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Abstract

Accurate underwater navigation systems are required for closed-loop
guidance and control of unmanned underwater vehicles (UUV). This paper
proposes a sensor-based hybrid translational observer concept for under-
water navigation using the hybrid dynamical systems framework, account-
ing for noisy, asynchronous and sporadic sensor measurements. Sensor
measurements from an acoustic positioning system, a Doppler Velocity
Log (DVL), an Inertial Measurement Unit (IMU) and a pressure gauge
are used in the proposed observer. A method for filtering high-frequency
noise is proposed, where the estimated states are obtained by taking a
weighted discounted average of a finite number of previous measurements
predicted forwards to the current time. The attitude of the vehicle is
assumed known, and the acceleration measurements are assumed to be
continuously available. Measurements of position, depth and linear ve-
locity are assumed to be asynchronous and sporadically available, that is,
they do not arrive at the same time, and their sampling rates are not con-
stant. Uniform global asymptotic stability (UGAS) is established using
Lyapunov theory for hybrid systems. Results from simulations are pre-
sented in order to demonstrate the performance of the proposed method.

1 Introduction

Accurate underwater navigation systems are required for closed-loop guidance
and control of UUVs. [1] gives an overview of several underwater navigation
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techniques. Many UUVs today use model-based observers. By including a
kinetic model of the vehicle, these observers are able to filter out noise, recon-
struct unmeasured states, estimate biases, and in the case of signal loss, do dead
reckoning. [2] propose a Kalman filter for Remotely Operated Vehicles (ROV).
Drawbacks of Kalman filters are the large number of parameters to be tuned,
and the unproved mathematical stability proofs for certain applications, such as
global stability results for extended Kalman filters. On the contrary, nonlinear
passive filters are able to provide proof of global stability. [3] propose a model-
based nonlinear Luenberger observer using the observer backstepping technique,
which proved to be UGAS. A shortcoming of model-based observers is that the
bias estimate is not able to capture rapidly changing loads and environmental
conditions. Hence, regarding tuning, there is a trade-off between performance
during steady-state conditions and transients.

Sensor-based observers on the other hand, often called a strap-down ap-
proach, rely purely on the sensor measurements and kinematic relationships.
Thus, all unknown forces acting on the vehicle are captured in the observer
instantaneously by the accelerometers. In [4] a sensor-based integration filter
for the estimation of translational motion of UUVs is proposed. A drawback of
strap-down approaches is that these solutions are sensitive to the accuracy of the
attitude estimation relying on the sensor measurements only, and in the case of
signal loss, they are not able to predict the states in a satisfying manner. Good
models of the gravity and centripetal accelerations are also required. Most ap-
proaches to observer design assume that sensor measurements are continuously
available, or that the sampling rates remain constant.

This paper is a continuation of the authors’ previous work in [5]. Here, a
method for the design of a sensor-based translational observer using the frame-
work of hybrid dynamical systems [6] applied to UUVs, accounting for noisy,
asynchronous and sporadically available sensor measurements was developed.
The approach for combining measurements of different fidelities is inspired by
[7]. The attitude of the UUV is assumed known, and the acceleration measure-
ments are assumed to be continuously available. The observer is modeled as
a cascaded system of three hybrid observers, where acceleration measurements
and velocity estimates are continuously integrated in order to obtain velocity
and position predictions, respectively, corrected by occasional discrete measure-
ment updates. Each hybrid observer keeps a finite number of the most recent
measurements, predicted forward to the current time using the flow dynamics.
A method for filtering high-frequency measurement noise is proposed, where the
position and velocity estimates are obtained by taking a weighted discounted
average of the observer states, giving higher trust to more recent predictions.
A new result of this paper is the stability analysis for hybrid cascaded systems
proving the observer uniformly asymptotically stable (UGAS). Also, results from
simulations in closed-loop with a kinetic vehicle model and control systems are
presented to demonstrate the performance of the proposed method.

