
Difficult SQLi Code Patterns for Static Code Analysis Tools

Felix Schuckert12, Basel Katt2, and Hanno Langweg12

1 HTWG Konstanz,
Department of Computer Science,

Konstanz, Germany
felix.schuckert@htwg-konstanz.de

hanno.langweg@htwg-konstanz.de
2 Department of Information Security and Communication Technology,

Faculty of Information Technology and Electrical Engineering,
NTNU, Norwegian University of Science and Technology,

Gjøvik, Norway
basel.katt@ntnu.no

Abstract

We compared vulnerable and fixed versions of the source code of 50 different PHP open
source projects based on CVE reports for SQL injection vulnerabilities. We scanned the
source code with commercial and open source tools for static code analysis. Our results
show that five current state-of-the-art tools have issues correctly marking vulnerable and
safe code. We identify 25 code patterns that are not detected as a vulnerability by at least
one of the tools and 6 code patterns that are mistakenly reported as a vulnerability that
cannot be confirmed by manual code inspection. Knowledge of the patterns could help
vendors of static code analysis tools, and software developers could be instructed to avoid
patterns that confuse automated tools.

1 Introduction

Static code analysis tools are commonly used to find vulnerabilities in the development phase
of a software project. These tools can be part of continuous integration to report potential
security vulnerabilities before those reach a release version. Developers have to review these
reports if those reports are actual vulnerabilities. If a reported vulnerability turns out not to be
one, the report will produce unnecessary workload. Additionally, if a static code analysis tool
does not report an actual vulnerability, vulnerabilities will have a high chance to be included
in the release version of the product. Recent research [14] shows that there are source code
patterns that are still difficult for static code analysis tools. It is important to identify such
difficult patterns to mitigate them in the development phase or improve static code analysis
tools to correctly handle them. If such difficult patterns are not known and these patterns are
used, software may be developed and deployed with undetected vulnerabilities.

Our contribution is to answer the following research questions regarding SQL injection (SQLi)
vulnerabilities:

1. What are difficult source code patterns for static code analysis tools?

2. Is it possible to create simple vulnerability examples with these patterns that are still
difficult for static code analysis tools?

We define a difficult source code pattern as a vulnerability pattern that static analysis tools can
not identify correctly. This means that either the tools will report it as a vulnerability but it is
not (false positive), or they do not report it as a vulnerability but it is (false negative). The
term difficult does not represent a metric that includes different difficulties.



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

Section 2 points out related work. Background and methodology is described in section
3. The static code analysis scan results from the initial open source projects are described
in section 4.1. The following section 4.2 shows the results of scanning the minimal working
examples. Sections 5 and 6 describe the identified patterns in detail. To see if the patterns are
difficult for static code analysis tools a verification is done in section 7. In section 8 we discuss
why identifying such patterns is important and what static code analysis tools and developers
can do to deal with such difficult patterns.

2 Related Work

Many research projects have evaluated static code analysis tools. Goseva-Popstojanova and
Perhinschi [6] evaluated three commercial static code analysis tools. The Juliet database [11]
and three open source projects related to Common Vulnerabilities and Exposures (CVE) reports
were used to evaluate different permutations of security vulnerabilities. The results show that
the tools had high false negative rates and none of the tools detected all vulnerabilities. Our
approach also uses source code from open source projects related to CVE reports. Our objective
is not to compare the tools with each other, but to instead find difficult source code patterns.
Delaitre et al. [4] has similar results. They used as a data set source code from production
software that they assumed had no vulnerabilities. Their results show that no tool detected
all samples correctly. The data set is similar to ours with both complete open source projects
related to CVE reports and specifically created samples. Dı́az and Bermejo [5] also evaluated
open source and commercial static code analysis tools. They used the test suite 45 and suite 46
from SAMATE [12] database as data sets. For the evaluation, they calculated and compared
the F-measure [15] from each tool. AlBreiki and Mahmoud [2] evaluated three open source
tools. They evaluated tools with different approaches. OWASP Yasca analyzed source code,
FindBugs analyzed byte-code and Microsoft Code Analysis Tool .NET analyzed binary code.
They used test cases based on top security issues from OWASP, CWE and SANS. Zhioua et al.
[16] evaluated four static code analysis tools based on how they detect vulnerabilities and what
techniques are used. They described how security issues and security properties are related to
each other. Another approach from Khare et al. [7] evaluated static code analysis tools on large
samples with more than 10 million lines of code. The results showed that less than 10% of the
vulnerabilities were reported.

Also, software fault injection has an effect on static code analysis tools [3]. Software fault
injection actually affects the detection rate of the tested static code analysis tools. Primarily, it
leads to false positive reports and existing vulnerabilities were not detected.

There is related work about identifying false positive source code patterns. Reynolds et al.
[10] do a more similar approach as ours. They use extract the patterns by manual reviewing
them. As test base they are using artificial vulnerabilities from the Juliet framework. Koc et al.
[8] are using the previous data set to a classifier to identify problematic patterns. Overall the
focus relies on identifying false positive reports. Our results are more focused on patterns that
result in false negative reports and our data set is based on open source projects related to CVE
reports.

3 Methodology

We use multiple static code analysis tools to find and evaluate problematic source code patterns.
Problematic patterns result in false negative and false positive reports. This section provides

2



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

background knowledge, explains the chosen commercial and open source static code analysis
tools and how the problematic patterns are examined.

3.1 Background

A report from a static code analysis tool can either be true positive (TP), true negative (TN),
false positive (FP) or false negative (FN). True positive and true negative reports mean the
report is correct and it reported a vulnerability (positive) or it does not contain a vulnerability
(negative), respectively. Problematic reports are false negative and false positive reports. A
false negative report means that the tool did not report the vulnerability, but a vulnerability
actually exists. To find difficult source code patterns that create false negative reports a data
set is required that contains vulnerabilities. In contrast, a false positive report means that the
tool reported a vulnerability which actually does not exist. To find patterns that create false
positive reports a data set is required that does not contain a vulnerability.

