre-
sponding to (2) with 1=2<� � 1:
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In contrast to the relatively simple source condition (2), variational
inequalities and approximate source conditions can be hard to interpret
and verify in concrete settings. Thus it would be desirable to obtain restate-
ments in terms of more palpable conditions and to clarify the relation
between the different variational and approximate conditions and standard
source conditions. For the quadratic case, this relation has been made clear
in [10]. For the non-quadratic case, however, such an analysis is, as of
now, not available.

1.1. Summary of results

In this article, we will consider convex Tikhonov regularization for linear
inverse problems on Hilbert spaces of the form (1). The goal of this article
is the derivation of convergence rates, that is, estimates for the difference
between the reconstruction uda and the true solution u† under the natural
generalization

n† ¼ ðF�FÞ�x† 2 @Rðu†Þ (3)

of the classical source condition (2) to convex regularization terms. The fol-
lowing theorem briefly summarizes the main results obtained in this paper,
see Theorems 7, 10, and 14. For an overview of the notation used here, see
Section 2.

Theorem 1. Assume that a source condition of the form (3) holds for some
0<� � 1. Then we have the following convergence rates:

� For 0<� � 1=2 we have

Dn†ðuda, u†Þ� d2� for a� d2�2�:

� If R is p-convex (see Definition 9) and 0<� � 1=2 we have

Dn†ðuda, u†Þ� d
2�p

p�1þ2� for a� d
2p�2�2p�þ4�

p�1þ� :

� If R is q-coconvex (see Definition 12) and 1=2 � � � 1 we have

Dsym

nda, n
†ðuda, u†Þ� d

2�q
1þ2�q�2� for a� d

2þ2�q�4�
1þ2�q�2�:

In the case of quadratic regularization with RðuÞ ¼ 1
2 kuk

2, all of these
results coincide with the classical results found, for instance, in [11]. In
Section 6, we will, in addition, discuss the implications for several examples
of non-quadratic regularization terms.
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2. Mathematical preliminaries

Let U and V be Hilbert spaces and F : U ! V a bounded linear operator.
Moreover, let R : U ! ½0, þ1� be a convex, lower semi-continuous and
coercive functional. Given some data v 2 V, we consider the stable,
approximate solution of the equation Fu ¼ v by means of non-quadratic
Tikhonov regularization, that is, by minimizing the functional

T aðu, vÞ :¼
1
2
kFu� vk2 þ aRðuÞ:

More precisely, we assume that v† 2 V is some “true” data, but that we are
only given noisy data vd 2 V satisfying

kv† � vdk � d

for some noise level d>0: Moreover, we denote the true, that is,
R-minimizing, solution of the noise-free equation Fu ¼ v† by

u† :2 argmin
u

fRðuÞ : Fu ¼ v†g:

Our main goal is the estimation of the worst case reconstruction error that
can occur for fixed noise level d>0 and true data v†: That is, we want to
estimate

supfDðuda, u†Þ : vd 2 V, uda 2 argmin
u

T aðu, vdÞ, kv† � vdk � dg

where D : U � U ! ½0, þ1� is some distance like measure. In the follow-
ing results we will mostly use the Bregman distance with respect to the
regularization functional R, which is defined as

Dnð~u, uÞ :¼ Rð~uÞ�RðuÞ�hn, ~u�ui,

where

n 2 @RðuÞ

is some sub-gradient of R at u. In addition, we will consider the symmetric
Bregman distance

Dsym

n, ~n
:¼ Dnð~u, uÞ þ D~nðu, ~uÞ ¼ hn�~n, u�~ui

for

n 2 @RðuÞ and ~n 2 @Rð~uÞ,

as well as the norm in some instances.
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2.1. Existence, convergence, and stability

It is well known that Tikhonov regularization with a convex, lower semi-con-
tinuous, and coercive regularization term is a well-defined regularization
method. That is, the following results hold (see [12, Thms. 3.22, 3.23, 3.26]):

� For every v 2 V and every a>0, the functional T að	, vÞ attains its minimum.
� Assume that vk ! v 2 V and ak ! a>0, and let uk 2

arg minuT akðu, vkÞ: Then the sequence uk has a weakly convergent sub-
sequence. Moreover, if �u is the weak limit of any weakly convergent
sub-sequence ðuk0 Þ, then

�u 2 argmin
u

T aðu, vÞ and Rðuk0 Þ ! Rð�uÞ:

