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Abstract

We present competing risks models within a semi-Markov process framework via

the semi-Markov phase-type distribution. We consider semi-Markov processes in

continuous and discrete time with a finite number of transient states and a finite

number of absorbing states. Each absorbing state represents a failure mode (in

system reliability) or a cause of death of an individual (in survival analysis). This

is an extension of the continuous-time Markov competing risks model presented in

Lindqvist and Kjølen [2018]. We derive the joint distribution of the lifetime and the

failure cause via the transition function of semi-Markov processes in continuous and

discrete-time. Some examples are given for illustration.

Keywords: competing risks, semi-Markov process, extended semi-Markov Ph-

distributions, survival analysis.

1 Introduction

In competing risks there are two random variables of interest, the time to failure T ,

and the cause of failure C, see, e.g., Crowder [2001], Aalen [1995], Lindqvist and Kjølen

[2018]. For instance, we can consider that a person could die of different causes, lung

cancer, heart attack, HIV, etc. If we are observing both the time to death and the cause

of death, the model therefore has to include more than one absorbing state (failure state),

see e.g., Crowder [2001, 2012]. Thus, if the interest is focused on a specific cause of failure

in presence of different causes, we are in the case of a competing risks model. In engi-

neering, competing risks refer to the lifetime of a machine and its cause of breakdown.
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For instance, if we consider a car, it can fails due to electrical problems, dead battery,

malfunctioning sensors, etc. The idea of competing risks is to model a process where the

system is exposed to several causes of failure and its eventual failure is attributed exactly

to only one of them.

A natural extension of (Markov) phase-type distributions (Ph-distributions), see,

e.g., Neuts [1981], Aalen [1995], Asmussen and O’Cinneide [2006], is the semi-Markov

Ph-distribution in continuous or discrete-time. See, e.g., Limnios [2012], where the Ph-

distribution is defined in semi-Markov processes for both continuous and discrete time.

The aim here is to extend this to competing risks models (see, e.g., Crowder [2001],

Beyersmann et al. [2011], Crowder [2012]). In particular we generate the Lindqvist and

Kjømodel in the semi-Markov case.

Although Markov processes are able to model properly, and in a straightforward

manner, different situations, they have some limitations. For instance, the Markov as-

sumption imposes restrictions on the distribution of the sojourn time in a state, which

is geometrically distributed in the case of a discrete time chain and exponentially dis-

tributed in a continuous time process. This is the main drawback when applying the

Markov processes in real problems. By contrast, semi-Markov processes are generaliza-

tions of Markov processes. They relax the hypothesis of the sojourn time distribution in

a state. In semi-Markov processes the sojourn time in a state can follow any distribu-

tion, see, e.g., Limnios and Oprişan [2001]. Our interest in semi-Markov processes comes

from the fact that in many situations in modeling complex systems, the distribution of

the holding time in some states of the system can be different from the exponential (or

geometric in discrete-time) distributions. For example, in mechanical systems we have

mostly Weibull distributed sojourn times and in some maintenance operations we have

log-normally distributed times or even constant duration of some particular maintenance

operations, etc.

The article is organized as follows: in Section 2, we introduce semi-Markov processes

and extended ph-type distributions. In Section 3, we present semi-Markov processes and

competing risks. In Section 4, we present the discrete-time competing risks by semi-
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Markov chains. Finally, in Section 5, we give some concluding remarks.

2 Semi-Markov processes and extended ph-type distri-

butions

Consider a complete probability space (Ω,F ,P), on which we define all processes and

random variables. Let N := {0, 1, 2, ..} be the set of natural numbers, N∗ := {1, 2, ...} and

R+ = [0,∞) the nonnegative real numbers. Let us consider a semi-Markov continuous

process Z = (Zt, t ∈ R+) with state space E = {1, 2, ..., r + 1}, where states

E0 := {1, 2, ..., r} are the transient states and state {r + 1} is absorbing. Consider the

jump times of Z, say 0 = S0 < S1 < · · · < Sn < · · · . Let us consider the chain (Jn)n∈N

which records Z at the points (Sn), i.e., Jn = ZSn , n ≥ 0. Notice that (Jn, Sn), n ≥ 0,

is the (embedded) Markov Renewal Process (MRP) of Z. Let i, j be two elements of E.

Then the semi-Markov kernel Q(t) is defined as follows,

Qij(t) := P(Jn+1 = j, Sn+1 − Sn ≤ t | Jn = i), n ≥ 0, t ∈ R+. (1)

It is worth noticing that the semi-Markov kernel considered here is independent of n,

which means that the semi-Markov sequence is homogeneous in time, and that we use

index t ∈ R+ for the calendar times, and index n ∈ N for the number of jumps of (Zt).