3.2 Selected tools

It is not the goal to compare different static code analysis tools to each other. Instead, we
want to find source code patterns that are difficult for static code analysis tools. First of all,
three commercial static code analysis tools were used. Our licence agreement does not allow to
publish the names of the tools. In this work the commercial tools are named Tool A, Tool B and
Tool C. All of the tools are state-of-the-art that perform tainted data flow analysis. We focus
on static code analysis and in case a tool provides more functionalities we only use the static
analysis parts of the tools. Additionally, for the verification phase, two open source tools are
used. We evaluated a collection of open source static code analysis tools [1], and selected Exakat
(www.exakat.io) and Sonarcloud (https://sonarcloud.io), which are tools for finding security
vulnerabilities in PHP and are still maintained (last update < 1 year ago). This approach does
not review the internal details and the method that the tools are using in their analysis. As the
commercial tools do not allow to examine how they work in detail, the open source tools are also
seen as a black box. The goal is to find source code patterns that are difficult for static code
analysis tools and reproduce them. On each pattern we describe in detail what problems the
static code analysis tools have which prevented them from correctly analyzing the vulnerabilities.

3.3 Data set

The source code patterns should be as realistic as possible. We used a crawler to get source
code of open source projects related to CVE reports (www.cve.mitre.org). It uses the categories
from CVEDetails (www.cvedetails.com) to filter all CVE reports related to SQL Injection
vulnerabilities. These reports are checked for having a confirmation link to a patch on GitHub
(www.github.com). The patch itself is checked if it contains any PHP files. CVE reports from
2010 until 2016 were crawled. This ensures that the developers had enough time to patch the
vulnerabilities and report the confirmation link to the CVE report. Additionally, all of the
samples were manually reviewed to pin point the actually vulnerability. This also takes time
and effort to ensure that the correct vulnerability was manually reviewed. Based on that filter
criteria we randomly chose 50 CVE reports related to SQL Injection and PHP. We had to limit
the number of CVEs considered for this work to be feasible by the researcher at this stage.
Expanding the analysis beyond these 50 CVEs can be done in the future. The randomly chosen
CVEs are shown in table 5 (appendix). For each CVE report, the developers provided a patch
to fix the vulnerability. The source code of the patch is used to create a data set that does not

3



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

Figure 1: Vulnerability analysis process.

contain the reported vulnerability. This data set are used to find difficult source code patterns
that potentially create false positive reports. In contrast, the revision of the source code samples
before the patch were used to find source code patterns that might create false negative reports.
Both data sets together are further called CVE data set. This data set, after being expanded
with recent and more CVEs, can be used as a benchmark for studying and analysing difficult
source code patterns.

3.4 Vulnerability analysis

Figure 1 shows the vulnerability analysis process. The process consists of 4 steps, which are (1)
selection, (2) scanning, (3) identifying patterns, and (4) verification. As described previously,
the CVE data set is split into a data set containing a reported SQL Injection and a data set
that patched the vulnerability. All samples are scanned by the commercial static code analysis
tools. If a tool does not find the vulnerability, a false negative is identified. In contrast, if a
tool reports a vulnerability in the patched version, a false positive is identified. For each false
negative and false positive reports, minimal working examples (MWE) were created as follows.
First, a basic manual review of the initial source code from the CVE data set was done. This
review process is simply tracking the data flow from the related source to the related sink. The
identified data flow is then recreated to contain only the related source code. The related source
code form the minimal working examples (cf. Figure 1). It can be noted that the goal of creating
minimal working examples is to reduce the manual review effort, as its size is much smaller than
the actual sample. This MWE data set is scanned by commercial tools again to check, if the
problematic patterns are included or not. If a MWE sample is still creating a false negative or
false positive reports, the minimal working example is reviewed to identify source code patterns.
For each pattern, a sample is created. These samples are created using a PHP file containing a
simple SQL injection vulnerability. That file is modified to contain the source code pattern. If
the pattern requires multiple files, additional files were added. This creates the next data set
named FN pattern data set, which contains patterns that cause false negative reports, and FP
pattern data set that cause false positive reports.

The final step in the analysis process is to verify which patterns are actually difficult. To do
so, each of the FN/FP pattern data set entries are scanned again. This time the open source
tools were used to check if these tools are performing similar to commercial tools. If the sample
containing the pattern still creates a false positive or false negative report, a difficult source
pattern is identified and confirmed.

4



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

(a) FN and FP statistic. (b) Metrics.

Figure 2: Results from the CVE data set.

4 Data set results

As we mentioned before, one of the contributions of the work is the creation of an initial data
sets that can be used in the future as a benchmark for difficult source code patterns analysis.
Although the data set is limited to 50 randomly chosen CVEs, but this work can be expanded in
the future to include more comprehensive and actual material. In this section, we will explain
the resulted CVE data sets as well as the minimal working example data set.

4.1 CVE data set results

In order to enable reproducibility of the results of this work, we list in table 5 50 vulnerable and
50 patched projects from the randomly chosen CVE. Figure 2a shows the false negatives and
false positives that result from each tool. Even with that few samples (100) it shows a main
problem of static code analysis tools. The main problem of static code analysis tools are finding
the right balance between false negative and false positive rate. If you want to reduce the false
positive rate, it will increase the false negative rate. Table 2b shows an overview of the results
and the resulting static code analysis metrics. The accuracy is almost identical on all of the tools.
The metrics also show that tool A and C are very similar in all aspects. Tool B is not as good
in finding the vulnerability (recall), but it has a very low false alarm probability. Accordingly,
if tool B reports a vulnerability, the chance is very high that a vulnerability actually exists.
Nevertheless, it did not detect over 50% of the vulnerabilities.

