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A B S T R A C T

This paper investigates the use of clustering in the context of designing the energy system of Zero Emission
Neighborhoods (ZEN). ZENs are neighborhoods who aim to have net zero emissions during their lifetime. While
previous work has used and studied clustering for designing the energy system of neighborhoods, no article dealt
with neighborhoods such as ZEN, which have high requirements for the solar irradiance time series, include a
CO2 factor time series and have a zero emission balance limiting the possibilities. To this end several methods are
used and their results compared. The results are on the one hand the performances of the clustering itself and on
the other hand, the performances of each method in the optimization model where the data is used. Various
aspects related to the clustering methods are tested. The different aspects studied are: the goal (clustering to
obtain days or hours), the algorithm (k-means or k-medoids), the normalization method (based on the standard
deviation or range of values) and the use of heuristic. The results highlight that k-means offers better results than
k-medoids and that k-means was systematically underestimating the objective value while k-medoids was
constantly overestimating it. When the choice between clustering days and hours is possible, it appears that
clustering days offers the best precision and solving time. The choice depends on the formulation used for the
optimization model and the need to model seasonal storage. The choice of the normalization method has the
least impact, but the range of values method show some advantages in terms of solving time. When a good
representation of the solar irradiance time series is needed, a higher number of days or using hours is necessary.
The choice depends on what solving time is acceptable.

1. Introduction

More than just accuracy, solving time and complexity are key ele-
ments that needs to be taken into account when designing optimization
models. Indeed, certain applications require certain solving speeds. The
unit commitment problem or the control of processes are good ex-
amples of applications that need a solution in time. In general, a shorter
solving time increases the practicality of using the model. To keep the
solving time within acceptable bounds, which needs to be defined on a
case-by-case basis, different approaches are available. Some applica-
tions can accept sub-optimal solutions within an optimality gap and can
simply stop the optimization after a given amount of time. In other
cases, the complexity of the model can be reduced, by reducing the
number of binary variables or changing the formulation of certain
constraints. Finally, it is also possible to reduce the dimensionality of
the problem. The time is one of the dimensions that can most commonly
be reduced, by reducing the granularity (modelling hourly instead of
every 15-min for instance) or by using clustering algorithms to group
hours by features. Clustering algorithms can gather similar points from

a dataset of any dimensions into groups called clusters. Each clusters is
then represented by one point. Several methods can be used to assess
how similar the points of the datasets are and how the representative of
each clusters should be created.

In this paper, we investigate the use of clustering in a mixed integer
linear program (MILP) called ZENIT. The goal is to identify which
technique performs best for this application regarding the time neces-
sary to solve the model, the optimality gap, and the representation of
some timeseries of particular importance.

ZENIT (Zero Emission Neighborhood (ZEN) Investment Tool) is a
program based on optimization that helps design the energy system of
neighborhoods in a cost-optimal way and with a goal of having
achieved net zero emissions of CO2 in the neighborhood’s lifetime. It is
developed as a part of the research center on Zero Emission
Neighborhoods in Smart Cities in Norway. The goal of this center is to
research solutions to reduce the emission of neighborhoods in various
fields such as architecture, urban planning and materials.

In this paper the focus of the clustering is a reduction of the time
dimensionality, i.e. using less timesteps. The dimension of the dataset to
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cluster depends on the length of the time series used (usually a year:
8760 h) and the number of buildings in the neighborhood. The objec-
tive is to contain the solving time as well as keep a good representation
of the original timeseries, with a particular focus on the solar irra-
diance.

Section 2 presents relevant existing literature regarding clustering
in power systems applications and in particular for the design of
neighborhoods energy systems and present the contribution of this
paper. Section 3 presents the clustering methods investigated in this
paper and Section 4, the results of those methods with regard to certain
metrics. in Section 5 the optimization models are presented and the
results of the clustering methods in the optimization are analyzed in
Section 6.

2. State of the art and contribution

Clustering algorithms have been studied extensively since the 1930s
[1] and improved since then. They are used in various applications
across many fields. The principle of those algorithms is to gather similar

observations of a dataset into clusters based on a given metric. The
outputs of such algorithms are a list of all original data points and the
cluster to which they belong as well as a representative vector for each
cluster. Many algorithms exist but, in this paper the focus is on the k-
means and the k-medoids algorithms because they are the most com-
monly use for power systems applications. These algorithms differ in
the way the representative vector of each cluster are chosen. The k-
means algorithm uses a centroid as the representative vector, i.e. the
vector with the smallest squared distance to every member of the
cluster [2]. The k-medoids algorithm chooses the representatives of the
clusters by choosing the vector in the original data with the smallest
distance to every other members of the cluster [3]. In the power sys-
tems field, it has been for example used in the context of grid expansion
planning in [4], national energy system planning [5,6] and unit com-
mitment models [7].

[5] suggests that the best clustering technique depends on the data
to process and the model in which they are going to be used. It is thus
important to compare different methods in order to find the best choice
for our particular needs. It also gives insights in the choice of the

Nomenclature

Nomenclature

t ( ) timestep in hour within year
( ) cluster representative (centroid)

t ( )T timestep within cluster
b ( ) building or building type
i ( ) energy technology, = =;
f ( ) technology consuming fuel (gas, biomass, …)
e ( ) technology consuming electricity
hst ( )heat storage technology
est ( ) electricity storage technology
q ( ) technologies producing heat
g ( ) technologies producing electricity
b ( ) building or building type
C C,i b

var disc
i b
fix disc

,
,

,
, variable/fix investment cost of i in b discounted to

the beginning of the study including potential re-invest-
ments and salvage value [€/kWh]/[€]

r D
tot
, discount factor for the duration of the study D with dis-

count rate r
Ci b

maint
, annual maintenance cost of i in b [€/kWh]

Pf
fuel price of fuel of g [€/kWh]

Pt
spot spot price of electricity at t [€/kWh]

Pgrid electricity grid tariff [€/kWh]
Pret retailer tariff on electricity [€/kWh]

,est hst efficiency of charge and discharge
i efficiency of i
inv efficiency of the inverter

t
CO e,2 CO2 factor of electricity at t [gCO /kWh2 ]
CO f,2 CO2 factor of fuel type f [gCO /kWh2 ]
CHP heat to electricity ratio of the CHP
i part load limit as ratio of installed capacity
GC size of the neighborhood grid connection [kW]
Xi

max maximum investment in i [kW]
Xi

min minimum investment in i [kW]
Eb t, electric load of b at t [kWh]
H H,b t

SH
b t
DHW

, , heat (space heating/domestic hot water) load of b at t
[kWh]

COPhp b t, , coefficient of performance of heat pump hp
Qst

max maximum charge/discharge rate of est/hst [kWh/h]
IRRt

tilt total irradiance on a tilted plane [W/m2]
Gstc irradiance in standard test conditions: 1000 W/m2

Tcoef temperature coefficient

Tt ambient temperature at t [°C]
Tnoct normal operating cell temperature [°C]
Tstc ambient temperature in standard test conditions [°C]

number of occurrences of cluster in the year
CHG cost of investing in the heating grid [€]
M “Big M”, taking a large value
Bq

