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Abstract

With advances in smart grid technologies, demand response has played a major role in improving the reliability of grids and reduce
the cost for customers. Implementing the demand response scheme for industry is more necessary than for other sectors, because its
energy consumption is often considered the largest. This paper proposes a multi-agent deep reinforcement learning based demand
response scheme for energy management of discrete manufacturing systems. In this regard, the industrial manufacturing system
is initially formulated as a partially-observable Markov game; then, a multi-agent deep deterministic policy gradient algorithm is
adopted to obtain the optimal schedule for different machines. A typical lithium-ion battery assembly manufacturing system is used
to demonstrate the effectiveness of the proposed scheme. Simulation results show that the presented demand response algorithm
can minimize electricity costs and maintain production tasks, as compared to a benchmark without demand response. Moreover,
the performance of the multi-agent deep reinforcement learning approach against a mathematical model method is investigated.
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1. Introduction

With the development of smart grid (SG) technologies, de-
mand response (DR) is playing an increasingly significant role
in facilitating economic efficiency [1], enhancing operational
flexibility [2], and improving system reliability [3] of the SG.
The DR programs offer demand flexibility by motivating end
users to adapt their energy consumption profiles in response to
time-varying electricity prices or other grid signals [4]. In terms
of various electricity customers, industrial facilities consume
the largest portion of energy, compared to other end-use sec-
tors [5]. According to the International Energy Outlook from
Energy Information Administration [6] in 2017, industry ac-
counted for about 54% of the world’s total delivered energy.
This proportion is larger in developing countries; for instance,
in China it has even reached to 72%. Thus, it is both essential
and urgent to realize DR programs for industrial energy man-
agement.

However, realizing successful DR schemes in industrial fa-
cilities is challenging and complicated because many industrial
processes are sequential, interdependent and correlated; model-
ing DR problems in industrial sectors should capture the phys-
ical characteristics of different machines, which increases the
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complexity of the model [7]. In addition, among different in-
dustrial applications, their processes and load profiles vary con-
siderably, making it difficult to design a universal model for in-
dustrial DR. Until now, there have been few studies demonstrat-
ing the feasibility and benefit of industrial DR. For instance, the
study of [8] applied an adaptive multi-objective memetic algo-
rithm for industrial DR to prevent a rise in electricity and labor
costs. In [9], the authors proposed a decision model for in-
dustrial load management in face of time-changing electricity
prices. The work of [10] introduced an active time-based DR
model enabling industrial customers to shift their energy con-
sumption by following daily price curves. An optimal industrial
load control model was investigated in [11] to minimize the en-
ergy cost. The study of [12] proposed a DR scheme for indus-
trial energy management based on the state task network and
mixed integer linear programming (MILP). Similarly, an intel-
ligent energy management framework with DR capability for
industrial facility was developed in [13], wherein the industrial
processes were also modeled by the state task network, then
they were optimized via MILP. The study in [14] presented a
structure for industrial DR aggregators to provide operational
flexibility for the power system, and a robust self-scheduling
approach was utilized to optimize the entire production line.
The performances of the aforementioned approaches, however,
rely directly on the precision of the model employed in each
optimization problem. Also, the mathematical formulations of
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Nomenclature

Abbreviations
SG smart grid

DR demand response

MILP mixed integer linear programming

AI artificial intelligence

DRL deep reinforcement learning

RL reinforcement learning

DL deep learning

DPG deep policy gradient

DDPG deep deterministic policy gradient

MDP Markov decision process

POMG partially-observable Markov game

MADDPG multi-agent deep deterministic policy gradient

SM smart meter

GW gateway

FEMC factory energy management center

UPL utility power line

FPL facility power line

WAN wide area network

LAN local area network

DQN deep Q-network

SF side frames

BC battery cells

CP cooling plates

IF intermediate frames

CF compression foams

ReLU rectified linear unit

Variables and Parameters
Mi, j machine representation

i serial production-line branch index

j machine index in the ith branch

Bi, j buffer representation

Zh
i, j the decision variable of machine Mi, j

h hour index

eh
i, j energy consumption of machine Mi, j in hour h

eop
i, j energy demand of machine Mi, j in operation mode

eidle
i, j energy demand of machine Mi, j in idle mode

Eh total energy consumption of all machines in hour h

Emax a threshold of total energy consumption

Ph
i, j generated quantity of machine Mi, j

Ch
i, j consumed quantity of machine Mi, j

′

ph
i, j production rate of machine Mi, j

ch
i, j consumption rate of machine Mi, j

′

Bmin
i, j lower bound of buffer capacity

Bmax
i, j upper bound of buffer capacity

v unit value of output good

g output good

c unit cost of input material

m input material

πh electricity price at hour h

S a set of states

O a set of observations

A a set of actions

R real-valued reward function

µi, j policy of an agent

ri, j immediate reward of an agent

Ri, j cumulative rewards of an agent

γ a discount factor

oi, j observation of an agent

ai, j action of an agent

s system state

a system action

r system reward

Qi, j individual Q-network

φi, j the parameter of Q-network

θi, j the parameter of policy network

ζi, j loss function of Q-network

Qµ
i, j critic network under policy µi, j

Qµ
i, j
′ target critic network under policy µi, j

D experience replay buffer

φi, j
′ target parameter of Q-network

θi, j
′ target parameter of policy network

χ a noise process
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Figure 1: Deep reinforcement learning (DRL) diagram.

model-based methods are usually complicated [15], developing
and maintaining an accurate model is a significant task, where
the cost of doing so might outweigh its financial benefits. To
overcome these issues, there is an impending need for a solu-
tion that avoids complex modeling while maintaining produc-
tion tasks and minimizing energy costs.

