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Abstract

Knowledge discovery in big data is one of the most important applications of computing machinery 
today. Search is essential part of all such procedures. Search algorithms must be extremely efficient, but 
at the same time knowledge discovery procedures must not produce too many false positives or false 
negatives. False positives require post-processing, which reduces the overall efficiency of the knowl-
edge discovery procedures, while false negatives reduce the sensitivity of such procedures. To reduce 
the false positive and false negative rate, in this paper, constrained approximate search algorithms are 
proposed to be applied. An overview of search theory, exact and approximate, is given first, exposing 
fundamentals of dynamic programming-based and bit-parallel-based approximate search algorithms 
without constraints. Then, introduction of constraints specific for various knowledge discovery pro-
cedures is explained, together with the subtleties of various applications, such as SPAM filtering and 
digital and network forensics (file carving, intrusion detection in hosts and networks). Advantages and 
disadvantages of applications of such constrained search algorithms in knowledge discovery proce-
dures are also discussed. A potential application in bioinformatics is outlined. 
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Аннотация

Обнаружение знаний в области больших данных является одним из наиболее важных приложе-
ний вычислительной техники сегодня. Поиск является неотъемлемой частью всех таких проце-
дур. Алгоритмы поиска должны быть чрезвычайно эффективными, но в то же время процедуры 
обнаружения знаний не должны давать слишком много ложных срабатываний или ложных от-
рицаний. Ложные срабатывания требуют последующей обработки, что снижает общую эффек-
тивность процедур обнаружения знаний, в то время как ложные отрицания снижают чувстви-
тельность таких процедур. Чтобы уменьшить количество ложноположительных и 
ложноотрицательных результатов, в этой статье предлагается применять ограниченные при-
ближенные алгоритмы поиска. Краткий обзор теории поиска, точной и приблизительной, дает-
ся вначале, раскрывая основы алгоритмов приближенного поиска на основе динамического 
программирования и на основе бит-параллелизма без ограничений. Затем объясняется введе-
ние ограничений, специфичных для различных процедур обнаружения знаний, а также тонко-
стей различных приложений, таких как фильтрация спама, цифровая и сетевая экспертиза (раз-
деление файлов, обнаружение вторжений в хосты и сети). Также обсуждаются преимущества и 
недостатки применения таких ограниченных алгоритмов поиска в процедурах обнаружения 
знаний. Намечено потенциальное применение в биоинформатике.

Ключевые слова:  обнаружение знаний, большие данные, поиск, ограничения, обнаружение 
вторжений, цифровая криминалистика, фильтрация спама, биоинформатика, оповещения об 
активности, химическая активность.
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ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ИНФОРМАТИКИ, ПРИКЛАДНОЙ МАТЕМАТИКИ, 
КОМПЬЮТЕРНЫХ НАУК И КОГНИТИВНО-ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Introduction 
Search in large data sets has always been one of the most 
important tasks for computing machinery. These data sets, 
together with the algorithms that are used for their processing, are 
nowadays often referred to as big data. As data quantities that the 
mankind produces every day grow at so high rates, new more 
efficient search algorithms are needed to discover knowledge in 
such enormous amounts of data. In addition, since data to analyze 
often arrive from heterogeneous sources and may contain errors, 
it is necessary to introduce tolerance in search in order to avoid 
false negatives in knowledge discovery procedures. To this end, 
many exact search algorithms have been modified in order to be 
able to detect data patterns with certain error tolerance.  
The time complexity of the most efficient exact search algorithms 
is sub-linear [1], but even that is not enough when it comes to 
analyzing big data, where the size of the search strings can easily 
reach exabytes. In addition, these search algorithms are difficult to 
implement on classical computer architectures with limited 
computer word sizes if there is a need to detect longer patterns. In 
these cases, concatenation of computer words is necessary to 
process the search string, which significantly reduces the 
efficiency of such implementations (see, for example, [2]). 
Different computer architectures perform better in these cases. 
Typical examples are reconfigurable hardware platforms, such as 
Field Programmable Gate Arrays (FPGA), where it is possible to 
define a computer word, whose size is only limited by the memory 
capacity of the concrete FPGA card. On such architectures, the 
advantage of bit-parallelism can be fully exploited even for very 
long search patterns. 
By incorporating error tolerance in search algorithms, we can 
reduce the probability of false negatives in search. However, very 
often we need to reduce the probability of false positives in such 
procedures as well. False positives are annoying for the user of a 
search algorithm since they require post-processing, which can 
eliminate them or reduce their number and these procedures 
often influence the overall efficiency of a search algorithm in a 
negative way. To reduce the number of false positives, it is useful 
to introduce certain constraints in search algorithms, which take 
into account a priori knowledge about the process that is analyzed 
[3]. Then it is possible to ignore the patterns that would otherwise 
be accepted by the (approximate) search algorithm, but for such 
patterns the a priori knowledge about the analyzed process 
indicates that they are impossible to happen. 
In this paper, we present several constrained approximate search 
algorithms, where the constraints reflect the specific features of 
certain application fields, such as intrusion detection, 
cryptanalysis of stream ciphers, SPAM detection and so on. A 
common characteristic of these applications is possibility of 
searching for long patterns, which may cause difficulties in 
implementation on various computer architectures. In some cases, 
these pattern lengths are extremely long, such as the case when 
we want to break a stream cipher by means of a generalized 
correlation attack as well as in all the cases where we have to 
decide between several hypotheses and set a threshold of 
acceptance of one of them. Then the length of the search pattern 
directly and significantly influences the number of false positives 
in approximate search. 

We discuss two categories of constrained approximate search 
algorithms: dynamic programming-based and bit-parallel 
algorithms. The advantages and disadvantages of these groups of 
algorithms are discussed for several (potential) fields of 
application. 

The search problem 
The basic definition of the search problem is the following: given 
the search pattern 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑤𝑤1𝑤𝑤𝑤𝑤2⋯𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚 and the search string 𝑆𝑆𝑆𝑆 =
𝑠𝑠𝑠𝑠1𝑠𝑠𝑠𝑠2 ⋯𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛, find the locations of all occurrences of 𝑤𝑤𝑤𝑤 in 𝑆𝑆𝑆𝑆. The naïve 
algorithm to solve this problem making use of a sliding 
comparator (see an example in Fig. 1) has quadratic time 
complexity. Strictly mathematically speaking, the search problem 
does not belong to the category of the most difficult problems (it is 
in the class P), but our challenge is the length of the search string 
𝑆𝑆𝑆𝑆, which may be extreme. In the case of an extremely long 𝑆𝑆𝑆𝑆, even 
the best search algorithms, whose time complexity is sub-linear 
are not efficient enough to process big data in a reasonable 
amount of time. Then combinations of theoretically efficient 
search algorithms and sophisticated implementations on parallel 
and distributed computer architectures give the best results. 

F i g. 1. The naïve exact search algorithm, 𝑤𝑤𝑤𝑤  =”para”, 𝑆𝑆𝑆𝑆  =”paparazzo” 

Efficiency improvements from quadratic to linear time 
complexities are achieved by varying the way of sliding the 
window along the search string and the way how the pattern is 
searched for in the window. On the other hand, efficiency 
improvements from linear to sub-linear time complexities are 
achieved on average, by avoiding (skipping) the search in the 
regions of the search string, in which the search pattern is 
impossible to occur.  

Exact search 
Let 𝑋𝑋𝑋𝑋 = 𝑥𝑥𝑥𝑥1𝑥𝑥𝑥𝑥2 ⋯ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 be a string of symbols from an alphabet 𝒜𝒜𝒜𝒜. Then 
the substring 𝑉𝑉𝑉𝑉 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖1 ⋯ 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗  of 𝑆𝑆𝑆𝑆 is a prefix of 𝑆𝑆𝑆𝑆 if 𝑖𝑖𝑖𝑖 = 1, a suffix of 
𝑆𝑆𝑆𝑆 if 𝑗𝑗𝑗𝑗  = 𝑛𝑛𝑛𝑛, and a factor of 𝑆𝑆𝑆𝑆 if 1 < 𝑖𝑖𝑖𝑖 ≤ 𝑗𝑗𝑗𝑗 < 𝑛𝑛𝑛𝑛.  
The exact search algorithms are usually divided into three groups, 
according to whether their approach is prefix, suffix, or factor 
based. The most prominent prefix-based algorithms are Knuth-
Morris-Pratt [4] and the bit-parallel algorithms Shift-AND [2], and 
Shift-OR (see, for example, [1]). The suffix-based algorithms that 
are most often used in practice are the Boyer-Moore algorithm [5] 
and its variants, Horspool [6] and Sunday [7]. The algorithms from 
the third, factor-based, group achieve the best performance on 
average, provided independent and uniformly distributed 
characters from the alphabet 𝒜𝒜𝒜𝒜 make t he search s tring 𝑆𝑆𝑆𝑆. The 
often-used algorithms from this group are Backward DAWG1 
Matching (BDM) (see, for example, [8]) and the bit-parallel 
Backward Non-deterministic DAWG matching (BNDM) [9]. 