4.2 Minimal working example data set

The minimal working examples were created based on the previous false negative and false
positive reports. The minimal working data set can be found on GitHub [13]. Some of the initial
data sets result in the same minimal working examples. This happened because some CVE
entries were from the same open source project with different versions. In these samples the
used source code was the same, so we only created one minimal working example. The minimal
working example samples were scanned again to see if the important parts were found. Table 1
shows the results of the minimal working examples that should result in a false negative report
from at least one tool. In two samples, all tools detected the vulnerability. Accordingly, we
were not able to construct a minimal working example for these samples. Similar to the initial
scans, Tool B has the most false negative reports. Tool C performs very well in this data set
with only one false negative report. We reviewed the results manually to find the reason for the
different results between the CVE data set and MWE data set. Tool C reports a SQL injection

5



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

CVE related Patterns Tool A Tool B Tool C Count of FN

CVE-2011-4960 ReflectionClass FN FN ! 2

CVE-2012-0973

Get parameter function
Singleton

Func get args
Function - sprintf

! FN ! 1

CVE-2012-2762 - ! ! ! 0

CVE-2012-3470 Inerhit query construction ! FN ! 1

CVE-2012-3471 Eventmanager ! FN ! 1
CVE-2012-5162
CVE-2013-3527
CVE-2015-4628
CVE-2016-9020
CVE-2016-9087
CVE-2016-9183
CVE-2016-7453
CVE-2016-9242
CVE-2016-9272
CVE-2016-9282

Get parameter function
Database access object

FN FN ! 2

CVE-2013-2559
Database - static method

Eventmanager
! FN ! 1

CVE-2013-3081 Environment variable ! FN ! 1

CVE-2013-3524 - ! ! ! 0

CVE-2013-4789 Get parameter function ! FN ! 1
CVE-2014-1608
CVE-2014-1609

SOAP ! FN ! 1

CVE-2014-5017
CVE-2016-7400

Sub class get method
Singleton - set

Singleton - classes
! FN ! 1

CVE-2014-9089
Sanitize only limited elements

Explode - implode
! FN ! 1

CVE-2014-9464
Singleton

get set
! FN ! 1

CVE-2014-9528
CVE-2014-9573

Get parameter function
Complex query construction

! FN ! 1

CVE-2015-4426
Stored class
Json decode

FN FN ! 2

CVE-2016-2555
Database - global variable

Sanitize function not initialized
FN FN ! 2

CVE-2016-5703
Database - global array

Imported variable
Imported sink

! FN FN 2

Summary (FN) 4 16 1

Table 1: Scan results from false negative MWE data set with 18 samples.

vulnerability if a string variable is concatenated that is used in a database sink. If no source is
found, it still reports a potential SQL injection with a lower priority.

The results for the false positive data set is seen in table 2. Tool A and Tool C are reporting
more false positives. The minimal working example (CVE-2011-4960) did not include the
relevant source code patterns to create a false positive report because all tools correctly reported
a true negative.

CVE related Patterns Tool A Tool B Tool C Count of FP
CVE-2011-4802 Preg match - check for number FP FP FP 3

CVE-2011-4960 - ! ! ! 0

CVE-2012-2762
Function - strreplace

Sanitize if function exists
FP ! FP 2

CVE-2013-2559 Sanitize if function exists FP ! FP 2

CVE-2013-4789 White listing FP ! FP 2
CVE-2014-3773
CVE-2012-5162
CVE-2011-4341
CVE-2012-0973
CVE-2015-1471
CVE-2013-4879
CVE-2014-8351

Function - quote FP ! FP 2

CVE-2015-2679 Function - htmlentities FP ! FP 2

CVE-2016-7780 Sanitize function - global db variable FP ! ! 1
Summary (FP) 7 1 6

Table 2: Scan results from false positive MWE data set.

6



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

Figure 3: Overview of source code pattern categories.

5 False negative source code patterns

The minimal working examples commonly contained multiple source code patterns. All the used
source code patterns were reviewed and based on that pattern a sample was created containing
the pattern only. The source code for each pattern can also be found on GitHub [13]. The
patterns are categorized into source, concatenation, sink, sanitization and data flow. Figure
3 shows the categories and how they are found in a typical SQL injection vulnerability. The
data flow (DF) patterns are in between other patterns. The different source code patterns are
described in this section.

5.1 Sources

This section describes the source code patterns that are a source. All of the following patterns
have some special parts that makes it difficult for static code analysis to detect it as a source:

• Sub class get method
This source code pattern uses inheritance. The super class implements a method that uses
the method exist() to check if the sub class implemented a get-method. If the getter method
is implemented, it will be called using call-method-by-string. Call-method-by-string is
an unconventional way of calling a method. Static code analysis tools have to parse the
corresponding string that might also require additional data flow analysis. In our results
only tool B was able to correctly parse the string to the corresponding method.

• Get parameter function
A common found pattern in our data set was using wrapper methods for getting user data.
It simply defines a method that uses common PHP (e.g. $ GET ) methods to get user data.
This pattern includes a sanitization method which is not used by default. Tools have to
check, if the sanitization method is enabled or not to correctly detect a vulnerability. The
commercial tools were able to correctly detect a SQL vulnerability including this pattern.

• SOAP
PHP allows to implement a Simple Object Access Protocol (SOAP). This pattern uses the
SOAPServer class to implement a SOAP service. Parameters passed to that service are
user data and potential dangerous. The problem for static code analysis tools relies on
how such a service will be implemented in PHP. The SOAPServer class uses the setClass
method to register a class name defined by a string. The tools have to backtrack the
string value to actually know the class name of the provided SOAP service. If they have
correctly backtracked the string value, the tools can mark all method parameters of the
class as possible sources.

• Import
A very simple source code pattern (Imported variable) uses an additional PHP file which is
imported by the require once function. The imported file simply uses the $ GET method
to get user data and stores it in a PHP variable. This pattern requires that includes from
other PHP files are parsed correctly. The commercial tools have no problem with includes

7



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

from other PHP files.
Another variant of that is the Stored class pattern. It is a bit more complex because the
included file defines a class that stores tainted data in a class variable. Later on tainted
data is retrieved by another get method that uses the class variable. Again the commercial
tools have no problem tracking that tainted data is stored in class variables.