Over the past few years, with the rapid evolution of artifi-
cial intelligence (AI), deep reinforcement learning (DRL) has
become a focus due to its success in addressing challenging se-
quential decision-making problems [16]. DRL combines the
decision making of reinforcement learning (RL) and the infor-
mation perception of deep learning (DL), as shown in Fig. 1
[17]. RL is a type of machine learning algorithm concerned
with how an agent chooses the best behaviors in a stochastic en-
vironment, so as to maximize the cumulative rewards [18]. DL
can be integrated with RL for representing states and approxi-
mating functions. Within the agent and environment interaction
of RL, DL can maintain the internal policy of the agent, which
determines the next action based on the current state of the envi-
ronment. Owing to the unique features of being model free and
no need for a priori domain knowledge paradigms [19]; DRL
can use raw state representations directly and train policies with
effective and efficient approaches for high-dimensional feature
extraction and non-linear generalization, to ensure the optimal
control of complex systems [20].

Some research has been published on employing DRL for
solving DR problems in SG energy management. The work
described in [21] demonstrated the benefits of using DRL to
perform on-line optimization scheduling for building energy
management systems; its learning procedure was explored by
deep Q-learning and deep policy gradient (DPG). The study of
[22] proposed an energy management strategy for a plug-in hy-
brid electric bus based on deep deterministic policy gradient
(DDPG), which is an actor-critic, model-free DRL algorithm
that can assign the optimal energy split of the bus over continu-
ous spaces. In [23], a DR algorithm was presented to determine
a charging policy for electric vehicles, considering the stochas-
tic of user behaviors and utility prices. The scheduling problem
was formulated as a Markov decision process (MDP) with an
unknown transition probability; afterwards, DRL was used to
obtain the optimal strategy. Similarly, the work in [24] applied
a DRL algorithm for local energy trading to promote the action
of customers joining a localized energy ecosystem, wherein the
decision-making process was also built by an MDP with con-
tinuous variables; then, this decision-making process of local

market participation was solved by deep Q-learning without an-
alytical calculations or prior knowledge of the market model.
In [25], the authors investigated DR management for an en-
ergy internet, where the practical energy management problem
was formulated as a constrained optimal control scheme; and
DRL algorithm was applied to obtain the desired control solu-
tion. The authors of [26] verified how a deep neural network
can be integrated with fitted Q-iteration in a realistic DR set-
ting for residential load control subject to partial observability.
The work of [27] developed an energy management scheme on
economical operation for a microgrid, in which the approxi-
mate dynamic programming and deep recurrent neural network
learning were employed to derive the optimal scheduling policy
considering uncertainties in, and various power flow constraints
on, electricity loads, renewable resources and real-time prices.
In [28], a distributed operation strategy was proposed to man-
age the operation of a battery energy storage system in micro-
grid via double deep Q-learning method, which is capable of
handling uncertainties in the system with both grid-connected
and islanded modes. Although there have been several success-
ful examples illustrating the effectiveness of DRL in energy
management systems, they did not take into account the in-
ner physical characteristics of industrial facilities, and thus few
can be directly utilized in industrial settings, for two reasons.
First, the existing literature features relatively simple scenarios
in which individual items (e.g., residential load or electric ve-
hicle) are operated independently, whereas industrial units are
highly correlated and, inherently function together; different
machines in production lines must follow particular operational
sequences. Second, most studies only account for electricity
costs; however, while reducing energy consumption is desir-
able, considering the overall expenses of industrial facilities,
normal production cannot be compromised to gain more rev-
enue based on this variable alone.

Considering the aforementioned issues, this work proposes
a multi-agent DRL based DR scheme for energy management
of industrial facilities, to minimize electricity cost and maintain
production task. There is a trend for applying multi-agent DRL
to complex cooperative learning scenarios: research has shown
its promise for a variety of problems, including optimizing en-
ergy sharing, allocating task resources, and controlling traffic
lights and so on [29]. Multi-agent DRL algorithms are practi-
cal for solving multi-objective scheduling problems, as they are
characterized by the feature of finding high-quality solutions
in a reasonable time without the building of complex models,
especially in the cooperative setting of industrial manufactur-
ing processes that are sequential, interdependent and correlated.
Specifically, we first formulate the industrial DR problem as a
partially-observable Markov game (POMG). After that, multi-
agent deep deterministic policy gradient (MADDPG) algorithm
is adopted to obtain the optimal schedule for different machines.
Finally, the proposed DR scheme is verified in the case of a gen-
eral discrete lithium-ion battery assembly manufacturing sys-
tem. To the best of our knowledge, this is the first paper to
address the industrial DR problem via multi-agent DRL. The
main contributions of this work are shown below:

(1) Propose an AI-based DR scheme for industrial facility
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Figure 2: Industrial facility energy management system.

energy management, wherein an entire discrete manufacturing
process is considered, to verify the effectiveness of the proposed
DR scheme.