1 DAWG = Directed Acyclic Word Graph, see [8] 
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𝑆𝑆𝑆𝑆 if 𝑗𝑗𝑗𝑗  = 𝑛𝑛𝑛𝑛, and a factor of 𝑆𝑆𝑆𝑆 if 1 < 𝑖𝑖𝑖𝑖 ≤ 𝑗𝑗𝑗𝑗 < 𝑛𝑛𝑛𝑛.  
The exact search algorithms are usually divided into three groups, 
according to whether their approach is prefix, suffix, or factor 
based. The most prominent prefix-based algorithms are Knuth-
Morris-Pratt [4] and the bit-parallel algorithms Shift-AND [2], and 
Shift-OR (see, for example, [1]). The suffix-based algorithms that 
are most often used in practice are the Boyer-Moore algorithm [5] 
and its variants, Horspool [6] and Sunday [7]. The algorithms from 
the third, factor-based, group achieve the best performance on 
average, provided independent and uniformly distributed 
characters from the alphabet 𝒜𝒜𝒜𝒜 make t he search s tring 𝑆𝑆𝑆𝑆. The 
often-used algorithms from this group are Backward DAWG1 
Matching (BDM) (see, for example, [8]) and the bit-parallel 
Backward Non-deterministic DAWG matching (BNDM) [9]. 

1 DAWG = Directed Acyclic Word Graph, see [8] 
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Even though there exist exact search algorithms (so-called skip 
algorithms) that are fastest on average, in some applications these 
algorithms must not be used. An example is intrusion detection, 
where an attacker could deliberately produce traffic that makes 
the search algorithm used in the Intrusion Detection System (IDS) 
perform poorly (much slower than on average) and exploit that to 
cause IDS packet drop, which opens the way to false negatives. 
Such attacks are called algorithmic attacks [10]. In these cases, the 
fastest algorithms that can be used are the ones from the non-skip 
category, such as the forward-based bit parallel algorithms, Shift-
AND, and especially Shift-OR. 

Bit-parallelism and exact search 
Bit-parallel search algorithms simulate the Non-deterministic 
Finite Automaton (NFA) assigned to the given search pattern 𝑤𝑤𝑤𝑤. 
The automaton consists of states and has a simple linear register-
like structure. For each input character from the search string 𝑆𝑆𝑆𝑆, 
such an automaton makes a transition from its current state into 
the next state, if it is possible, and makes a copy of itself continuing 
to receive the characters from 𝑆𝑆𝑆𝑆. Each such copy starts receiving 
the characters from the initial state (0). If for some input character 
from 𝑆𝑆𝑆𝑆, a transition from the current state into the next state for 
some copy of the NFA is not possible, that copy of the NFA 
becomes inactive, i.e. it stops receiving future characters. If the 
rightmost (double circled) state is reached by any of these copies 
for some input character, an occurrence of 𝑤𝑤𝑤𝑤 is found in 𝑆𝑆𝑆𝑆 (see, for 
example [11]). Instead of analyzing such an NFA as a set of copies 
of the basic linear structure, the concept of an active state is often 
used. Then, instead of modeling the functioning of the NFA by 
making copies and maintaining some of these copies active, an 
active state replaces the corresponding active copies of the basic 
structure. Each active copy is replaced by a single state. For 
example, consider the search pattern 𝑤𝑤𝑤𝑤 =”attack” consisting of 
symbols from the English alphabet. The corresponding NFA 
without 𝜖𝜖𝜖𝜖-transitions (the transitions without consuming any 
input character, see [11]) allowed is given in Fig. 2. 

F i g. 2. The NFA assigned to 𝑤𝑤𝑤𝑤  =”attack”, without 𝜖𝜖𝜖𝜖 -transitions 

If we allow 𝜖𝜖𝜖𝜖-transitions, t hen t he f orm o f t he N FA f or t he s ame 
search pattern is given in Fig. 3.  

F i g. 3. The NFA assigned to 𝑤𝑤𝑤𝑤  =”attack”, with 𝜖𝜖𝜖𝜖 -transitions 

Suppose the search string is 𝑆𝑆𝑆𝑆 =”attentionattack”. After receiving 
the prefix “att”, the state 3 of the machine from Fig. 2 will be active, 
but after receiving the next character ‘e’ from S, no state will be 
active until the next character ‘a’ arrives. The machine from Fig. 3 
that allows 𝜖𝜖𝜖𝜖-transitions jumps immediately to the active state that 
corresponds to the prefix of 𝑆𝑆𝑆𝑆 t hat i t h as p rocessed. T hus, b oth 
representations, with and without 𝜖𝜖𝜖𝜖-transitions, are equivalent.  

The operation of the theoretical NFA described above assumes 
infinite parallelism. In practice, we can only simulate such an NFA, 
and to this end it is necessary to limit the number of copies of the 
basic linear structure present at a time to the length 𝑚𝑚𝑚𝑚 of the 
pattern 𝑤𝑤𝑤𝑤. Baeza-Yates and Gonnet [2] were the first to describe 
an efficient simulation of this NFA. Suppose 𝑆𝑆𝑆𝑆 =”paparazzo”, 𝑛𝑛𝑛𝑛 =
|𝑆𝑆𝑆𝑆| = 9, and 𝑤𝑤𝑤𝑤 =”para”, 𝑚𝑚𝑚𝑚 = |𝑤𝑤𝑤𝑤| = 4. As the new characters from 𝑆𝑆𝑆𝑆 
arrive, the created copies of the basic linear structure assigned to 
the search pattern 𝑤𝑤𝑤𝑤 get inactive or remain active. The fact of 
being active or inactive is the only one that matters and since the 
activity status of one copy of the basic structure is binary, it can be 
encoded with a 0 (inactive) or a 1 (active). Since we can only have 
up to 𝑚𝑚𝑚𝑚 basic structures at a time, we put the status bits of each 
such structure present at some time instant in a computer word, 
the search status word 𝐷𝐷𝐷𝐷. In our example, after 4 processed 
characters from 𝑆𝑆𝑆𝑆, the status word 𝐷𝐷𝐷𝐷 = 0010 (Fig. 4).  

F i g. 4. Operation of the simulated NFA (see text) 

The next character from 𝑆𝑆𝑆𝑆 to p rocess is ‘ r’. S ince we cannot k eep 
more than 𝑚𝑚𝑚𝑚 basic structures at a t ime, we have to eliminate the 
oldest one. It is easy to see that by shifting the search status word 
𝐷𝐷𝐷𝐷 by one position to the left, we achieve t his g oal. T he creation of 
the new copy of the basic structure reflects on 𝐷𝐷𝐷𝐷 by OR-ing 𝐷𝐷𝐷𝐷 with 
0𝑚𝑚𝑚𝑚𝑚𝑚1. The crucial step is then updating the search status word, all 
the bits at the same time (therefore bit-parallelism), by AND-ing 𝐷𝐷𝐷𝐷 
with a bit mask corresponding to the current processed character 
from 𝑆𝑆𝑆𝑆. The bit masks are defined in advance, by putting a 1 in the 
bit mask at the position where the corresponding character is 
located in the reversed search pattern 𝑤𝑤𝑤𝑤. Defining the bit masks in 
advance is possible since the basic structure, whose status bit is 
located at certain position in the search status word 𝐷𝐷𝐷𝐷 always 
waits for the same character. 
For the example from Fig. 4, the bit masks assigned to each 
character from the search pattern 𝑤𝑤𝑤𝑤 are 
𝐵𝐵𝐵𝐵[′𝑝𝑝𝑝𝑝′] = 0001, 𝐵𝐵𝐵𝐵[′𝑎𝑎𝑎𝑎′] = 1010, and 𝐵𝐵𝐵𝐵[′𝑟𝑟𝑟𝑟′] = 0100.   (1) 
Then, for the new search status word 𝐷𝐷𝐷𝐷′ obtained after processing 
the next character ‘r’ from 𝑆𝑆𝑆𝑆 we have 
𝐷𝐷𝐷𝐷′ = �(0010 ≪ 1) ∨ 0001� ∧ 0100 = 
= 0101 ∧ 0100 = 0100     (2) 
By generalizing the equation (2), we get the Shift-AND search 
status word update formula 
𝐷𝐷𝐷𝐷′ = �(𝐷𝐷𝐷𝐷 ≪ 1) ∨ 0𝑚𝑚𝑚𝑚𝑚𝑚1� ∧ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�,     𝑗𝑗𝑗𝑗 = 1, … , 𝑛𝑛𝑛𝑛   (3) 
After each update of the search status word 𝐷𝐷𝐷𝐷, i t i s necessary t o 
check whether the MSB of 𝐷𝐷𝐷𝐷 is equal to 1, which would mean that 
an occurrence of the search pattern 𝑤𝑤𝑤𝑤 would b e f ound i n t he 
search string 𝑆𝑆𝑆𝑆. This completes the Shift-AND algorithm described 
in [2]. The inherent bit-parallelism of a computer word where the 
search status word is stored enables checking the status of all the 
simulated basic structures at the same time, which reduces the 