DHW binary parameter stating whether q can produce DHW
Qb b

HGloss
,1 2 heat loss in the heating grid in the pipe going from b2 to b1

Qb b
MaxPipe

,1 2 maximum heat flow in the heating grid pipe going from b2
to b1 [kWh]

Php b t
input max

, ,
, maximum power consumption of hp at t based on manu-

facturer data and output temperature
bHG binary for the investment in the Heating Grid
bi b, binary for the investment in i in b
xi b, capacity of i in b
ff t b, , fuel consumed by f in b at t [kWh]
de t b, , electricity consumed by e in b at t [kWh]
y y,t

imp
t
exp electricity imported from the grid to the neighborhood/

exported at t [kWh]
yt g b

exp
, , electricity exported by g to the grid at t [kWh]

gt g b
selfc
, , electricity generated by g self consumed in the neighbor-

hood at t [kWh]
gt g b

ch
, , electricity generated by g used to charge the batteries at t

[kWh]
yt est b

imp
, , electricity imported from the grid to est at t [kWh]

yt est b
exp
, , electricity exported from the est to the grid at t [kWh]

gg t b, , electricity generated by g at t [kWh]
qq t b, , heat generated by q in b at t [kWh]
yt est b

dch
, , electricity discharged from est to the neighborhood at t

[kWh]
yt est b

ch
, , electricity charged from on-site production to est at t

[kWh]
q q,t st b

ch
t st b
dch

, , , , energy charged/discharged from the neighborhood to the
storage at t [kWh]

vt st b
stor
, , level of the storage st in building b at t [kWh]

gt b
curt
, solar energy production curtailed [kWh]

gg t b
dump
, , electricity generated but dumped by g at t [kWh]

qt b
dump
, heat dumped at t in b [kWh]

qb b t
HGtrans

, ,1 2
heat transferred via the heating grid from b1 to b2 at t
[kWh]

qb t
HGused
, heat taken from the heating grid by b at t [kWh]

oi t b, , binary controlling if i in b is on or off at t
xi b t, , maximum production from i [kWh]
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number of clusters to use. Several articles compare, with different ap-
proaches, the possible clustering techniques. Among them, [5] com-
pares the performance of downsampling, k-means and hierarchical
clustering as well as different heuristics and combinations of previously
mentioned methods. It finds that for their energy system planning
model and in the context of pluri-annual time series, some heuristics
appear promising. The clustering is performed on days, with 4 different
time series and multiple locations giving a rather large number of di-
mensions.

For a grid expansion planning problem, [4] compares systematic
sampling, k-means, k-medoids, hierarchical clustering with Ward’s
linkage and moment matching. It clusters on hours and 5 dimensions. In
this case, hierarchical and k-medoids appear to perform equally well.

Closer to the ZENIT model needs, Ref. [8] compared clustering al-
gorithms (k-means, k-centers, k-medoids, k-medians, monthly averaged
days, and seasonal days) to find representative days for a model in-
vesting and operating the energy system of a building. It finds k-me-
doids as the best suited method for this application.

Reference [9] also compares different techniques in the context of
different local energy systems (averaging, k-means, k-medoids, hier-
archical) for obtaining representative days, 3-days or weeks. It finds
that medoids perform better than centroids but recommends overall the
use of hierarchical clustering due to the reproducibility of the results.

It is also interesting to look at the choices made for other models
similar to ZENIT, i.e. model for investment and operation in the energy
system of buildings or neighborhoods. Those choices are naturally de-
pendant on factors such as the scale of the neighborhood, the level of
detail of the model, the target run time, the machine used to solve the
model or its goal: investment and/or operation and in some cases grid
layout, but it remains a good indication nonetheless.

Many authors choose to use season based clustering (SBC), where
they choose or average the time series to form one representative day
for each season [10] or only for the summer, the winter and the mid-
season [11–13]. They also have varying choices in terms of number of
periods for the chosen days: from hourly (i.e. 24 periods) [12], to
twelve [11,12], or six periods [12,13]. Similarly, some choose to use
one average day per month [14–16], or several days per month, such as
[17] with a week day, a week end day and a peak day per month or [18]
with 2 days of 12 periods each per month.

The exact method used to determine the days is not always clear
[19]; points this out and suggests a graphical method using the load
duration curves. Another method relying on k-means clustering is
proposed in [20].

Reference [21] uses weekly downsampling to allow the model to
run faster and checks the scheduling with a 24 h rolling horizon model
with hourly resolution. Complete years with hourly resolution are also
used in some models [22].

Other studies rely on clustering [8]. Reference [23] suggest a way to
keep seasonal storage operation while using design days found with k-
means clustering. Similarly [24] relies on k-medoids clustering to find
design days. However, only outside temperature and global irradiance
are used, assuming that the other time series are correlated to either of
those two. The other time series are reconstructed from the clusters
after the clustering. K-means is also used in [25], where two models are
coupled, for providing representative weeks and for providing re-
presentative hours. The hours clustering is preceded by the removal of
peaks from the time series and followed by their re-introduction.

In this paper different methods of clustering, normalizing and
treating peaks are compared in the specific case of ZENIT. In addition,
design days and representative hours are compared to find the strengths
and weaknesses of each approach. This study stands out from other
comparative studies by limiting the number of algorithm used but also
considering the choices for normalizing and handling peaks. The Zero
Emission context also brings specific problems to overcome. For ex-
ample, the zero emission balance constraint in the optimization model
limits the way one can reduce the number of timesteps. Another

example is the strong requirements on the solar irradiance time series
due to the importance of PV in the results. To the best of the author’s
knowledge, no paper tackles clustering in the context of ZEN or in a
similar context.

This paper contributes to the existing literature regarding clustering
in the context of power systems and in the context of the design of the
energy system of neighborhoods by addressing the optimal clustering
methods for designing the energy system of ZENs. This is important as
the best method is specific to each application ([5]). In particular, it
investigates the impact of the zero emission balance and other ZEN’s
specific requirements on the performance of clustering techniques. It
also addresses two aspects that are little discussed in the existing lit-
erature: the choice of days or hours for the clusters and the impact of
the normalization method.

3. Reduction of the number of timesteps

Many possibilities exist in order to reduce the number of timesteps
in the optimization. However some are not adequate for the model.
Downsampling for instance is not well suited. With the downsampling
method, the time series are reduced by averaging the values on a cer-
tain period of time. A six hours downsampling would average the values
of the time series on intervals of six hours, dividing by six the total
number of timesteps. This method reduces the precision of the data and
is not well suited for applications with renewable energies, which vary
rapidly. The use of heuristic is often considered, and there are different
approaches depending on the application. The heuristic could be re-
ducing the time series to a collection of extreme events found in the
time series, such as the hours with the maximum load or the lowest
temperature or any combination of such criteria. In the case of ZENIT,
this is not an acceptable solution on its own. Despite the reduction of
the level of details induced, which could be somewhat overcome by
tuning the heuristic chosen, the biggest reason that contraindicates its
use is the Zero Emission balance constraint. Indeed, using this con-
straint requires to take into account every hour in the year, which is
difficult with heuristics. On the contrary, clustering allows the use of
the Zero Emission balance. In clustering, an algorithm is used to gather
similar timesteps into clusters. Each original timestep is then re-
presented by a cluster. We choose this approach over downsampling
and heuristic in order to keep the original time granularity and the use
of the emission constraint.