(2) The industrial DR problem is formulated as a POMG,
and MADDPG algorithm is adopted to learn the optimal policy
without requiring any system model information.

(3) The performance of the presented approach by multi-
agent DRL against a mathematical model method is investi-
gated, indicating that multi-agent DRL is a promising solution
for complex industrial DR problems.

(4) Two different cases with and without AI-based DR are
compared, showing that the proposed DR scheme can signifi-
cantly reduce the electricity cost.

The remainder of this paper is organized as follows. Section
2 describes the problem formulation of the discrete manufactur-
ing system. Section 3 introduces the multi-agent DRL method-
ology to solve the DR problem. Section 4 provides the case
study and numerical results. Section 5 concludes the paper and
gives an outlook on future research.

2. Problem Formulation

Conforming to the prototype of standard [30], Fig. 2 shows
an energy management system for industrial facilities, includ-
ing the smart grid (SG), smart meter (SM), gateway (GW),
factory energy management center (FEMC), utility power line
(UPL), facility power line (FPL), wide area network (WAN),
and local area network (LAN). The SG and FEMC belong to the
electricity supply and demand sides, respectively. Among them,
the SM and GW are used as the interface to deliver energy be-
tween the UPL and FPL, and exchange information (i.e., elec-
tricity price) between the WAN and LAN. On the demand side,
the LAN transmits message and the FPL distributes electricity,
between different machines. The FEMC serves as the system
core, to determine a working schedule for each industrial load
based on the pre-installed energy management algorithm, ac-
cording to the target set by a production planner and the hourly
electricity price received from the GW. In this work, the pro-
posed AI-based DR algorithm is embedded in the FEMC.

For the industrial facility, we consider a general discrete
manufacturing assembly system [31], as exhibited in Fig. 2.

In which, Mi, j represents a machine, i indicates the ith serial
production-line branch, and j denotes jth machine in the ith
branch. Bi, j represents the buffer used to store the products pro-
duced by machine Mi, j.

2.1. System Electricity Consumption

Generally, in the discrete manufacturing system, each ma-
chine works under “impulse mode” (i.e., operation or idle) con-
sidering the highest machine efficiency [32]. Operation means
that the machine is fully operated, while idle means that the
machine enters a low-power mode. Let Zh

i, j indicates the deci-
sion variable of machine Mi, j, i.e., Zh

i, j = 1 if Mi, j is operating,
and Zh

i, j = 0 if Mi, j is idle. During hour h, each machine can
only choose one working state. Thus, the energy consumption
of machine Mi, j in hour h is:

eh
i, j = eop

i, j · Z
h
i, j + eidle

i, j ·
(
1 − Zh

i, j

)
(1)

where eop
i, j and eidle

i, j represent the energy demands of machine
Mi, j in its operation and idle working states, respectively.

Thus, the total energy consumption of all machines during
hour h is:

Eh =
∑

i∈I, j∈J

eh
i, j (2)

Eh ≤ Emax (3)

Eq. 3 indicates that the total energy consumption during hour
h should be under a threshold Emax, which is determined by the
limit of the transmission lines in the SG [33].

2.2. System Production Buffer

Between two consecutive machines, there is a buffer Bi, j used
to provide an opportunity for consociation in different pieces of
equipment. The production storage of buffer Bi, j at hour h is
equal to its storage at hour h− 1, plus the total quantity Ph

i, j that
machine Mi, j generated and minus the total quantity Ch

i, j that the
following machine Mi, j

′ consumed with hour h, as follows:

Bh
i, j = Bh−1

i, j + Ph
i, j −Ch

i, j (4)

Ph
i, j = Zh

i, j · p
h
i, j (5)

Ch
i, j = Zh

i, j
′ · ch

i, j (6)

Bmin
i, j ≤ Bh

i, j ≤ Bmax
i, j (7)

where ph
i, j and ch

i, j denote the production and consumption rates
of machine Mi, j and Mi, j

′ with operating states Zh
i, j and Zh

i, j
′, re-

spectively. Eq. 7 indicates that the production storage of buffer
Bi, j should maintain a minimum amount of material flow, while
not exceeding the maximum capacity [9].
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Figure 3: Multi-agent DRL with centralized training and decentralized execu-
tion.

2.3. System Objective Function

Microeconomic theory suggests that consumers will increase
their demand up to the point at which the marginal benefit they
derive from doing so is equal to the expenditure they have to
pay [34]. For example, in the manufacturing system, a planner
might not produce products if the cost required to produce them
makes their sale unprofitable. In other words, the consumer
will determine whether to produce, as well as when and how
to produce, in such a way to maximize its profits. Thus, the
objective function is as follows:

max


H∑

h=1

 ∑
v∈V, g∈G

v · g −
∑

c∈C, m∈M

c · m − Eh · πh


 (8)

where v is the unit value of output good g, c is the unit cost of
input material m, and πh is the electricity price at hour h.

3. Multi-Agent Deep Reinforcement Learning Methodol-
ogy

In this section, we consider a partially-observable Markov
game (POMG), an extension to a partially-observable MDP, to
formulate the interactions among the multiple agents (each ma-
chine has an agent) of the industrial discrete manufacturing en-
vironment. After that, we develop a multi-agent deep determin-
istic policy gradient (MADDPG) algorithm of centralized train-
ing with decentralized execution as shown in Fig. 3, to solve the
POMG. This algorithm is a variation on actor-critic policy gra-
dient method, where the critic is augmented with extra informa-
tion about the policies of other agents, while the actor only has
access of local information (i.e., its own observation) to learn
the optimal policy.