time complexity of the search algorithm from essentially quadratic 
(𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚)) to linear (𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛)). 
The Shift-OR algorithm is often considered just a more efficient 
implementation of the Shift-AND algorithm (see, for example, [1]). 
Namely, if the bit masks and search status word 𝐷𝐷𝐷𝐷 are 
complemented and a 0 is considered the encoding of an active 
basic structure in 𝐷𝐷𝐷𝐷 then there is no need for OR-ing with 0𝑚𝑚𝑚𝑚𝑚𝑚1 in 
the update formula (3) for 𝐷𝐷𝐷𝐷, which makes the algorithm 33% 
faster than the Shift-AND algorithm. The update with the bit masks 
is performed by OR-ing of the bit masks instead of AND-ing. Thus, 
the Shift-OR search status word update formula becomes very 
simple (4). 
𝐷𝐷𝐷𝐷′ = (𝐷𝐷𝐷𝐷 𝐷 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�,     𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛   (4) 
The MSB in the expression (4) is checked for being a 0, which 
would indicate an occurrence of 𝑤𝑤𝑤𝑤 in 𝑆𝑆𝑆𝑆. 
In the rest of this paper, we only use the variants of the Shift-OR 
algorithm because of its efficiency. 

Approximate search 
In a big data environment, errors in data occasionally happen and 
if exact search is applied on such data sets then false negatives will 
occur. To avoid that, certain error tolerance can be included in the 
search algorithms. The two most often used methods of 
performing error tolerant search are dynamic programming-based 
search and approximate bit-parallel search. 

Dynamic programming in approximate 
search 
It is well known (see for example [12], [13], [14]) that it is possible 
to determine the minimum number of elementary edit operations 
(insertions, deletions, and substitutions) that transform the given 
string 𝑋𝑋𝑋𝑋 = 𝑥𝑥𝑥𝑥𝑚𝑥𝑥𝑥𝑥2 ⋯𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 into the given string 𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦𝑚𝑦𝑦𝑦𝑦2 ⋯𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚 of 
symbols from an alphabet 𝒜𝒜𝒜𝒜 in an iterative way, without 
enumerating all the possible transforms, by filling a special matrix 
𝑊𝑊𝑊𝑊, which means that the time complexity of such an algorithm is 
essentially quadratic, i.e. 𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚). This minimum number of 
elementary edit operations needed to transform 𝑋𝑋𝑋𝑋 into 𝑌𝑌𝑌𝑌 is called 
Levenshtein or edit distance and the matrix 𝑊𝑊𝑊𝑊 is called the matrix 
of partial edit distances. In this matrix, a cell 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] contains the 
(partial) edit distance between the prefix 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 of the string 𝑋𝑋𝑋𝑋 and the 
prefix 𝑌𝑌𝑌𝑌𝑗𝑗𝑗𝑗  of the string 𝑌𝑌𝑌𝑌. To compute the element 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] it is 
necessary to use the elements 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗] (insertions), 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 𝑖 1] 
(deletions), and 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗 𝑖 1] (substitutions), and check which of 
these elementary edit operations gives the minimum increase in 
partial edit distance. This operation determines the value of 
𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗]. To each elementary edit operation, a cost is assigned. In 
most cases, this cost is equal for all deletions and insertions (the 
value is usually 1). The substitutions by the same symbol usually 
contribute 0 to the edit distance, while the substitutions by a 
different symbol can be set differently for every pair of symbols 
(this is usual in computational biology) or equal for all such 
substitutions. Let 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 be the elementary edit distance assigned to a 
deletion of a symbol and let 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 be the elementary edit distance 
assigned to an insertion of a symbol. To represent deletions and 
substitutions, an “empty symbol” 𝜙𝜙𝜙𝜙 is often used. Thus, the cost 
assigned to the deletion of a symbol 𝑥𝑥𝑥𝑥 is 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝜙𝜙𝜙𝜙), and the cost 
assigned to the insertion of the symbol 𝑦𝑦𝑦𝑦 is 𝑑𝑑𝑑𝑑(𝜙𝜙𝜙𝜙,𝑦𝑦𝑦𝑦). Let 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) be 

the elementary edit distance assigned to a substitution of the 
symbol 𝑥𝑥𝑥𝑥 by the symbol 𝑦𝑦𝑦𝑦. The dynamic programming algorithm 
for computing the edit distance 𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) between the strings 𝑋𝑋𝑋𝑋 =
𝑥𝑥𝑥𝑥𝑚𝑥𝑥𝑥𝑥2⋯𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 and 𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦𝑚𝑦𝑦𝑦𝑦2⋯𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚 is given below (Algorithm 1, [13]) 
Algorithm 1 
𝑊𝑊𝑊𝑊[0,0] = 0 
for 𝑖𝑖𝑖𝑖 = 1, … ,𝑛𝑛𝑛𝑛, 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 0] = 𝑖𝑖𝑖𝑖 
for 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚, 𝑊𝑊𝑊𝑊[0, 𝑗𝑗𝑗𝑗] = 𝑗𝑗𝑗𝑗 
for 𝑖𝑖𝑖𝑖 = 1, … ,𝑛𝑛𝑛𝑛 
for 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 
𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] = 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛{𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 𝑖 1] + 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 ,𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗] + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 ,𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗 𝑖 1]

+ 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠} 
𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = 𝑊𝑊𝑊𝑊[𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚]    □ 
To illustrate the operation of Algorithm 1, let us produce the edit 
distance matrix given the strings 𝑋𝑋𝑋𝑋 =”bigram” and 
𝑌𝑌𝑌𝑌 =”monogram”, assuming the following: 
∀𝑥𝑥𝑥𝑥,𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝜙𝜙𝜙𝜙) = 1,  
∀𝑦𝑦𝑦𝑦,𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑(𝜙𝜙𝜙𝜙,𝑦𝑦𝑦𝑦) = 1,  

∀(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦),𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �0, 𝑥𝑥𝑥𝑥 = 𝑦𝑦𝑦𝑦
1, 𝑥𝑥𝑥𝑥 𝑥 𝑦𝑦𝑦𝑦   , 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 𝑦 𝒜𝒜𝒜𝒜.

The matrix of partial edit distances produced by Algorithm 1 for 
this case is given below: 

The representation of deletions and insertions by means of the 
“empty symbol” 𝜙𝜙𝜙𝜙 enables presentation of so-called edit 
sequences, which show the order of elementary edit operations in 
the transform of the (prefix of) string 𝑋𝑋𝑋𝑋 into the (prefix of) string 
𝑌𝑌𝑌𝑌. The optimal transform, i.e. the transform, whose cost is minimal, 
is not unique. For example, the following two optimal transforms 
have the same overall cost (𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = 4) under the assumptions 
on 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 , 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖, and 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 defined above. 