The paper is organized as follows: In Section 2, the kinematic equations of
the observer are presented, as well as the hybrid dynamical systems framework.
The observer design is proposed in Section 3, with stability analysis in Section
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4. The observer is tested in simulations using MATLAB/Simulink in Section 5.
Section 6 concludes the paper.

2 Mathematical modeling

2.1 Kinematics of an underwater vehicle

The 6 degrees-of-freedom (DOF) equation of motion for an underwater vehicle is
expressed by the Earth-fixed position vector η = [p> Θ>]> = [N E D φ θ ψ]>

∈ R6 and the body-fixed velocity vector ν = [v> ω>]> = [u v w p q r]> ∈ R6,
where the three first elements in the vectors correspond to the linear part of
the motion, and the three latter elements correspond to the angular part of
the motion. The sensor-based translational observer is based on the kinematic
relationship between the Earth-fixed linear velocities ṗ, the body-fixed linear
velocities v and the body-fixed linear accelerations a through the transformation

ṗ = R(Θ)v

v̇ = a
(1)

where R(Θ) denotes the Euler angle transformation given by

R(Θ) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcθsφ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ


and s · = sin(·), c · = cos(·) and t · = tan(·).

2.2 Measurements

UUVs typically navigate using four different sensors taking measurements at
different sampling rates: Inertial Measurement Units (IMU), Doppler Velocity
Logs (DVL), pressure gauges and hydroacoustic transponders [8]. IMUs include
accelerometers for linear acceleration measurements and gyroscopes for angular
velocity measurements at a sampling rate of 100 − 200 Hz. DVLs are used to
measure linear velocities and altitude at a sampling rate of 0.5−5 Hz. Pressure
gauges measure depth with a sampling rate of 0.8−8 Hz. Transponders, part of
an acoustic positioning system, measure position relative to a transducer with
a sampling rate of 0.2− 2 Hz.

In the observer design and analysis, it is assumed that the sensor measure-
ments do not contain any noise or biases, such that they represent the true
states of the system. However, in the numerical simulations, noise is added on
all sensor measurements. The position, depth and velocity measurements are
obtained with a non-constant sample time in the interval [Tm, Tm] with Gaus-
sian distributed noise with variance σ2

m for m ∈ {1, 2, 3}, where the index m = 1
represents acoustic positioning measurements, m = 2 represents pressure gauge
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depth measurements, and m = 3 represents DVL velocity measurements. Gaus-
sian distributed noise with variance σ2

imu is added to the acceleration measure-
ments, which are assumed continuously available. Furthermore, it is assumed
that the vehicle’s attitude Θ is known.

Note that the depth may be measured by both the acoustic positioning
system and the pressure gauge. Since the pressure gauge provides depth mea-
surements with higher accuracy and sampling rate than the acoustic positioning
system, we utilize these measurements only when estimating the depth.

2.3 Hybrid Dynamical Systems

The hybrid dynamical system framework presented in [6] can be used to model
and analyze systems with both continuous and discrete dynamics. In general, a
hybrid system H can be modeled as

H =

{
x ∈ C
x ∈ D

ẋ ∈ F (x)

x+ ∈ G(x)
(2)

where x is the state vector, C ⊂ Rn is the flow set, F : Rn ⇒ Rn is the flow
map, D ⊂ Rn is the jump set and G : Rn × Rm ⇒ Rn is the jump map.

For more information regarding hybrid dynamical systems, the reader is
referred to [6].

3 Hybrid observer design

A method for the design of a cascaded sensor-based hybrid translational observer
H consisting of a hybrid velocity sub-systemH3 in cascade with two other hybrid
position and depth sub-systems H1 and H2 respectively, is proposed. A block
diagram of the cascaded hybrid observer structure is shown in Figure 1.

For convenience, we split the translational position p into two components:
the horizontal-plane position ξ , [N E] (measured by the acoustic positioning
system) and the depth z , D (measured by the pressure gauge). Furthermore,
we constrain the positions and the velocities to a compact set K ⊂ R6 such that
(ξ, z,v) ∈ K. The observer design does not depend on this set.