5.2 Insufficient sanitization

The false negative patterns are based on source code that contains a SQL Injection vulnerability.
Accordingly, the user input was not sanitized correctly. We found the following two patterns
that were containing insufficient sanitization methods:

• Sanitize only limited elements
In this pattern user data is provided as an array. The data is iterated and sanitized by a
white listing check. Only user data that is in the white list is allowed. The special part of
this pattern is that only a limited amount of values are sanitized. In our data set only the
first two elements of the array were sanitized. The tools have to check, if all elements in a
array are checked. This requires the tool to keep track on how large an array might be.
For example, if the array can only be the size of two elements, checking only the first two
elements would be sufficient. This pattern sounds artificial, but our CVE data set actually
had such a code pattern where only the first two elements were sanitized.

• Sanitize function not initialized
This pattern uses a global string variable which defines the sanitization methods. This
allows developers to decide which sanitization method will be used. A default method
is already defined which only returns the provided string without any sanitization. The
sanitization method is called using dynamic method invocation [9]. Again, this requires
the static code analysis tools to parse the corresponding string to see what method is
called. If the variable is defined global, it makes it even more difficult. It requires to
correctly parse the PHP project. The global variable might be defined multiple times and
the correct variable can only be tracked by parsing all the includes of different files. None
of our tested tools were able to correctly detect this pattern.

5.3 Concatenation

Patterns in this category are describing how the SQL query is build. It describes the concatenation
between the user input and the SQL query. We found following patterns:

• Complex query construction
In this pattern the SQL query is constructed using multiple functions. It uses a class to
store the query relevant data. The concatenation of the SQL query is a concatenation of
multiple method return values. Each of these method is a construction part of the query.
For example, one method creates the WHERE clause of the query. The tainted data is
stored in class variables. This requires the static code analysis tools to correctly track the
tainted data in multiple method calls. Commonly, it includes also other functions from
PHP. For example, the implode functions was found a lot of times to combine multiple
parameters into one query. If only one part is incorrectly analyzed, the vulnerability is
not detected.

8



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

• Function - sprintf
This pattern uses the function sprintf to construct a SQL query in a c-like fashion. It
allows to define a string with different specifiers which will be replaced by parameters.
This is a common way to concatenate a string with variables. Static code analysis tools
have to add the sprintf functions and correctly parse the variables to the correct positions
in the string value. It also requires the tools to determine between a string replacement or
just a fixed value replacement. For example, if only a number is inserted using the sprintf
function, the tainted data is not tainted anymore. Accordingly, the sprintf function could
also be used as a sanitization function. In our pattern, we used the string replacement
which does not prevent any vulnerabilities.

5.4 Sink

Sinks are critical functions, if user input reaches it without any sanitization in between. Patterns
of this category are different implementations for a SQL Injection sink.

• Database access object
This was a very common source code pattern in our data set. A database access object
(DAO) is a simple PHP class that stores the query relevant data as object variables. The
DAO is able to construct the SQL query string using object methods. Similar to the
the concatenation pattern (Complex query construction), the SQL query construction
requires to track multiple method calls and tainted data stored in class variables. The
main difference is that this pattern also stores the database object as a class variable.
Calling corresponding functions on the DAO objects will construct the SQL query and
also perform the query on the database. It then just returns the resulting data.
A special case of this pattern is the (Inerhit query construction) pattern. It also uses a
database access object, but relevant implementations are defined by inherited classes. The
tools have to know what sub class is used to decide, if a vulnerability exists or not.

• Database object storage
In our CVE data set we found different ways of storing a database object. The connection
to the database itself is usually only established once. Then the corresponding object is
stored in different ways. It either is stored in a global array (Database - global array). This
requires that the static code analysis tools are correctly tracking global arrays and what
data is stored. Or it is stored in a global variable (Database - global variable). Another
pattern was using static methods to connect to an database and to statically get the
corresponding database object (Database - static method).

5.5 Data flow

The data flow is a relevant part of SQL Injection vulnerabilities. The data passes different
source code pattern between the source and sink. These patterns are based on SQL Injection
vulnerabilities, but data flow source code patterns are also relevant for other vulnerability types.

• Eventmanager
An Eventmanager is used to create a system based on events. The implementation uses
the static class methods add and run. The method add allows to add callbacks to specific
events. If the run method is used, a specific event is run and all related callbacks are
called. The callbacks are stored in static class variables. Static code analysis tools have to
track all callbacks that are stored in the Eventmanager class. Programs written using an

9



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

Eventmanager are completely different than a objective oriented programming style. It is
much more difficult to parse all the possibilities of what kind of events occur and it might
even be unpredictable. Our pattern sample uses predefined events that always end up in a
vulnerability.

• PHP pass through functions
There are multiple PHP functions that returns data from a parameter (pass through).
Static code analysis tools have to define these functions as passing through tainted data. In
our data set we found following functions explode, implode and json decode. None of these
functions are changing the data in a way that it prevents a SQL injection vulnerability.
Accordingly, the tools should define these function as pass through functions.

• Dynamic PHP functionality
PHP provides a lot of language features. It has functionality that allows to dynamically
call functions and methods. Our data set showed the usage of func get args function. This
function allows to get function parameters without defining them at the function definition.
This makes it very difficult for static code analysis tools to correctly track the parameters.
The parameters are returned as an array.
Also our data set showed the definition of get and set class methods. These methods
are called when a class variable is accessed that is not defined in the class definition. In
the set method the class variable name and the value are passed as parameters. The get
method only has the class variable name as parameter. Our implementation just stores
the value for the corresponding class variable name and returns the corresponding value
on the get method. Nevertheless, the implementation might differ and static code analysis
tools have to analyze the methods. If the methods are analyzed then all corresponding
class variable accesses without a class variable definition have to be tracked to correctly
analyze the program. Our pattern sample is very simple to see if static code analysis tools
are analyzing the dynamic get and set methods.
Another dynamic feature of PHP is setting and getting environment variables (Environment
variable). It provides the function putenv to set an environment variable. The parameter
type is string. The string itself requires to be in a specific format (”Varname=Value”)
to actually set an environment variable. The corresponding function getenv is used to
get the value of an environment variable. The parameter of the function is a string that
defines the variable name. Static code analysis tools have to analyze and backtrack the
corresponding strings to correctly analyze this pattern.

