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Abstract 30 

Efforts to better understand cardiorespiratory health are relevant for the future development of optimized 31 

physical activity programs. We aimed to explore the impact of the signal quality on the expected 32 

associations between the ability of the aerobic system in supplying energy as fast as possible during 33 

moderate exercise transitions with its maximum capacity to supply energy during maximal exertion. It was 34 

hypothesized that a slower aerobic system response during moderate exercise transitions is associated with 35 

a lower maximal aerobic power; however, this relationship relies on the quality of the oxygen uptake 36 

dataset. Forty-three apparently healthy participants performed a moderate constant work rate (CWR) 37 

followed by a pseudorandom binary sequence (PRBS) exercise protocol on a cycle ergometer. Participants 38 

also performed a maximum incremental cardiopulmonary exercise testing (CPET). The maximal aerobic 39 

power was evaluated by the peak oxygen uptake during the CPET and the aerobic fitness was estimated 40 

from different approaches for oxygen uptake dynamics analysis during the CWR and PRBS protocols at 41 

different levels of signal-to-noise ratio. The product moment correlation coefficient was used to evaluate 42 

the correlation level between variables. Aerobic fitness was correlated with maximum aerobic power, but 43 

this correlation increased as a function of the signal-to-noise ratio. Aerobic fitness is related to maximal 44 

aerobic power; however, this association appeared to be highly dependent on the data quality and analysis 45 

for aerobic fitness evaluation. Our results show that simpler moderate exercise protocols might be as good 46 

as maximal exertion exercise protocols to obtain indexes related to cardiorespiratory health.  47 

 48 
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New & Noteworthy 58 

- Optimized methods for cardiorespiratory health evaluation are of great interest for public health. 59 

- Moderate exercise protocols might be as good as maximum exertion exercise protocols to evaluate 60 

cardiorespiratory health. 61 

- Pseudorandom or constant workload moderate exercise can be used to evaluate cardiorespiratory health. 62 

 63 

  64 
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1. Introduction 65 

Efforts to better assess cardiorespiratory health (CRH) are relevant for the future development of 66 

optimized physical activity programs, mainly those designed for chronic diseases that directly affect 67 

functional capacity (1, 51), quality of life (39), and mortality (36). In addition, sub-clinical impairments in 68 

CRH seem to be related to the onset of chronic diseases (13) that are responsible for 41 million deaths every 69 

year (56, 57). Therefore, optimized methods for CRH evaluation are of great interest for public health. 70 

CRH can be investigated through the characterization of maximal aerobic power or aerobic fitness 71 

level, and these indexes are related to different aspects of the aerobic system response. Maximal aerobic 72 

power is related to the maximum ability of the aerobic system to supply energy (18), thus it is directly 73 

related to functional capacity. Experimentally, maximal aerobic power is commonly evaluated during 74 

incremental exercise to volitional exhaustion by the measurement of the peak alveolar oxygen uptake 75 

(𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (49). On the other hand, aerobic fitness is related to the speed of the aerobic system response 76 

to meet a new energetic demand (50) and it is commonly characterized during constant (11, 27) or 77 

pseudorandom (6, 8, 31) moderate work rate exercise protocols. However, the term “aerobic fitness” can 78 

be also interpreted as maximal aerobic power, and the speed of the aerobic adjustment during exercise 79 

transitions as muscle oxidative capacity (53). Here, the terms “aerobic power” and “aerobic fitness” will be 80 

exclusively related to 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and the alveolar oxygen uptake (𝑎𝑎𝑉̇𝑉𝑂𝑂2) dynamics, respectively. In any 81 

manner, the speed of the alveolar oxygen uptake (𝑎𝑎𝑉̇𝑉𝑂𝑂2) response can be estimated in time domain (by the 82 

time constant 𝜏𝜏), in frequency domain (by indexes, such as the mean normalized gain [𝑀𝑀𝑀𝑀𝑀𝑀]), or by cross-83 

correlation function (by the peak of this function [𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝]) (9, 33). The discussion of which one of these 84 

indexes is the most appropriate method for aerobic fitness evaluation remains unclear (9, 14, 19, 27).  85 

Despite the expected relationship between maximal aerobic power and fitness, this relationship is 86 

rarely reported (6), possibly due to experimental noise introduced by data collection (22, 46) and processing 87 

(27). Additionally, the elevated degree of distortion between the local and central hemodynamics during 88 

exercise transitions challenges the assumption that the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 reflects the muscular aerobic metabolism, 89 

potentially leading to misinterpretations of the actual aerobic fitness level based on 𝑎𝑎𝑉̇𝑉𝑂𝑂2 data (8, 16, 28). 90 

Therefore, specific data analysis methods are necessary for the correct evaluation of the aerobic fitness 91 

level from 𝑎𝑎𝑉̇𝑉𝑂𝑂2 dynamics data during exercise transitions (9, 27, 42).  92 

Even though characterization of CRH opens the unique possibility to estimate clinical indexes that 93 

are related to mortality and quality of life, extraction of these indexes, based on the study of the aerobic 94 
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system response remains challenging. Risks associated with peak exertion, bad data handling, need for 95 

highly trained technicians, too general physiological assumptions, and user adherence, are barriers that need 96 

to be overcome. This study evaluated how data quality influences the expected association between 97 

maximal aerobic power with aerobic fitness. For this purpose, we explored the impact of the signal quality 98 

on the expected associations between the ability of the aerobic system in supplying energy as fast as possible 99 

during moderate exercise transitions (aerobic fitness) with its maximum capacity to supply energy during 100 

maximal exertion. It is hypothesized that a slower aerobic system response during exercise transitions is 101 

associated with a lower peak aerobic power; however, this relationship relies on 𝑎𝑎𝑉̇𝑉𝑂𝑂2 signal-to-noise ratio 102 

and the method used to evaluate aerobic fitness. 103 

 104 

2. Materials and Methods 105 

2.1 Ethics Statement and Study Design  106 

 This study was in accordance with the Declaration of Helsinki (1964), it received approval from 107 

the local Human Research Ethics Committee (CAAE: 80459817.5.1001.5504) of the Federal University of 108 