𝐶𝐶𝐶𝐶𝑚(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝜙𝜙𝜙𝜙
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛  𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚� 

𝐶𝐶𝐶𝐶2(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝑏𝑏𝑏𝑏 𝜙𝜙𝜙𝜙 𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛  𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙  𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚� 

Edit sequence reconstruction is necessary in many applications, 
such as computational biology, cryptanalysis etc. The algorithm to 
reconstruct an optimal edit sequence is based on backtracking 
through the whole partial edit distance matrix, starting from 
𝑊𝑊𝑊𝑊[𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚]. The need for such a backtracking requires maintaining 
the whole partial edit distance matrix that yields space complexity 
of the dynamic programming edit distance computation algorithm 
𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚). If there is no need for edit sequence reconstruction, the 
space complexity is reduced to 𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛) since, obviously, to compute 
the edit distance only two columns of the partial edit distance 
matrix are necessary to maintain at every moment. 
The allowed number of errors in approximate search can now be 
defined as the minimum edit distance 𝑘𝑘𝑘𝑘 that is tolerated between 
the search pattern 𝑤𝑤𝑤𝑤 and the distorted version of the portion of the 
search string 𝑆𝑆𝑆𝑆 where the search pattern is located. The 

m o n o g r a m 
0 1 2 3 4 5 6 7 8 

b 1 1 2 3 4 5 6 7 8 
i 2 2 2 3 4 5 6 7 8 
g 3 3 3 3 4 4 5 6 7 
r 4 4 4 4 4 5 4 5 6 
a 5 5 5 5 5 5 5 4 5 
m 6 5 6 6 6 6 6 5 4 
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Even though there exist exact search algorithms (so-called skip 
algorithms) that are fastest on average, in some applications these 
algorithms must not be used. An example is intrusion detection, 
where an attacker could deliberately produce traffic that makes 
the search algorithm used in the Intrusion Detection System (IDS) 
perform poorly (much slower than on average) and exploit that to 
cause IDS packet drop, which opens the way to false negatives. 
Such attacks are called algorithmic attacks [10]. In these cases, the 
fastest algorithms that can be used are the ones from the non-skip 
category, such as the forward-based bit parallel algorithms, Shift-
AND, and especially Shift-OR. 

Bit-parallelism and exact search 
Bit-parallel search algorithms simulate the Non-deterministic 
Finite Automaton (NFA) assigned to the given search pattern 𝑤𝑤𝑤𝑤. 
The automaton consists of states and has a simple linear register-
like structure. For each input character from the search string 𝑆𝑆𝑆𝑆, 
such an automaton makes a transition from its current state into 
the next state, if it is possible, and makes a copy of itself continuing 
to receive the characters from 𝑆𝑆𝑆𝑆. Each such copy starts receiving 
the characters from the initial state (0). If for some input character 
from 𝑆𝑆𝑆𝑆, a transition from the current state into the next state for 
some copy of the NFA is not possible, that copy of the NFA 
becomes inactive, i.e. it stops receiving future characters. If the 
rightmost (double circled) state is reached by any of these copies 
for some input character, an occurrence of 𝑤𝑤𝑤𝑤 is found in 𝑆𝑆𝑆𝑆 (see, for 
example [11]). Instead of analyzing such an NFA as a set of copies 
of the basic linear structure, the concept of an active state is often 
used. Then, instead of modeling the functioning of the NFA by 
making copies and maintaining some of these copies active, an 
active state replaces the corresponding active copies of the basic 
structure. Each active copy is replaced by a single state. For 
example, consider the search pattern 𝑤𝑤𝑤𝑤 =”attack” consisting of 
symbols from the English alphabet. The corresponding NFA 
without 𝜖𝜖𝜖𝜖-transitions (the transitions without consuming any 
input character, see [11]) allowed is given in Fig. 2. 

F i g. 2. The NFA assigned to 𝑤𝑤𝑤𝑤  =”attack”, without 𝜖𝜖𝜖𝜖 -transitions 

If we allow 𝜖𝜖𝜖𝜖-transitions, t hen t he f orm o f t he N FA f or t he s ame 
search pattern is given in Fig. 3.  

F i g. 3. The NFA assigned to 𝑤𝑤𝑤𝑤  =”attack”, with 𝜖𝜖𝜖𝜖 -transitions 

Suppose the search string is 𝑆𝑆𝑆𝑆 =”attentionattack”. After receiving 
the prefix “att”, the state 3 of the machine from Fig. 2 will be active, 
but after receiving the next character ‘e’ from S, no state will be 
active until the next character ‘a’ arrives. The machine from Fig. 3 
that allows 𝜖𝜖𝜖𝜖-transitions jumps immediately to the active state that 
corresponds to the prefix of 𝑆𝑆𝑆𝑆 t hat i t h as p rocessed. T hus, b oth 
representations, with and without 𝜖𝜖𝜖𝜖-transitions, are equivalent.  

The operation of the theoretical NFA described above assumes 
infinite parallelism. In practice, we can only simulate such an NFA, 
and to this end it is necessary to limit the number of copies of the 
basic linear structure present at a time to the length 𝑚𝑚𝑚𝑚 of the 
pattern 𝑤𝑤𝑤𝑤. Baeza-Yates and Gonnet [2] were the first to describe 
an efficient simulation of this NFA. Suppose 𝑆𝑆𝑆𝑆 =”paparazzo”, 𝑛𝑛𝑛𝑛 =
|𝑆𝑆𝑆𝑆| = 9, and 𝑤𝑤𝑤𝑤 =”para”, 𝑚𝑚𝑚𝑚 = |𝑤𝑤𝑤𝑤| = 4. As the new characters from 𝑆𝑆𝑆𝑆 
arrive, the created copies of the basic linear structure assigned to 
the search pattern 𝑤𝑤𝑤𝑤 get inactive or remain active. The fact of 
being active or inactive is the only one that matters and since the 
activity status of one copy of the basic structure is binary, it can be 
encoded with a 0 (inactive) or a 1 (active). Since we can only have 
up to 𝑚𝑚𝑚𝑚 basic structures at a time, we put the status bits of each 
such structure present at some time instant in a computer word, 
the search status word 𝐷𝐷𝐷𝐷. In our example, after 4 processed 
characters from 𝑆𝑆𝑆𝑆, the status word 𝐷𝐷𝐷𝐷 = 0010 (Fig. 4).  

F i g. 4. Operation of the simulated NFA (see text) 

The next character from 𝑆𝑆𝑆𝑆 to p rocess is ‘ r’. S ince we cannot k eep 
more than 𝑚𝑚𝑚𝑚 basic structures at a t ime, we have to eliminate the 
oldest one. It is easy to see that by shifting the search status word 
𝐷𝐷𝐷𝐷 by one position to the left, we achieve t his g oal. T he creation of 
the new copy of the basic structure reflects on 𝐷𝐷𝐷𝐷 by OR-ing 𝐷𝐷𝐷𝐷 with 
0𝑚𝑚𝑚𝑚𝑚𝑚1. The crucial step is then updating the search status word, all 
the bits at the same time (therefore bit-parallelism), by AND-ing 𝐷𝐷𝐷𝐷 
with a bit mask corresponding to the current processed character 
from 𝑆𝑆𝑆𝑆. The bit masks are defined in advance, by putting a 1 in the 
bit mask at the position where the corresponding character is 
located in the reversed search pattern 𝑤𝑤𝑤𝑤. Defining the bit masks in 
advance is possible since the basic structure, whose status bit is 
located at certain position in the search status word 𝐷𝐷𝐷𝐷 always 
waits for the same character. 
For the example from Fig. 4, the bit masks assigned to each 
character from the search pattern 𝑤𝑤𝑤𝑤 are 
𝐵𝐵𝐵𝐵[′𝑝𝑝𝑝𝑝′] = 0001, 𝐵𝐵𝐵𝐵[′𝑎𝑎𝑎𝑎′] = 1010, and 𝐵𝐵𝐵𝐵[′𝑟𝑟𝑟𝑟′] = 0100.   (1) 
Then, for the new search status word 𝐷𝐷𝐷𝐷′ obtained after processing 
the next character ‘r’ from 𝑆𝑆𝑆𝑆 we have 
𝐷𝐷𝐷𝐷′ = �(0010 ≪ 1) ∨ 0001� ∧ 0100 = 
= 0101 ∧ 0100 = 0100     (2) 
By generalizing the equation (2), we get the Shift-AND search 
status word update formula 
𝐷𝐷𝐷𝐷′ = �(𝐷𝐷𝐷𝐷 ≪ 1) ∨ 0𝑚𝑚𝑚𝑚𝑚𝑚1� ∧ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�,     𝑗𝑗𝑗𝑗 = 1, … , 𝑛𝑛𝑛𝑛   (3) 
After each update of the search status word 𝐷𝐷𝐷𝐷, i t i s necessary t o 
check whether the MSB of 𝐷𝐷𝐷𝐷 is equal to 1, which would mean that 
an occurrence of the search pattern 𝑤𝑤𝑤𝑤 would b e f ound i n t he 
search string 𝑆𝑆𝑆𝑆. This completes the Shift-AND algorithm described 
in [2]. The inherent bit-parallelism of a computer word where the 
search status word is stored enables checking the status of all the 
simulated basic structures at the same time, which reduces the 