Several clustering algorithm exists and we limit this study to k-
means and k-medoids clustering. In addition we consider the use of
heuristics in combination to the clustering. This approach is re-
commended in this kind of optimization application because the clus-
tering alone would likely ‘dilute’ the extreme events’ timesteps, such as
the hour with the maximum load, into a cluster represented by a lower
value, which would lead to an under-dimensioned solution. A simple
heuristic in addition to the clustering allows to correct this. In this
paper, the heuristic chosen is the time (day or hour) with the highest
total load, defined as the sum of the domestic hot water load (DHW),
space heating (SH) and electric load, and the time with the lowest ir-
radiance. In addition, normalizing the data before clustering can be
beneficial [26]. Several ways to normalize the data before the clus-
tering algorithm exists and we also consider two options: a normal-
ization based on the range of each time series (1) and one based on the
standard deviation (2).

=X X min X
max X min X

( )
( ) ( ) (1)

=X X
std X( ) (2)

Lastly, as mentioned in the literature review, mainly two ap-
proaches exist for clustering, one clusters directly the hours, the other
focuses on design days. The design day approach uses clustering for
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selecting representative days in the year and then use the hourly values
for each representative day. This approach is often favored when
storages are modelled. Indeed, because the relation between timesteps
inside a day are kept, it allows for daily operation of storages contrary
to hours clustering.

The clustering is performed in Python using PyClustering [27] for
the k-medoids algorithm and Scipy for the k-means [26,28]. The
practical handling of the clustering is described in the flowchart in
Fig. 1.

The data entering the clustering process consists of several hourly
time series covering one year. The data is composed of the following
time series: one domestic hot water load (DHW), one space heating load
(SH) and one electric load for each building (or building type) in the
neighborhood; outside air temperature, total irradiance and CO2 factor
of electricity.

4. Clustering results

The different clustering approaches presented in the previous sec-
tion were performed for various number of clusters: for the clustering of
design days, up to 100, and for the clustering of hours, up to 2400 (with
6 h steps). This allows to determine which number of clusters to use in
the optimization model. The representatives of clusters and their se-
quence are combined to rebuild a complete year and then compared to
the original data to compute errors. In this section, the errors are pre-
sented as Root Mean Square Deviations (RMSD) and as Normalized
RMSD (NRMSD) when comparing the errors of different time series. All
figures below share the same legend presented on Fig. 2.

Fig. 3 presents the NRMSD across all timeseries which can be in-
terpreted as an indicator of the overall performance of the tested
methods. It does not however give insight about the errors for in-
dividual timeseries.

Considering all figures in this section, it is clear that the k-means
algorithm offers a better representation of the original timeseries than
its k-medoids counterpart. Indeed in all of the following figures, the
green line representing k-means reaches lower levels of RMSD and
converges to it faster than the k-medoids ones. This indicates a closer
match between the clusters obtained with k-means and the original
timeseries than what is obtained with k-medoids for a given number of
clusters. This is what we could expect. Indeed, the k-medoids uses
vectors from the original datasets instead of creating centroids, which
are better representatives. However, this ensures that the chosen re-
presentatives of clusters in the case of k-medoids are meaningful and
realistic.

Another thing one could expect is that the performance of the
clusterings monotonically improves. However, this is not the case of our
results, especially in the case of design days. For the performance re-
garding individual time series, this could be explained because of a

better performance of other time series for this particular number of
clusters. However, this lack of monotony can still be found in the ag-
gregated result of Fig. 3. One possible explanation for the lack of
monotony could be that k-means and k-medoids algorithms do not al-
ways find the global optimums but can provide solutions that are only
local optimums. Hierarchical clustering or running the clustering al-
gorithms several time with different initial conditions could provide
more consistent results.

Looking at Fig. 3, the use of heuristic results in a tiny advantage for
the heuristic versions on the overall error of the clustering. This is
especially true in the case of clustering on hours. For design days
clustering, the difference between clustering with and without heuristic
disappears after around 8 design days. The lower the amount of design
days, the higher the impact of forcing two days to be extreme events is,
while for hours, the forced hours are “diluted” faster.

From all figures, considering an equivalent resulting number of
timesteps (translating to the complexity to solve the model) clustering
on hours gives much better results than clustering on days. For the
overall error, Fig. 3, the error for the hours clustering is about 50%
lower than for the design days.

The performance for individual time series is discussed in the fol-
lowing.

For the CO2 factor of electricity in Fig. 4, the convergence rate is
much lower in the case of days than of hours. The decrease is almost
linear, compared to exponential. In addition, there are high variations
for days that are not present for hours. For 100 days, the RMSD is about
4.5 gCO /kWh2 against 2 for an equivalent number of hours.

In the case of spot price in Fig. 5, the difference between the

Fig. 1. Flowchart of the Clustering Process.

Fig. 2. Legend of the Results.

Fig. 3. Average of the NRMSD of All Clustered Time Series, Normalized with
Range.
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clustering performed using the standard deviation method and the
range method seems very significant: for hours clustering between
0.001 and 0.0015 /kWh or a factor of 2, the standard deviation is
performing better. The difference between k-medoids and k-means is
also considerably to the advantage of k-means: for hours clustering
between 0.0005 and 0.001 /kWh. For design days clustering the
overall difference between methods is similar but there is more varia-
bility and some differences specific to this case. For instance, there are
differences between the cases with and without heuristic, with the
heuristic case performing better. Those differences are rather small for
the standard deviation normalization and larger in the range case,
especially in the k-medoids case.

The errors for the temperature time series are very similar to the
overall ones commented before. The RMSD of temperature plateaus
rather quickly to around 2 for the hours, and 2.8 for the days.

In the context of Zero Emission Neighborhoods, the irradiance has a
very important role. Indeed, solar power is the main source of local (on
the site) energy for neighborhoods. This means that solar irradiance and
the production from the solar technologies will be crucial in compen-
sating the emissions in the Zero Emission balance. Thus, in order to
obtain designs that actually are Zero Emission, the precision of the
clustering of the irradiance is essential. The behaviour for the hours
clustering, Fig. 6, is similar to the overall behaviour. The RMSD for 100
clusters is around 35 W/m2 for k-means and 55 W/m2 for k-medoids.
For days clustering, the convergence rate is slow and after 100 cluster,
the RMSD is around 80 for k-means and 110 for k-medoids. The slow
convergence rate means that for small numbers of clusters the differ-
ence between days and hours clustering is even worse. For 10 days, the
RMSD is 140 for k-means and 170 for k-medoids. For 240 h, the RMSD
is about 60 for k-means and 100 for k-medoids. Those values are high in
comparison to the standard test condition (STC) of solar panels of 1000
W/m2.

Only the performance for one of the three buildings is shown in this
section. The other buildings can be found in the appendix.