3.1 Mathematical formulation of the hybrid observer

Each observer has Nm observer states, denoted (·)n for n ∈ {1, ..., Nm}, m ∈
{1, 2, 3}, representing copies of position, depth and velocity measurements pre-
dicted forwards to the current time using the flow dynamics by integration. The
observer states work as a first-in-first-out (FIFO) queue (shift register). New
measurements are stored in the first observer state (·)1, while the remainder
of the states are shifted one place back. The last observer state (·)Nm

with
the most outdated prediction is pushed out of the queue and deleted. The
time before a new measurement is randomly selected from an interval [Tm, Tm],
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Velocity observer Position observer

Depth observer

Figure 1: Block diagram showing the cascade structure of the hybrid observer.
Solid lines denote input to the flow dynamics, and dashed lines denote input to
the jump dynamics.

where Tm and Tm represent the lower and upper bounds for the sampling time
characterized by sensor m, respectively.

For filtering high-frequency noise, a method inspired by a weighting scheme
in [9] is proposed. The observer estimates are obtained by taking a weighted
discounted average of the observer states, given by

ξ̂ :=

∑N1

i=1 γ
i
1ξi∑N1

i=1 γ
i
1

, ẑ :=

∑N2

j=1 γ
j
2zj∑N2

j=1 γ
j
2

, v̂ :=

∑N3

k=1 γ
k
3vk∑N3

k=1 γ
k
3

(3)

where γm ∈ (0, 1], m ∈ {1, 2, 3}, is a constant discount factor, and ξi, zj and
vk are the ith position, jth depth and kth velocity states, respectively. The
motivation for using a weighted discounted average is that we may have a higher
trust in more recent predictions, as these states have integrated possible errors
for a shorter time. Note that when γm = 1, we get the mean value of the
observer states. In Figure 2, an example of a time series of the evolution of the
observer states in the position observer with N1 = 3 is shown. A large variance
and a constant sampling rate of T1 = 5 seconds on the position measurement
was included for better visualization. The first observer state is here initialized
at the true position.

In the velocity observerH3, the dynamics flow with the acceleration measure-
ments in between the velocity measurements - that is, when τ3 ∈ [0, T 3]. The
observer states are then updated discretely when new velocity measurements are
available. The counter variable τ3 counts backwards in time, such that jumps
are triggered when τ3 = 0. The velocity observer is, for k ∈ {1, ..., N3}, given
by
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Figure 2: Time series of the evolution of the North position observer states with
N1 = 3. The estimated position at a given time is found by taking the weighted
discounted average of the three observer states.
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H3 :=


v̇k = a

τ̇3 = −1

v+k = vk−1

τ+3 ∈ [T 3, T 3]

}
(vk, τ3) ∈ R3 × [0, T 3]}
(vk, τ3) ∈ R3 × {0}

(4)

where v0 is the DVL linear velocity measurement.
In the position observer H1, the position states ξi flow with the velocity

estimate in (3), and are similarly updated discretely when new position mea-
surements are available. The position observer is, for i ∈ {1, ..., N1}, given
by

H1 :=


ξ̇i = I1:2R(Θ)v̂

τ̇1 = −1

ξ+i = ξi−1
τ+1 ∈ [T 1, T 1]

}
(ξi, τ1) ∈ R2 × [0, T 1]}
(ξi, τ1) ∈ R2 × {0}

(5)

where ξ0 is the acoustic position measurement, and

I1:2 :=

[
1 0 0
0 1 0

]
.

The depth observer H2 is, for j ∈ {1, ..., N2}, given by

H2 :=


żj = I3R(Θ)v̂

τ̇2 = −1

z+j = zj−1

τ+2 ∈ [T 2, T 2]

}
(zj , τ2) ∈ R× [0, T 2]}
(zj , τ2) ∈ R× {0}

(6)

where z0 is the pressure gauge depth measurement, and I3 := [0 0 1].