São Carlos, São Carlos, SP, Brazil, and it was conducted in compliance with the norms that regulate 109 

research involving human subjects (Resolution 466 of 2012, Brazilian National Health Council). After 110 

agreeing to take part in the study, all participants signed the informed consent statement. The inclusion 111 

criterion was men or women aged between 20 to 42 years. The exclusion criteria were diagnosis of 112 

cardiovascular, metabolic, neurological, or respiratory disorder; history of skeletal muscle injury in the 113 

previous six months; or chronic joint disease. 114 

Data were obtained from forty-three participants (23 men and 20 women, 27±5 years old, 69±11 115 

kg and 170±9 cm) who performed an initial clinical maximal cardiopulmonary exercise testing (CPET), in 116 

the presence of a cardiologist, to identify any possible clinical adverse response to maximal exercise 117 

including electrocardiogram abnormalities, ischemia, or reactive hypertension. The cycle ergometer 118 

increment was calculated according to previous literature (52). All participants were cleared to perform the 119 

exercise protocols of this study. During this same visit, the gas exchange threshold (GET) was identified 120 

by the v-slope method (4) and used for the next laboratory visit. After 7±3 days, participants performed, in 121 

sequence, a constant work rate (CWR), the pseudorandom binary sequence (PRBS) and another CPET 122 

protocol. More details about each of the exercise protocols are described below in the text. Laboratory 123 
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temperature and humidity range were maintained constant for all exercise tests (22-24 oC and 40-60 %, 124 

respectively).  125 

 126 

 127 

2.2 Exercise Protocols 128 

 Based on the 𝑊̇𝑊 at the GET (107±30 watts) obtained during the first visit, the CWR protocol was 129 

composed of 3 minutes cycling at 20%, followed by 6 minutes at 80% of the 𝑊̇𝑊 at GET (21±5 and 86±23 130 

watts, respectively). For a complete random exercise protocol that changes 𝑊̇𝑊 between two levels, it is 131 

likely to observe low energy stimulus at the frequencies of interest (29). Therefore, the design of optimized 132 

exercise protocols for frequency domain analysis are necessary. After the CWR protocol, the PRBS 133 

protocol with a total duration of 900 s, started by varying the 𝑊̇𝑊 also between 20 and 80% of the GET, and 134 

each step had a length of 30 s (23). The sequence of the PRBS steps were obtained by a shift register (Figure 135 

1), as described elsewhere (58), and an extra 150-s PRBS sequence was added between the CWR and PRBS 136 

for a better signal stabilization between protocols.  137 

The PRBS protocol that allows the simultaneous test of multiple frequencies (21) were generated 138 

by a 4-stage digital shift register (23, 44) that generated 15 30-s units that varied the work rate between two 139 

levels (Figure 1). 140 

 141 

 

Figure 1. Digital shift register composed by 4 stages to 
generate pseudorandom binary sequence exercise protocols. 
The addition feedback module (∑) add the values of the first 
and the fourth stage and check the criteria statement. This 
result (0 or 1) is recorded and then inserted into stage 1, and 
the register is shifted to the right. The output sequence 
composed by 1 and 0 is transformed in the target work rates 
where 1 = 80 % and 0 = 20% of the gas exchange threshold. 

 142 

The shift register was implemented into a computer program to generate the pseudorandom binary 143 

sequence exercise protocol. Figure 2 illustrates the program interface. 144 

 145 

 146 

 147 

 148 
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 149 

Figure 2. LabVIEW implementation of the digital shift register described in Figure 1 to generate 150 
pseudorandom binary sequence (PRBS) exercise protocols. The software has 5 inputs: the number of digits, 151 
the unit length, the initial register seeds, and the two work rate levels. From these inputs, the shift register 152 
is populated, and the time series of protocol is built. The frequency analysis is also performed to evaluate 153 
the signal on frequency space. The inputs are controlled by the user through the program graphical interface 154 
and the outputs are also displayed. The exercise protocol on time domain can be exported from the “PRBS 155 
vs Time” graph. The software block diagram can be download at: 156 
https://doi.org/10.6084/m9.figshare.12206654 (Supplementary Material 1). This software was built on 157 
National Instruments LabVIEW Student Edition, 2014, for personal and scientific use only. 158 
 159 

After the PRBS protocol, a resting period was performed until the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 and pulmonary ventilation 160 

(𝑉̇𝑉𝐸𝐸) returned to their baseline values, and another CPET protocol started until physical exhaustion, 161 

followed by 6 min of active recovery. The increment of this second CPET was calculated as described in 162 

the first CPET. During the CPET, participants were verbally encouraged to give them maximal effort in 163 

order to stop the CPET only due to physiologic limitation. Figure 3 displays an example of the exercise 164 

protocols and a representative 𝑎𝑎𝑉̇𝑉𝑂𝑂2 response to these protocols.  165 

 166 

 167 
Figure 3. Illustration of the exercise protocols composed of a constant work rate (CWR), a pseudorandom 168 
binary sequence (PRBS), and a maximal cardiopulmonary exercise testing (CPET). The two work rates (36 169 
and 144 watts) of the CWR and PRBS protocols corresponded to 20 and 80% of the work rate at the gas 170 
exchange threshold (GET) previously identified. The increment rate of the CPET protocol (16 watts.min-1 171 
in this case) was calculated accordingly to participant’s sex, weight, height, and age. The alveolar oxygen 172 
uptake (𝑎𝑎𝑉̇𝑉𝑂𝑂2, in l·min-1) response to these protocols is also plotted. 173 
 174 

 175 

https://doi.org/10.6084/m9.figshare.12206654
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2.3 Data Collection 176 

 During the exercise protocols, the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 and 𝑉̇𝑉𝐸𝐸 were measured breath-by-breath by a metabolic 177 

system (Vmax29c, Sensor Medics, Yorba Linda, CA, USA) calibrated before each experiment. Heart rate 178 

(𝐻𝐻𝐻𝐻) was computed during the exercise based on an ECG system (BioAmp FE132, ADInstruments, 179 

Australia). 180 

 181 

2.4 Data Analysis 182 

Participant’s aerobic fitness was evaluated from the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 data during the CWR and PRBS 183 

protocols, and their maximal aerobic power was estimated by the 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 during the subsequent CPET. 184 

Faster 𝑎𝑎𝑉̇𝑉𝑂𝑂2 dynamic responses during the CWR or PRBS protocols were associated with a better aerobic 185 

fitness level, and a higher 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 during the CPET was associated with a higher maximal aerobic power 186 

level. All data were time synchronized, and second-by-second linearly interpolated by a computer program 187 

developed in LabVIEW 2014 (National Instruments, Austin, Texas, USA). For the PRBS protocol, the data 188 

of the two complete sequences of 450 s were ensemble averaged to obtain a single PRBS response for each 189 

participant.  190 

  The aerobic fitness parameter tau (𝜏𝜏, as a time constant) that mostly corresponds to the speed of 191 

the muscular aerobic metabolism dynamics (2), was calculated by another LabVIEW 2014 computer 192 

routine. This program adjusts the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 data during the CWR protocol into a delayed mono-exponential 193 

function as previously described (10) using a nonlinear curve fit method that searches for the lowest sum 194 

of the squared errors by the standard Levenberg-Marquardt optimization algorithm. As described in Figure 195 

4, by the analysis of the time series response of the error between the fitted function and the interpolated 196 

data, the first 18±5 s of data were excluded to eliminate the influences of the cardio-dynamic phase on 𝜏𝜏 197 

estimation (42). Then, the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 data were fitted again into the same function that should be representative 198 

of the muscular oxygen uptake dynamics during exercise transition. Since 𝜏𝜏 is a time constant that quantifies 199 

how fast the muscular aerobic metabolism adjusts to a new energetic demand, where lower 𝜏𝜏 values mean 200 

faster responses, this parameter was used to evaluate the aerobic fitness level. 201 