� Assume that

dk ! 0, ak ! 0, and d2k=ak ! 0: (4)

Let moreover vk 2 V satisfy kvk � v†k � dk, and let uk 2
arg minuT ak ðu, vkÞ: Then the sequence uk has a sub-sequence ðuk0 Þ
that converges weakly to some R-minimizing solution �u of the equa-
tion Fu ¼ v† and Rðuk0 Þ ! Rð�uÞ:

Remark 2. If the functional T að	, vÞ is strictly convex, which is the case, if
and only if the restriction of R to the kernel of F is strictly convex, then
the minimizer of T að	, vÞ as well as the R-minimizing solution of Fu ¼ v†

are unique. In such a case, a standard sub-sequence argument shows that
the whole sequences uk converge weakly to �u:

Remark 3. The fact that uda minimizes the Tikhonov functional T að	, vdÞ
implies that

1
2
kFuda � vdk2 þ aRðudaÞ �

1
2
kFu† � vdk2 þ aRðu†Þ � d2

2
þ aRðu†Þ, (5)

which in turn implies in particular that

RðudaÞ �
d2

2a
þRðu†Þ:

Because of the coercivity of R, it follows that there exists some constant
R ¼ Rðd2=a, u†Þ only depending on the ratio d2=a and the true solution u†

(or, rather, the function value Rðu†Þ at the true solution) such that

kudak � Rðd2=a, u†Þ: (6)

We will in the following always be interested in the case where u† is a fixed
R-minimizing solution of Fu ¼ v† and the noise level d is small and thus,
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due to the requirement (4) on the regularization parameter, also the ratio
d2=a: Therefore, we can always assume that the set of regularized solutions
uda is bounded.

Remark 4. Throughout this paper, we assume that the regularization term
R is coercive, as this guarantees the well-posedness of the regularization
method as well as the bound (6), which is needed for the derivation of the
convergence rates later on. However, both of these can also be guaranteed
under the weaker condition that the Tikhonov functional T að	, vÞ is coer-
cive for any or, equivalently, every a>0 and v 2 V: For the well-posedness
see again [12, Thms. 3.22, 3.23, 3.26]; the bound follows from the inequal-
ity (cf. (5))

1
2
kFuda � vk2 � kFuda � vdk2 þ kv� vdk2 � d2 þ 2aRðu†Þ þ kv� vdk2

and the fact that vd ! v† implying that kv� vdk remains bounded for
every fixed v 2 V: Thus all the results of this paper remain valid under this
more general coercivity condition.

In particular, this holds for regularization with (higher order) homoge-
neous Sobolev norms or (higher order) total variation

RðuÞ ¼ kr‘ðuÞkpLp or RðuÞ ¼ jD‘ðuÞjðXÞ
with ‘ 2 N and 1< p< þ1 provided that the domain X is connected and
the kernel of F does not contain any polynomials of degree at most ‘�1:
See for instance [13,14] for the total variation case, [12, Prop. 3.66, 3.70]
for quadratic Sobolev and total variation regularization, and [15] for the
general, abstract case.

2.2. An interpolation inequality

All of the convergence rate results in this paper are based at some point on
the following interpolation inequality, which can, for instance, be found in
[16, p. 47]:

Lemma 5. For all 0 � � � 1=2 and all u 2 U we have

kðF�FÞ�uk � kFuk2�kuk1�2�: (7)

More precisely, we will make use of the following result:

Corollary 6. Let 0 � � � 1=2 and assume that n 2 U satisfies

n ¼ ðF�FÞ�x
for some x 2 U. Then
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hn, ui � kxkkFuk2�kuk1�2� (8)

for all u 2 U:

Proof. With the interpolation inequality (7) we have

hn, ui ¼ hðF�FÞ�x, ui ¼ hx, ðF�FÞ�ui � kxkkðF�FÞ�uk � kxkkFuk2�kuk1�2� ,

which proves the assertion. w

3. Basic convergence rates

We consider first the case of a lower order fractional source condition of
the form

n† 2 RanðF�FÞ� \ @Rðu†Þ
with 0<� � 1=2 without any additional conditions on the regularization
term R: The limiting case � ¼ 1=2 can be equivalently written as the more
standard source condition n† 2 RanðF�Þ \ @Rðu†Þ, for which it is well
known that one obtains a convergence rate

Dn†ðuda, u†Þ� d for a� d:

The following result shows that a weaker source condition leads to a
correspondingly slower convergence.