4 Stability analysis

The compact set for which we are analyzing stability is

A := {ξ, z,v, ξi, zj ,vk, τ1, τ2, τ3 ∈ C :

ξi = ξ, zj = z, vk = v, ∀i ∈ {1, ..., N1},
∀j ∈ {1, ..., N2}, ∀k ∈ {1, ..., N3}}

(7)

where
C := K × R2N1+N2+3N3 × [0, T1]× [0, T2]× [0, T3] (8)

We are using Lyapunov results for hybrid systems [6] and cascaded systems
[10] to prove that the cascaded observer dynamics given in (4), (5) and (6) has
the set A uniformly globally asymptotically stable (UGAS).
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Theorem 1: The set A in (7) is UGAS for the cascaded hybrid system
consisting of the plant (1), and the hybrid sub-systems (4), (5) and (6). �

The proof is done sequentially in several steps in the next Sections. The
error dynamics of the observer are given. Firstly, the velocity error dynamics are
shown UGAS. Secondly, the position observer error dynamics are shown UGAS
under the assumption that the estimated velocity is equal to the true velocity.
Thirdly, the cascaded system consisting of the velocity observer and the position
observer with a non-zero velocity estimation error is proved UGAS using cascade
theory. This is done by proving the position observer error dynamics input-to-
state stable (ISS) in two steps; by first looking at the case when N1 = 1, and
then at the case when N1 > 1 for i ∈ {2, ..., N1}. Using the same procedure,
it follows that the cascaded system consisting of the velocity observer and the
depth observer is UGAS.

4.1 Error dynamics

We define the error coordinates as

ξ̃i := ξi − ξi−1,
z̃j := zj − zj−1,
ṽk := vk − vk−1,

∀i ∈ {1, ..., N1}
∀j ∈ {1, ..., N2}
∀k ∈ {1, ..., N3}

(9)

where ξ̃0 := 0, z̃0 := 0 and ṽ0 := 0.
The velocity error dynamics are independent of the position and depth error

dynamics, and the velocity estimates are input to the position and depth error
dynamics. Thus, the total observer error dynamics has a cascaded structure,
where the velocity error dynamics are given by

˙̃vk = 0

τ̇3 = −1

ṽ+k = ṽk−1

τ+3 ∈ [T 3, T 3]

k ∈ {1, ..., N3}

k ∈ {1, ..., N3}
(10)
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and the position and depth error dynamics by

˙̃
ξi =

{
I1:2R(Θ)(v̂ − v)

0

˙̃zj =

{
I3R(Θ)(v̂ − v)

0

τ̇1 = −1

τ̇2 = −1

ξ̃
+

i = ξ̃i−1

z̃+j = z̃j−1

τ+1 ∈ [T 1, T 1]

τ+2 ∈ [T 2, T 2]

i = 1

i ∈ {2, ..., N1}
j = 1

j ∈ {2, ..., N2}

i ∈ {1, ..., N1}
j ∈ {1, ..., N2}

(11)

4.2 Velocity error analysis

We start by analyzing the stability of the velocity observer H3, as its output is
input to the sub-systems H1 and H2.

Claim 1: The origin of the velocity error dynamics in (10) with states ṽk is
UGAS. �

Proof (from Theorem 3.18, [6]): The proposed Lyapunov function candidate
is

V3(ṽk, τ3) := eλτ3
N3∑
k=1

ck3 ṽ
>
k ṽk (12)

where λ > 0 and c3 ∈ (0, 1) are constants. V3 is lower and upper bounded by

α1(‖ṽk‖) ≤ V3(ṽk, τ3) ≤ α2(‖ṽk‖) (13)

where α1(‖ṽk‖) :=
∑N3

k=1 c
k
3 ṽ
>
k ṽk and α2(‖ṽk‖) := eλT 3

∑N3

k=1 c
k
3 ṽ
>
k ṽk are class

κ∞-functions.
The time derivative of V3 along the trajectories of the velocity estimation

error f3(ṽk, τ3) is

〈∇V3(ṽk, τ3),f3〉 = eλτ3

(
λτ̇3

N3∑
k=1

ck3 ṽ
>
k ṽk + 2

N3∑
k=1

ck3 ṽ
>
k

˙̃vk

)
= −λV3(ṽk, τ3).
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The difference in V3 before and after a jump is upper bounded by