time complexity of the search algorithm from essentially quadratic 
(𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚)) to linear (𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛)). 
The Shift-OR algorithm is often considered just a more efficient 
implementation of the Shift-AND algorithm (see, for example, [1]). 
Namely, if the bit masks and search status word 𝐷𝐷𝐷𝐷 are 
complemented and a 0 is considered the encoding of an active 
basic structure in 𝐷𝐷𝐷𝐷 then there is no need for OR-ing with 0𝑚𝑚𝑚𝑚𝑚𝑚1 in 
the update formula (3) for 𝐷𝐷𝐷𝐷, which makes the algorithm 33% 
faster than the Shift-AND algorithm. The update with the bit masks 
is performed by OR-ing of the bit masks instead of AND-ing. Thus, 
the Shift-OR search status word update formula becomes very 
simple (4). 
𝐷𝐷𝐷𝐷′ = (𝐷𝐷𝐷𝐷 𝐷 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�,     𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛   (4) 
The MSB in the expression (4) is checked for being a 0, which 
would indicate an occurrence of 𝑤𝑤𝑤𝑤 in 𝑆𝑆𝑆𝑆. 
In the rest of this paper, we only use the variants of the Shift-OR 
algorithm because of its efficiency. 

Approximate search 
In a big data environment, errors in data occasionally happen and 
if exact search is applied on such data sets then false negatives will 
occur. To avoid that, certain error tolerance can be included in the 
search algorithms. The two most often used methods of 
performing error tolerant search are dynamic programming-based 
search and approximate bit-parallel search. 

Dynamic programming in approximate 
search 
It is well known (see for example [12], [13], [14]) that it is possible 
to determine the minimum number of elementary edit operations 
(insertions, deletions, and substitutions) that transform the given 
string 𝑋𝑋𝑋𝑋 = 𝑥𝑥𝑥𝑥𝑚𝑥𝑥𝑥𝑥2 ⋯𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 into the given string 𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦𝑚𝑦𝑦𝑦𝑦2 ⋯𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚 of 
symbols from an alphabet 𝒜𝒜𝒜𝒜 in an iterative way, without 
enumerating all the possible transforms, by filling a special matrix 
𝑊𝑊𝑊𝑊, which means that the time complexity of such an algorithm is 
essentially quadratic, i.e. 𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚). This minimum number of 
elementary edit operations needed to transform 𝑋𝑋𝑋𝑋 into 𝑌𝑌𝑌𝑌 is called 
Levenshtein or edit distance and the matrix 𝑊𝑊𝑊𝑊 is called the matrix 
of partial edit distances. In this matrix, a cell 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] contains the 
(partial) edit distance between the prefix 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 of the string 𝑋𝑋𝑋𝑋 and the 
prefix 𝑌𝑌𝑌𝑌𝑗𝑗𝑗𝑗  of the string 𝑌𝑌𝑌𝑌. To compute the element 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] it is 
necessary to use the elements 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗] (insertions), 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 𝑖 1] 
(deletions), and 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗 𝑖 1] (substitutions), and check which of 
these elementary edit operations gives the minimum increase in 
partial edit distance. This operation determines the value of 
𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗]. To each elementary edit operation, a cost is assigned. In 
most cases, this cost is equal for all deletions and insertions (the 
value is usually 1). The substitutions by the same symbol usually 
contribute 0 to the edit distance, while the substitutions by a 
different symbol can be set differently for every pair of symbols 
(this is usual in computational biology) or equal for all such 
substitutions. Let 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 be the elementary edit distance assigned to a 
deletion of a symbol and let 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 be the elementary edit distance 
assigned to an insertion of a symbol. To represent deletions and 
substitutions, an “empty symbol” 𝜙𝜙𝜙𝜙 is often used. Thus, the cost 
assigned to the deletion of a symbol 𝑥𝑥𝑥𝑥 is 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝜙𝜙𝜙𝜙), and the cost 
assigned to the insertion of the symbol 𝑦𝑦𝑦𝑦 is 𝑑𝑑𝑑𝑑(𝜙𝜙𝜙𝜙,𝑦𝑦𝑦𝑦). Let 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) be 

the elementary edit distance assigned to a substitution of the 
symbol 𝑥𝑥𝑥𝑥 by the symbol 𝑦𝑦𝑦𝑦. The dynamic programming algorithm 
for computing the edit distance 𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) between the strings 𝑋𝑋𝑋𝑋 =
𝑥𝑥𝑥𝑥𝑚𝑥𝑥𝑥𝑥2⋯𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 and 𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦𝑚𝑦𝑦𝑦𝑦2⋯𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚 is given below (Algorithm 1, [13]) 
Algorithm 1 
𝑊𝑊𝑊𝑊[0,0] = 0 
for 𝑖𝑖𝑖𝑖 = 1, … ,𝑛𝑛𝑛𝑛, 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 0] = 𝑖𝑖𝑖𝑖 
for 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚, 𝑊𝑊𝑊𝑊[0, 𝑗𝑗𝑗𝑗] = 𝑗𝑗𝑗𝑗 
for 𝑖𝑖𝑖𝑖 = 1, … ,𝑛𝑛𝑛𝑛 
for 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚 
𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] = 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛{𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 𝑖 1] + 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 ,𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗] + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 ,𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗 𝑖 1]

+ 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠} 
𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = 𝑊𝑊𝑊𝑊[𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚]    □ 
To illustrate the operation of Algorithm 1, let us produce the edit 
distance matrix given the strings 𝑋𝑋𝑋𝑋 =”bigram” and 
𝑌𝑌𝑌𝑌 =”monogram”, assuming the following: 
∀𝑥𝑥𝑥𝑥,𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝜙𝜙𝜙𝜙) = 1,  
∀𝑦𝑦𝑦𝑦,𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑(𝜙𝜙𝜙𝜙,𝑦𝑦𝑦𝑦) = 1,  

∀(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦),𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �0, 𝑥𝑥𝑥𝑥 = 𝑦𝑦𝑦𝑦
1, 𝑥𝑥𝑥𝑥 𝑥 𝑦𝑦𝑦𝑦   , 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 𝑦 𝒜𝒜𝒜𝒜.

The matrix of partial edit distances produced by Algorithm 1 for 
this case is given below: 

The representation of deletions and insertions by means of the 
“empty symbol” 𝜙𝜙𝜙𝜙 enables presentation of so-called edit 
sequences, which show the order of elementary edit operations in 
the transform of the (prefix of) string 𝑋𝑋𝑋𝑋 into the (prefix of) string 
𝑌𝑌𝑌𝑌. The optimal transform, i.e. the transform, whose cost is minimal, 
is not unique. For example, the following two optimal transforms 
have the same overall cost (𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = 4) under the assumptions 
on 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 , 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖, and 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 defined above. 

𝐶𝐶𝐶𝐶𝑚(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝜙𝜙𝜙𝜙
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛  𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚� 

𝐶𝐶𝐶𝐶2(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝑏𝑏𝑏𝑏 𝜙𝜙𝜙𝜙 𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛  𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙  𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚� 