 202 
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203 
Figure 4. Illustration of the aerobic fitness evaluated by time domain analysis of the alveolar oxygen uptake 204 
(𝑎𝑎𝑉̇𝑉𝑂𝑂2) dynamics during exercise transition. The 𝑎𝑎𝑉̇𝑉𝑂𝑂2 response to a step exercise protocol (A) is fitted 205 
into a delayed mono-exponential model (solid line in B) and the cardiodynamic phase (11 s, fine pattern 206 
area in C) is removed from the data by the analysis of the residuals (upper graphs). The remaining 𝑎𝑎𝑉̇𝑉𝑂𝑂2 207 
data (C) are fitted into the same exponential model and the time constant 𝜏𝜏 of this function is obtained. 208 
Please see text for more information about data fitting. 209 
 210 

Another method to evaluate aerobic fitness was based on frequency domain analysis and focused 211 

on the calculation of the MNG index that estimates, as the parameter 𝜏𝜏, the speed of the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 response 212 

during exercise transitions, but during the PRBS protocol. The MNG calculation was already described in 213 

previous studies (7, 9). Briefly, the repeated step changes in 𝑊̇𝑊 (forcing function) and the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 data were 214 

submitted to a discrete fast Fourier transformation to convert the data into frequency space to the maximal 215 

frequency of 8.88 mHz where the 𝑉̇𝑉𝑂𝑂2 response follows the linearity principle (21). Afterwards, the system 216 

gain (𝑎𝑎𝑉̇𝑉𝑂𝑂2 𝑊̇𝑊
� ) for each analyzed frequency was calculated and then normalized as the percentage of the 217 

gain at 2.2 mHz. The mean value of the normalized gains of frequencies 4.4, 6.6, and 8.8 mHz was taken 218 

as the MNG (in %). Once the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 dynamic changes during the PRBS appeared to follow the dynamic 219 

linearity principle (21), and most of the response is composed of muscular oxygen uptake (which mean, 220 

small cardio-dynamic influences) (23), the MNG can be used to evaluate how fast the aerobic metabolism 221 

adjusts during exercise transitions. The MNG varies from 0 to 100% where 0 means no response and values 222 

closer to 100 means a dynamic response closer to the forcing function (i.e., instantaneous response). Figure 223 

5 illustrates these calculations for one representative participant.  224 

The aerobic fitness was also evaluated by cross-correlation analysis of the data during the PRBS 225 

protocol. In this case, the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 data were cross correlated with the forcing function (𝑊̇𝑊) with a lag time of 226 

1 s, generating a cross-correlation function (𝐶𝐶𝐶𝐶𝐶𝐶) that describes the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 dynamic changes as a function 227 

of the 𝑊̇𝑊 changes during the PRBS. The peak of this cross-correlation function (𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is related to the 228 

speed of the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 to meet a new energetic demand (19), where a peak closer to 1 means a faster response 229 

because the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 dynamics are closer to the square-like forcing function (instantaneous response). Figure 230 

5 shows an example of the 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 calculation. 231 
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 232 

 233 
Figure 5. Illustration of the aerobic fitness evaluation based on the analysis of the alveolar oxygen uptake 234 
(𝑎𝑎𝑉̇𝑉𝑂𝑂2, solid lines) dynamics during a pseudorandom binary sequence exercise protocol (dashed lines). The 235 
second-by-second linearly interpolated data (A) of the two consecutives protocols were ensemble averaged 236 
to obtain a single response (B). The exercise protocol and the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 were transformed into the frequency 237 
space by a fast Fourier transformation and the system gain was calculated by dividing the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 by the 238 
protocol amplitude at each of the analyzed frequencies and then normalized by the gain at frequency 2.2 239 
mHz. The average of the normalized gains (in %) of the frequencies 4.4, 6.6 and 8.8 mHz (C) was taken as 240 
the final index related to aerobic fitness (named Mean Normalized Gain, or MNG). In addition, the exercise 241 
protocol work rate (upper graph in B) was cross-correlated with the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 response (lower graph in B) 242 
accordingly to previous study (19) to obtain the cross-correlation function at different lags. The peak of 243 
CCF (𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 in D) is also related to the speed of the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 dynamics, as the MNG. 244 
 245 

Finally, during the CPET, the last 20 s of the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 data were averaged to obtain the 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 246 

which was considered as the maximal aerobic power. Since the CPET was performed on cycle ergometer, 247 

the 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 was not relativized by body weight to avoid the introduction of a confusion factor in the 248 

correlation analyses (49). For the aerobic fitness analysis, the calculated parameters are exclusively related 249 

to the response time, so body weight does not influence the data analysis. During the incremental exercise, 250 

all participants reached a respiratory exchange ratio (RER) higher than 1.1 (1.31 ± 0.10) which is an 251 

important criterion to classify the 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 as “maximum” aerobic power (43); however, there are still 252 

discussions on how to properly identify maximum 𝑎𝑎𝑉̇𝑉𝑂𝑂2 during incremental exercise (46). Therefore, the 253 

𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 was used as an index related to maximal aerobic power.  254 

 255 

 256 

 257 

 258 
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2.4.1 Noise Analysis  259 

One of the major issues related to the aerobic fitness evaluation based on 𝑎𝑎𝑉̇𝑉𝑂𝑂2 is the random 260 

noise associated with the metabolic carts and the intra-breath fluctuations that influence the confidence of 261 

the estimated indexes (27, 35). In addition, the signal steady-state amplitude also influences the quality of 262 

the parameter’s estimation because it determines the proportion of the signal that is discernible from the 263 

noise, where a higher amplitude counterbalances the negative influences of random noise (40). As initially 264 

proposed by this study, it is essential to investigate the impact of the proportion between the signal 265 

amplitude and the noise level (or signal-to-noise ratio) over the aerobic fitness parameters estimation (17, 266 

27, 35) since it can influence the investigation of the relationship between maximal aerobic power with 267 

aerobic fitness.  268 

For the 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑚𝑚𝑚𝑚𝑚𝑚 calculation, the noise influences may be neglected most of the time because 269 

very high 𝑎𝑎𝑉̇𝑉𝑂𝑂2 amplitudes during the peak of the CPET decrease the noise contribution up to only ~3% 270 

(45) so the signal-to-noise ratio for a 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of, for example, ~2.5 l·min-1, is 0.031 l·min-1 (45). In 271 

addition, since 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 estimation does not include any complex data transformation/modeling beyond 272 

a simple average, the degree of freedom of this estimate is much lower than the methods used to estimate 273 

the aerobic fitness (40) so the confidence of 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑚𝑚𝑚𝑚𝑚𝑚 estimation relies even less on the signal-to-noise 274 

ratio. 275 

The study of the influences of the noise level and the amplitude over the parameters estimate was 276 

initially investigated by computer simulations (next section). The noise level of each participant was 277 

calculated as the SD (in l·min-1) of the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 during the last two minutes of the CWR, and the steady state 278 

amplitude (also in l·min-1) was taken as the mean response of the last minute minus the mean 𝑎𝑎𝑉̇𝑉𝑂𝑂2 during 279 

the last minute of the CWR baseline. Finally, the signal-to-noise ratio was obtained by dividing the steady 280 

state amplitude by the noise level.  281 

 282 

2.4.1.1 Computer Simulations 283 

The algorithm used to build the computer simulations was previously described elsewhere (8, 9). 284 