V3(ṽ+k ,τ
+
3 )− V3(ṽk, τ3) ≤

eλT 3

N3∑
k=1

ck3 ṽ
>
k−1ṽk−1 −

N3∑
k=1

ck3 ṽ
>
k ṽk

= eλT 3

N3∑
k=2

ck3 ṽ
>
k−1ṽk−1 −

N3∑
k=1

ck3 ṽ
>
k ṽk.

Here, we have contracted the first sum, as ṽ0 = 0. Furthermore, we get

V3(ṽ+k ,τ
+
3 )− V3(ṽk, τ3) ≤

eλT 3

N3−1∑
k=1

ck+1
3 ṽ>k ṽk −

N3∑
k=1

ck3 ṽ
>
k ṽk

≤
N3∑
k=1

[eλT 3ck+1
3 − ck3 ]ṽ>k ṽk.

By choosing λ such that

ck3 > eλT 3ck+1
3 ⇔ λ < − ln(c3)

T 3

the terms in the first sum will be dominated by the terms in the second sum.
Thus, there exists a δ3 > 0 such that

V3(ṽ+k , τ
+
3 )− V3(ṽk, τ3) ≤ −δ3ṽ>k ṽk. (14)

Thus, V3 satisfies the sufficient Lyapunov conditions, proving the velocity
error dynamics in (10) UGAS (Theorem 3.18, [6]).

�

4.3 Position error analysis with zero input

We now analyze the position error dynamics in (11) under the assumption that
the estimated velocity v̂ has converged to the real velocity v, such that v̂−v = 0.
The position error dynamics are then given by the unforced system:

˙̃
ξi = 0

τ1 = −1

ξ̃
+

i = ξ̃i−1

τ+1 ∈ [T 1, T 1]

i ∈ {1, ..., N1}

i ∈ {1, ..., N1}
(15)

Note that these error dynamics have the same structure as the velocity error
dynamics in (10).
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Claim 2: Given that v̂ = v, the origin of the position observer error dynamics
given by (15) is UGAS. �

Proof (from Theorem 3.18, [6]): The proposed Lyapunov function candidate
is

V1(ξ̃i, τ1) := eµτ1
N1∑
i=1

ci1ξ̃
>
i ξ̃i (16)

where µ > 0 and c1 ∈ (0, 1) are constants. V1 is lower and upper bounded by

α3(
∥∥∥ξ̃i∥∥∥) ≤ V1(ξ̃i, τ1) ≤ α4(

∥∥∥ξ̃i∥∥∥) (17)

where α3(
∥∥∥ξ̃i∥∥∥) :=

∑N1

i=1 c
i
1ξ̃
>
i ξ̃i and α4(

∥∥∥ξ̃i∥∥∥) := eµT 1
∑N1

i=1 c
i
1ξ̃
>
i ξ̃i are class

κ∞-functions.
The remainder of the proof follows the same procedure as the proof of Claim

1, and is due to space constraints excluded.
�

4.4 Position error analysis with non-zero input

We now relax the assumption that the estimated velocity has converged to the
real velocity. We then have to take two considerations into account:

I) The velocity estimate may not be equal to the actual velocity, resulting
in a non-zero input v̂ − v 6= 0 to the flow dynamics of the position error.
This is captured in the dynamics of the first observer state, ξ̃1. In this
case, we therefore restrict ourselves to the case where N1 = 1.

II) The error in the position estimates introduced by the non-zero input v̂−v
will propagate in the shift register when new measurements are obtained,
such that ξ̃i−1 6= 0 for i ∈ {2, ..., N1} with N1 > 1.

We analyze both cases subsequently.