For the electric load, Fig. 7, in the case of days, the convergence has
a steep rate but it happens slightly later around 10 days. After the
convergence, the difference between all methods is close to zero. For
the clustering on hours, the convergence is fast. The main difference
from the behavior in the mean RMSD is that the cases with k-medoids
and standard deviation normalization have a higher RMSD. The plateau
is around 0.0013 Wh m h2 1 versus 0.0005 Wh m h2 1 for k-means
range and 0.0008 Wh m h2 1 for the others.

The RMSD for the SH and DHW time series behave as the mean of
the RMSDs. The mean of the RMSD is influenced greatly by the loads
because they behave similarly and because of the presence of 3 time
series for each building.

Another metric of interest is the Yearly Average Error (YAE), this
metric allows us to have information about the distribution of the error.
With RMSD, there is no information on the sign of the errors. YAE al-
lows to know if the errors are, on average, compensated or rather ac-
cumulate from timestep to timestep.

The results for k-means are not in Table 1 because the YAE stays at 0
for all number of clusters and all cases. Instead the values of the RMSD
are presented in Table 2.

Comparing the RMSD and YAE from Table 1 and Table 2 gives us
insights in how much the errors in irradiance cancel each other, at least
in terms of annual values. In the case of irradiance, the negative signs
first informs us that it is under-represented. The difference between the
RMSD and the YAE values also suggest that the errors tends to be
compensated by one another and they compensate completely in the k-
means cases. In general, the hours clustering performs better than the
daily one. k-means is better than k-medoids in terms of YAE for the
same reasons that it is better for RMSD. The performance of STD or
range on their own or in addition to heuristic is not consistent but the
gains here are less big than between days and hours clustering.

Two other metrics, the covered variance and the correlation error,
can also be used in order to assess the clustering methods such as in [6].
They are defined in the same way as in [6]:

=VC var X
var X

( )
( ) (3)

=CE corr X X corr X X( , ) ( , )1 2 1 2 (4)

The covered variation (VC) of one timeseries is calculated as quotient of
the variance of the timeseries reconstituted from the clusters (X ) and
the variance of the original timeseries (X). The correlation error (CE)
between two timeseries is calculated as the absolute difference between
the Pearson correlation coefficients calculated using the reconstructed
timeseries and using the original timeseries.

These metrics are calculated for different numbers of clusters and
the results are presented in Figs. 8 and 9. From both figures, k-medoids
performs slightly better for really low number of clusters (less than
10 days/240 h) and the performances even out after that. The nor-
malization based on standard deviation has a little edge over the range-
based one but the difference is not large enough to be significant. It
takes more day-clusters than hour-clusters to achieve similar perfor-
mances. For instance, a covered variance of 0.9 is achieved with 250 h
versus around 45 days. The combination of k-means clustering with a
range normalization is significantly worse (about twice) at representing
the correlation between the timeseries for a number of clusters between
20 days (240 h) and 60 days (1440 h). Overall, the results for those
metrics are quite good for all methods from about 240 h or 20 days. If
we look a bit more into the details, the variability covered is best for the
loads and for the temperature. the covered variability of the irradiance
is a bit worse and the variability covered for the spot prices and the CO2
factors are the lowest. The spot price timeserie also has the highest

Fig. 4. RMSD of CO2 Factor of Electricity.

Fig. 5. RMSD of Spot Price.

Fig. 6. RMSD of Irradiance on a Tilted Surface.

D. Pinel Electrical Power and Energy Systems 121 (2020) 106088

5



correlation error to the other timeseries. The CO2 factors, spot price
and, to a smaller extent, the irradiance timeseries benefit the most from
increases in the number of clusters.

From the results presented in this section, k-means and hours
clustering are the best choices. For instance, with a focus on the irra-
diance, the choice would be range and heuristic. Overall the biggest
impact can be made by choosing the correct clustering algorithm and
the correct resolution. When it comes to the normalization method and
the use of heuristic, the choice has less importance and varies de-
pending on the goal. However there appears to be better results with
the range normalization and without the heuristic. These results are
however not enough. They only display some metrics for how close the
clusters come to the original data. This does not guarantee that the one
performing best in this section would also perform best in the optimi-
zation.

5. Models and implementation

In this section, the main equations of the ZENIT model are presented
along with two variations for using either representative days or hours
then the implementation and data used is briefly presented. The var-
iations will be called M0 and M1 and are based on [23].

ZENIT aims is to design the energy system of a neighborhood so that
it can be Zero Emission during its lifetime. Thus, it considers the in-
vestment as well as the operation of the neighborhood to find the cost
optimal solution. The objective function is: Minimize:

+ + + +

+ + +
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, ,
(5)

It considers the investment cost in technologies (C C,i b
var disc

i b
fix disc

,
,

,
, ) and

the heating grid (CHG), as well as operation and maintenance related
costs (Ci b

maint
, ). A binary variable controls the investment in the heating

grid (bHG). The subscript used in the equations are b for the buildings, i
for the technologies, t for the timesteps, f for fuels and est for batteries.
are the discount factors with interest rate r for the duration of the study
D. xi b, is the capacity of the technologies and bi b, the binary related to
whether it is invested in or not. is the number of occurrences of
cluster in the full year and t is the timestep in the cluster. P are the
prices of fuel, electricity on the spot market, grid tariff or retailer tariff.
f is the consumption of fuel and y are the imports or exports of elec-
tricity.

In order to fulfill the Zero Emission requirement, the following
constraint, called the Zero Emission Balance is necessary:

+ +
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2

(6)

It forces the emissions of CO2 to be at least equal to the compensations.
The principle of the compensation is that the energy produced in the
neighborhood, by renewable sources, that is exported to the national
grid reduces the global production. The corresponding amount of saved
CO2 is counted as compensation for the neighborhood. The CO2 factors
are represented by e t

CO
,

2 for electricity and f
CO2 for other fuels. est is the

charging efficiency of the battery.
Eqs. (7a), (7b) and (7c) represent respectively the equations for the

electric load, the DHW load and the SH load. t:

Fig. 7. RMSD of Electric Load in the Normal Offices.

Table 1
Yearly Average Error (YAE) and RMSD for 10 and 100 days and equivalent
number of hours for the irradiance with k-medoids (STD.:Standard Devation, H:
with heuristic, : without heuristic).

Days Hours

STD. Range STD. Range

H H H H

YAE 10 −34 −24 −37 −38 −18 −18 −13 −15
YAE 100 −3.5 −0.67 −0.26 −2.3 −3.1 −2.8 −3.0 −2.1
RMSD 10 175 173 169 170 95.3 95.6 107 107
RMSD 100 116 112 107 100 53.9 53.8 48.3 47.8

Table 2
RMSD for 10 and 100 days and equivalent number of hours for the irradiance
with k-means (STD.:Standard Deviation, H: with heuristic, : without heur-
istic).

Days Hours

STD. Range STD. Range

H H H H

RMSD 10 143 133 140 127 71.0 72.2 63.7 66.6
RMSD 100 78.4 81.7 72.6 72.5 35.5 35.1 29.7 30.5

Fig. 8. Mean Covered Variance for all Timeseries Depending on the Number of
Clusters.