The simulated 𝑎𝑎𝑉̇𝑉𝑂𝑂2 time series response to an CWR and PRBS protocol (with a work rate variation 285 

between 25 and 100 watts) were built from the combinatorial analysis of the following parameters range: 286 

10 < 𝜏𝜏 < 90 s (increment of 1 s) and 150 < steady state amplitude < 1650 ml·min-1 (every 75 ml·min-1). 287 

Each of these simulations was distorted by a white noise generator with a magnitude varying from 0 288 



12 
 

(without noise, for reference) to 450 ml·min-1 (every 5ml·min-1) resulting in 152,919 simulations with 289 

different aerobic system speeds, amplitudes and noise level, for each protocol (CWR and PRBS). The 290 

signal-to-noise of these simulations ranged from 0.3 to 330. Since 𝜏𝜏, MNG, and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are not influenced 291 

by baseline values, no baseline was added to the simulations. The 𝜏𝜏 range of these simulations was selected 292 

in order to include the same 𝜏𝜏 range of the experimental data (that was previously calculated). 293 

Figure 6 describes some examples of the simulations with a constant 𝜏𝜏 of 25 s but varied noise and 294 

steady state amplitudes, resulting in signals with remarkably high (Figure 6 A) and very low (Figure 6 D) 295 

signal-to-noise ratio. Higher noise can be counterbalance with higher amplitude (Figure 6 B), and lower 296 

amplitude can be counterbalanced by lower noise (Figure 6 C), maintaining a more reliable signal-to-noise 297 

ratio. 298 

 299 

 300 

Figure 6. Computer simulations of the alveolar oxygen uptake (𝑎𝑎𝑉̇𝑉𝑂𝑂2) response to a constant and 301 
pseudorandom binary sequence exercise protocols. The 𝑎𝑎𝑉̇𝑉𝑂𝑂2 responses have different steady state 302 
amplitudes (a = 225 and 1425 ml·min-1) and noise levels (50 and 400 ml·min-1) resulting in a signal-to-303 
noise ratio of 28.5, 3.5, 4.5, and 0.5 in A, B, C, and D, respectively. Higher amplitudes associated with 304 
lower noise levels result in remarkably high signal-to-noise ratio (A), and the opposite, in very low signal-305 
to-noise ratio (D). Higher noise can be counterbalance with higher amplitude (B), and lower amplitude can 306 
be counterbalanced by lower noise (C), maintaining a reliable signal-to-noise ratio. 307 

 308 

The aerobic fitness parameters, 𝜏𝜏 (from CWR protocol), MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (both from PRBS 309 

protocol), were calculated as previously described in the text for each simulated data. However, for 𝜏𝜏 310 

estimation, the cardio-dynamic phase was not removed from the CWR data because only the phase of 311 

interest was simulated (8). For each of the simulations, the error of the parameter estimate was taken as the 312 
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difference, in percentage, between the estimated parameter with its analogous estimate from the zero-noise 313 

signal.  314 

The computer program used to generate the simulations was designed as following. First, as 315 

previously described (8, 9), the software builds the second-by-second oxygen uptake response to a standard 316 

constant workload and pseudorandom binary sequence (PRBS) exercise protocol following an exponential 317 

function for both, on and off dynamic responses, using the function parameters (𝜏𝜏, and steady-state 318 

amplitude) inputted by the user. Second, the software generates the white noise time series from an 319 

embedded LabVIEW function (https://zone.ni.com/reference/en-XX/help/371361R-320 

01/lvanls/gaussian_white_noise/) with the same length of the exercise protocols, and with an amplitude 321 

defined by the user. Third, the noise is added, second-by-second, to the simulated response to generate the 322 

distorted simulations. Finally, the indexes 𝜏𝜏, MNG, and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are estimated from the distorted responses. 323 

Figure 7 shows the distorted response for a constant workload (A) and PRBS (B) exercise protocols. The 324 

constant workload data fitting, when 𝜏𝜏 is estimated, is displayed in Figure 7 C, and the frequency analysis 325 

of the PRBS, to calculate the MNG, is displayed in Figure 7 D. The cross-correlation function of the 326 

response during the PRBS, and its peak, are demonstrated in E. 327 

 328 

 329 

Figure 7. LabVIEW implementation of the computer program to generate the oxygen uptake simulations 330 
with different noise levels. This software has three inputs (amplitude, tau and noise) and three outputs (time 331 
constant tau [𝜏𝜏], mean normalized gain [MNG] and cross-correlation peak [𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝]). Please see text for 332 
more details. The software block diagram can be download at: 333 
https://doi.org/10.6084/m9.figshare.12206663.v1 (Supplementary Material 2). Program built on NI 334 
LabVIEW Student Edition - 2014, personal and research use only. 335 
 336 

 337 

 338 

https://zone.ni.com/reference/en-XX/help/371361R-01/lvanls/gaussian_white_noise/
https://zone.ni.com/reference/en-XX/help/371361R-01/lvanls/gaussian_white_noise/
https://doi.org/10.6084/m9.figshare.12206663.v1
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3. Statistics 339 

Most of the experimental data were normally distributed so the correlation level between 340 

𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 with each of the aerobic fitness indexes (𝜏𝜏, MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) was calculated by Pearson’s 341 

product moment correlation coefficient (R) (41). From R and sample size, the t statistic and degree of 342 

freedom were calculated and then used to obtain the two-tailed statistical significance level (p value). 343 

Despite the null-hypothesis significance testing is being currently deprecated (Ho et al., 2019; Wasserstein 344 

et al., 2019), the behavior of the p-values of the correlations across the different signal-to-noise levels will 345 

be visually analyzed.  346 

Since the signal-to-noise ratio appears to influence the confidence of the aerobic fitness parameter 347 

estimates (27, 35), participants were firstly ranked according to the signal-to-noise ratio. Afterwards, the 348 

participant with the lowest signal-to-noise ratio was removed from the sample and the correlation 349 

coefficient between the variables was tested. This procedure was performed recursively from a sample size 350 

of 43 (all participants) to 3 (lowest possible sample size for the statistical testing). As expected, the signal-351 

to-noise ratio progressively increased (from 5.8 ± 2.2 to 11.3 ± 1.0) as the participants with the lowest 352 

signal-to-noise ratio were removed from the sample (Figure 8) which allowed us to test the influences of 353 

the signal-to-noise ratio over the correlation of the studied parameters. However, while the signal-to-noise 354 

increases, the sample size decreases, and the probability of finding statistical differences, if present, also 355 

decreases. This statistical balance was investigated throughout this study by analyzing the R and p values 356 

simultaneously as a function of the mean signal-to-noise ratio. 357 

 358 

 359 

Figure 8. Relationship between mean ± SD signal-to-noise ratio and the study sample size. Participants 360 
were ranked according to their signal-to-noise ratio and then those with the lowest signal-to-noise were 361 
removed from the sample. As expected, the mean signal-to-noise increased as the sample size decreased. 362 
  363 
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Finally, the influence of the signal-to-noise ratio over the tested correlations was verified by the 364 

linear regression analysis (R2 and p value) between the mean signal-to-noise ratio of the participants with 365 

the R from the correlation between maximal aerobic power (𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and each of the parameters for 366 

aerobic fitness evaluation (𝜏𝜏, MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). Linear regression analysis was also used to verify the 367 

influence of the signal-to-noise ratio over the correlation between the parameters used to evaluate the 368 

aerobic fitness level (𝜏𝜏, MNG, and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). 369 