The stochastic process (Jn) is the embedded Markov chain of the MRP (Jn, Sn).

Let α be the initial distribution of the semi-Markov process Z, i.e.,

α(i) := P(Z0 = i) = P(J0 = i), i ∈ E. Define the transition function of the semi-Markov

process by Pt(i, j) := P(Zt = j | Z0 = i), for i ∈ E0, j ∈ E. Of course, we have

Pt(r + 1, j) = 0, j ∈ E0 and Pt(r + 1, r + 1) = 1, for t ≥ 0.

Consider now the partition of the semi-Markov kernel and of the initial law, following

sets E0 and {r + 1}, as follows:

Q(t) =

 Q0(t) L(t)

01×r 0

 (2)

and α = (α0, 0), where α0 is the sub-vector corresponding to transient states E0. The

matrix Q0(t) is the restriction of the semi-Markov kernel over the transient states E0×E0,
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an r × r matrix function, and L(t) is an r × 1 column vector function.

Consider also the matrix

H̄ :=

 H̄0(t) 0

0 H̄1(t)

 (3)

where H0(t) := diag(H i(t), i = 1, ..., r) is the restriction of the sojourn times survival

functions on the transient states.

Let us consider a real-valued measurable function ϕ : E × R+ −→ R and define its

convolution by Q(t) as follows

Q ∗ ϕ(i, t) =
∑
j∈E

∫ t

0

Qij(ds)ϕj(t− s), (4)

see Limnios [2012].

Let us define the absorption time T by

T = inf{t ≥ 0 : Zt = r + 1}

The closed form solution of a semi-Markov phase-type distribution, say F on [0,∞), where

F (t) is the distribution of T , is (see, e.g., Limnios and Oprişan [2001], Limnios [2012]),

F (t) := 1− F (t) = α0(I −Q0(t))
(−1) ∗ H̄0(t) (5)

where I is the identity matrix for t ≥ 0, and the zero matrix for t < 0, and

ψ(t) := (I −Q0(t))
(−1) =

∑
n≥0

Q
(n)
0 (t) (6)

where Q(n)
0 is the n-fold convolution of Q0 (see, e.g., Limnios and Oprişan [2001]), i.e.,

Q0
(n)
ij (t) =


δij1{t≥0} n = 0

Q0ij(t) n = 1∑
k∈E

∫ t

0
Q0ik(ds)Q0

(n−1)
kj (t− s) n ≥ 2.

(7)

For the non singularity of this matrix see Section 3.

It is worth noticing here that the semi-Markov Ph-distributions on [0,∞), given

by (5), is a dense class for the weak topology, in the set of all probability distributions

on [0,∞), since this class includes as a particular case the dense class of Markov Ph-

distributions (e.g., Neuts [1981]). It is also worth noticing that we are using here the

convolution sense inversion of a matrix function A denoted by A(−1) which is different

from the usual inversion of a matrix B, denoted by B−1.
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3 Semi-Markov process and competing risks

In this section we are going to extend the semi-Markov Ph-distributions to the competing

risks setting, as it has been done for the Markov case by Lindqvist and Kjølen [2018]. Let

us consider a continuous-time semi-Markov process (Zt, t ∈ R+), with state space E and

initial distribution α. We shall decompose the state space E into the transient subset E0

(good performance states) and absorbing subset E1 (failures states), i.e., E = E0∪E1. We

shall consider r ≥ 1 transient states and m ≥ 2 absorbing states. Under these conditions,

we shall give the main results for the extended semi-Markov Ph-distribution in continuous

time. The time that the process has to wait until reaching the set E1 (failure states), the

absorption time T is this time defined as follows,

T := inf{k ≥ 0 : Zk ∈ E1}. (8)

The lifetime T and the cause of failure, C, with values in the set {1, ...,m}, depend on Zt.

More precisely, we have {T ≤ t, C = j} = {Zt = r + j}. This is the key relation of the

connection between competing risks and the extended Semi-Markov Ph-distributions.

Consider now the partition of the semi-Markov kernel Q, and the initial law α, in

this new situation following the partition E0, E1 of E, as follows:

Q(t) =

 Q0(t) L(t)

0m×r 0m×m

 (9)

and α = (α0, α1), notice that, in this particular case α0 is the r-dimensional vector. The

function L(t) is now an r ×m matrix.