Fig. 9. Mean of all Correlation Error Between Each Timeseries Depending on
the Number of Clusters.
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+ + = +y y g d E·t
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(7a)

t b, :

+ + = +q q q q H q·
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DHWch
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SHdch
t hst b
SHch

t b
HGusedSH

b t
SH

, , , , , , , ,
(7c)

The electricity consumed in the neighborhood (the load and the use of
some heating technologies) need to be balanced by the imports, dis-
charges from the batteries or consumption of on-site production. The
principles are the same for the heat but separately for each building. At
the production plant, the heat produced is either stored, dumped or fed
to the heating grid (Eq. (8a)). The heat flow through the pipes is limited
(Eq. (8b)). We model the grid in a way that the buildings cannot feed
heat into the heating grid (Eq. (8c)). In addition, the larger technologies
of the central plant are only available if the optimization invests in the
heating grid (Eq. (8f)).
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(8c)

= +q q qt b
HGused

t b
HGusedSH

t b
HGusedDHW
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b
t b b
HGtrans

, , , , , ,
(8e)

i

x X b·i ProductionPlant i
max HG

, (8f)

The import and export are limited by the size of the grid connection:

+ +y y y GCt
imp

b est
t est b
imp

b g
t g b
exp

, , , ,
(9)

The fuel or electricity consumption depends on the heat produced and
the efficiency (Eq. 10) and in the case of CHPs, the Heat to power ratio
regulates how much electricity is produced as a by product (10b). In the
implementation, CHP has a fixed value.

t b, , :

=f
q

t b
t b

, ,
, ,

(10a)

t b, , :

=d
q

t b
t b

, ,
, ,

(10b)

t CHP b, , :

=g
q

CHP t b
CHP t b

CHP
, ,

, ,

(12)

Some heating technologies can only supply the SH. Eq. (14) controls
which technology can produce DHW. q t b, , :

= +q q qq t b q t b
DHW

q t b
SH

, , , , , , (13)

< =q M B·q t b
DHW

q
DHW

, , (14)

The solar technologies output depends on the solar irradiance and the
module efficiency. In the case of PV, the efficiency is defined as in [29].

+ =g g x IRR· ·PV t t
curt

PV t PV t
tilt

, , (14a)

=q x IRR· ·ST t ST ST t
tilt

, (14b)

=
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T T T·(1 ·( ))PV t

inv

stc
coef c stc

, (14c)

= +T T T IRR20 ·
800

c
t

noct t
tilt

(14d)

Eqs. (15a) and (15b) link the heat produced to the COP and the elec-
trical consumption. The COPs are different for SH and DHW due to
different temperature set points. They also depend on the outside
temperature and are calculated before the optimization. Eq. (15c)
regulates how the heat pump can be used for both SH and DHW and
enforces that the capacity invested is not exceeded. Pinput max, represents
the maximum power input to the heat pump at the timestep based on
the temperature set point for a 1 kW unit. dhp b t

SH
, , and dhp b t

SH
, , represent the

electric consumption of the heat pump for SH and DHW while qhp b t
DHW

, ,
and qhp b t

DHW
, , are the heat production.

=d
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SH
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(15c)

Some technologies have part-load limitations, they cannot be operated
from 0 to 100%. This leads to a large number of binary variables in the
model:

x X o·i b t i b
max

i t b, , , , , (16a)

x xi b t i b, , , (16b)

x x X o·(1 )i b t i b i b
max

i t b, , , , , , (16c)

q xi b t i b t, , , , (16d)

q x·i b t i b i b t, , , , , (16e)

Some technologies have a minimum investment capacity and are
modelled as semi-continuous variables:

x X b·i b i b
max

i b, , , (17a)

x X b·i b i b
min

i b, , , (17b)

The electricity production from on-site technologies can be exported,
consumed directly, stored or dumped:

= + + +g y g g gg t b t g b
exp

g t b
selfc

t g b
ch

t g b
dump

, , , , , , , , , , (18)

To distribute the production to the batteries, we have t b, :

=g y
g

t g b
ch

est
t est b
ch

, , , ,
(19)

The handling of the storages is what differentiates model M0 and M1.
Model M0 is not able to handle seasonal storage while model M1 can be
used for that. In ZENIT, each battery is modelled as 2 separate virtual
batteries, with one connecting the neighborhood to the grid: allowing
import and export between the grid and the battery, and import from
the battery to the neighborhood’s loads, and the other connecting the
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technologies producing electricity in the neighborhood and the neigh-
borhood’s loads: allowing exports to the grid and to the neighborhood.
This distinction provides traceability of the electricity in the batteries.
The origin of the electricity is important because of the different CO2
factors.

Both models are presented in the following subsections.

5.1. Model M0

Model M0 uses a classical formulation for storages in models using
clustering and that do not need seasonal storage. The equation for
electric and heat storages are similar, so only a generic equation is
presented, fitting both cases.

t T st b, [1, ], ,clu

= +v v q q·t st
stor

t st
stor

st
stor

t st
ch

t st
dch

, , 1, , , (20)

t T st b[0, ], ,clu

v xt st b
stor

st b, , , , (21)

q Qt st b
ch

st
max

, , , (22)

q Qt st b
dch

st
max

, , , (23)

p st b, , ,

=v vst b
stor

T st b
stor

,0, , , , ,clu (24)

The state of charge of the storage st (either heat or electric storage) is
represented by vstor while qch and qdch are the energy charged and
discharged. The maximum charge and discharge rate is Qst

max. The dif-
ferences between this model and a model with full year data is that the
starting value of the storage is “free” at the beginning of each cluster
instead of only at the beginning of the year. This model is valid for
different Tclu even though in our case it is 24 for days clustering. It
allows for a daily operation of the storage. Different values of Tclu could
be used for allowing different ranges of operation of the storage. A
bigger value allows longer operation but probably increases the number
of timesteps to get the same clustering precision and reducing it reduces
the possible range. The daily range makes sense because of the daily
cycle of the loads, that allows us to make the assumption of Eq. (24).
This model does not make sense with =T 1clu , i.e. the hours clustering,
because the resolution of the data used is also one hour; hourly storage
operation does not make sense.

5.2. Model M1

In model M1, the main difference with model M0 is that the storage
level equation becomes: t st b, [1, 8760], ,

= +v v q q·t st
stor

t st
stor

st
stor

t st
ch

t st
dch

, , 1, , , (25)

The end value of the storage constraint is also replaced by: st b,

=v vst b
stor

st b
stor

0, , 8760, , (26)

Where t is the time corresponding to t in the cluster. It is found by
using the sequence of cluster’s representatives ( ) either directly for the
hourly case or with the day number corresponding to t and the hour in
the day:
Hours:

=t t( ) (27)

= +t t t t
24 24

·24
(28)

This means that the storage level is not decoupled between the different
clusters. The charging and discharging is defined for each timestep in
each cluster but the storage level is defined for every hour in the year.