 370 

4. Results 371 

 The computer simulations will be firstly described, followed by the correlation between the 372 

maximal aerobic power (𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) with the aerobic fitness parameters (𝜏𝜏, MNG, and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) as a 373 

function of the signal-to-noise ratio. 374 

 375 

4.1 Noise Analysis of Computer Simulations 376 

 As displayed in Figure 9, the noise level and steady-state amplitude of the computer simulations 377 

are plotted as colored intensity graphs (error of estimation). The code used to generate these graphs is 378 

described in Supplementary Material 3 (https://doi.org/10.6084/m9.figshare.12196092.v1). For a better 379 

data visualization, only errors for the interval 0-90% were considered into these graphs (the complete 380 

dataset can be found in Supplementary Material 4 (https://doi.org/10.6084/m9.figshare.12018171). On top 381 

of the simulated data, the experimental data are plotted for reference. Some examples of signal-to-noise 382 

ratio are also plotted in Figure 9. For all parameters related to aerobic fitness (𝜏𝜏 in A, MNG in B, and 383 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 in C), the uncertainty of the parameter estimate (colors) increases as a function of the noise level 384 

and decreases as a function of the steady state amplitude. Between the graphs in Figure 6, the uncertainty 385 

of 𝜏𝜏 estimates (Figure 9 A) was higher than MNG (Figure 9 B) and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (Figure 9 C) for the signal-to-386 

noise range from 2 to 20 (participants range). Between MNG (Figure 9 B) and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (Figure 9 C), most 387 

of participants are located at <0 to 15% interval of the expected estimate errors. For all simulations, except 388 

in 11 cases for 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 estimation (only 0.0058% of the total simulations), all parameters were associated 389 

to a certain degree of uncertainty (error of estimation higher than zero), independently of the signal-to-noise 390 

ratio. 391 

 392 

https://doi.org/10.6084/m9.figshare.12196092.v1
https://doi.org/10.6084/m9.figshare.12018171
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393 
Figure 9. Computer simulations of the alveolar oxygen uptake response during exercise transitions with 394 
variable noise levels and steady state amplitudes. As displayed in A, B and C, the simulated data were 395 
analyzed by time domain modelling (by the time constant 𝜏𝜏), frequency domain analysis (by the mean 396 
normalized gain, or MNG) and by the peak of the cross-correlation function (𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), respectively. For 397 
each of the simulations, the error of the parameter estimate (colors) was taken as the difference, in 398 
percentage, between the estimated parameter with its analogous estimate from the zero-noise signal. The 399 
noise level and the steady state amplitude of the experimental data from the constant work rate tests 400 
(participants data, open circle) were plotted within this reference frame. Some examples of the signal-to-401 
noise ratio (i.e., steady-state amplitude/noise level) are also plotted as white solid lines. See text for further 402 
details about the computer simulations.  403 
 404 

4.2 Relationship Between Aerobic Fitness and Power 405 

 The correlation between the maximal aerobic power with aerobic fitness was tested by the 406 

correlation coefficient R and its p value between the 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (maximal aerobic power level) with the 407 

aerobic fitness parameters (𝜏𝜏, MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) at different combinations of signal-to-noise ratio and 408 

sample sizes (Figure 10). 409 

As described in Figure 10 A, the aerobic fitness evaluated by 𝜏𝜏 was correlated with maximal 410 

aerobic power (i.e., 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) with a R of ~ - 0.5 on average across the tested signal-to-noise ratio values 411 

and sample sizes. As verified by the linear regression, the correlation coefficient between 𝜏𝜏 and 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 412 

was  influenced (R= -0.92) by the signal-to-noise ratio and decreased (towards -1) 0.109 per unit of signal-413 

to-noise ratio. 414 

As demonstrated in Figure 10 B, the aerobic fitness evaluated by the MNG was correlated with 415 

maximal aerobic power (i.e., 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) with a R ~ - 0.4 on average across the tested mean signal-to-noise 416 

ratios. As verified by the linear regression, the correlation coefficient between MNG and 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 was 417 

also influenced (R= 0.80) by the signal-to-noise ratio and increased 0.078 per unit of signal-to-noise ratio. 418 

The aerobic fitness evaluated by the 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (Figure 10 C) was correlated with maximal aerobic 419 

power (i.e., 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) with a R ~ 0.4 in average. However, as verified by the linear regression, the 420 

correlation coefficient between 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 with 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 was not influenced by the signal-to-noise ratio. 421 

The sample size of the linear correlation only has 41 datapoints because the correlations were only 422 

calculated with a minimum sample size of 3 participants. 423 
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 424 

 425 
 426 
Figure 10. Correlations between the measured aerobic fitness parameters (tau [𝜏𝜏], in A; mean normalized 427 
gain [MNG], in B; and cross-correlation function peak [𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝], in C) with maximal aerobic power 428 
evaluated by peak alveolar oxygen uptake (𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) at different signal-to-noise ratios estimated from 429 
the constant work rate tests (x axis in A, B and C). The correlation coefficient is plotted in the lower A, B 430 
and C graphs, and the statistical significance level (p value, open circles) and the sample size (dotted lines) 431 
are displayed in the upper graphs as a function of the signal-to-noise ratio. A regression analysis between 432 
the correlation coefficients and the signal-to-noise ratio was also performed. 433 
 434 
 435 

5. Discussion 436 

Our results confirmed our initial hypothesis that a slower aerobic system response during exercise 437 

transitions (aerobic fitness) is associated with lower maximal aerobic power. This association was 438 

dependent on the signal-to-noise ratio and the method used to evaluate aerobic fitness. For the first time, 439 

these results demonstrate that the correlation between maximal aerobic power and aerobic fitness was 440 

dependent on the degree of uncertainty of the aerobic fitness parameter estimates that are directly related 441 

to the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 signal-to-noise ratio.   442 