Theorem 7. Assume that there exists

n† :¼ ðF�FÞ�x† 2 @Rðu†Þ
for some 0<� � 1=2. Then

Dn†ðuda, u†Þ�C1
d2

a
þ C2d

2� þ C3a
�

1��:

for some constants C1, C2, C3>0 whenever d2=a is bounded. In particular,
one obtains with a parameter choice

aðdÞ� d2�2�

a convergence rate

Dn†ðuda, u†Þ� d2�:

Proof. We will only consider the case 0<� < 1=2, the case � ¼ 1=2 having
already been treated in [1].
Since n† ¼ ðF�FÞ�x†, we can apply the interpolation inequality (8),

which yields that
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hn†, u†�ui � kx†kkFðu† � uÞk2�ku� u†k1�2�:

Moreover, the fact that uda minimizes the Tikhonov functional implies that

1
2
kFuda � vdk2 þ aRðudaÞ �

1
2
kFu† � vdk2 þ aRðu†Þ � 1

2
d2 þ aRðu†Þ:

Thus

Dn†ðuda; u†Þ ¼ RðudaÞ�Rðu†Þ�hn†, uda�u†i

� d2

2a
� 1
2a

kFuda � vdk2 þ kxkkFðu† � udaÞk
2�ku† � udak

1�2�:

(9)

Using Remark 3 we see that the term ku† � udak stays bounded. Using the
fact that

kFðu† � udaÞk
2� � kFuda � vdk2� þ d2� ,

we obtain thus from (9) the estimate

Dn†ðuda; u†Þ �
d2

2a
þ Cd2�� 1

2a
kFuda � vdk2 þ CkFuda � vdk2�

for some C> 0. Using Young’s inequality ab � ap=pþ bp�=p�, we see that

CkFuda � vdk2� � 1
2a

kFuda � vdk2 þ ~Ca
�

1��

for some ~C>0, and thus

Dn†ðuda; u†Þ �
d2

2a
þ Cd2� þ ~Ca

�
1��:

Now the rate follows immediately by inserting the parameter choice
a� d2�2�: w

Remark 8. In quadratic Tikhonov regularization with

RðuÞ ¼ 1
2
kuk2

we have that

@Rðu†Þ ¼ u† and Du†ðu, u†Þ ¼
1
2
ku� u†k2:

Thus the condition of Theorem 7 reduces to the classical (lower order)
source condition

u† 2 RanðF�FÞ� with 0<� � 1=2:
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The convergence rate obtained in Theorem 7, however, would be

kuda � u†k� d� with a� d2�2�:

In contrast, it is well known (see e.g [11]) that a parameter choice

a� d
2

2�þ1

leads to a convergence rate

kuda � u†k� d
2�

2�þ1:

Since �>2�=ð2� þ 1Þ for 0<�< 1=2, this convergence rate is faster than
the one obtained in the Theorem 7. The reason for this discrepancy can be
found in the inequality (9), after which we estimate the term ku† � udak
simply by a constant. Here better estimates are possible, if we can use
some power of the Bregman distance in order to bound this term from
above. For quadratic regularization, this is obviously possible, as the
Bregman distance is essentially the squared norm. More general instances
of this situation will be discussed in the following section.

4. Convergence rates for p-convex functionals

As discussed above, in order to obtain stronger results, we need to require
a stronger form of convexity for the regularization term R:

Definition 9. Let 1 � p< þ1: We say that the functional R : U !
½0, þ1� is locally p-convex, if there exists for each u 2 dom@R and every
R> 0 some constant C ¼ Cðu,RÞ>0 such that

Ck~u � ukp � Dnð~u, uÞ
for all n 2 @RðuÞ and all ~u 2 U with k~u � uk � R:

Theorem 10. Assume that R is locally p-convex for some p 
 1 and that
there exists

n† :¼ ðF�FÞ�x† 2 @Rðu†Þ
for some 0<� < 1=2. Then there exist constants C1, C2>0 such that

Dn†ðuda, u†Þ � C1
d2

a
þ C2a

�p
p�1�p�þ2�

whenever d2=a is bounded. In particular, we obtain with a parameter choice

aðdÞ� d
2p�2�2p�þ4�

p�1þ�

the convergence rate
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Dn†ðuda, u†Þ� d
2�p

p�1þ2�:

Proof. As in the proof of Theorem 7 we obtain the estimate (cf. inequality (9))