This model comes from the assumption that days or hours with similar
conditions in terms of the time series (loads, spot price, temperature,
…), i.e. belonging to one cluster will behave in the same way in terms of
charging and discharging of the storage. This formulation however
comes at the expense of longer computation time. Both hourly and days
clustering can be used with M1.

In [23], another variation is presented to improve further model M1
by defining only the variables related to operations binary variables
(on/off status) for each cluster while other variables are defined for
each hour of the year. That model has not been implemented because it
increases the computation time even more.

5.3. Implementation

The model is implemented on a test case based on a small neigh-
borhood, a campus at Evenstad in Norway. The buildings are gathered
in three categories to only have three buildings in the optimization. We
assume every building has a hydronic system.

The economical and technical data of the technologies are taken
from the Danish Energy Agency.1 In total, 22 technologies are im-
plemented with, at the building level: solar panel, solar thermal, air-air
heat pump, air–water heat-pump, ground source heat pump, bio boiler
with wood logs or pellets, electric heater and electric boiler, bio-
methane boiler, biogas and biomethane CHP; and at the neighborhood
level: biogas boiler, wood chips and pellets boiler and CHPs, ground
source heat pump and electric boiler. When it comes to the storage
technologies, lithium-ion is used for electrical storage and hot water
tanks for the heat storage. The storage technologies at the neighbor-
hood level are not included to make it easier to compare the objective
values obtained from the runs with M0 and M1.

The spot price of electricity is obtained from Nordpool’s website.2

The temperature data comes from Agrometeorology Norway,3. The
solar irradiance (diffuse horizontal (DHI) and direct normal(DNI)) are
obtained from Solcast.4 The irradiance on a tilted surface IRRTilt which
is an input of the clustering is derived from the DHI and DNI with:

=
+

+ + +

+

IRR DHI
cos

DNI DHI
cos

DNI

cos sin cos
sin

sin cos
sin

1 ( )
2

·( )
1 ( )

2
( )· ( )· ( )

( )
( )· ( )

( )

t
Tilt

t t t t

t t

t

t

t

1 1

1 2 1

(29)

We assume that for some sun positions (sun elevations ( ) below 1
degree and sun azimuths ( ) between −90 and 90 degrees), no direct
beam reaches the panels. This means that the last term of Eq. (29) is
removed at such times. We use a constant albedo factor ( ) of 0.3 for
the whole year. Hourly albedo values could also be used to reflect the
impact of snow in the winter better. The tilt angle of the solar panel is

1; the orientation of the solar panel regarding the azimuth is 2.
The hourly CO2 factors of electricity are obtained with the metho-

dology presented in [30] while the other CO2 factors come from [31].
The prices of wood pellets comes from [32], the price of wood logs

from [33], the price of wood chips from [34] and the price of biogas
from [35].

The electric and heat load profiles for the campus are derived from
[36]. The domestic hot water (DHW) and Space Heating (SH) are then
based on the time series from a passive building in Finland [37].

The model is implemented in Python and is solved using Gurobi. It
is run on a laptop with an Intel Core i7-7600U dual core processor at
2.8Ghz and 16 GB of RAM.

1 https://ens.dk/en/our-services/projections-and-models/technology-data.
2 https://www.nordpoolgroup.com/Market-data1/#/nordic/table.
3 https://lmt.nibio.no. Fåvang station
4 https://solcast.com.au.
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6. Model results and discussion

In this section we present the results obtained with the different
clustering methods and variations from the earlier sections. We always
use the heuristic in order to guarantee that the peak load is covered.

6.1. Simplified model

In order to get a reference objective value to base our analysis on, a
simplified version of the model is run. This simplified model leaves out
several of the constraints using binaries, namely the part load con-
straints, the minimum investment capacity (turning the semi-con-
tinuous variables into continuous variables) and changing the cost
function from +a x b· to c x· . Without simplifying the model, solving the
model with 365 days or 8760 h would take too long. It is important to
note that this simplified model is not directly obtained by removing
constraints but by setting the input associated to the binary to zero. For
example, the fixed investment costs and the minimum capacity are set
to 0 but the constraints are still there. In the case of the minimum load
during operation, the minimum loads are set to 0 but the related con-
straints are not written when the model is generated in Gurobi. The
results for the non-simplified model are presented after without a re-
ference value.

Because M1 allows for seasonal storage modelling while M0 does
not and in order to obtain results that can be compared more easily
between M0 and M1, the storages at the neighborhood level were not
included in the technological option input in this study.

We chose the number of days and hours in this section graphically at
the elbow of the curves in Fig. 3. The number of clusters is chosen so
that adding clusters does not bring considerable improvements. For the
case of hours, this corresponds to around 120 h; 96 and 144 h are also
studied as a 20% variation. We also consider the corresponding number
of days, i.e. 4,5,6. Indeed this gives an equal number of timesteps in the
optimization but the performance of the clustering on days for such low
numbers of days should give poor result considering Fig. 3. In addition
we choose a number of design days with similar graphical elbow con-
siderations. However, we consider Fig. 6 instead of the NRMSD figure
because in the case of clustering days the performances for the irra-
diance were converging slower. This leads us to choose 30 days. We
also take the 20% variations, which corresponds to 24 and 36 days.

From Table 3, k-means range seems to be the overall best choice,
but it underestimates the objective value. k-medoids constantly over-
estimates the objective value, with significant errors for low numbers of
days. On the other hand, k-means gives good results even for a low
number of days.

From Tables 4 and 5 it appears that the hours clustering performs
the best on problem M1, especially with the range normalization and k-
medoids. For approaching the reference value from below, the best
approach is k-means with hours clustering. Here the range method
seems slightly better than STD. k-medoids constantly overestimates the
objective value while k-means constantly underestimates it. However,
in general and for around 30 days and 120 h, the k-means seems to be
the appropriate choice. Indeed, even though k-medoids with STD also
has good results, it appears less consistent. With this algorithm, the
performance does not always improve with an increasing number of
clusters; choosing the correct amount of clusters would become harder.
k-means, while not completely exempt from this flaw, appears more
robust in this regard.

For M1, the average of the run time for days clustering for 24, 30
and 36 days is 3500 s with extreme values of 2 289 and 5628 s. For the
hours clustering, the average runtime is 5 973 s with extremes of 2 421
and 12 500 s. Days clustering is on average almost twice as fast as hours
clustering on this simplified model despite having more timesteps
overall. As a reference, to solve this simplified problem without any
clustering (using a complete year) takes around 30 000 s.

For M0 the runtimes are low with all values below 360 s.

It is also interesting to look at the actual systems resulting of each
investment run. Fig. 10 shows these investments for the runs with the
simplified model.

From Fig. 10, it is noteworthy that there tends to be an investment
in the heating grid when using k-medoids while it is not often the case
with k-means. In general, the element with the biggest impact on the
investment appears to be the clustering algorithm chosen. Indeed, there
is are quite distinct groups of investments with k-medoids on the one
side and k-means on the other emerging from the figure. Both reference
runs have a very similar system, with the exception of the amount of
space heating storage. This suggests that only the amount of storage
invested will be affected by the choice of M0 or M1, leading to possible
over-investment in storage if using M0. The investments resulting from
runs with k-medoids seem to be closer to the references in general than
the runs with k-means. One important exception is regarding the
amount of PV invested where it tends to over-invest more than k-means
(which is also over-investing). This over-investment stems from the
representation of the solar irradiance in the clustered data; k-means
offering a better representation as seen in Fig. 6.