Edit sequence reconstruction is necessary in many applications, 
such as computational biology, cryptanalysis etc. The algorithm to 
reconstruct an optimal edit sequence is based on backtracking 
through the whole partial edit distance matrix, starting from 
𝑊𝑊𝑊𝑊[𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚]. The need for such a backtracking requires maintaining 
the whole partial edit distance matrix that yields space complexity 
of the dynamic programming edit distance computation algorithm 
𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚). If there is no need for edit sequence reconstruction, the 
space complexity is reduced to 𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛) since, obviously, to compute 
the edit distance only two columns of the partial edit distance 
matrix are necessary to maintain at every moment. 
The allowed number of errors in approximate search can now be 
defined as the minimum edit distance 𝑘𝑘𝑘𝑘 that is tolerated between 
the search pattern 𝑤𝑤𝑤𝑤 and the distorted version of the portion of the 
search string 𝑆𝑆𝑆𝑆 where the search pattern is located. The 

m o n o g r a m 
0 1 2 3 4 5 6 7 8 

b 1 1 2 3 4 5 6 7 8 
i 2 2 2 3 4 5 6 7 8 
g 3 3 3 3 4 4 5 6 7 
r 4 4 4 4 4 5 4 5 6 
a 5 5 5 5 5 5 5 4 5 
m 6 5 6 6 6 6 6 5 4 
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approximate search of the search pattern 𝑤𝑤𝑤𝑤 in the search string 𝑆𝑆𝑆𝑆 
with the error tolerance 𝑘𝑘𝑘𝑘 can be performed by means of the same 
dynamic programming procedure that is used for the edit distance 
computation (Algorithm 1), but with a different initialization (see 
[1]). Namely, by setting all the elements of the 0-th row of the 
partial edit distance matrix 𝑊𝑊𝑊𝑊 to 0, we allow the search pattern to 
commence at any position of the search string 𝑆𝑆𝑆𝑆. The insertions 
before that position and the insertions that (may) occur after the 
last symbol of the search pattern (except a single insertion that 
may appear immediately after this symbol) do not contribute to 
the overall cost. The dynamic programming approximate search 
algorithm with the same input as in the example above and with 
𝑘𝑘𝑘𝑘 = 3 gives the following partial edit distance matrix: 

Every edit sequence that corresponds to an entry in the lowest 
row of the matrix 𝑊𝑊𝑊𝑊, whose total cost is ≤ 𝑘𝑘𝑘𝑘 is acceptable. In our 
example (the figures in boldface in the last row of the matrix 𝑊𝑊𝑊𝑊), 
the acceptable values are 3 and 2, which means that the search 
pattern 𝑤𝑤𝑤𝑤 is detected either at the position 7 or at the position 8 of 
the search string 𝑆𝑆𝑆𝑆. The corresponding edit sequences are given 
below: 
 𝐶𝐶𝐶𝐶1(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚   𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊
𝒐𝒐𝒐𝒐 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊  

𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂
𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂    𝜙𝜙𝜙𝜙𝑚𝑚𝑚𝑚�, 𝑑𝑑𝑑𝑑 = 3

𝐶𝐶𝐶𝐶2(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚   𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊

𝒐𝒐𝒐𝒐 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊   𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂
𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂�, 𝑑𝑑𝑑𝑑 = 2

Only the symbols of the edit sequence given in boldface letters 
contribute to the overall cost of the edit sequence. 

Bit-parallelism in approximate search 
Attempts have been made to parallelize the dynamic 
programming-based approximate search algorithm (see, for 
example [15]), since if no edit sequence reconstruction is needed 
then it is possible to encode in binary the transition from one 
column of the partial edit distance matrix 𝑊𝑊𝑊𝑊 into the other column 
that is maintained. If the reconstruction of the edit sequence is 
needed, then the whole matrix 𝑊𝑊𝑊𝑊 is necessary to maintain, and the 
parallelization of these transitions becomes difficult.  
Another approach to the parallelization of approximate search is 
through the extension of the bit-parallel exact search [16]. 
Suppose the search tolerance is 𝑘𝑘𝑘𝑘. Then we can simulate an NFA 
having 𝑘𝑘𝑘𝑘 + 1 rows, each corresponding to the search status word 
𝐷𝐷𝐷𝐷 assigned to the pattern 𝑤𝑤𝑤𝑤. The transitions in this NFA can be 
horizontal (a match, which is a substitution by the same character 
treated separately), vertical (an insertion), and diagonal (deletions 
and substitutions by a different character). An example of such an 
NFA is presented in Fig. 5, where 𝑤𝑤𝑤𝑤 =”bigram” and 𝑘𝑘𝑘𝑘 = 2.  
The NFA from Fig. 5 has 3 rows. The diagonal transitions that 
correspond to deletions are presented in the form of dashed lines 
– they are 𝜖𝜖𝜖𝜖-transitions, since such transitions do not consume any

input character. The zero state in the 1-st row of the NFA has a 
loop and is always active since the detection of the first character 
of the search pattern can occur at any position in the (distorted) 
search string. 

0
′

F i g. 5. An NFA used in bit-parallel approximate search 

Instead of the search status word 𝐷𝐷𝐷𝐷 used i n e xact b it-parallel 
search, a search status array 𝑅𝑅𝑅𝑅 is used, consisting of 𝑘𝑘𝑘𝑘 + 1 rows. As 
the characters of the (distorted) search string 𝑆𝑆𝑆𝑆 arrive, t he 
simulated NFA makes the transitions (if possible) from all the 
current active states from each row at the same time. The 
influence of the previous rows on the active states of the current 
row is taken into account in the search status array update 
formula by the superposition law. Equation (5) (converted to the 
Shift-OR form from [16]) is the search status array 𝑅𝑅𝑅𝑅 update 
formula that determines which states are active after processing a 
symbol from 𝑆𝑆𝑆𝑆. The formula is the extension of the Shift-OR search 
status word update formula (4). If the final state of the 0th row of 
the NFA becomes active after processing of a symbol from 𝑆𝑆𝑆𝑆, then 
an occurrence of the search pattern without errors (exact match) 
is detected. If this happens in the 1st row, then an occurrence is 
found with 1 error and so on. 
𝑅𝑅𝑅𝑅 ← (𝑅𝑅𝑅𝑅0 ≪ 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗� 
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖′ ← �(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ≪ 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�� ∧ (match) 
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 ∧ (insertion) 
(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 ≪ 1) ∧ (substitution) 
(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1′ ≪ 1) (deletion) 
𝑖𝑖𝑖𝑖 = 1, … ,𝑘𝑘𝑘𝑘 

(5) 

Constrained approximate search 
The unconstrained approximate search algorithms (dynamic 
programming-based and bit-parallel) explained in the previous 
sections can be generally applied, regardless of the a priori 
knowledge about the search pattern/search string properties. In 
many applications, not all the possible transforms of the search 
pattern into a distorted version of the search string take place. If 
we possess some knowledge about the distortion process, then we 
can modify the search algorithm to take into account its subtleties. 
In such a way we exclude the transforms of the original search 
string into its distorted version that are impossible to happen. 
Consequently, the false positive rate of the search procedure is 
reduced.  
A typical and very simple constraint that is possible to apply 
concerns the elimination of certain elementary edit operations. 
For example, if insertions never happen, we can simplify the 
search status array 𝑅𝑅𝑅𝑅 update formula (5) used in the bit-parallel 
version of the unconstrained approximate search by eliminating 
the part related to insertions, which simplifies the formula and 

m o n o g r a m 
0 0 0 0 0 0 0 0 0 

b 1 1 1 1 1 1 1 1 1 
i 2 2 2 2 2 2 2 2 2 
g 3 3 3 3 3 2 3 3 3 
r 4 4 4 4 4 3 2 3 4 
a 5 5 5 5 5 4 3 2 3 
m 6 5 6 6 6 5 4 3 2 

saves the processing time. We can do the same with the dynamic 
programming-based search formula, by allowing only the diagonal 
and horizontal transitions in the matrix of partial edit distances. In 
the dynamic programming-based search case, this has another 
positive consequence. Namely, if we transform the coordinates in 
such a way that instead of the counters of symbols in the strings 𝑋𝑋𝑋𝑋 
and 𝑌𝑌𝑌𝑌 we use the numbers of elementary edit operations (𝑖𝑖𝑖𝑖 for 
insertions, 𝑒𝑒𝑒𝑒 for deletions, and 𝑠𝑠𝑠𝑠 for substitutions), the Algorithm 1 
obtains a form having a very complicated initialization and the 
dynamic programming array becomes 3-dimensional [14]. 
However, if we know a priori that no insertions (or deletions) are 
used, then the dimension of the dynamic programming array 
remains 2 and the initialization of the algorithm remains relatively 
simple. This form of the dynamic programming-based search with 
transformed coordinates is used in cryptanalysis of stream ciphers 
[17].  
Other, more complex, types of constraints can be introduced and 
the search status array update formula in the bit-parallel 
approximate search algorithm can be modified by introducing 
special counters and/or bit masks. In the dynamic programming-
based algorithms, this is achieved by adding counters and 
additional loops in the Algorithm 1. The constraints that are 
introduced are determined by the application of the search 
algorithm and the a priori knowledge that is at the disposal of the 
search algorithm designer. In the sequel, we explain certain 
scenarios that determine specific sets of constraints in 
approximate search. 