3.1. Partially-Observable Markov Game (POMG)

The multi-agent POMG is defined as a 4-tuple (S , O, A, R),
where S represents a set of states for the entire system, describ-
ing the possible configurations of all agents; O indicates a set of
observations, and each agent acquires private and limited infor-
mation from the state through its own observation; A denotes a
set of actions that agents can select to take; and R is the real-
valued reward function. To choose actions, each agent has a
policy µi, j : oi, j → ai, j, that maps the local observation to the
action. When all the agents execute actions −→ai,j, each agent gets

its own immediate reward ri, j

(
s,−→ai,j

)
from the environment, and

the global state s evolves to the next state s′ according to the
state transition Γ : s × −→ai,j → s′. The agent (i, j) aims to maxi-

mize its cumulative rewards Ri, j =
H∑

h=1
γ · ri, j, where γ is a dis-

count factor, and H is the time horizon. Note that, the state tran-
sition probability is not given in the definitions, for the reason of
the POMG problem is solved by a model-free multi-agent DRL
algorithm, which do not necessarily acquire the knowledge of
state transition probabilities [21, 26]. Instead, the agents learn
the optimal decision policy from the transition tuples obtained
by interacting with the environment [23]. In the following, the
detailed information of each element is given.

3.1.1. System State Formulation
The state of the FEMC includes the internal facility state and

the external information state. In the facility, each agent has
its own observation oi, j = eh

i, j × Bh
i, j, containing the machine

energy consumption state and buffer storage state. The external
state covers the time-related components, i.e., the current hour
of the day and electricity price received from the SG, which are
relevant to the dynamic of the system. Thus, the system state s
is spanned by hour h, electricity price πh, and the observation
vector −→oi,j of all agents:

s = h × πh × −→oi,j (9)

3.1.2. System Action Formulation
The FEMC schedules the energy consumption of all ma-

chines via the binary control action Zh
i, j ∈ {0, 1} defined in Sec-

tion 2. Therefore, the system action a is composed by the vector
−−→
Zh

i,j of control actions determined by all agents:

a =
−−→
Zh

i,j (10)

3.1.3. System Reward Formulation
In terms of the objective function defined in Section 2, the

reward r of the system should be the value of output goods,
minus the total cost of input materials and energy consumption:

r =
∑

v∈V, g∈G

v · g −
∑

c∈C, m∈M

c · m − Eh · πh (11)

In the multi-agent cooperative setting of this work, each
agent acts according to its own policy µi, j and receives a shared
reward ri, j = r [35]. Hence, the problem of POMG is to find a
policy that maximizes the expected shared return for all agents,
which can be solved as a joint maximization MADDPG algo-
rithm, as described in the next subsection.

3.2. Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG)

Traditional DRL approaches such as deep Q-network (DQN)
or deep policy gradient (DPG) are poorly suited to com-
plex multi-agent industrial environments. One issue is that
the policy of each agent changes continually as training pro-
gresses, and the industrial environment becomes non-stationary
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from the perspective of any individual agent; this prevents the
straightforward use of past experience replay, which is crucial
for a DQN to learn stability. In addition, the DPG method typ-
ically suffers from extremely high variance with more agents
[36]. The details of DQN and DDPG are given in the Appendix
A and Appendix B.

Recently, MADDPG [35], an extension of DDPG to multi-
agent systems, has been proposed to solve POMG. Different
from optimizing a single policy network in DDPG, MADDPG
inherits the decentralized actor and centralized critic frame-
work, so that each agent maintains an individual policy net-
work: the actor, ai, j = µi, j

(
oi, j|θi, j

)
, mapping the local observa-

tion oi, j to the action ai, j on behalf of maximizing the expected
return, which is approximated as an individual Q-network Qi, j,
the critic. MADDPG allows each agent to receive its own per-
sonal reward signal ri, j

(
s,−→ai,j

)
. Under this circumstance, the

main idea of MADDPG is to learn each agent’s critic network
with local reward and derive the decentralized actor network
using the centralized critic network.

The parameter φi, j of the centralized Q-network for each
agent (i, j) is optimized as minimizing the loss ζi, j:

ζi, j

(
φi, j

)
= E

s,−→ai,j,
−→ri,j,s′∼D

[
Qµ

i, j

(
s,−→ai,j|φi, j

)
− yi, j

]2
(12)

yi, j = ri, j

(
s,−→ai,j

)
+ γQµ

i, j
′
(
s′,−→ai,j

′
|φi, j

′
)
|ai, j

′=µi, j
′(oi, j

′ |θi, j
′) (13)

where Qµ
i, j

(
s,−→ai,j|φi, j

)
is a centralized action-value function that

takes as input the actions and state information of all agents, and
outputs the Q-value for agent (i, j). yi, j is the target value com-
puted by critic target network Qµ

i, j
′
(
s′,−→ai,j

′
|φi, j

′
)

with a slowly
updating parameter φi, j

′. Additionally, the experience replay
buffer D contains

(
s,−→ai,j,

−→ri,j, s′
)
. It is worth noting that, in state

s, agent (i, j) evaluates which action will be performed by uti-
lizing inferred policy networks for other agents [37]. In brief,
the individual critic network catches the effects of other agents’
joint actions, influencing the future accumulated rewards of
agent (i, j).