Dn†ðuda; u†Þ �
d2

2a
� 1
2a

kFuda � vdk2 þ kxkkFðu† � udaÞk
2�ku† � udak

1�2�:

Again, it follows from Remark 3 that we can assume the term ku† � udak to
be bounded. Thus the local p-convexity of R implies the existence of a
constant C such that

ku† � udak � CDn†ðuda, u†Þ
1
p

and we obtain the estimate

Dn†ðuda; u†Þ �
d2

2a
� 1
2a

kFuda � vdk2 þ C1�2�kxkkFðu† � udaÞk
2�Dn†ðuda, u†Þ

1�2�
p :

(10)

We now apply Young’s inequality

abc � 1
r
ar þ 1

s
bs þ 1

t
ct for a, b, c>0 and r, s, t>1 with

1
r
þ 1

s
þ 1

t
¼ 1

(11)

with

a ¼ C1�2� ð4aÞ
�kx†k
��

, r ¼ p
p� 1� p� þ 2�

,

b ¼ ��

ð4aÞ� kFðu
† � udaÞk

2� , s ¼ 1
�
,

c ¼ Dn†ðuda, u†Þ
1�2�
p , t ¼ p

1� 2�
,

which results in the bound

kx†kkFðu† � udaÞk � ~Ca
�p

p�1�p�þ2� þ 1
4a

kFðu† � udaÞk
2 þ 1�2�

p
Dn†ðuda, u†Þ

(12)

for some constant ~C>0: Using that

kFðu† � udaÞk
2 � 2kFuda � vdk2 þ 2kFu† � vdk2 � 2kFuda � vdk2 þ 2d2,

and combining (10) with (12), we obtain the required inequality

Dn†ðuda, u†Þ � C1
d2

a
þ C2a

�p
p�1�p�þ2�
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for some C1, C2 > 0: The two terms on the right hand side of this estimate
balance for

a� d
2p�2�2p�þ4�

p�1þ2� ,

in which case we obtain the convergence rate

Dn†ðuda, u†Þ� d
2�p

p�1þ2�:

w

Remark 11. Assume that the assumptions of Theorem 10 are satisfied.
Because of the local p-convexity of R, we then obtain in addition a conver-
gence rate in terms of the norm of the form

kuda � u†k� d
2�

p�1þ2�:

In the particular case of a 2-convex regularization term, we recover the
familiar convergence rate

kuda � u†k� d
2�

1þ2� for n† 2 RanðF�FÞ� , 0<� � 1=2,

with a parameter choice

a� d
2

1þ2�,

which is the same as we obtain for quadratic Tikhonov regularization (cf.
Remarks 8).

5. Higher order rates

We will now consider higher order source conditions

n† 2 RanðF�FÞ� \ @Rðu†Þ with
1
2
<� � 1:

Here it turns out that a strong type of convexity appears not to be needed
to obtain higher order convergence rates. Instead, it is the convexity of the
conjugate of the regularization term R that needs to be controlled.

Definition 12. Let 1 � q< þ1: We say that the functional R : U !
½0, þ1� is locally q-coconvex, if there exists for all R> 0 some constant
C ¼ CðRÞ>0 such that

Ckn1 � n2kq � Dsym
n1, n2

ðu1, u2Þ ¼ hn1�n2, u1�u2i

for all u1, u2 2 dom @R with kuik � R, where

n1 2 @Rðu1Þ and n2 2 @Rðu2Þ:
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Remark 13. Instead of the original functional R, we can also consider its
convex conjugate R� and the dual Bregman distances

D�
uð~n, nÞ ¼ R�ð~nÞ�R�ðnÞ�hu, ~n�ni with u 2 @R�ðnÞ

and

Dsym, �
u, ~u ðn, ~nÞ :¼ D�

uð~n, nÞ þ D�
~uðn, ~nÞ with u 2 @R�ðnÞ and ~u 2 @R�ð~nÞ:

Then we see that the primal and dual symmetric Bregman distances are
identical in the sense that

Dsym

n, ~n
ðu, ~uÞ ¼ hn�~n, u�~ui ¼ Dsym, �

u, ~u ðn, ~nÞ:

As a consequence, the q-coconvexity of R is equivalent to the q-convexity
of R�: Also, we note that 2-coconvexity of R is the same as cocoercivity of
the subgradient @R (cf. [17, Sec. 4.2]).