4.4.1 Case I): Position error analysis with non-zero input for N1 = 1

Recall that the dynamics of the position error with a non-zero input ṽ , v̂ − v
for the first observer state is given by

˙̃
ξ1 = I1:2R(Θ)ṽ

τ1 = −1

ξ̃
+

1 = 0

τ+1 ∈ [T 1, T 1]

(18)

Claim 3: The system given by (18) with input ṽ = v̂ − v is ISS. �
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Proof (from Proposition 2.7, [11]): As shown in (17), V1 is lower and upper

bounded by two functions α3(
∥∥∥ξ̃i∥∥∥), α4(

∥∥∥ξ̃i∥∥∥) ∈ κ∞. The time derivative of

V1 along the trajectories of the position estimation error f1(ξ̃i, τ1) in the case
where N1 = 1 is

〈∇V1(ξ̃i, τ1),f1〉 = eµτ1
(
µτ̇1c1ξ̃

>
1 ξ̃1 + 2c1ξ̃

>
1

˙̃
ξ1

)
= −µV1(ξ̃i, τ1) + 2c1e

µτ1 ξ̃
>
1 I1:2R(Θ)ṽ

≤ −µV1(ξ̃i, τ1) + 2c1e
µτ1
∥∥∥ξ̃>1 I1:2R(Θ)ṽ

∥∥∥
≤ −µV1(ξ̃i, τ1) + 2c1e

µτ1
∥∥∥ξ̃>1 ∥∥∥ ‖I1:2‖ ‖R(Θ)ṽ‖ .

Here, we have used that ξ̃
>
1 I1:2R(Θ)ṽ ≤

∥∥∥ξ̃>1 I1:2R(Θ)ṽ
∥∥∥ and

∥∥∥ξ̃>1 I1:2R(Θ)ṽ
∥∥∥ ≤∥∥∥ξ̃>1 ∥∥∥ ‖I1:2‖ ‖R(Θ)ṽ‖, where ‖·‖ denotes the Euclidean norm. By using that

‖R(Θ)ṽ‖ = ‖ṽ‖ and ‖I1:2‖ =
√

2, we get

〈∇V1(ξ̃i, τ1),f1〉 ≤ − µV1(ξ̃i, τ1)

+ 2
√

2c1e
µτ1
∥∥∥ξ̃>1 ∥∥∥ ‖ṽ‖ .

By adding and subtracting the term σµ exp(µτ1)c1

∥∥∥ξ̃1∥∥∥2, where σ ∈ (0, 1) is a

constant, we get

〈∇V1(ξ̃i, τ1),f1〉 ≤ − µ(1− σ)V1(ξ̃i, τ1)

+ 2
√

2c1e
µτ1
∥∥∥ξ̃>1 ∥∥∥ ‖ṽ‖

− σµeµτ1c1
∥∥∥ξ̃1∥∥∥2 .

Finally, this is upper bounded by

〈∇V1(ξ̃i, τ1),f1〉 ≤ −µ(1− σ)V1(ξ̃i, τ1)

for ∥∥∥ξ̃1∥∥∥ ≥ 2
√

2

σµ
‖ṽ‖ = ρ(‖ṽ‖) (19)

where ρ is a class κ-function. Under the assumption that (ξ, z,v) ∈ K ⊂ R6, the
input ṽ will be bounded. It follows that V1(ξ̃i, τ1) is an ISS-Lyapunov function
for (18), and thus the system (18) is ISS with respect to input ṽ = v̂ − v
(Proposition 2.7, [11]).

�
Theorem 2: The origin of the cascaded system consisting of the position

error dynamics in (18) and the velocity error dynamics in (10) is UGAS. �

12



Proof (from Corollary 19, [10]): Consider the hybrid systemH = (C,F , D,G)
consisting of the position error dynamics in (18) and the velocity error dynamics
in (10). The compact set

Â := {(ξ,v), (ξi,vk), (τ1, τ3) ∈ C : ξi = βB, vk = v,

∀i ∈ {1, ..., N1} ∀k ∈ {1, ..., N3}}
(20)

where β > 0 and B is the unit ball, is globally pre-asymptotically stable (GpAS)
for H (Claim 1). Further, the compact set A ⊂ Â from (7) is GpAS for H|Â :=