6.2. Complete model

For the complete model, no reference value is presented because
running the models with a complete year of data takes too long and it is
the reason clustering is explored in the first place.

Fig. 11 presents the objective values resulting from the optimization
in the case of M0. Without a reference value, it is impossible to reach a
conclusion regarding the performances of each approach. However we
can make some remarks. The objective values follow the same patterns
as in the case of the simplified model and from the results we can expect
that in this case as well k-means underestimates and k-medoids over-
estimates the objective value. It also appears that even a few days are
enough to get satisfying results when using k-means.

Regarding runtime for M0 (Table 6), k-means with STD is clearly the
fastest while k-medoids with STD is the slowest being about half as fast.
k-medoids range and k-means range have comparable runtimes except
for the case of 36 days where the k-medoids version is about 20%
slower. k-means range is itself 25% slower than k-means STD.

For M1, the same remarks hold. K-medoids and k-means seem to
respectively over- and underestimate the objective value. Fig. 12 con-
firms that for k-medoids, the range method performs better than STD as
in Table 4 and 5. For k-means we also find that the results are similar.

M1 is between 15 and 40 times longer to solve than M0 for the days
(Tables 6 and 7). When it comes to the difference between the days and
the hours, even though the number of timesteps are the same, the
hourly model takes at least 10 times longer to solve than the daily
model. This difference is hard to explain. Indeed both models get the
same number of timesteps and are identical with the exception of what
is presented in Eqs. (27) and (28).

Fig. 13 shows the investment resulting from the runs using the full
model. The systems obtained are similar to the ones visible in Fig. 10
but there is a lower diversity of technologies. The systems are com-
prised of a different amount of biomethane boilers, air–water heat

Table 3
Variations in objective value from the reference for different numbers of re-
presentative days for M0 with simplified model (STD: Standard Devation,
R:Range), Reference Value for 365 days: 2,056,849 .

Days

4 5 6 24 30 36

k-means STD −10.29 −9.50 −9.42 −6.14 −5.21 −4.82
R −10.29 −10.64 −9.68 −4.80 −4.74 −3.82

k-medoids STD 28.27 22.71 33.53 9.61 10.04 7.49
R 11.57 8.78 23.16 5.36 4.84 8.27
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pumps, PV and heat storages. The heating grid is never chosen. A dif-
ferent system is appearing only in one of the cases of M0 with k-me-
doids and a low number of days, where solar thermal replaces partly the
air–water heat pump. There is still a distinction between k-means and k-
medoids as in Fig. 10 but it is less clear, especially in the case of the
storage. Furthermore, the investments with model M1 with hours seems
to be less sensitive to the number of clusters used, especially when it
comes to the storage.

If the use of k-medoids is required for any reason, then using the
hourly method can bring significant improvements to the precision over
the daily method. These improvements needs to be considered in regard
to the increased solving time to choose the method to use. Otherwise, k-
means should be preferred. In that case, the improvements of the pre-
cision is insufficient to justify using the hourly method. One such pos-
sible reason is to have a good representation of the solar irradiance
which is the case for ZENIT. By using the day method with low numbers

of days, even though the solving time and objective values are good, the
representation of the solar irradiance is problematic as seen in Fig. 6. In
our case and to get a good solar irradiance representation, the use of k-
means and hours clustering in M1 is preferable.

Overall, with regards to Zero Emission Neighborhood Energy
System, the k-means performs better than the k-medoids algorithm.
This is the opposite of what has been found in several studies in other
energy system applications, such as in [8] or [6]. However, this is an
illustration of the findings of [5] that the best clustering technique is
dependant on the data to process and the application. In our particular
case, the reason that k-means performs better than k-medoids could be
that an averaging of all points inside each clusters leads to a better

Table 4
Variations in objective value from the reference for different number of re-
presentative days for M1 with simplified model (STD: Standard Devation,
R:Range), Reference Value for a complete year: 2,060,612 .

4 5 6 24 30 36

k-means STD −10.16 −9.18 −8.78 −6.07 −5.38 −6.14
R −10.16 −10.38 −9.09 −5.03 −5.38 −4.44

k-medoids STD 28.42 22.80 33.55 9.64 10.08 7.54
R 11.78 8.91 23.19 5.40 4.90 8.31

Table 5
Variations in objective value from the reference for different number of re-
presentative hours for M1 with simplified model (STD: Standard Devation,
R:Range), Reference Value for a complete year: 2,060,612 .

96 120 144

k-means STD −5.58 −5.54 −4.95
R −4.66 −5.51 −4.60

k-medoids STD 8.45 11.06 9.73
R 3.07 4.59 3.62

Fig. 10. Investments Resulting from the Runs with the Simplified Model. The color gradient represents the number of clusters, the clearer the least clusters and the
darker the more clusters. “NGHB:” Before the technology name means that it is a technology at the neighborhood scale and also implies the presence of the heating
grid. The technologies at the building level are aggregated for all the buildings.

Fig. 11. Objective Values for M0 with Design Days with Complete Model.

Table 6
Runtime for M0 in seconds with days (STD: Standard Devation, R:Range).

4 5 6 24 30 36

k-means STD 70.98 96.47 108.8 1708 2846 3342
R 116.3 115.2 155.4 1924 3504 4320

k-medoids STD 63.42 62.98 288.4 3544 4157 6163
R 57.52 115.0 127.5 2088 3442 5288
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representation of the solar irradiance (as can be seen in Tables 2 and 1)
while the points closest to the mean of the clusters may be pushed to-
wards a better representation of the loads due to the number of load
timeseries and their correlation. The better representation of solar then
allows to reduce the investment in PV and to reach an energy system
closer to the references cases.

7. Limitations

There are different limitations that should be mentioned regarding
this paper. Regarding the studied methods, the fact that only clustering
algorithms are studied have been explained; however other clustering
algorithms could offer advantages. Many heuristics, either new or
variations around the one used, could also be studied and finding the
overall best heuristic presents a challenge. The clustering has been used
on a specific case and we cannot guarantee that the same result holds
true for larger cases or in other countries where the correlation between
the different inputs are different. Unfortunately no reference value is
shown for the complete model and a simplified model had to be used in
order to compare the precision.