 443 

5.1 Noise Analysis 444 

The expected influences of the signal-to-noise ratio, as the proportion between the steady-state 445 

amplitude and the noise level, on the parameter estimates were initially investigated by computer 446 

simulations. The behavior of the error of 𝜏𝜏 estimates, as a function of noise level and steady-state amplitude 447 

(Figure 9 A), was less homogeneous probably due to the additional degree of uncertainty from the 448 

Levenberg–Marquardt algorithm used in time-domain explicit data fitting (40). Likewise, the error of 449 

estimate for the MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (Figures 9 B and 9 C, respectively) increased with higher noise and 450 

smaller steady-state amplitude. The counter balancing effect of a higher steady-state amplitude over a 451 

higher noise can be seen for all parameters. In practical terms, Figure 9 can be used to estimate the expected 452 

uncertainty the aerobic fitness parameter estimates for a given known steady-state amplitude and noise 453 

level. 454 
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The comparison between the experimental data and the computer simulations allowed us to 455 

identify that there was some level of expected uncertainty of the aerobic fitness evaluation in the 456 

participants included into this study, which appeared to compromise the correlation between maximal 457 

aerobic power and aerobic fitness. If the aerobic fitness is correlated with maximal aerobic power, this 458 

expected error should be further investigated to avoid type I error due to the probability of including fitness 459 

indexes with high estimation uncertainty. When each participant’s noise and steady-state amplitude were 460 

plotted on the top of the simulated data, it was possible to see that most of participants were at the desired 461 

<0 to 15% error interval when the aerobic fitness was evaluated by MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (Figures 9 B and 9 462 

C, respectively). On the other hand, when aerobic fitness was evaluated by 𝜏𝜏 (Figure 9 A), the expected 463 

uncertainty was higher than MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, showing that, at least for the tested participants, 𝜏𝜏 464 

estimation may rely more on signal-to-noise ratio to decrease estimation uncertainty, which is in accordance 465 

to previous literature (27). 466 

Since 𝑊̇𝑊 changes in CWR and PRBS protocols were related to 20 and 80% of the GET, participants 467 

were already close to the moderate-to-intense domain transition which means that the steady-state 468 

amplitude was as high as possible and close to the upper ceiling of the moderate intensity domain. When 469 

the GET is not available, the choice of selecting higher 𝑊̇𝑊 to increase the signal-to-noise ratio may decrease 470 

the error of estimates, however; it might also introduce non-linearities if the exercise domain switches to 471 

intense (20, 24).  472 

Using the reference lines in Figure 9, a signal-to-noise ratio lower than ~10, ~2 and ~4 was 473 

associated to a maximum error of only 15% when the aerobic fitness was evaluated by 𝜏𝜏, MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 474 

(Figures 9 A, 9 B and 9 C, respectively). The intrinsic low-pass filtering characteristics of MNG calculations 475 

(7–9) may explain the smaller uncertainty of its estimation in comparison with 𝜏𝜏 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Since 476 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 calculation does not involve any estimation beyond a peak identification of the second-by-second 477 

correlation between the shifted 𝑎𝑎𝑉̇𝑉𝑂𝑂2 time series across the PRBS exercise protocol (31), the uncertainty is 478 

linearly defined by the signal-to-noise ratio (as demonstrated by Figure 9 C).  479 

The computer simulations allowed us to speculate that: 1-) for all indexes used for aerobic fitness 480 

level evaluation, there was always a certain expected degree of uncertainty, independently of the signal-to-481 

noise ratio, and 2-) the uncertainty level of 𝜏𝜏 estimation was higher than the uncertainty of MNG and 482 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 estimation. 483 

 484 
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5.2 Relationship Between Aerobic Fitness and Power 485 

In 2016, a study (55) elucidated a model that can be used to explain, at least partially, the expected 486 

relationship between maximal aerobic power and fitness (7, 54) where a slower aerobic response to a new 487 

metabolic demand might be related to a lower maximal aerobic power by limiting the functional capacity. 488 

During incremental exercise protocols used to measure 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (maximal aerobic power), the expected 489 

linear relationship between work rate (𝑊̇𝑊) and 𝑎𝑎𝑉̇𝑉𝑂𝑂2 seems to be explained by a progressive, and balanced, 490 

slower aerobic response and higher system gain (i.e., 𝑎𝑎𝑉̇𝑉𝑂𝑂2 𝑊̇𝑊⁄  ratio) (55). Despite the literature debate on 491 

the relationship between aerobic system gain and muscle fatigue (25), the progressive loss of muscle 492 

homeostasis and efficiency during incremental exercise seems to be related to the progressive increase in 493 

type II fibers recruitment that has less oxidative capacity per unit of 𝑊̇𝑊 (i.e., higher gain) (3, 30). 494 

Accordingly, during incremental exercise, a slower aerobic system response to each work rate step increase 495 

is followed by a higher system gain (maintaining the linearity between 𝑎𝑎𝑉̇𝑉𝑂𝑂2 and 𝑊̇𝑊), which should lead to 496 

a lower exercise capacity, thus lower 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. In fact, aerobic fitness, which is associated with effort 497 

perception, seems to be more related with exercise capacity than with the aerobic system gain by itself (15). 498 

Therefore, slower 𝑎𝑎𝑉̇𝑉𝑂𝑂2 response characterized by slower 𝜏𝜏, and lower MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 values, during 499 

moderate exercise protocols, should be associated with a lower exercise tolerance by the progressive 500 

accumulation of fatigue-related metabolites during the incremental protocols (26). It is plausible to predict 501 

that a “buildup” of slower dynamics throughout the incremental exercise would lead to a lower exercise 502 

capacity since higher anaerobic energy supply perturbances are related to time of exhaustion during very-503 

intense exhaustive exercise (37). Therefore, the aerobic fitness might be one of, if not the greatest, 504 

determinants of the exercise capacity that is strictly related to maximal aerobic power.  505 

As illustrated in Figure 10, maximal aerobic power was correlated with aerobic fitness (evaluated 506 

by 𝜏𝜏, MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) for some specific combinations of signal-to-noise ratio and sample size. The 507 

effect of the signal-to-noise ratio on the correlation between 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 with aerobic fitness was clearer 508 

when 𝜏𝜏 was used to estimate the fitness level (Figure 10 A). The correlation between 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝜏𝜏 509 

increased as the mean signal-to-ratio increased, as demonstrated by the linear regression. The correlation 510 

between MNG with 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (Figure 10 B) was also influenced by the mean signal-to-noise level 511 

although to a lesser extent than 𝜏𝜏, as demonstrated by the linear regression between the correlation level 512 

and the mean signal-to-noise ratio. These findings are supported by the initial computer simulations 513 

presented in Figure 9, where a higher signal-to-noise ratio decreased the uncertainty of the aerobic fitness 514 
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parameter estimates which in turn increased the expected correlation level between 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑎𝑎𝑘𝑘 with 𝜏𝜏 and 515 

MNG. The inherent filter of MNG calculation possibly decreased the dependence of the 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 516 