Applications in SPAM filtering and file 
carving 
SPAM still represents a great deal of today’s E-mail traffic. To 
eliminate SPAM without producing too many false positives 
and/or false negatives, various algorithms are used and many of 
them include search for typical SPAM words (see, for, example, 
[18]). To avoid elimination by SPAM filters, whose operation is 
based on exact search, the spammers often use algorithms that 
modify these words by substituting, inserting and/or deleting 
symbols. At the same time, the intelligibility of these words must 
be preserved in order to achieve the spammers’ goals – the victim 
must be able to understand these words, even though they are 
modified. Consequently, some constraints must be defined to the 
numbers of inserted/deleted/substituted symbols and the 
distribution of the changes. Being aware of this fact, the defensive 
side can introduce the corresponding constraints in approximate 
search for SPAM words. The effect on reducing the number of false 
positives in search is better if the a priori information about the 
modification process parameters that the spammer uses is more 
accurate. In [3], such a scenario was studied, and a set of 
constraints was defined that limited the total number of so-called 
indels (insertions and deletions) in the edit transforms of the 
original SPAM words. By using these constraints, both the dynamic 
programming-based search algorithm and the bit-parallel 
approximate search algorithm were modified, and their 
performances were compared. It was shown experimentally that 
the bit-parallel version of the approximate search algorithm is 
more efficient than the dynamic programming-based one when 
the number of indels is greater than the number of substitutions.  

In digital forensics, file carving procedures are used to try to 
reconstruct files, whose fragments are still present in permanent 
memory, but at the operating system level these files have been 
erased and therefore the metadata is missing. This is a natural 
field of application for approximate search algorithms and in some 
scenarios (for example, when the files have been erased by means 
of a tool with intention to reconstruct them at a later time) the 
introduction of constraints in search may help in improving the 
efficiency of the carving and reducing the false positive rate. The 
quality of a priori information about the deletion tool parameters 
again contributes to improving the efficiency and accuracy of the 
constrained approximate search algorithm used in the file carving 
procedure. 

Applications in network forensic and 
intrusion detection 
In attacks against computer networks and hosts, very often the 
new attack traffic is obtained by slightly modifying the known 
attack traffic. Since most Intrusion Detection Systems (IDS), which 
are the tools used to detect such attacks, employ exact search for 
known attack patterns, new attack patterns may pass unnoticed by 
these systems. A single bit of change of the known attack traffic is 
enough to make such a signature-based IDS to miss the attack. On 
the other hand, since the attacks exploit known small 
vulnerabilities of the computer networks and hosts, changing the 
attack pattern too much may make the newly produced traffic 
incapable of exploiting these vulnerabilities. Consequently, the 
changes that are performed on the known attack patterns are very 
often very small. In addition, since the traffic rate and the number 
of potential victims steadily grow, manual changes are very rarely 
used. Instead, special tools are used to modify such traffic and the 
parameters that determine their behavior may be known to the 
defensive side by threat intelligence (where information about this 
may be obtained through various channels). In [19], a bit-parallel 
constrained approximate search algorithm was described, in 
which the constraints limit the total numbers of elementary edit 
operations (insertions, deletions, and substitutions). The resulting 
algorithm CRBP-OpCount (Constrained Row-Based Bit-Parallel-
Operations Count) produced up to 6 times fewer false positives 
under some scenarios (concerning the percentage of applied 
deletions, insertions, and/or substitutions) than the unconstrained 
approximate bit-parallel search, maintaining at the same time 
reasonable efficiency. With this constrained approximate search 
algorithm in place, a signature-based IDS can detect new attacks 
originating from the known ones with a reduced number of false 
positives compared to a system employing unconstrained 
approximate search. 

Potential Applications in Bioinformatics 
The methods hold a big potential in the field of bioinformatics, 
such a search of genome for a motif mining or a database with 
chemical compounds for the ones containing a fragment of 
interest. This is useful in the light of automatic search, where via 
the statistical analysis based on frequencies of occurrences in 
active and inactive chemicals, it is possible to discover relevant 
fragments [20], but the occurrence of their “distorted expressions“ 
are not frequent enough to be discovered. Yet it is known that a 
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approximate search of the search pattern 𝑤𝑤𝑤𝑤 in the search string 𝑆𝑆𝑆𝑆 
with the error tolerance 𝑘𝑘𝑘𝑘 can be performed by means of the same 
dynamic programming procedure that is used for the edit distance 
computation (Algorithm 1), but with a different initialization (see 
[1]). Namely, by setting all the elements of the 0-th row of the 
partial edit distance matrix 𝑊𝑊𝑊𝑊 to 0, we allow the search pattern to 
commence at any position of the search string 𝑆𝑆𝑆𝑆. The insertions 
before that position and the insertions that (may) occur after the 
last symbol of the search pattern (except a single insertion that 
may appear immediately after this symbol) do not contribute to 
the overall cost. The dynamic programming approximate search 
algorithm with the same input as in the example above and with 
𝑘𝑘𝑘𝑘 = 3 gives the following partial edit distance matrix: 

Every edit sequence that corresponds to an entry in the lowest 
row of the matrix 𝑊𝑊𝑊𝑊, whose total cost is ≤ 𝑘𝑘𝑘𝑘 is acceptable. In our 
example (the figures in boldface in the last row of the matrix 𝑊𝑊𝑊𝑊), 
the acceptable values are 3 and 2, which means that the search 
pattern 𝑤𝑤𝑤𝑤 is detected either at the position 7 or at the position 8 of 
the search string 𝑆𝑆𝑆𝑆. The corresponding edit sequences are given 
below: 
 𝐶𝐶𝐶𝐶1(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚   𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊
𝒐𝒐𝒐𝒐 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊  

𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂
𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂    𝜙𝜙𝜙𝜙𝑚𝑚𝑚𝑚�, 𝑑𝑑𝑑𝑑 = 3

𝐶𝐶𝐶𝐶2(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚   𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊

𝒐𝒐𝒐𝒐 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊   𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂
𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂�, 𝑑𝑑𝑑𝑑 = 2

Only the symbols of the edit sequence given in boldface letters 
contribute to the overall cost of the edit sequence. 

Bit-parallelism in approximate search 
Attempts have been made to parallelize the dynamic 
programming-based approximate search algorithm (see, for 
example [15]), since if no edit sequence reconstruction is needed 
then it is possible to encode in binary the transition from one 
column of the partial edit distance matrix 𝑊𝑊𝑊𝑊 into the other column 
that is maintained. If the reconstruction of the edit sequence is 
needed, then the whole matrix 𝑊𝑊𝑊𝑊 is necessary to maintain, and the 
parallelization of these transitions becomes difficult.  
Another approach to the parallelization of approximate search is 
through the extension of the bit-parallel exact search [16]. 
Suppose the search tolerance is 𝑘𝑘𝑘𝑘. Then we can simulate an NFA 
having 𝑘𝑘𝑘𝑘 + 1 rows, each corresponding to the search status word 
𝐷𝐷𝐷𝐷 assigned to the pattern 𝑤𝑤𝑤𝑤. The transitions in this NFA can be 
horizontal (a match, which is a substitution by the same character 
treated separately), vertical (an insertion), and diagonal (deletions 
and substitutions by a different character). An example of such an 
NFA is presented in Fig. 5, where 𝑤𝑤𝑤𝑤 =”bigram” and 𝑘𝑘𝑘𝑘 = 2.  
The NFA from Fig. 5 has 3 rows. The diagonal transitions that 
correspond to deletions are presented in the form of dashed lines 
– they are 𝜖𝜖𝜖𝜖-transitions, since such transitions do not consume any

input character. The zero state in the 1-st row of the NFA has a 
loop and is always active since the detection of the first character 
of the search pattern can occur at any position in the (distorted) 
search string. 