(C ∩ Â,F , D∩A1,G∩ Â) (Claim 2). Then, the set A is UGAS for H, given by
the position and velocity error dynamics (18) and (10) (Corollary 19, [10]). �

4.4.2 Case II): Position error analysis with non-zero input for N1 > 1

Now, we consider the case where we treat ξ̃i−1 6= 0 for i ∈ {2, ..., N1} as the
input. Recall that the position error dynamics in this case are given by:

˙̃
ξi = 0

τ̇1 = −1

ξ̃
+

i = ξ̃i−1

τ+1 ∈ [T 1, T 1]

i ∈ {2, ..., N1}

i ∈ {2, ..., N1}
(21)

The case when N1 = 1 was analyzed in Case II) in order to capture the
dynamics of the first observer state. Therefore, for N1 > 1, we only need to
consider i ∈ {2, ..., N1}. Here, the flow dynamics will be the same as in the
unforced position error dynamics in (15). However, there will be a non-zero
input in the jump dynamics.

Claim 4: The system given by (21) with input ξ̃i−1 is ISS. �
Proof (from Proposition 2.7, [11]): The flow dynamics are unchanged. The

change in V1 before and after a jump is

V1(ξ̃
+

i , τ
+
1 )− V1(ξ̃i, τ1) ≤ eµT 1

N1∑
i=1

ci1ξ̃
>
i−1ξ̃i−1 −

N1∑
i=1

ci1ξ̃
>
i ξ̃i

= −α5(
∥∥∥ξ̃i∥∥∥) + α6(

∥∥∥ξ̃i−1∥∥∥)

where α5(
∥∥∥ξ̃i∥∥∥) :=

∑N1

i=1 c
i
1ξ̃
>
i ξ̃i is a class κ∞-function and α6(

∥∥∥ξ̃i−1∥∥∥) :=

exp(µT 1)
∑N1

i=1 c
i
1ξ̃
>
i−1ξ̃i−1 is a class κ-function. Under the assumption that

(ξ, z,v) ∈ K ⊂ R6, the input ξ̃i−1 will be bounded. It follows that V1(ξ̃i, τ1) is
an ISS-Lyapunov function for (21), and thus the system (21) is ISS with respect
to input ξ̃i−1 (Proposition 2.7, [11]). �

Theorem 3: The origin of the cascaded system consisting of the position
error dynamics in (21) and the velocity error dynamics in (10) is UGAS. �

The proof of Theorem 3 follows the same procedure as the proof of Theorem
2, and is due to space constraints excluded. �

13



4.5 Depth error analysis

Note that the depth error dynamics and the position error dynamics in (11)
have the same structure.

Theorem 4: The origin of the cascaded system consisting of the depth error
dynamics in (11) and the velocity error dynamics in (10) is UGAS. �

The proof of Theorem 4 follows the same procedure as the proof of Theorem
3, and is due to space constraints excluded. �

4.6 Stability of total observer

We have now established that the origin of the cascaded system consisting of the
position observer and the velocity observer with a non-zero velocity estimation
error is UGAS (Theorem 2 and 3). Furthermore, we have established that the
origin of the cascaded system consisting of the depth observer and the velocity
observer with a non-zero velocity estimation error is UGAS (Theorem 4). Using
the fact that the position error dynamics and the depth error dynamics are
independent of each other, the set A in (7) is UGAS for all i ∈ {1, ..., N1},
j ∈ {1, ..., N2} and k ∈ {1, ..., N3} for the velocity observer in (10) in cascade
with the position and depth observers in (11). This concludes the proof of
Theorem 1.

�

5 Simulation results and discussion

This Section presents the setup of the simulations and discussions of the results.

5.1 Case study

As a case study, an under-ice operation of an autonomous underwater vehicle
(AUV) is used. The observer is simulated in closed-loop with a control system
where the objective is to follow a lawnmower trajectory in the horizontal plane,
while maintaining a constant distance of 10 meters to the ice surface. In this
case study, the sensor measurements have a high level of sporadicity, that is,
large maximum sampling periods, in order to simulate sensors in bad condition.