The parameter θi, j of policy network for agent (i, j) is opti-
mized using a gradient ascent algorithm with its gradient com-
puted as follows:

∇θi, jψ
(
θi, j

)
=

Es∼D

[
∇θi, jµi, j

(
oi, j|θi, j

)
∇ai, j Q

µ
i, j

(
s,−→ai,j|φi, j

)] (14)

By iteratively updating the parameters of the actor and critic
networks, the algorithm eventually produces the optimal policy
network a∗i, j = µ∗i, j

(
oi, j|θi, j

)
[35]. It should be noticed that, the

centralized Q-function is only utilized during learning, while
execution is decentralized, during which each policy only re-
quires a local observation to induce an action.

3.3. The Detailed Algorithm

The detailed algorithm is shown in Table 1. Specifically,
from lines 1 to 3, the algorithm first randomly initializes the
critic and actor network with weights φi, j and θi, j for each agent
(i, j), and initializes each agent’s target network parameters φi, j

′

and θi, j
′, as well as the replay buffer D, so that the accumulated

experience is preserved for later learning.
Afterwards, the algorithm starts running with episodic iter-

ation. At the outset of each episode, the system sets a noise
process χ randomly for action exploration, and the agents begin
to observe the environment initial state s (lines 5 to 6). Then,
the algorithm goes in for experience accumulation from lines 7
to 11. Particularly, as a step counter h increments, each agent
chooses action ai, j based on the current policy and the explo-
ration noise. The primary challenge of learning in action se-
lection is exploration. In this work, an exploration policy is
constructed though appending noise sampled from a noise pro-
cess χ to the actor policy µi, j

(
oi, j|θi, j

)
. An Ornstein-Uhlenbeck

process [38] is used to generate temporally correlated explo-
ration for efficiency in physical control problems with inertia.
The Ornstein-Uhlenbeck process models the velocity of a mas-
sive Brownian particle under the influence of friction, which
results in temporally correlated values centered around 0. After
executing all the selected actions, each agent gains an imme-
diate reward ri, j according to Eq. 11 and the system evolves
to the next state s′. In this procedure, every pair of samples(
s,−→ai,j,

−→ri,j, s′
)

is saved in the experience buffer D.
Finally, the algorithm enters into the learning phase from

lines 12 to 17. In detail, for each agent (i, j), it samples a

minibatch of random K samples
(
sk,
−→
ak

i,j,
−→
rk

i,j, s
k′
)

from experi-
ence buffer D, and sets the target value using Eq. 13. After
that, every agent updates the critic by minimizing the loss us-
ing Eq. 12, and the actor using the sampled policy gradient by
Eq. 14. Since the critic being updated in Eq. 12 is also used
in calculating the target value in Eq. 13, the critic update is
apt to diverge. Thus, copies of the critic and actor networks
are created, to calculate the target values. The weights of these
target networks are then updated by having them slowly track
the learning networks in line 18: φi, j

′ ← τφi, j + (1 − τ) φi, j
′ and

θi, j
′ ← τθi, j + (1 − τ) θi, j

′ with τ < 1. This stands for the tar-
get values are constrained to change slightly, greatly improving
the learning stability. At last, the algorithm goes to the next
episodic iteration and the learning process begins afresh, until
the cumulative reward reaches its maximum value.

4. Case Study and Numerical Results

In this section, a case study is carried out to demonstrate the
effectiveness of the proposed multi-agent DRL algorithm for
energy management in a discrete manufacturing system.

4.1. Case Study

We consider a lithium-ion battery assembly system, which is
a typical example of a discrete manufacturing system. Gen-
erally, a battery module has a layered structure as shown in
Fig. 4, comprising side frames (SF), battery cells (BC), cooling
plates (CP), intermediate frames (IF) and compression foams
(CF) [39]. Its manufacture consists of four processes: assem-
bly, saturating, formation and grading [40]. First, the compo-
nents are put together into a battery module (assembly); next,
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Table 1: Multi-Agent Deep Deterministic Policy Gradient (MADDPG) Algorithm

Algorithm: MADDPG for discrete manufacturing system energy management

1. Randomly initialize critic network Qi, j

(
s,−→ai,j|φi, j

)
and actor network µi, j

(
oi, j|θi, j

)
with weights φi, j and θi, j for each agent (i, j)

2. Initialize each agent target network parameters: φi, j
′ ← φi, j, θi, j

′ ← θi, j

3. Initialize replay buffer D

4. For episode =1 to N do
5. Initialize a random process χ for action exploration

6. Observe initial state s

7. For h = 1 to H do
8. For each agent (i, j), select action ai, j = µi, j

(
oi, j|θi, j

)
+ χ according to the

current policy and exploration noise

9. Execute actions −→ai,j, observe rewards −→ri,j and next state s′

10. Store transition
(
s,−→ai,j,

−→ri,j, s′
)

in replay buffer D

11. s← s′

12. For agent (i, j) , i ∈ I, j ∈ J do

13. Sample a minibatch of random K samples
(
sk,
−→
ak

i,j,
−→
rk

i,j, s
k′
)