• Plugin support
This a very complex source code pattern. It actually might be more a architecture, but
it is commonly found in our CVE data set. It uses a plugin structure that allows to
easily add more modules. In our sample for each plugin a controller and view class has
to be implemented. These implementations are sub classes from template classes. These
implementations have to be in a subdirectory in a fixed plugin structure. The source
code pattern parses the plugin folder for valid plugin implementations. A valid plugin
implementation can then be accessed as it would be normal PHP web page. For this access
a router class is implemented which routes to the correct plugin. The usage of plugins as
a developer is convenient. It allows to split the programs in different modules. In contrast,
static code analysis tools have problems analyzing plugin supported programs. First of all
the programs has to be analyzed to see that the program itself has plugin support. The
analyze also has to find out what files are included from a plugin. Because plugin support

10



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

is usually not fixed to a specific number of plugins, the loading off such plugins is dynamic.
Loaded plugins are stored in class variables and corresponding PHP files are loaded.

• Singleton
The simple singleton sample is just implementing the common known singleton pattern.
Singleton is a source code pattern that allows to access only one instance of an object.
The singleton itself has a get method to access the $ GET parameter. Because a singleton
can be accessed from everywhere, the static code analysis tools have to track all possible
ways of calling the singleton. Our sample is just a procedural calling of the singleton.
Our CVE data set also showed that the singleton pattern was used with different imple-
mentations. The Singleton - classes pattern allows to get class objects by a name. The
name itself is a string variable that requires the static code analysis tools to actually
analyze the string variable to know what class object is returned.
Another pattern (Singleton - set) returns one instance of an object. The object itself is
not predefined. Initial a corresponding set method has to be used to set the singleton
object. Afterwards the singleton object can be accessed from everywhere.
The ReflectionClass pattern is not a singleton per definition. It uses a static class im-
plementation to create new class objects. Accordingly, you can access the class from
everywhere, but you will always get a new object. It uses a combination of the PHP
functions func get args and array shift to get the class name and parameters provided as
a function parameter. The new instance of the class is created using the ReflectionClass
from PHP standard library. The class name itself is again a string parameter that has to
be analyzed by the static code analysis tools to get the corresponding class of the returned
object.

6 False positive source code patterns

Source code patterns in this category are patterns that developers used to fix the reported
vulnerabilities. The described source code patterns are sufficient to prevent SQL injections, but
still static code analysis tools are reporting a vulnerability.

• Official sanitization
Database driver usually provide a sanitization function to sanitize tainted data. We used
the quote function provided by the PDO class from PHP. The initial CVE data set also
contained old source code samples that used functions like mysql real escape string. These
functions are not supported anymore and the PHP documentation provides the quote
as an alternative. Accordingly, we added the quotes function as pattern. This function
should be added to a static code analysis tool as a sanitization method. As described in
next section, this sanitization method is correctly detected by all the tested static code
analysis tools.
Another pattern uses the htmlentities function. This is not a specific function to prevent
SQL injection vulnerabilities. This source code pattern just uses the htmlentities function
to sanitize the user data. But it requires that the SQL query itself adds quotes around
the sanitized data to ensure that a SQL injection is not possible. Accordingly, static code
analysis tools have to analyze the query to see, if the sanitization with htmlentities is
sufficient or not. This is a problem of many sanitization method, that they are sufficient
enough in a specific context. Some of them are sufficient enough for a specific vulnerability
type and some of the sanitization methods like the htmlentities is only sufficient enough
based on the SQL query statement.

11



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

• Custom Sanitization
The CVE data set revealed multiple custom sanitization implementations. The function
preg match can be used to check a string value based on a regular expression (regex). The
regular expression is an important part because based on that expression a SQL injection
can be prevented or still might be insufficient. Static code analysis tools have to analyze
the regular expression to see, if the sanitization method is sufficient. This pattern uses
a regular expression that checks, if the string value only contains numbers. Accordingly,
this is sufficient to prevent any SQL injection attacks.
Another pattern we found, uses the str replace function to replace any dangerous characters.
The initial sample replaced all apostrophes and the SQL query itself puts the user data
inside apostrophes. This time the static code analysis tools have to the analyze of the
regular expression and the SQL statement to determine, if the sanitization method is
sufficient or not.

• White listing
White listing is a common way to mitigate any attack. Only fixed inputs are allowed.
These fixed inputs should be chosen that they are not creating any attack possibilities.
The implementation of white listing can differ. Our implementation based on the CVE
data set an array is defined that contains all the allowed inputs. The isset function is
used to check if the user data is contained in the white list array. Accordingly, static code
analysis tools have to analyze the content of the white list array to see what inputs are
possible. The creation of the array might be complex. A static code analysis tools also has
to check all the possible inputs, if any of these inputs might still result in a vulnerability.

• Dynamic defined sanitization functions
Many of the CVE data set source code samples are from frameworks. They allow to
define what kind of database is used. Also some of them allow to define what sanitization
method will be used. The Sanitize function - global db variable pattern uses a wrapper
method for the escapeString function. The wrapper function is implemented as a static
class function. The implementation itself uses a global defined variable for accessing
the database connection object. This object provides the relevant sanitization method
(escapeString). This global variable is defined in the initialization process. This makes it
very difficult for static code analysis tools because they have to analyze what sanitization
function is defined in the initialization process. Based on what function is used, it also
may require to analyze the SQL query to see, if it is sufficient.
The Sanitize if function exists pattern uses a wrapper function for the quote function.
The wrapper function uses the function exists function to check, if the sanitize function
actually exists. In our sample the function exists because it checks for a standard php
library. Nevertheless, if an older PHP version is used, it might not exist. This makes the
pattern also PHP version dependent. The static code analysis tools also have to know
what PHP version is used.

7 Verification

The difficult source code patterns were scanned again to verify what patterns are actually
difficult. A simple sample was used which contains a simple SQL injection vulnerability. For
each of the previous described patterns the simple sample was modified to contain the pattern.
The evaluation also used the open source static code analysis tools. The created source code
patterns can be found on GitHub [13].