Theorem 14. Assume that R is locally q-coconvex for some q 
 1 and that

n† :¼ ðF�FÞ�g† 2 @Rðu†Þ
for some 1=2<� � 1. Then there exist constants C1, C2>0 such that

Dsym

nda, n
†ðuda, u†Þ � C1

d2

a
þ C2a

q�
1þ�q�2�: (13)

whenever d2=a is bounded. In particular, we obtain with a parameter choice

a� d
2þ2�q�4�
1þ2�q�2�

the convergence rate

Dsym

nda, n
†ðuda, u†Þ� d

2�q
1þ2�q�2�:

Proof. Denote

l ¼ �� 1
2
:

Since

RanðF�FÞ� ¼ RanðF�FÞlþ
1
2 ¼ RanðF�ðFF�ÞlÞ,

it follows that we can write

n† ¼ F�x† with x† ¼ ðFF�Þl~g†

for some ~g† 2 U:
Because uda is a minimizer of the Tikhonov functional T að	, vdÞ, it

satisfies the first order optimality condition
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F�ðFuda�vdÞ þ a@RðudaÞ� 0:

Denoting by

nda 2 @RðudaÞ
the corresponding subgradient of R, it follows that

�anda ¼ F�ðFuda�vdÞ:

Or, we can write

nda ¼ F�xd
a with �axd

a ¼ Fuda�vd: (14)

As a consequence, we have

Dsym

nda, n
†ðuda, u†Þ ¼ hnda�n†, uda�u†i

¼ hF�xd
a�F�x†, uda�u†i

¼ hxd
a�x†, Fuda�Fu†i

¼ hxd
a�x†, Fuda�vdi þ hxd

a�x†, vd�v†i
¼ �ahxd

a�x†,xd
ai þ hxd

a�x†, vd�v†i
¼ �akxd

a � x†k2�ahxd
a�x†,x†i þ hxd

a�x†, vd�v†i
� �akxd

a � x†k2�ahxd
a�x†,x†i þ dkxd

a � x†k:

(15)

We next use the interpolation inequality and the definitions of xd
a and x†

and obtain

�hxd
a�x†,x†i ¼ �hxd

a�x†, ðFF�Þl~g†i
� k~g†kkF�ðxd

a � x†Þk2lkxd
a � x†k1�2l

¼ k~g†kknda � n†k2lkxd
a � x†k1�2l:

(16)

Now we can use the local q-coconvexity of R and the boundedness of uda
(see Remark 3) to estimate

knda � n†k � CDsym

nda, n
†ðuda, u†Þ

1=q

and obtain from (15) and (16) the bound

Dsym

nda, n
†ðuda, u†Þ

� Cak~g†kDsym

nda, n
†ðuda, u†Þ

2l
q kxd

a � x†k1�2l þ dkxd
a � x†k�akxd

a � x†k2:

(17)

In the following, we will only treat the more difficult case l< 1=2: For l ¼
1=2, the argumentation is similar but simpler, due to the absence of the
term kxd

a � x†k1�2l in the first product on the right hand side of (17).
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We use first the inequality

dkxd
a � x†k � d2

2a
þ a

2
kxd

a � x†k2

and then the three term Young inequality (11) with

a ¼ Cð1�2lÞ
1�2l
2 k~g†ka

1þ2l
2 , r ¼ 2q

qþ 2lq� 4l
,

b ¼ a
1�2l
2

ð1�2lÞ
1�2l
2

kxd
a � x†k1�2l, s ¼ 2

1� 2l
,

c ¼ Dsym

nda, n
†ðuda, u†Þ

2l
q , t ¼ q

2l
:

Then we obtain from (17) that

Dsym

nda, n
†ðuda, u†Þ � C1

d2

a
þ C2a

qþ2lq
qþ2lq�4l:

Again, balancing the two terms on the right hand side leads to a parameter
choice

a� d
qþ2lq�4l
qþ2lq�2l

and a convergence rate

Dsym

nda, n
†ðuda, u†Þ� d

qþ2lq
qþ2lq�2l:

Replacing again l by �� 1
2 , we obtain the results claimed in the statement

of the theorem. w

Remark 15. The equations (14) are just the KKT conditions for the opti-
mization problem minuT aðu, vdÞ, and xd

a can be just seen as the dual solu-
tion of this problem. See also [9], where the connection to a dual Tikhonov
functional is discussed.