14. Set yk
i, j = rk

i, j + γQµ
i, j
′

(
sk′,
−→
ak

i,j
′|φi, j

′

)
|
ak

i, j
′=µk

i, j
′

(
ok

i, j
′ |θi, j

′
)

15. Update critic by minimizing the loss:

ζi, j

(
φi, j

)
= 1

K

∑
k

[
Qµ

i, j

(
sk,
−→
ak

i,j|φi, j

)
− yk

i, j

]2

16. Update actor using the sampled policy gradient:

∇θi, jψ
(
θi, j

)
= 1

K

∑
k ∇θi, jµi, j

(
ok

i, j|θi, j

)
∇ai, j Q

µ
i, j

(
sk,
−→
ak

i,j|φi, j

)
17. End for
18. Update the target network parameters for each agent (i, j):

φi, j
′ ← τφi, j + (1 − τ) φi, j

′

θi, j
′ ← τθi, j + (1 − τ) θi, j

′

19. End for
20.End for

Figure 4: Structure of a lithium-ion battery module.

the module is endowed with the sufficient electrolyte (saturat-
ing); and the module is then transformed into an useable form
by charging and discharging within a specific time (formation);
finally, according to resistance and capacitance measurements,
the battery module is rated on the basis of performance (grad-
ing). For more information, readers can refer to Appendix C
[39, 40].

Fig. 5 illustrates the detailed battery module assembly pro-
cess, and these processes are divided into ten tasks, where each

is assigned to the appropriate working machine. The power
consumption rate of each machine is listed in Table 2, together
with its production rate and buffer capacity. All parameters are
taken from [39, 41]. Table 3 lists the costs of input materials
and the value of output good, derived from [40, 41]. The max-
imum power Emax drawn from the SG is set to 500 kW, and
the hourly electricity prices on September 5, 2018, used in the
simulation are obtained from [42].

4.2. Numerical Results

To start learning, we use Adam optimizer [37] for learning
the actor and critic network parameters with the learning rate
of 0.0001 and 0.001, respectively. Each network has two hid-
den layers with 64 neurons per layer, and rectified linear unit
(ReLU) is used as the active function between all hidden lay-
ers. The Adam optimizer is an extension to stochastic gradi-
ent descent that has recently seen broader adoption for machine
learning applications, and it proved itself as an efficient and ef-
fective optimization method in many success works. In regard
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Figure 5: A lithium-ion battery module assembly process.

Table 2: Task Information

Task Task description Machine Working state
Production Power consumption Buffer

rate (Unit/h) rate (kW/h) capacity (Unit)

1 Assembling BC&CF M11
operation 35 22.8

80
idle 0 2.28

2 Assembling (BC&CF)&BC M12
operation 32 20.8

80
idle 0 2.08

3 Assembling IF&[(BC&CF)&BC]&CP M13
operation 40 25.6

100
idle 0 2.56

4 Assembling SF&BC M21
operation 30 26.2

80
idle 0 2.62

5 Assembling (SF&BC)&CP M22
operation 26 24.6

80
idle 0 2.46

6 Assembling BC&SF M31
operation 30 26.2

80
idle 0 2.62

7 Assembling all M01
operation 25 12.4

60
idle 0 1.24

8 Saturating M02
operation 24 10.2

60
idle 0 1.02

9 Formating M03
operation 30 13.6

80
idle 0 1.36

10 Grading M04
operation 28 9.5

500
idle 0 0.95

Table 3: Input Cost and Output Value

Item Unit price (¢)

Input material - side frame (SF) 35

Input material - battery cell (BC) 20

Input material - cooling plate (CP) 15

Input material - intermediate frame (IF) 25

Input material - compression foam (CF) 16

Output good - lithium-ion battery module 416

of its benefits as compared to other optimizers, the readers can
refer to [43]. For the critic Q-network, an L2 regularization [35]

with weight decay of 0.01 is used to reduce overfitting, and the
discount factor γ is set to 0.95 [44]. The final output layer of the
actor policy network is a tanh layer, to bound the actions. The
size of the replay buffer is 106 and we update the network pa-
rameters after every 100 samples added to the replay buffer. We
train with a minibatch sizes of 1024, and the maximum num-
ber of iteration episodes is set to 5 × 104. For the exploration
noise process, we use temporally correlated noise (realized by
an Ornstein-Uhlenbeck process [38] with θ=0.15 and σ=0.2) as
this is effective for exploring physical environments. The soft
target update τ is assigned to 0.001.