12



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

False negative pattern Tool A Tool B Tool C Exakat Sonarcloud Count of FN

Source

Sub class get method FN ! FN FN FN 4

Get parameter function ! ! ! FN FN 2

SOAP ! FN FN FN FN 4

Imported variable ! ! ! FN FN 2

Stored class ! ! ! FN FN 2

Insufficient sanitization

Sanitize only limited elements ! FN ! FN ! 2
Sanitize function not initialized FN FN FN FN FN 5

Concatenation

Complex query construction ! FN ! FN ! 2

Function - sprintf ! FN ! FN ! 2

Sink

Database access object FN FN ! FN ! 3

Database - global array ! ! ! ! FN 1

Database - global variable ! ! ! ! FN 1

Database - static method ! FN ! FN FN 3

Inerhit query construction ! FN ! FN FN 3

Database - wrapper ! ! ! ! ! 0

Imported sink ! ! ! ! ! 0

Data flow (DF)

Eventmanager FN FN FN ! FN 4

Explode - implode ! FN ! FN ! 2

Func get args ! FN FN FN FN 4

get set ! ! FN FN ! 2

Json decode FN FN ! FN FN 4

Plugin support ! FN FN FN FN 4

Environment variable FN FN ! ! FN 3

Singleton ! ! ! FN FN 2

Singleton - classes ! FN FN ! FN 3

Singleton - set FN ! ! ! FN 2
ReflectionClass FN FN FN FN FN 5

Summary (FN) 7 15 9 19 18

Table 3: Scan results for different false negative patterns.

Table 3 shows the result for the false negative patterns. Two identified source code patterns
were not creating a false negative report. Accordingly, these two patterns (Imported sink,
Database - wrapper) are not difficult for state of the art static code analysis tools. The open
source tools already have problem with simple patterns like Get parameter function, Imported
variable, Stored class and Singleton. The different singleton implementations makes it difficult
even for the commercial tools. Interestingly, the open source tools detected some of the singleton
implementations correctly. The ReflectionClass pattern was difficult for all of the tested tools.
That pattern includes different dynamic PHP features and the combination of creating a class
object based on a string value. Accordingly, it includes many already difficult sub patterns.
Also the Plugin supportis a pattern that includes different PHP features together to create a
plugin support. None of the tools were able to detect them.

Table 4 shows the result for source code patterns related to false positive reports. The
Function - quote pattern was not difficult for any of the tested tools. As already state the
initial CVE data set also contained old source code using outdated sanitization methods. These
methods were actually creating false positive reports because the static code analysis tools did
not have them in their list of sanitization functions. It also shows that all of the tested static
code analysis tools are checking for sanitization methods. The results show that the tools are
very different on detecting sanitization approaches. Some of them are even considering custom
sanitization attempts and other tools just ignore them.

13



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

False positive pattern Tool A Tool B Tool C Exakat Sonarcloud Count of FP

Sanitization

Preg match - check for number ! FP FP FP FP 4

Function - quote ! ! ! ! ! 0

Sanitize if function exists FP ! FP ! FP 3

Sanitize function - global db variable FP ! ! ! ! 1

Function - htmlentities FP ! FP ! ! 2

Function - strreplace FP ! FP ! ! 2

White listing ! FP FP FP FP 4

Summary (FP) 4 2 5 2 3

Table 4: Scan results for different false positive patterns.

8 Discussion

The evaluation shows that almost all of the identified patterns are difficult for at least one
static code analysis tool. Some of these patterns are just common programming functionality
provided by PHP. Such functionality should not be difficult for modern static code analysis
tools. Most patterns are related to SQL injection vulnerabilities, except the patterns in the
data flow category. These are patterns transferring user data from one point to another. These
patterns are interfering the data flow algorithm from the static code analysis tool. Accordingly,
these patterns are not difficult just for SQL injection vulnerabilities, instead they are difficult
for all vulnerability types that require user input reaching critical functions. The developers
of the static code analysis tools should be able to improve their algorithms to get fewer false
negative and false positive reports. Nevertheless, some of the patterns are not that easy to
be detected correctly, especially if the patterns contain dynamic language features of PHP. If
developers use such a feature they should only use it if it is necessary. As our results show
as more of such dynamic features are included, the more false negative reports occur. Also if
regular expressions are involved, the tools have to parse the expression. Based on the expression,
the sanitization might be sufficient or not. Usually the expression is also related to the SQL
query. Our presented patterns can be prevented in the development phase. These patterns
can be replaced by code patterns that can be easily detected by static code analysis tools. For
example, using the str replace function for replacing critical characters can be replaced by using
common known sanitization methods provided by the database library. Static code analysis
tools know that these sanitization methods are sufficient to prevent any SQL injection attacks.
Accordingly, the tool is then not reporting a false negative report.

This work required different manual review steps. The source code of the different open
source projects were initially scanned by the tools. The results had to be reviewed manually to
find all the false negative and false positive reports. Because of the manual review process the
data set was limited. 50 false negative samples and 50 false positive samples were used to find
the previously described difficult source code patterns. Some of the samples were even from
the same open source project. Because of the small data set, we can be sure that there are still
more difficult source code patterns for static code analysis tools. The different tools also could
not be compared to each other because of the small data set. The results show a tendency that
commercial tools outperform open source tools. Especially that the difficult source code patterns
were identified specifically based on the false negative/false positive reports from the commercial
tools. There were a lot more difficult patterns for false negative reports found than for false
positive results. The reason for this is that we only reviewed reports based on the patched
versions. If a tool did not report the vulnerability in the vulnerable version, the modifications of
the patch will not create a false positive report. Finding a solution for the manual review steps
would allow to research for difficult source code patterns on a broad scale.