5.2 Simulation setup

The observer was implemented in MATLAB/Simulink using the Hybrid Equa-
tions Toolbox v2.04 [12]. The simulator used is an Arctic AUV simulator created
by Norgren [13] in MATLAB/Simulink and C++.

The numerical values of the observer parameters are given in Table 1.
Noise with standard deviations σimu = 0.007 [m/s2], σ1 = 0.5 [m], σ2 =

0.001 [m] and σ3 = 0.003 [m/s] were added on the IMU, acoustic positioning
system, pressure gauge and DVL measurements, respectively. All observer states
are initialized with the first measurements.
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Observer type
Position Depth Velocity
(m = 1) (m = 2) (m = 3)

Nm [-] 40 10 15
γm [-] 1.0 0.75 0.8
Tm [s] 0.5 0.125 0.2
Tm [s] 5 1.250 2.0

Table 1: Numerical values of observer parameters.

5.3 Sensitivity analysis on observer parameters

A sensitivity analysis on the observer parameters was conducted in [5]. Here,
open-loop motions were simulated for different values of the number of states
N1, N2 and N3 and the discount factors γ1, γ2 and γ3. The results showed that
the value of these parameters should be tuned in accordance with the relative
uncertainty in the sensor measurements governing the flow dynamics and the
jump dynamics, respectively.

The observer was also simulated for different maximum sampling rates Tm
and different levels of noise σimu on the acceleration measurements. The results
showed that the observer was robust with respect to these parameters.

5.4 Simulation results and discussions

Figure 3 shows the simulated trajectory of the AUV under the sea ice. Figure 4
shows the estimation errors of the observer. As seen, the observer successfully
estimates the linear positions and velocities with acceptable estimation errors.
The control system also performs well in closed-loop with the observer.

This hybrid observer concept is not reliant on any complicated mathematical
operations and does not require much memory. Therefore, in most practical
contexts, computational complexity will not be a challenge.

Here, we have assumed that the acceleration measurements are continuously
available. When implementing this observer in a computer, one must make sure
that the sampling rate of the IMU is considerably faster than the position, depth
and velocity measurements. This will not be a problem in most cases.

It is expected that this observer concept is sensitive to the accuracy of the
attitude estimation. For future work, the observer performance should therefore
be evaluated in closed-loop with an attitude observer. Establishing certain
robustness and recurrence properties when taking into account the effect of
noise in the measurements, as well as errors in the attitude estimation, is also
of interest.

Note that there is a transient time after initialization of the observer. This is
because the observer needs time to obtain the required number of measurements.
After this, the observer will not have any transients.

15



40 60 80 100 120 140 160 180 200

East position [m]

100

120

140

160

180

200

220

240

N
o

rt
h

 p
o

s
it
io

n
 [

m
]

11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

Depth [m]

Figure 3: North-East trajectory of the AUV with a color plot showing the depth.
The blue stars denote waypoints with red circles of acceptance.

16



0 100 200 300 400 500 600 700

Time [s]

-0.5

0

0.5

P
o
s
it
io

n
 [
m

]

North position estimation error

East position estimation error

Depth estimation error

0 100 200 300 400 500 600 700

Time [s]

-5

0

5

V
e
lo

c
it
y
 [
m

/s
]

10
-3

Surge velocity estimation error

Sway velocity estimation error

Heave velocity estimation error

Figure 4: Observer estimation errors in position and velocity.

6 Conclusions

The proposed sensor-based hybrid translational observer performed well in the
simulations, and UGAS was established using Lyapunov theory for hybrid and
cascaded systems. The performance depends on the choice of the number of
states N1, N2 and N3 and the discount factors γ1, γ2 and γ3 in the position,
depth and velocity observers, respectively. The value of these parameters should
be tuned according to the relative uncertainty in the measurements governing
the jump dynamics and the flow dynamics.
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