0
′

F i g. 5. An NFA used in bit-parallel approximate search 

Instead of the search status word 𝐷𝐷𝐷𝐷 used i n e xact b it-parallel 
search, a search status array 𝑅𝑅𝑅𝑅 is used, consisting of 𝑘𝑘𝑘𝑘 + 1 rows. As 
the characters of the (distorted) search string 𝑆𝑆𝑆𝑆 arrive, t he 
simulated NFA makes the transitions (if possible) from all the 
current active states from each row at the same time. The 
influence of the previous rows on the active states of the current 
row is taken into account in the search status array update 
formula by the superposition law. Equation (5) (converted to the 
Shift-OR form from [16]) is the search status array 𝑅𝑅𝑅𝑅 update 
formula that determines which states are active after processing a 
symbol from 𝑆𝑆𝑆𝑆. The formula is the extension of the Shift-OR search 
status word update formula (4). If the final state of the 0th row of 
the NFA becomes active after processing of a symbol from 𝑆𝑆𝑆𝑆, then 
an occurrence of the search pattern without errors (exact match) 
is detected. If this happens in the 1st row, then an occurrence is 
found with 1 error and so on. 
𝑅𝑅𝑅𝑅 ← (𝑅𝑅𝑅𝑅0 ≪ 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗� 
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖′ ← �(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ≪ 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�� ∧ (match) 
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 ∧ (insertion) 
(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 ≪ 1) ∧ (substitution) 
(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1′ ≪ 1) (deletion) 
𝑖𝑖𝑖𝑖 = 1, … ,𝑘𝑘𝑘𝑘 

(5) 

Constrained approximate search 
The unconstrained approximate search algorithms (dynamic 
programming-based and bit-parallel) explained in the previous 
sections can be generally applied, regardless of the a priori 
knowledge about the search pattern/search string properties. In 
many applications, not all the possible transforms of the search 
pattern into a distorted version of the search string take place. If 
we possess some knowledge about the distortion process, then we 
can modify the search algorithm to take into account its subtleties. 
In such a way we exclude the transforms of the original search 
string into its distorted version that are impossible to happen. 
Consequently, the false positive rate of the search procedure is 
reduced.  
A typical and very simple constraint that is possible to apply 
concerns the elimination of certain elementary edit operations. 
For example, if insertions never happen, we can simplify the 
search status array 𝑅𝑅𝑅𝑅 update formula (5) used in the bit-parallel 
version of the unconstrained approximate search by eliminating 
the part related to insertions, which simplifies the formula and 

m o n o g r a m 
0 0 0 0 0 0 0 0 0 

b 1 1 1 1 1 1 1 1 1 
i 2 2 2 2 2 2 2 2 2 
g 3 3 3 3 3 2 3 3 3 
r 4 4 4 4 4 3 2 3 4 
a 5 5 5 5 5 4 3 2 3 
m 6 5 6 6 6 5 4 3 2 

saves the processing time. We can do the same with the dynamic 
programming-based search formula, by allowing only the diagonal 
and horizontal transitions in the matrix of partial edit distances. In 
the dynamic programming-based search case, this has another 
positive consequence. Namely, if we transform the coordinates in 
such a way that instead of the counters of symbols in the strings 𝑋𝑋𝑋𝑋 
and 𝑌𝑌𝑌𝑌 we use the numbers of elementary edit operations (𝑖𝑖𝑖𝑖 for 
insertions, 𝑒𝑒𝑒𝑒 for deletions, and 𝑠𝑠𝑠𝑠 for substitutions), the Algorithm 1 
obtains a form having a very complicated initialization and the 
dynamic programming array becomes 3-dimensional [14]. 
However, if we know a priori that no insertions (or deletions) are 
used, then the dimension of the dynamic programming array 
remains 2 and the initialization of the algorithm remains relatively 
simple. This form of the dynamic programming-based search with 
transformed coordinates is used in cryptanalysis of stream ciphers 
[17].  
Other, more complex, types of constraints can be introduced and 
the search status array update formula in the bit-parallel 
approximate search algorithm can be modified by introducing 
special counters and/or bit masks. In the dynamic programming-
based algorithms, this is achieved by adding counters and 
additional loops in the Algorithm 1. The constraints that are 
introduced are determined by the application of the search 
algorithm and the a priori knowledge that is at the disposal of the 
search algorithm designer. In the sequel, we explain certain 
scenarios that determine specific sets of constraints in 
approximate search. 

Applications in SPAM filtering and file 
carving 
SPAM still represents a great deal of today’s E-mail traffic. To 
eliminate SPAM without producing too many false positives 
and/or false negatives, various algorithms are used and many of 
them include search for typical SPAM words (see, for, example, 
[18]). To avoid elimination by SPAM filters, whose operation is 
based on exact search, the spammers often use algorithms that 
modify these words by substituting, inserting and/or deleting 
symbols. At the same time, the intelligibility of these words must 
be preserved in order to achieve the spammers’ goals – the victim 
must be able to understand these words, even though they are 
modified. Consequently, some constraints must be defined to the 
numbers of inserted/deleted/substituted symbols and the 
distribution of the changes. Being aware of this fact, the defensive 
side can introduce the corresponding constraints in approximate 
search for SPAM words. The effect on reducing the number of false 
positives in search is better if the a priori information about the 
modification process parameters that the spammer uses is more 
accurate. In [3], such a scenario was studied, and a set of 
constraints was defined that limited the total number of so-called 
indels (insertions and deletions) in the edit transforms of the 
original SPAM words. By using these constraints, both the dynamic 
programming-based search algorithm and the bit-parallel 
approximate search algorithm were modified, and their 
performances were compared. It was shown experimentally that 
the bit-parallel version of the approximate search algorithm is 
more efficient than the dynamic programming-based one when 
the number of indels is greater than the number of substitutions.  

In digital forensics, file carving procedures are used to try to 
reconstruct files, whose fragments are still present in permanent 
memory, but at the operating system level these files have been 
erased and therefore the metadata is missing. This is a natural 
field of application for approximate search algorithms and in some 
scenarios (for example, when the files have been erased by means 
of a tool with intention to reconstruct them at a later time) the 
introduction of constraints in search may help in improving the 
efficiency of the carving and reducing the false positive rate. The 
quality of a priori information about the deletion tool parameters 
again contributes to improving the efficiency and accuracy of the 
constrained approximate search algorithm used in the file carving 
procedure. 

Applications in network forensic and 
intrusion detection 
In attacks against computer networks and hosts, very often the 
new attack traffic is obtained by slightly modifying the known 
attack traffic. Since most Intrusion Detection Systems (IDS), which 
are the tools used to detect such attacks, employ exact search for 
known attack patterns, new attack patterns may pass unnoticed by 
these systems. A single bit of change of the known attack traffic is 
enough to make such a signature-based IDS to miss the attack. On 
the other hand, since the attacks exploit known small 
vulnerabilities of the computer networks and hosts, changing the 
attack pattern too much may make the newly produced traffic 
incapable of exploiting these vulnerabilities. Consequently, the 
changes that are performed on the known attack patterns are very 
often very small. In addition, since the traffic rate and the number 
of potential victims steadily grow, manual changes are very rarely 
used. Instead, special tools are used to modify such traffic and the 
parameters that determine their behavior may be known to the 
defensive side by threat intelligence (where information about this 
may be obtained through various channels). In [19], a bit-parallel 
constrained approximate search algorithm was described, in 
which the constraints limit the total numbers of elementary edit 
operations (insertions, deletions, and substitutions). The resulting 
algorithm CRBP-OpCount (Constrained Row-Based Bit-Parallel-
Operations Count) produced up to 6 times fewer false positives 
under some scenarios (concerning the percentage of applied 
deletions, insertions, and/or substitutions) than the unconstrained 
approximate bit-parallel search, maintaining at the same time 
reasonable efficiency. With this constrained approximate search 
algorithm in place, a signature-based IDS can detect new attacks 
originating from the known ones with a reduced number of false 
positives compared to a system employing unconstrained 
approximate search. 

Potential Applications in Bioinformatics 
The methods hold a big potential in the field of bioinformatics, 
such a search of genome for a motif mining or a database with 
chemical compounds for the ones containing a fragment of 
interest. This is useful in the light of automatic search, where via 
the statistical analysis based on frequencies of occurrences in 
active and inactive chemicals, it is possible to discover relevant 
fragments [20], but the occurrence of their “distorted expressions“ 
are not frequent enough to be discovered. Yet it is known that a 
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to retrieve molecules that contain fragments similar to the exact 
fragments, which were known or discovered to be critical to the 
activity. They are obtained from an exact fragment via the 
substitution of the groups of atoms known to make the compound 
engage in certain reactions (functional groups), and via applying a 
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Conclusion 
In this paper, we have given an overview of constrained 
approximate search algorithms. We first exposed the elementary 
concepts of exact and approximate unconstrained search. Then we 
explained the constraints that could be introduced in order to 
reduce the number of false positives in certain big data 
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discussed. Some experimental results that indicated the 
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constraints are introduced, these results show that the false 
positive rate in knowledge discovery procedures can be 
significantly reduced. 
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