14



Difficult SQLi Code Patterns Schuckert, Katt and Langweg

The CVE data set itself does only include reports until end of 2016. The reason is that the
manual reviewing of the source code pattern takes a significant amount of time. The resulting
patterns are all updated to the up to date PHP version with corresponding functions. The
tested static code analysis tools are all state of the art and the pattern are still difficult for them.
A newer CVE data set might introduce even more difficult source code patterns. Nevertheless,
our results show that the patterns we created are still difficult.

9 Conclusion

The goal to find difficult source code patterns was successfully achieved. The review of 50
open source projects containing vulnerable and patched versions revealed 25 difficult source
code patterns for false negative reports and 6 difficult source code patterns for false positive
reports. The verification shows that modifying simple vulnerabilities with these patterns are
still difficult for static code analysis tools. The dynamic language features of PHP are nice
for programmers, but for static code analysis tools they are very difficult. The results show
that most identified patterns are data flow patterns. Many patterns should be detected by
modern static code analysis tools and their developers should improve the algorithms based on
our results. Nevertheless, some patterns can also already be mitigated during the development
phase. Developers should know what patterns are difficult for static code analysis tools. Our
patterns can be used as learning examples for teaching higher level of software security.

References

[1] PHP SCA tools. https://github.com/exakat/php-static-analysis-tools, 2020.

[2] H. H. AlBreiki and Q. H. Mahmoud. Evaluation of static analysis tools for software security.
2014 10th International Conference on Innovations in Information Technology (IIT), pages
93–98, 2014.

[3] T. Basso, P. C. S. Fernandes, M. Jino, and R. Moraes. Analysis of the effect of Java software
faults on security vulnerabilities and their detection by commercial web vulnerability scanner
tool. Proceedings of the International Conference on Dependable Systems and Networks,
pages 150–155, 2010.

[4] A. Delaitre, B. Stivalet, E. Fong, and V. Okun. Evaluating Bug Finders – Test and
Measurement of Static Code Analyzers. 2015 IEEE/ACM 1st International Workshop on
Complex Faults and Failures in Large Software Systems (COUFLESS), pages 14–20, 2015.

[5] G. Dı́az and J. R. Bermejo. Static analysis of source code security: Assessment of tools
against SAMATE tests. Information and Software Technology, 55(8):1462–1476, 2013.

[6] K. Goseva-Popstojanova and A. Perhinschi. On the capability of static code analysis to
detect security vulnerabilities. Information and Software Technology, 68:18–33, 2015.

[7] S. Khare, S. Saraswat, and S. Kumar. Static Program Analysis of Large Embedded Code
Base: An Experience. Proceedings of the 4th India Software Engineering Conference 2011,
pages 99–102, 2011.

[8] U. Koc, P. Saadatpanah, J. S. Foster, and A. A. Porter. Learning a classifier for false
positive error reports emitted by static code analysis tools. In Proceedings of the 1st ACM

15

https://github.com/exakat/php-static-analysis-tools


Difficult SQLi Code Patterns Schuckert, Katt and Langweg

Table 5: CVE data set.