Consider also the diagonal matrices H0(t) := diag(H i(t), i = 1, ..., r) and

H1(t) := diag(H i(t), i = r + 1, ..., r + m) is the restriction of the sojourn times survival

functions on the absorbing states, where H1(t) = 0, so H1(t) = I the identity matrix, for

t ≥ 0, and 0m×m otherwise.

Let us denote the distribution function of (T,C) by Fij(t) := Pi(T ≤ t, C = j). This

is the cumulative incidence function in the competing risks terminology. Let further the

failure rate λij(t), for initial state i ∈ E0, and cause j ∈ E1, which is the cause-specific

hazard in competing risks terminology, be defined by

λij(t) := lim
h↓0

Pi(t < T ≤ t+ h,C = j | T > t)

h
.
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It is worth noticing here that for fixed i ∈ E0, and j ∈ E1, Fij(t) is a sub-distribution

function.

Let us define the matrix functions F (t) := (Fij(t); i ∈ E0, j ∈ E1) and

λ(t) := (λij(t); i ∈ E0, j ∈ E1).

Proposition 3.1. Suppose that the entries of the matrix function L, in the semi-Markov

kernel (2), have Radon-Nikodym derivatives. Then the distribution function matrix F (t)

and the cause specific, failure rate function λ(t), are given by

F (t) = (I −Q0)
(−1) ∗ L(t)

and

λij(t) =
ei(I −Q0)

(−1) ∗ `(t)ej
ei(I −Q0)(−1) ∗H0(t)1r

,

where `(t) := L′(t), the element derivatives of L with respect to t and

ei := (0, ..., 0, 1, 0, ..., 0), with 1 in the i-th entry.

Remark. In the case when we consider a general initial distribution α0 on E0, then

the above formulas can be written as Fj(t) := P(T ≤ t, C = j) = α0(I − Q0)
(−1) ∗ L(t)

and

λj(t) = lim
h↓0

P(t < T ≤ t+ h,C = j | T > t)

h
=

α0(I −Q0)
(−1) ∗ `(t)ej

α0(I −Q0)(−1) ∗H0(t)1r

.

Proof. We have:

Fij(t) := Pi(T ≤ t, C = j)

=
∑
k∈E0

∫ t

0

Pi(T ≤ t, C = j | S1 = s, J1 = k)Pi(S1 ∈ ds, J1 = k)

+
∑
k∈E1

∫ t

0

Pi(T ≤ t, C = j | S1 = s, J1 = k)Pi(S1 ∈ ds, J1 = k),

=
∑
k∈E0

∫ t

0

Qik(ds)Fkj(t− s) +
∑
k∈E1

∫ t

0

Qik(ds)δkj

Hence

Fij(t) = Qij(t) +
∑
k∈E0

∫ t

0

Qik(ds)Fkj(t− s)

i ∈ E0, j ∈ E1

F (t) = L(t) +Q0 ∗ F (T )
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F (t) = (I −Q0)
(−1) ∗ L(t)

and δkj as the Kroner’s symbol, i.e.,

δkj =

 1 if k = j

0 if k 6= j.

Let us now consider the probabilities Rik = Pi(ZT = r + k) = Pi(C = k), for starting in

state i ∈ E0 and being absorbed in state r + k that means it died by cause k = 1, ...,m,

and define the matrix R := (Rik; i = 1, ..., r; k = 1, ...,m). Consider also the transition

probability matrix P of the embedded Markov chain (Jn) of the semi-Markov process (Zt)

and its partition following sets E0, E1, i.e.,

P =

 P0 P1

0m×r I

 .
Proposition 3.2. We have

R = (I − P0)
−1P1.

Proof. Since this probability depends only on the transition probabilities of the embedded

Markov chain, the proof of the result is straightforward by Markov chain theory (see, e.g.,

Girardin and Limnios [2018]).

4 The discrete-time competing risk

Let (Zk), k ∈ N, be a semi-Markov discrete-time process, i.e., a semi-Markov chain (SMC)

with state space E, and (Jn, Sn), n ∈ N, its embedded Markov renewal chain, see e.g.,

Barbu and Limnios [2008]. The semi-Markov kernel of (Zk), is defined as follows,

qij(k) := P(Jn+1 = j, Sn+1 − Sn = k | Jn = i), n ≥ 0, k ∈ N, for i, j ∈ E. (10)

It is worth noticing that the semi-Markov kernel considered here is independent of n,

which means that the SMC is homogeneous in time, and that we use index k ∈ N for the

calendar times, and index n ∈ N for the number of jumps of (Zk). The stochastic process

(Jn) is the embedded Markov chain of the MRP (Jn, Sn).
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Let us denote by (Xn)n∈N the process which determines the successive sojourn times in

the visited states, where by convention X0 := S0 := 0, and

Xn+1 = Sn+1 − Sn, n ∈ N.