MNG correlation from the signal-to-noise ratio. 517 

On the other hand, in contrast with our initial hypothesis, the correlation between maximal aerobic 518 

power with 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (Figure 10 C) was not influenced by the signal-to-noise ratio but vastly influenced by 519 

the sample size where the p-values largely increased when the sample size was lower than ~ 35 participants. 520 

The higher dependency of 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 on sample size might be related to the sensitivity of this parameter in 521 

evaluating the speed of the 𝑎𝑎𝑉̇𝑉𝑂𝑂2. In contrast to MNG which is optimized to evaluate the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 speed of a 522 

physiological 𝜏𝜏 range from 10 to 100 s (9), the magnitude of 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 changes decrease drastically when 𝜏𝜏 523 

is higher than ~50 s (please check Figure 2 from (19)), which was the case in 16 (37%) participants. 524 

Therefore, since the correlation between 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝜏𝜏 is not linear and tends to a constant level after 𝜏𝜏 525 

slower than ~50 s, the aerobic fitness level evaluation by 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 was compromised, thus higher sample 526 

sizes would compensate this lower sensitivity for slower responses. 527 

A few more factors must be considered when comparing 𝜏𝜏, MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 with 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 528 

from the experimental data. First, in order to compare methods that are mostly used (8, 23, 31) for aerobic 529 

fitness evaluation during PRBS protocols, the MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 were calculated from two complete 450 530 

s exercise sequences. Thus, in contrast to 𝜏𝜏 that was estimated based on a single transition (8), the dataset 531 

used for MNG and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 calculations may have had a higher signal-to-noise ratio, despite a previous 532 

study demonstrating no major differences in 𝜏𝜏 estimation based on simulated data from different 533 

combinations of exercise repetitions (17). Commonly, 𝜏𝜏 is estimated from the ensemble-averaged 𝑎𝑎𝑉̇𝑉𝑂𝑂2 534 

data from multiple exercise repetitions performed at different days or within the same laboratory visit, 535 

which should improve the signal-to-noise and the expected correlation between 𝜏𝜏 and 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 536 

However, one of the purposes of this study was to test the methods that could in fact be used in a single 537 

visit (like the 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) to evaluate aerobic fitness from 𝜏𝜏 (12), MNG (9) and 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (19, 32). 538 

Second, since we are comparing the aerobic fitness indexes with 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, we must also 539 

consider that the 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 by itself might be also a source of error that may influence the correlations 540 

presented in this study. However, 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 calculation, in contrast to the aerobic fitness indexes obtained 541 

during the moderate intensity exercise protocols, only requires a simple averaging of the last 20 seconds of 542 

data. In addition, the signal-to-noise ratio at the 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is vastly higher than the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 during the CWR 543 
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and PRBS protocols due to the nature of the incremental exercise where the peak value is more discernible 544 

from the random noise around the mean. During the peak of incremental exercise, considering an expected 545 

error level of 0.15 l·min-1 and a 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of 2.94 l·min-1 (group mean response), the signal-to-noise-ratio 546 

of 19 indicates that the noise might be negligible. On the other hand, this same 0.15 l·min-1 of noise is 547 

expected to impact the aerobic fitness parameter estimates if the steady-state amplitude is not large enough 548 

to compensate this noise. 549 

It is important to point out that the participants were recursively removed from the sample not to 550 

improve the correlations but to increase, progressively, the signal-to-noise ratio which turned out improved 551 

the correlation between power and fitness when aerobic fitness was evaluated by 𝜏𝜏 and MNG (Figure 10). 552 

This study design shows that the correlation between maximal aerobic power and aerobic fitness was 553 

modified by the quality of the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 data that influences uncertainty of the parameter estimates, at least 554 

when aerobic fitness was evaluated by 𝜏𝜏 and MNG. For 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, the speed of the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 seemed to also 555 

influence its correlation with 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 556 

Aerobic fitness level evaluation has some advantages over maximal aerobic power assessment as, 557 

beyond others, it can be evaluated during moderate intensity exercise. Thus, aerobic fitness can be more 558 

broadly investigated in sedentary or less healthy individuals (26, 38) who are not able to push themselves 559 

to the peak volitional fatigue. When compared to maximal incremental protocols used to measure 560 

𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, moderate intensity exercise testing has lower risks than those associated with maximal exertion 561 

(48) and can be monitored outside of the laboratory confinements (5). However, 𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is still the most 562 

common tool to evaluate CRH (34, 47) and does not require any complex data analysis beyond a simple 563 

data averaging at the peak of the exercise which is an advantage over aerobic fitness evaluation methods 564 

because it is less susceptible to random noise.  565 

The challenges of applying maximum exercise testing in patients with chronic diseases for 566 

example make aerobic fitness investigation by indexes such as 𝜏𝜏, MNG, or 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 a strong candidate for 567 

CRH evaluation if an acceptable signal-to-noise ratio is reached. Our results showed that, at least to some 568 

extent, moderate exercise protocols might be as good as maximum exertion exercise protocols to obtain 569 

indexes related to CRH. As practical recommendations, we suggest the use of PRBS or multiple repetitions 570 

of CWR protocol to evaluate aerobic fitness when a proper signal-to-noise ratio is reached. If the steady-571 

state amplitude and baseline noise are known, Figure 9 can be used to estimate the expected uncertainty of 572 

the aerobic fitness indexes.  573 
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 574 

6 Study Limitations 575 

This study has some limitations that must be considered. No patients were included into the 576 

sample, and the maximum aerobic power range was relatively small (from 1.49 to 4.55 l·min-1), thus more 577 

studies are necessary to expand these findings to populations with chronic diseases for example. In addition, 578 

since we are evaluating the influences of random noise around the mean expected 𝑎𝑎𝑉̇𝑉𝑂𝑂2 response, it was 579 

assumed a constant noise across the entire simulated and experimental data, so the noise was not dependent 580 

on the tested work rates. However, we may also consider that different noise levels might be present at 581 

different work rates within the same participant. 582 

 583 

7. Conclusion 584 

Aerobic fitness is related to maximum aerobic power in healthy subjects; however, this association 585 

appeared to be dependent on the signal-to-noise ratio and the data analysis method used for aerobic fitness 586 

evaluation. Our results suggest that sub-maximal exercise protocols (such as CWR and PRBS) might be as 587 

good as maximum exertion exercise protocols to obtain indexes related to cardiorespiratory health; 588 

however, extra caution is necessary for the methods used to evaluate aerobic fitness due to their high 589 

dependency on signal-to-noise ratio.  590 
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Figures Legend 741 

 742 

Figure 1. Digital shift register composed by 4 stages to generate pseudorandom binary sequence 743 

exercise protocols. The addition feedback module (∑) add the values of the first and the fourth 744 

stage and check the criteria statement. This result (0 or 1) is recorded and then inserted into stage 745 

1, and the register is shifted to the right. The output sequence composed by 1 and 0 is transformed 746 

in the target work rates where 1 = 80 % and 0 = 20% of the gas exchange threshold. 747 