CVE Github link FN (A) FN (B) FN (C) FP (A) FP (B) FP (C)
CVE-2016-9283 https://github.com/exponentcms/exponent-cms/commit/559792be727f4e731bfcb3935f5beec7749e9ce9
CVE-2016-9282 https://github.com/exponentcms/exponent-cms/commit/e83721a5b9fcc88e1141a8fb29c3d1bd522257c1 x x x
CVE-2016-9272 https://github.com/exponentcms/exponent-cms/commit/fffb2038de4c603931b785a4c3ec69cfd06181ba x x x
CVE-2016-9242 https://github.com/exponentcms/exponent-cms/commit/6172f67620ac13fc2f4e9d650c61937d48e9ecb9 x x x
CVE-2016-9183 https://github.com/exponentcms/exponent-cms/commit/3b3557e9f6ba193a4c23c8ce5498fa285dddf3f3 x x x
CVE-2016-9134 https://github.com/exponentcms/exponent-cms/commit/45a7a62797e64e8abbae35d4859097c26f1874b1
CVE-2016-9087 https://github.com/exponentcms/exponent-cms/commit/fdafb5ec97838e4edbd685f587f28d3174ebb3db x x x
CVE-2016-9020 https://github.com/exponentcms/exponent-cms/commit/fdafb5ec97838e4edbd685f587f28d3174ebb3db x x x
CVE-2016-7788 https://github.com/exponentcms/exponent-cms/commit/fdafb5ec97838e4edbd685f587f28d3174ebb3db
CVE-2016-7781 https://github.com/exponentcms/exponent-cms/commit/fdafb5ec97838e4edbd685f587f28d3174ebb3db
CVE-2016-7780 https://github.com/exponentcms/exponent-cms/commit/a8efd9ca71fc9b8b843ad0910d435d237482ee31 x
CVE-2016-7453 https://github.com/exponentcms/exponent-cms/commit/c1092f167cc6c78dc8bf9bf149946c5219413df3 x x
CVE-2016-7405 https://github.com/ADOdb/ADOdb/commit/bd9eca9f40220f9918ec3cc7ae9ef422b3e448b8
CVE-2016-7400 https://github.com/exponentcms/exponent-cms/commit/e916702a91a6342bbab483a2be2ba2f11dca3aa3 x
CVE-2016-5703 https://github.com/phpmyadmin/phpmyadmin/commit/ef6c66dca1b0cb0a1a482477938cfc859d2baee3 x x
CVE-2016-2555 https://github.com/atutor/ATutor/commit/945a9dca01def8536516088da30fe6a4b7e9fa85 x x x
CVE-2015-5078 https://github.com/LimeSurvey/LimeSurvey/commit/65d717415a271242b9a30a5330d4eabac1c1a837
CVE-2015-4628 https://github.com/LimeSurvey/LimeSurvey/commit/b09edc0dbd18d8459ade4c7c941e562c16564f9e x x x
CVE-2015-4426 https://github.com/pimcore/pimcore/commit/1c6692e8287deed7f3356b6a1e2e9b7fe4e858dd x x x
CVE-2015-2679 https://github.com/semplon/GeniXCMS/commit/698245488343396185b1b49e7482ee5b25541815 x x x
CVE-2015-1471 https://github.com/delta/pragyan/commit/c93bc100ec93fc78940fbdca9b6b009101858309 x x
CVE-2014-9573 https://github.com/mantisbt/mantisbt/commit/69c2d28d x x
CVE-2014-9528 https://github.com/humhub/humhub/commit/febb89ab823d0bd6246c6cf460addabb6d7a01d4 x x x
CVE-2014-9464 https://github.com/microweber/microweber/commit/4ee09f9dda35cd1b15daa351f335c2a4a0538d29 x x x
CVE-2014-9096 https://github.com/Pligg/pligg-cms/commit/efb967b944375cd3ea3cd84c80d86d339dbe030e
CVE-2014-9089 https://github.com/mantisbt/mantisbt/commit/b0021673ab23249244119bde3c7fcecd4daa4e7f x
CVE-2014-8351 https://github.com/LaboCNIL/CookieViz/commit/489b6050f6c53fe7b24c4bed3eeb9c25543960e2 x
CVE-2014-5017 https://github.com/LimeSurvey/LimeSurvey/commit/9938bcd1df8ea27052557c722a67b00c0e7d6cb6 x x x
CVE-2014-3773 https://github.com/nilsteampassnet/TeamPass/commit/7715512f2bd5659cc69e063a1c513c19e384340f x x
CVE-2014-1609 https://github.com/mantisbt/mantisbt/commit/7efe0175f0853e18ebfacedfd2374c4179028b3f x x
CVE-2014-1608 https://github.com/mantisbt/mantisbt/commit/00b4c17088fa56594d85fe46b6c6057bb3421102 x
CVE-2014-1401 https://github.com/auracms/AuraCMS/commit/790f66ffbc4f23a6e13636fc79d0aa1a7d81e747
CVE-2014-10033 https://github.com/gburton/oscommerce2/commit/e4d90eccd7d9072ebe78da4c38fb048bfe31c902
CVE-2013-4879 https://github.com/bigtreecms/BigTree-CMS/commit/c5f27bf66a7f35bd3daeb5f693f3e2493f51b1f3 x
CVE-2013-4789 https://github.com/Cotonti/Cotonti/commit/45eec046391afabb676b62b9201da0cd530360b4 x x x
CVE-2013-3527 https://github.com/vanillaforums/Garden/commit/83078591bc4d263e77d2a2ca283100997755290d x x x
CVE-2013-3524 https://github.com/DavidJClark/phpVMS-PopUpNews/commit/efaffa04ef87db1722d69ac7bfc07be71ce2dccf x x x
CVE-2013-3081 https://github.com/JojoCMS/Jojo-CMS/commit/972757c4500d94b4b1306bf092e678add3a987d8 x x x
CVE-2013-2559 https://github.com/symphonycms/symphony-2/commit/6c8aa4e9c810994f7632837487426867ce50f468 x x x
CVE-2012-5162 https://github.com/osclass/OSClass/commit/ff7ef8a97301aaaf6a97fe46c2c27981a86b4e2f x x x
CVE-2012-3471 https://github.com/ushahidi/Ushahidi Web/commit/3f14fa0 x x
CVE-2012-3470 https://github.com/ushahidi/Ushahidi Web/commit/3301e48 x x
CVE-2012-3469 https://github.com/ushahidi/Ushahidi Web/commit/e0e2b66
CVE-2012-3468 https://github.com/ushahidi/Ushahidi Web/commit/fdb48d1
CVE-2012-2762 https://github.com/s9y/Serendipity/commit/87153991d06bc18fe4af05f97810487c4a340a92 x x x
CVE-2012-0973 https://github.com/osclass/OSClass/commit/ff7ef8a97301aaaf6a97fe46c2c27981a86b4e2f x x x x
CVE-2011-4960 https://github.com/silverstripe/sapphire/commit/fef7c32 x x
CVE-2011-4959 https://github.com/silverstripe/sapphire/commit/73cca09
CVE-2011-4802 https://github.com/Dolibarr/dolibarr/commit/c539155d6ac2f5b6ea75b87a16f298c0090e535a x x
CVE-2011-4341 https://github.com/symphonycms/symphony-2/commit/476e4926e2773588eab10dd3036f27e1411521b5 x x

22 28 20 9 2 11

SIGPLAN International Workshop on Machine Learning and Programming Languages,
page 35–42, 2017.

[9] PHP. https://www.php.net/manual/language.namespaces.dynamic.php, 2020.

[10] Z. P. Reynolds, A. B. Jayanth, U. Koc, A. A. Porter, R. R. Raje, and J. H. Hill. Identifying
and documenting false positive patterns generated by static code analysis tools. In 2017
IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial
Practice (SER IP), pages 55–61, 2017.

[11] Samate. Juliet Test Suite. http://samate.nist.gov/SRD/testsuite.php, 2020.

[12] Samate. SARD. https://samate.nist.gov/SARD/testsuite.php, 2020.

[13] F. Schuckert. Patterns. https://github.com/fschuckert/sca_patterns, 2020.

[14] F. Schuckert, B. Katt, and H. Langweg. Difficult XSS Code Patterns for Static Code
Analysis Tools. 1st Model-Driven Simulation and Training Environment for Cybersecurity,
2019.

[15] C. J. Van Rijsbergen. Information Retrieval, 2nd edition. 1979.

[16] Z. Zhioua, S. Short, and Y. Roudier. Static Code Analysis for Software Security Verification:
Problems and Approaches. In Computer Software and Applications Conference Workshops
(COMPSACW), 2014 IEEE 38th International, pages 102–109, 2014.

16

https://www.php.net/manual/language.namespaces.dynamic.php
http://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
https://github.com/fschuckert/sca_patterns

	Introduction
	Related Work
	Methodology
	Background
	Selected tools
	Data set
	Vulnerability analysis

	Data set results
	CVE data set results
	Minimal working example data set

	False negative source code patterns
	Sources
	Insufficient sanitization
	Concatenation
	Sink
	Data flow

	False positive source code patterns
	Verification
	Discussion
	Conclusion