We shall denote the conditional distribution of Xn+1, n ∈ N by

fij(k) := P(Xn+1 = k | Jn = i, Jn+1 = j), k ∈ N. (11)

The cumulative distribution function of the sojourn time in state i ∈ E is defined by the

following relation

Hi(k) :=
k∑

l=0

∑
j∈E

qij(l).

Let ϕ(i, k), i, j ∈ E, k ∈ N, be a measurable function and define the convolution of ϕ by

q by

(q ∗ ϕ)ij(k) :=
∑
r∈E

k∑
l=0

qir(l)φrj(k − l).

The n-fold convolution of q by itself is defined recursively by

q
(n)
ij (k) :=

∑
r∈E

k∑
l=0

qir(l)q
(n−1)
rj (k − l).

We shall make the same considerations for the semi-Markov chain (Zk)k∈N as in

continuous time, i.e., we shall decompose the state space in transient (good performance

states) and absorbing states (failures states), i.e., E = E0 ∪ E1. We shall consider r ≥ 1

transient states and m ≥ 2 absorbing states. We shall also partition the semi-Markov

kernel following the states E0 and E1, i.e.,

q(k) =

 q0(k) q1(k)

0 0

 . (12)

Observe that the first zero in the second line is the m× r zero matrix and the second one

is the m×m matrix; q0(k) and q1(k) are the restriction of q(k) on E0 × E0 and E0 × E1

respectively. The next proposition gives the main result for the extended Semi-Markov

Ph-distribution in discrete time.
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Proposition 4.1. For a semi-Markov chain (Zk), k ∈ N, with state space E and initial

distribution α as described above, we have:

gj(k) := P(T = k, C = j) =

 0, k = 0;

α0(I − q0)(−1) ∗Q1(k)ej, k ∈ N∗;

where

Q(k) =
k∑

l=0

q1(l).

Therefore

Gj(k) = P(T ≤ k, C = j) =
k∑

l=0

α0(I − q0)(−1) ∗ q1(l)ej,

where ej is a column vector of size |E1| where all its coordinates are zero except the

coordinate which correspond to state j.

Proof: Set

gij(k) = Pi(T = k, C = j), i ∈ E0, j + r ∈ E1.

Obviously, we have:

gj(k) =
∑
i∈E0

αigij(k). (13)

Now, we can write, for i ∈ E0 and j ∈ E1:

gij(k) = Pi(T = k, C = j)

= Pi(T = k, C = j, S1 ≤ k)

=
∑
r∈E1

k∑
l=1

Pi(T = k, C = j | S1 = l, J1 = r)Pi(J1 = r1, S1 = l)

+
∑
r∈E0

r∑
l=1

Pi(T = k, C = j | S1 = l, J1 = r)Pi(J1 = r1, S1 = l)

=
∑
r∈E1

k∑
l=1

qir(l)δrj +
∑
r∈E0

k∑
l=1

qir(l)grj(k − l)

Hence

gij(k) = Q1(k) +
k∑

l=1

∑
r∈E0

qir(l)gij(k − l) (14)
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The Markov renewal Equation (14) can be written in its matrix form as follows

g(k) = Q1(k) + q0 ∗ g(k)

and its solution is

g(k) = (I − q0)(−1) ∗Q1(k) �

5 Numerical Applications

5.1 Continuous-time case

Let us consider a four states semi-Markov process, i.e., let E = {1, 2, 3, 4}, where states

1, 2 are transient and states 3, 4 are absorbing states, i.e., E0 = {1, 2} and E1 = {3, 4}.

Assume that the semi-Markov kernel of this process is Q(t),

Q(t) =


0 Q12(t) Q13(t) 0

Q21(t) 0 0 Q24(t)

0 0 0 0

0 0 0 0


with the following blocks of its partition:

Q0(t) =

 0 Q12(t)

Q21(t) 0

 , L(t) =

 Q13(t) 0

0 Q24(t)

 .
Now we have the following block matrix of the transition function

P12(t) = (I −Q0)
(−1) ∗ L(t) = M ∗

 Q13(t) Q12 ∗Q24(t)

Q21 ∗Q13(t) Q24(t)


where M(t) := (1−Q21 ∗Q13)

(−1)(t) = 1 +
∑∞

k=1(Q21 ∗Q13)
(k)(t). This is a usual renewal

type function.