 748 

Figure 2. LabVIEW implementation of the digital shift register described in Figure 1 to generate 749 

pseudorandom binary sequence (PRBS) exercise protocols. The software has 5 inputs: the number of digits, 750 

the unit length, the initial register seeds, and the two work rate levels. From these inputs, the shift register 751 

is populated, and the time series of protocol is built. The frequency analysis is also performed to evaluate 752 

the signal on frequency space. The inputs are controlled by the user through the program graphical interface 753 

and the outputs are also displayed. The exercise protocol on time domain can be exported from the “PRBS 754 

vs Time” graph. The software block diagram can be download at: 755 

https://doi.org/10.6084/m9.figshare.12206654 (Supplementary Material 1). This software was built on 756 

National Instruments LabVIEW Student Edition, 2014, for personal and scientific use only. 757 

 758 

Figure 3. Illustration of the exercise protocols composed of a constant work rate (CWR), a pseudorandom 759 

binary sequence (PRBS), and a maximal cardiopulmonary exercise testing (CPET). The two work rates (36 760 

and 144 watts) of the CWR and PRBS protocols corresponded to 20 and 80% of the work rate at the gas 761 

exchange threshold (GET) previously identified. The increment rate of the CPET protocol (16 watts.min-1 762 

in this case) was calculated accordingly to participant’s sex, weight, height, and age. The alveolar oxygen 763 

uptake (𝑎𝑎𝑉̇𝑉𝑂𝑂2, in l·min-1) response to these protocols is also plotted. 764 

 765 

Figure 4. Illustration of the aerobic fitness evaluated by time domain analysis of the alveolar oxygen uptake 766 

(𝑎𝑎𝑉̇𝑉𝑂𝑂2) dynamics during exercise transition. The 𝑎𝑎𝑉̇𝑉𝑂𝑂2 response to a step exercise protocol (A) is fitted 767 

into a delayed mono-exponential model (solid line in B) and the cardiodynamic phase (11 s, fine pattern 768 

area in C) is removed from the data by the analysis of the residuals (upper graphs). The remaining 𝑎𝑎𝑉̇𝑉𝑂𝑂2 769 

https://doi.org/10.6084/m9.figshare.12206654
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data (C) are fitted into the same exponential model and the time constant 𝜏𝜏 of this function is obtained. 770 

Please see text for more information about data fitting. 771 

 772 

Figure 5. Illustration of the aerobic fitness evaluation based on the analysis of the alveolar oxygen uptake 773 

(𝑎𝑎𝑉̇𝑉𝑂𝑂2, solid lines) dynamics during a pseudorandom binary sequence exercise protocol (dashed lines). The 774 

second-by-second linearly interpolated data (A) of the two consecutives protocols were ensemble averaged 775 

to obtain a single response (B). The exercise protocol and the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 were transformed into the frequency 776 

space by a fast Fourier transformation and the system gain was calculated by dividing the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 by the 777 

protocol amplitude at each of the analyzed frequencies and then normalized by the gain at frequency 2.2 778 

mHz. The average of the normalized gains (in %) of the frequencies 4.4, 6.6 and 8.8 mHz (C) was taken as 779 

the final index related to aerobic fitness (named Mean Normalized Gain, or MNG). In addition, the exercise 780 

protocol work rate (upper graph in B) was cross-correlated with the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 response (lower graph in B) 781 

accordingly to previous study (19) to obtain the cross-correlation function at different lags. The peak of 782 

CCF (𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 in D) is also related to the speed of the 𝑎𝑎𝑉̇𝑉𝑂𝑂2 dynamics, as the MNG. 783 

 784 

Figure 6. Computer simulations of the alveolar oxygen uptake (𝑎𝑎𝑉̇𝑉𝑂𝑂2) response to a constant and 785 

pseudorandom binary sequence exercise protocols. The 𝑎𝑎𝑉̇𝑉𝑂𝑂2 responses have different steady state 786 

amplitudes (a = 225 and 1425 ml·min-1) and noise levels (50 and 400 ml·min-1) resulting in a signal-to-787 

noise ratio of 28.5, 3.5, 4.5, and 0.5 in A, B, C, and D, respectively. Higher amplitudes associated with 788 

lower noise levels result in remarkably high signal-to-noise ratio (A), and the opposite, in very low signal-789 

to-noise ratio (D). Higher noise can be counterbalance with higher amplitude (B), and lower amplitude can 790 

be counterbalanced by lower noise (C), maintaining a reliable signal-to-noise ratio. 791 

 792 

Figure 7. LabVIEW implementation of the computer program to generate the oxygen uptake simulations 793 

with different noise levels. This software has three inputs (amplitude, tau and noise) and three outputs (time 794 

constant tau [𝜏𝜏], mean normalized gain [MNG] and cross-correlation peak [𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝]). Please see text for 795 

more details. The software block diagram can be download at: 796 

https://doi.org/10.6084/m9.figshare.12206663.v1 (Supplementary Material 2). Program built on NI 797 

LabVIEW Student Edition - 2014, personal and research use only. 798 

 799 

https://doi.org/10.6084/m9.figshare.12206663.v1
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Figure 8. Relationship between mean ± SD signal-to-noise ratio and the study sample size. Participants 800 

were ranked according to their signal-to-noise ratio and then those with the lowest signal-to-noise were 801 

removed from the sample. As expected, the mean signal-to-noise increased as the sample size decreased. 802 

 803 

Figure 9. Computer simulations of the alveolar oxygen uptake response during exercise transitions with 804 

variable noise levels and steady state amplitudes. As displayed in A, B and C, the simulated data were 805 

analyzed by time domain modelling (by the time constant 𝜏𝜏), frequency domain analysis (by the mean 806 

normalized gain, or MNG) and by the peak of the cross-correlation function (𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), respectively. For 807 

each of the simulations, the error of the parameter estimate (colors) was taken as the difference, in 808 

percentage, between the estimated parameter with its analogous estimate from the zero-noise signal. The 809 

noise level and the steady state amplitude of the experimental data from the constant work rate tests 810 

(participants data, open circle) were plotted within this reference frame. Some examples of the signal-to-811 

noise ratio (i.e., steady-state amplitude/noise level) are also plotted as white solid lines. See text for further 812 

details about the computer simulations. 813 

 814 

Figure 10. Correlations between the measured aerobic fitness parameters (tau [𝜏𝜏], in A; mean normalized 815 

gain [MNG], in B; and cross-correlation function peak [𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝], in C) with maximal aerobic power 816 

evaluated by peak alveolar oxygen uptake (𝑎𝑎𝑉̇𝑉𝑂𝑂2−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) at different signal-to-noise ratios estimated from 817 

the constant work rate tests (x axis in A, B and C). The correlation coefficient is plotted in the lower A, B 818 

and C graphs, and the statistical significance level (p value, open circles) and the sample size (dotted lines) 819 

are displayed in the upper graphs as a function of the signal-to-noise ratio. A regression analysis between 820 

the correlation coefficients and the signal-to-noise ratio was also performed. 821 