Upon executing the simulation, the system converges to the
optimal value, as shown in Fig. 6. It is clear that during the
first iterations, the agents have limited knowledge on how to
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Table 4: Operating Points of All Machines During Each Time Interval

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M11 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

M12 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0

M13 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0

M21 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

M22 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0

M31 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0

M01 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0

M02 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0

M03 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0

M04 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1
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Figure 6: Cumulative rewards during the learning process.

select actions to yield high rewards, and are randomly explore
action space based on the actor policy and exploration noise de-
scribed in Section 3.3. However, as iteration passed, the agents
gain experience by learning from episodic iterations through
trial and error methodology within the multi-agent DRL algo-
rithm. Gradually, the system converges its maximum profit at
close to 3×104 iterations. Once the cumulative rewards become
steady, the optimal policy is identified, in which the correspond-
ing optimal control action of each agent is determined. Table 4
exhibits the operating points of all machines during each time
interval, where “1” and “0” denote operation and idle, respec-
tively. To illustrate the optimal results more clearly, the aggre-
gated energy consumption of all machines under the proposed
DR scheme is plotted in Fig. 7. We can see that the machines
consume more electricity when the price is low, and then reduce
their demand when it is high, such that energy consumption at
peak times is avoided. More precisely, the industrial loads con-
sume more energy during time slots 1-15 and 19-24, and con-
sume less during 16-18. Particularly, the energy consumption

Figure 7: Aggregated energy consumption of all machines with DR.

of all machines is reduced to their minimum in time slots 16
and 17, since the price reaches its highest value. This not only
relieves the stress on, and improves the reliability of, the SG but
also reduces the electricity cost for industrial consumers.

In order to further emphasize the capability of the proposed
DR scheme, Fig. 8 shows the energy consumption of the entire
manufacturing process during each stage without DR, wherein
the electricity price fluctuations are ignored (using fixed flat
prices that equal to the average of the dynamic prices). Ob-
viously, the system has no intention to shift or reduce its energy
demand; all machines simply operated to accomplish produc-
tion, sequentially. Fig. 9 compares the total electricity costs
under the two cases, where the energy cost with the DR scheme
(blue) is 9.8% less than that when no DR (yellow) is applied,
which serves as the core motivation for industrial facilities to
participate in the DR program.

To assess the performance of the proposed multi-agent DRL
methodology in DR algorithm, a benchmark without learning
is investigated, wherein the optimization problem is formulated
under a MILP framework and solved by a commercial Gurobi
solver [45]. This benchmark could be identified as an ideal
strategy, since it is developed according to the ideal assump-
tion that it has full information about the system parameters and
utilizes the accurate model to maximize the objective function
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Figure 8: Aggregated energy consumption of all machines without DR.

Figure 9: Electricity costs without and with DR.

defined in Eq. 8, leading to an ideal mathematically optimal re-
sult. By contrast, the multi-agent DRL strategy enabling taking
advantage of learning ability to select different actions to max-
imize the reward defined in Section 3. Fig. 10 illustrates the
total revenue procured via these two methods. It can be seen
that, due to the assumption that a perfect model is available
and given as a priori, the benchmark optimization achieves the
best performance with maximum profit. However, this perfect
model eliminates all of the uncertainties concerning industrial
facility, which is not realistic in practice. For the multi-agent
DRL approach, it does not work well at the initial stage, since
it is engaging in its learning process by trial and error; whereas,
as more experience is gained via running more iterations, the
multi-agent DRL starts to autonomously adapt to the facility
characteristics and adjust its policy as described in Section 3.
At last, the multi-agent DRL algorithm converges toward the
optimal value calculated by the benchmark. Considering that
it is model-free and no need for prior domain knowledge about
the features of volatile energy management situations, it is rea-
sonable to suggest multi-agent DRL as a promising solution for
complex industrial DR problems.

To evaluate the generality and flexibility of the proposed
learning algorithm for energy management, we also conduct
the simulation from a single day to three different days, wherein
the electricity prices are obtained from ComEd [42] on the date
from September 2 to September 4, 2018. Figs. 11 and 12
show the convergence of the cumulative rewards during learn-
ing process and the corresponding optimal aggregated energy
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Figure 10: Total revenue procured by multi-agent DRL and Gurobi solver.
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Figure 11: Convergence of the cumulative rewards from September 2 to
September 4, 2018.

consumption of all machines under the DR case within these
three days, respectively. As shown in Fig. 12, similar trend of
energy consumption profiles with the previous single day are
repeated on each of the three days that verifies the entire elec-
tricity demand of all machines is scheduled to off-peak slots to
ensure the bill savings; which further enhances the simulation
analysis before, indicating that this proposed DR scheme with
DRL methodology can handle the industrial energy manage-
ment well.

Finally, Table 5 gives the computational statistics for the case
study. All the simulations are conducted on a laboratory com-
puter with 64-bit Windows 7 OS, a 3.3 GHz 4-core i5-6600
CPU, 16 GB of RAM and an Nvidia GTX 1080 GPU. All the
learning related codes are running on GPU, such as the proce-
dure of updating actor and critic network parameters, and the
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Figure 12: Aggregated energy consumption of all machines from September 2 to September 4, 2018.

action selection process. We also grab a bunch of transitions
from the experience buffer and use the GPU to optimize the
learning objective with Adam optimizer. The powerful GPU al-
lows for the networks to update with gradients that have higher
efficiency, speeding up the learning process [46]. The computa-
tion times for obtaining the optimal results with the multi-agent
DRL and the Gurobi solver for a single day and multi-agent
DRL for three continuous days are, on average about 2 min,
100s and 7 min, respectively. Such a time can fully meet the
time requirement to deploy the proposed DR scheme for indus-
trial facility energy management.