So, we have

F1(t) = α0P12(t)e1 = α(1)M ∗Q13(t) + α(2)M ∗Q21 ∗Q13(t)

and

F2(t) = α0P12(t)e1 = α(1)M ∗Q12 ∗Q24(t) + α(2)M ∗Q24(t).
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The primes here mean derivatives with respect to t. In figure 1 we can observe an example

of the function Fj(t) where j = 1, 2 and the sojourn time in a state is modeled by a Weibull

distribution. The matrix value function ψ, see Equation (6) is computed using the method

valued proposed by Wu et al. [2020].

Figure 1: Probability of absorption before time t by the first and the second cause of

failure in a semi-Markov process

We also calculate the cause specific failure rates λj(t), for j = 1, 2, as follows:

λ1(t) =
α(1)M ∗Q′13(t) + α(2)M ∗Q21 ∗Q′13(t)

M ∗ [α(1)Q13 ∗H1(t) + α(1)Q12 ∗Q24H2(t) + α(2)Q12 ∗Q13 ∗H1(t) + α(2)Q24 ∗H2(t)]

λ2(t) =
α(1)M ∗Q12 ∗Q24(t)

′ + α(2)M ∗Q24(t)
′

M ∗ [α(1)Q13 ∗H1(t) + α(1)Q12 ∗Q24H2(t) + α(2)Q12 ∗Q13 ∗H1(t) + α(2)Q24 ∗H2(t)]

where H1(t) = 1 − (Q12(t) + Q13(t)) and H2(t) = 1 − (Q21(t) + Q24(t)), for t ≥ 0, and

α(i) := P(Z0 = i), for i = 1, 2. In figure 2 we can observe the failure rate by the first and

the second cause of failure.
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Figure 2: Failure rate by the first and the second cause of failure

Finally, the matrix R is

R = (1− p12p21)−1
 p13 p12p24

p21p13 p24


where pij := Qij(∞), for i, j ∈ E0 and pij := δij for i, j ∈ E1 (Kronecker’s δ).

It is worth noticing that from p12 + p13 = 1 and p21 + p24 = 1, we can see that R is a

stochastic matrix.

5.2 Discrete-time case

We present an example of a semi-Markov chain with two absorbing states, i.e., we consider

two causes of failure. For this example the state space is E = {1, 2, 3, 4}, with up states:

1 and 2; and down states: 3 and 4, i.e., the first cause of failure is the state 3, and the

second cause of failure is the state 4.

In a semi-Markov chain, fij(k) could be any distribution on N. In this example every

fij(·) is a discrete-time Weibull distribution, i.e.,

fij(k) := Wa,b(k)

where

Wa,b(0) := 0 for all i, j
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and

Wa,b(k) := a(k−1)
b − akb , k ≥ 1.

see Nakagawa and Osaki [1975]. For this particular example

q(k) =
(
qij(k)

)
1≤i,j≤4 =


0 p12f12(k) p13f13(k) p14f14(k)

p21f21(k) 0 0 p24f24(k)

0 0 0 0

0 0 0 0

 , k ∈ N,

where pij := P(Jn+1 = j | Jn = i), i, j ∈ E, n ∈ N and the value for a = 0.5 and

b = 0.5. In the next figure we show the extended Phase-type distribution of the random

pair (T,C) for a semi-Markov chain. In Figure 3, the evolution of the system is modeled

by a semi-Markov chain. In this figure we can observe the two distribution G3(k) and

G4(k), that the process enters the absorbing state three (first cause of failure) and, the

absorbing state four (second cause of failure).

Figure 3: Probability of absorption before time k for states j = 3 and j = 4 for a

semi-Markov chain

6 Concluding remarks

In this paper, we have presented an extension of the competing risks models based on

absorbing Markov chains to semi-Markov type competing risks models. This generaliza-

tion is important since we can now consider any distribution for the sojourn times in a
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state, instead of merely the exponential (or geometric) distribution. We have calculated

the joint distribution of the time to failure T and cause of failure in presence of different

causes using a semi-Markov approach. This is the probability of absorption by time t in

a specified absorbing state j ∈ E1, and corresponds to the cumulative incidence function

in standard competing risks terminology. We further provide expressions for the cause

specific hazard rate λij(t) for initial state i ∈ E0 and j ∈ E1, as well as the general

cause-specific hazard λj(t). Both continuous and discrete time semi-Markov processes are

considered. The closed form formulas provided in the paper can be used for statistical

inference for competing risks data.
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