Remark 16. The lower order rates obtained in Section 4 at first glance
appear to be different from the higher order rates of the previous theorem.
By reformulating the rates not in terms of q but rather its H€older conju-
gate, however, it is possible to use the same formula in both cases. Indeed,
assume that R is locally q-coconvex and that p ¼ q=ðq�1Þ is the H€older
conjugate of q. Then we can write the estimate (13) as

Dsym

nda, n
†ðuda, u†Þ � C1

d2

a
þ C2a

p�
p�1�p�þ2�,

which is of the same form as the estimate we have obtained in Theorem 10
for p-convex regularization terms and � < 1=2:

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 1365



Remark 17. In the case where the regularization term R is 2-coconvex, the
parameter choice and convergence rate simplify to

Dsym

nda, n
†ðuda, u†Þ� d

4�
1þ2� for a� d

2
1þ2�:

In the case of quadratic Tikhonov regularization, these rates turn out to be
identical to the classical rates. Indeed, the quadratic norm is obviously 2-
coconvex, since we have for

RðuÞ ¼ 1
2
kuk2

that

@RðuÞ ¼ fug and Dsym
u1, u2ðu1, u2Þ ¼ ku1 � u2k2:

Moreover, the source condition simply reads as

u† ¼ ðF�FÞ�g†:

Together with Remark 11, which deals with the lower order case, we thus
recover the classical result that the source condition

u† 2 RanðF�FÞ� for some 0<� � 1

implies the convergence rate

kuda � u†k� d
2�

2�þ1 with a� d
2

2�þ1

for quadratic Tikhonov regularization.

6. Examples

We now study the implications for four different non-quadratic regulariza-
tion terms, all with different convexity properties.

6.1. ‘p-regularization

We consider first the case where U ¼ ‘2ðIÞ for some countable index set
I, and

RðuÞ ¼ 1
p
kukp

‘p
¼ 1

p

X
i2I

juijp

for some 1< p< 2: Because of the embedding ‘p ! ‘2 for p< 2, this term
is coercive and thus Tikhonov regularization is well-posed. Also, this regu-
larization term is 2-convex and its conjugate
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R�ðnÞ ¼ 1
p�

knkp�
‘p�

is p�-convex with p� ¼ p=ðp�1Þ being the H€older conjugate of p, implying
that R is p�-coconvex (see [18] for all of these results). Moreover,

@RðuÞ ¼ ðuijuijp�2Þi2I
whenever u 2 dom @R ¼ ‘2ðp�1Þ:
Thus the preceding results imply that a source condition

n† ¼ ðu†i ju†i j
p�2Þi2I 2 RanðF�FÞ�

leads to a convergence rate

kuda � u†k� d
2�

1þ2� with a� d
2

1þ2� if 0<� � 1
2
,

and

kuda � u†k� d
p�

p�1þ2� with a� d
2p�2�2�pþ4�

p�1þ2� if
1
2
<� � 1:

6.2. Lp-regularization

Next we study the situation where X is some bounded domain, U ¼
L2ðXÞ, and

RðuÞ ¼ 1
p

ð
X
juðxÞjp dx ¼ 1

p
kukpLp

for some 2< p< þ1: Here we are in the opposite situation to ‘p-regular-
ization in that the exponent has to be larger than 2 for the regularization
method to be well-posed. See [19,20] for an application of this type of
regularization, albeit completely in a Banach space setting.
In this case the regularization term itself is p-convex, but its conjugate

R�ðuÞ ¼ 1
p�

kukp�Lp�

is 2-convex (see again [18]). Also, we have again the representation of the
subgradient of R as

@RðuÞ ¼ ujujp�2

whenever u 2 dom @R ¼ L2ðp�1Þ:
As a consequence, due to the p-convexity and 2-coconvexity of the regu-

larization term, the results above imply that the source condition

n† :¼ ujujp�2 2 RanðF�FÞ�

results in the convergence rates
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kuda � u†k� d
2�

p�1þ2� with a� d
2p�2�2p�þ4�

p�1þ� if 0<� � 1
2
,

and

kuda � u†k� d
4�

pþ2�p with a� d
2

1þ2� if
1
2
<� � 1:

6.3. Total variation regularization

The next example we consider is total variation regularization with U ¼
L2ðXÞ,X � R

2 bounded with Lipschitz boundary, and

RðuÞ ¼ jDujðXÞ:

As discussed in Remark 4, we have to assume in this case in addition that
constant functions are not contained in the kernel of F in order for the
regularization method to be well-posed.
In the case of total variation regularization, the regularization term is not

strictly convex, which implies that the Bregman distance Dnð~u, uÞ may be
zero for ~u 6¼ u: As a consequence, we cannot bound the Bregman distance
from below by any power of the norm, and therefore the total variation is
not p-convex for any p. On the other hand, the subdifferentials of R are in
general not single-valued, which implies that the total variation is neither
q-coconvex for any q. We thus end up with only the basic results

Dn†ðuda, u†Þ� d2� with a� d2�2�

for a source condition

n† 2 @Rðu†Þ \ RanðF�FÞ� with 0<� � 1
2
:

6.4. Huber regularization

As final example, we get back to the case U ¼ ‘2ðIÞ for some countable
index set I, but consider now the Huber regularization term

RðuÞ ¼
X
i2I

/ðuiÞ

with

/ðtÞ ¼
1
2
t2 if jtj � 1,

jtj� 1
2

if jtj 
 1:

8><
>:
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Because / is not strictly convex, neither is R, and thus R is not p-convex
for any p. However,

R�ðnÞ ¼
X
i2I

/�ðniÞ

with

/�ðfÞ ¼
1
2
f2 if jfj � 1,

þ1 if jf>1,

8<
:

which is obviously 2-convex. Thus the Huber regularization term is not p-
convex for any p, but is 2-coconvex.
Moreover, we have that

@RðuÞ ¼ ðqðuiÞÞi2I
with

qðtÞ ¼
1 if t 
 1,
t if jtj � 1,
�1 if t � �1:

8<
:

Thus we obtain the convergence rates

Dn†ðuda, u†Þ� d2� with a� d2�2� if 0<� � 1
2

and

Dsym

nda, n
†ðuda, u†Þ� d

2�
1þ2� with a� d

2
1þ2� if

1
2
� � � 1,

provided that a source condition

ðqðu†i ÞÞi2I 2 RanðF�FÞ�

is satisfied.

7. Conclusion

In this paper we have studied the implications of classical source conditions
of power type to accuracy estimates and convergence rates for non-quad-
ratic Tikhonov regularization. We have seen that very basic results can be
easily obtained without any additional conditions concerning, for instance,
strong convexity or smoothness of the regularization term. However, these
results are not optimal in cases where such additional conditions hold, and
they also fail to reproduce the classical results for quadratic regulariza-
tion methods.
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In order to be able to obtain stronger results, we considered the situation
where either the regularization term or its convex conjugate is p-convex. In
these cases, it is possible to obtain sharper estimates in the low regularity
and high regularity regions, respectively. As for quadratic regularization,
the split between these two regions occurs at the standard source condition
F�x† 2 @Rðu†Þ: In the lower order case, the convexity properties of the
primal regularization term R determine the convergence rates. In the
higher order case, however, the proof of the rates relies to some extent on
duality and it is therefore the convexity of the dual regularization term R�

that becomes important. Still, these results match those classically obtained
for quadratic regularization, although the approach we have followed here
differs significantly from the classical ones.
However, quite a few questions remain open. First, all the results we

have discussed here were obtained only for the case of linear inverse prob-
lems. It seems reasonable, though, to expect that a refinement of the
approach chosen in this paper might lead to convergence rates for non-
linear problems as well. This would be particularly desirable for the case of
enhanced convergence rates in the high regularity region, where up to now
no easily interpretable results are available.
Next, it is well known (see [4, 21]) that sparsity assumptions lead to

improved convergence rates of, for instance, order d1=p in the case of
‘p-regularization with 1< p< 2: Therefore, it would make sense to investi-
gate whether sparsity might in general alter and improve error estimates
and convergence rates in the case of H€older type fractional source condi-
tions. For the setting of ‘1-regularization, it is known that lower order frac-
tional source conditions @Rðu†Þ \ RanðF�FÞ� 6¼ ; for any 0<� � 1=2
imply linear convergence rates in the presence of sparsity (see [22]); for
‘p-regularization, the effect of such source conditions is still an
open problem.
Finally, all these results apply strictly to Hilbert spaces only, as they

make use of fractional powers of the operator F and of an interpolation
inequality. Since non-quadratic regularization methods become more
important in settings without a Hilbert space structure, a generalization of
such source conditions together with corresponding convergence rates to
Banach spaces would be desirable. All of these points will be subject of fur-
ther investigation in the future.
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