8. Conclusion

After introducing the use of reduction techniques and clustering in
energy systems and in particular in the design of the energy system of
neighborhoods, this paper discussed why clustering is chosen over other
solutions such as downsampling. Different clustering methods have
then been evaluated, first directly on their ability to come close to the
original dataset and then on the results they give when used in ZENIT.
K-means and k-medoids have been compared and the study allowed to
highlight that counter to what is found for many other energy system
applications, k-means performs better than k-medoids. The study also
highlights the role of the normalization method on the performances by
comparing a method using the standard deviation and one using the
range of values. We find occurrences of models using clustered days (or
design days) and of instances using clustered hours in the literature but
the reason for the choice are not always clear. In this study, both ap-
proaches are implemented and the relation between the performance,
the solving time and the possible uses of each are reviewed. The impact
of the use of a simple heuristic is also studied. Two versions of the
optimization models were used with different capabilities when it
comes to storage: M0 for daily storage operation and M1 for storage
without time limitation. While the use of M0 or M1 should be con-
sidered on the basis of the necessity to include seasonal storage, the

Fig. 12. Objective Values for M1 with Days and Hours with Complete Model.

Table 7
Runtime for M1 in seconds (STD: Standard Devation, R:Range).

Days 4 5 6

k-means STD 1386 2250 4340
R 2059 3393 3519

k-medoids STD 1723 1717 5838
R 1139 2319 2626

Hours 96 120 144
k-means STD 14789 29159 62239

R 13342 45048 60165
k-medoids STD 20288 55509 105672

R 18632 19860 59055

Fig. 13. Investments Resulting from the Runs with the Complete Model. The color gradient represents the number of clusters, the clearer, the least clusters and the
darker, the more clusters. “NGHB:” Before the technology name means that it is a technology at the neighborhood scale and also implies the presence of the heating
grid. The technologies at the building level are aggregated for all the buildings. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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choice of the clustering method (algorithm, cluster type and normal-
ization method) can be made based on the results presented in this
paper. For the particular application of designing the energy system of
neighborhoods with an objective of zero emissions, the best method
appears to be to use the k-means algorithm with the range normal-
ization and days as cluster type. A low number of days is fine but it can
be interesting to increase it to improve the representation of the solar
irradiance for example. The trade-off between time and precision
should then be considered. Further work could extend the result to

other cases and study if the results presented in this paper scale to
bigger neighborhoods. Other clustering algorithms or heuristics could
also be investigated.
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Fig. 14. RMSD of Temperature.

Fig. 15. RMSD of DHW Load in the Normal Offices.

Fig. 16. RMSD of SH Load in the Normal Offices.

Fig. 17. RMSD of Electric Load in the Passive Offices.

Fig. 18. RMSD of DHW Load in the Passive Offices.

D. Pinel Electrical Power and Energy Systems 121 (2020) 106088

12



Acknowledgment

This article has been written within the Research Center on Zero
Emission Neighborhoods in Smart Cities (FME ZEN). The author

gratefully acknowledges the support from the ZEN partners and the
Research Council of Norway.

The author would also like to thank John Clauß for providing the
hourly CO2 factor for electricity data. .

Appendix A. Additional results of the clustering

Additional results are presented in this appendix. In particular, the RMSD for the time series that were not included in Section 4 are shown in this
section.

Fig. 19. RMSD of SH Load in the Passive Offices.

Fig. 20. RMSD of Electric Load in the Student Housing.

Fig. 21. RMSD of DHW Load in the Student Housing.

Fig. 22. RMSD of SH Load in the Student Housing.

Fig. 23. YAE of Irradiance.
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The errors for the temperature time series, Fig. 14, are very similar to the overall ones. The RMSD of temperature plateaus rather quickly to
around 2 for the hours, and 2.8 for the days.

The RMSD of the loads of the normal offices are presented in Figs. 15–17. For the offices already at the passivhus standard, the results are
presented in Figs. 17–19.

For the student housings, the results are presented in Figs. 20–22.
The figures for the yearly average errors presented in Table 1 are presented in Fig. 23.

Table 8
Data of technologies producing heat and/or electricity in the complete model.

Tech. th Fix. Inv. Cost Var. Inv. Cost i Min. Cap. Annual O&M Costs Lifetime Fuel CHP El. Heat
(%) (€) (€/kW) (% Inst. Cap.) (kW) (% of Var Inv. Cost) (year)

At building level
PV1 0 730 0 50 1.42 35 1 0
ST2 70 28350 376 0 100 0.74 25 0 1
ASHP3 f(Tt) 42300 247 0 100 0.95 20 Elec. 0 1
GSHP4 f(Tt) 99600 373 0 100 0.63 20 Elec. 0 1
Boiler5 85 32200 176 30 100 2.22 20 Wood Pellets 0 1
Heater 100 15450 451 0 100 1.18 30 Elec. 0 1
Boiler 100 3936 52 20 35 2.99 25 Biomethane 0 1
At neighborhood level
CHP6 47 0 1035 50 200 1.03 25 Biogas 1.09 1 1
CHP 98 0 894 20 1000 4.4 25 Wood Chips 7.27 1 1
CHP 83 0 1076 20 1000 4.45 25 Wood Pellets 5.76 1 1
Boiler7 115 0 680 20 1000 4.74 25 Wood Chips 0 1
Boiler7 100 0 720 40 1000 4.58 25 Wood Pellets 0 1
CHP8 66 0 1267 10 10 0.84 15 Wood Chips 3 1 1
Boiler9 58 0 3300 70 50 5 20 Biogas 0 1
GSHP4 f(Tt) 0 660 010 1000 0.3 25 Elec. 0 1
Boiler 99 0 150 5 60 0.71 20 Elec. 0 1
Boiler 100 0 60 15 500 3.25 25 Biogas 0 1

1 Area Coefficient: 5.3 m /kW2 .
2 Area Coefficient: 1.43 m /kW2 .
3 Air Source Heat Pump.
4 Ground Source Heat Pump.
5 Automatic stoking of pellets.
6 Gas Engine.
7 HOP.
8 Gasified Biomass Stirling Engine Plant.
9 Solid Oxyde Fuel Cell (SOFC).

Table 9
Data of technologies producing heat and/or electricity in the simplified model. There is no fixed investment cost, no minimum size and no part
load limitation. The other parameters are the same as in Table 8.

Technology Var. Inv. Cost Technology Var. Inv. Cost
(€/kW)

At building level At neighborhood level

PV 730 Biogas CHP 1035
ST 376 Wood Chips CHP 894
ASHP 670 Wood Pellets CHP 1076
GSHP 1369 Wood Chips Boiler 680
Wood Pellet Boiler 498 Wood Pellets Boiler 720
Elec. Heater 605 Wood Chips CHP 1267
Biomethane Boiler 91 Biogas Boiler 3300

GSHP 660
Elec. Boiler 150
Biogas Boiler 60

Table 10
Data of Fuels.

Fuel Fuel Cost ( /kWh) CO2 factor (gCO /kWh2 )

Electricity f t( ) f t( )
Wood Pellets 0.03664 40
Wood Chips 0.02592 20
Biogas 0.07 0
Biomethane 0.07 100
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Appendix B. Technology Data

The data for technologies in Tables 8 and 9 come mainly from the Danish Energy Agency and Energinet.5 The data for storages is presented in
Table 11.

The data for prices of fuels (Table 10) come from different sources. For the wood pellets and wood chips, they come from the Norwegian
Bioenergy Association.6 The data for the biogas and biomethane come from the European Biogas Association.7.

The data for CO2 factor of fuels come from a report from Cundall8.
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