5. Conclusions and Future Work

This paper proposes a multi-agent DRL based DR scheme
for discrete manufacturing systems energy management, aimed
at minimizing the electricity cost and improving the grid sta-
bility. In particular, the industrial manufacturing system is ini-
tially formulated as a POMG; after that, a MADDPG algorithm
is employed to obtain the optimal energy consumption for each
machine. Through a case study of a lithium-ion battery assem-
bly process, this multi-agent DPL algorithm is proved effective
at managing the energy consumption without knowing the sys-
tem dynamics. Compared to the case of no DR being employed,
this proposed DR scheme is able to reduce the total electricity
cost by 9.8%, which serves as the core motivation for the indus-
trial consumer to participate in the DR program. Moreover, the
performance of the presented approach with multi-agent DRL
against the mathematical method by Gurobi solver is investi-
gated, indicating that multi-agent DRL is a promising solution
for complex industrial DR problems.

For future work, one valuable direction would be to exe-
cute the proposed DR scheme for different real-world industrial
facilities to test its performance. Another desirable direction
would be to standardize the communication networks of DR
scheme interfaces for practical industrial applications.

Appendix A. Deep Q-network (DQN)

DQN [47], a DRL approach to solve MDP, aims to find an
optimal policy υ that maximizes the expected return. DQN ap-

proximates the expected return using a deep neural network as
Q (s, a|φ) ≈ E

[
R|st = s, at = a

]
. The parameter φ of Q (s, a|φ)

is optimized by minimizing the loss ζ defined as:

ζ (φ) = Es,a,r,s′∼D
[
Q (s, a|φ) − y

]2 (A.1)

y = r + γmax Q′
(
s′, a′|φ′

)
(A.2)

where φ′ is the target network parameter, which is periodically
updated with the most recent φ. D is experience replay buffer,
in which (s, a, r, s′) is stored for each step of each episode. Both
the experience replay buffer and the target network are intended
to stabilize learning [47].

Once the optimal network parameter φ∗ is obtained, the opti-
mal policy can be expressed as υ∗ (s) = arg max Q (s, a|φ∗).

Appendix B. Deep Deterministic Policy Gradient (DDPG)

The policy gradient method is another common choice for
DRL tasks [48]. The main idea is to adjust directly the pa-
rameter θ of the policy to maximize the objective ψ (θ) =

Es∼ρµ,a∼µθ
[
R|st = s, at = a

]
in the direction of the performance

gradient ∇θψ (θ). DDPG [48], as an actor-critic algorithm, is
aimed at deriving the deterministic policy network directly, re-
ferred to as an actor, at = µ (st |θ) that maximizes the expected
return, defined as:

ψ (θ) = Es∼ρµ,a∼µθ [R] ≈ Es∼ρµ,a∼µθ
[
Qµ (s, a|φ)

]
(B.1)

The Q-network Qµ (s, a|φ) in Eq. B.1, referred to as a critic,
is optimized like Eq. A.1 in DQN. The parameter θ of the policy
network is optimized using a gradient ascent algorithm, com-
puted as follows:

∇θψ (θ) = Es∼D

[
∇θµθ (s|θ)∇aQµ (s, a|φ) |a=µ(s|θ)

]
(B.2)

The gradient is computed using the chain rule, as the ex-
pected value of the product can be decomposed into the gra-
dient of the policy network in relation to its parameters, and
the gradient of the Q-network with respect to actions. By itera-
tively updating parameters for the actor and critic network, the
algorithm deduces the optimal policy network a∗t = µ (st |θ

∗).

11



Table 5: Computational Statistics for the Case Study

Approach Hardware Software Computation time
Multi-agent DRL (one day) Windows 7 OS 64-bit, 16GB RAM, Python programming, PyCharm IDE 2 min

Gurobi solver (one day) 4-core i5-6600 CPU 3.30GHz, C++ programming, Visual Studio IDE 100 s
Multi-agent DRL (three days) Nvidia GTX 1080 GPU Python programming, PyCharm IDE 7 min

Appendix C. Lithium-ion Battery Assembly System

A lithium-ion battery module usually has a hierarchical struc-
ture consisting of battery cells (BC) and ancillary members,
such as side frames (SF), cooling plates (CP), intermediate
frames (IF) and compression foams (CF), as shown in Fig. 4
[39]. These components are assembled or stacked together in
a certain pattern, for example, IF&[(BC&CF)&BC]&CP. The
details of a lithium-ion battery assembly process is illustrated
in Fig. 5 [40]. And these processes can be decomposed into
ten tasks, where different tasks are independently performed at
the different branches, i.e., preassembling different components
into subassemblies at different branches. Then, the different
subassemblies are fed to an assembly station which processes
the finished modules.

Table 2 lists the tasks information for subassemblies (from
Task 1 to Task 6), and the final assembly together with another
three processes (from Task 7 to Task 10). Specifically, the BC
and auxiliary components (SF, CP, IF, and CF) are crated onto
the assembly line, and are then assembled into a module by
appropriate stacking machines via a series of operations. Af-
ter that, each module is filled with the electrolyte, and is then
clamped or sealed with end plates (Task 8). Once the module
assembly and saturating are complete, the module should be put
through at least one precisely controlled charge and discharge
cycle to activate the working materials, transforming them into
their useable form, named the formation process (Task 9). Fi-
nally, the battery modules are inspected and graded according
to their properties (type, size), performances (good, damaged)
and different electrochemical characteristics (capacity, voltage)
by optical, electrical, ultrasonic, or mechanical sorting devices
(Task 10). Upon the completion of these operations, the mod-
ules can be welded together into a battery pack.
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