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A female Daphnia with eggs, 

ready to fight any stressor, 

like a true superhero. 
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Introduction
Toxicity and standardization 

Toxicity studies on freshwater organisms are 

commonly conducted under highly 

standardized conditions that exclude 

interactions with environmental factors 

(OECD, 2004). Daphnia are keystone 

zooplankton species in freshwater 

ecosystems and commonly used as model 

organisms for ecotoxicological tests (Shaw et 

al., 2008). Hence, effects of chemical 

pollutants on Daphnia can potentially impact 

different trophic levels in the aquatic 

ecosystem. However, aquatic invertebrates 

like Daphnia regularly experience extensive 

spatial and temporal variation of 

environmental factors in nature, which may 

interact with pollutant exposure and effects 

and as such influence important 

characteristics of individuals and populations 

(Kim et al., 2010; Wang, 1987). 

 

Mercury 

Metal pollution in aquatic ecosystems is a 

worldwide concern (Fernández-Luqueño et 

al., 2013). The heavy metal mercury (Hg) 

receives a distinctly high attention, because of 

its long-range transport across the globe and 

its high toxic properties (Lavoie et al., 2013; 

UNEP, 2013). Most of the Hg present in the 

environment comes from anthropogenic 

sources such as fossil fuel combustion, 

mining and waste incineration (Eisler, 2006). 

In turn, the bioavailability and 

bioaccumulation potential of Hg determines 

its level of toxicity and varies according to the 

metal’s chemical and physical form. The 

methylated forms of Hg are the most toxic 

and bioaccumulative forms. Their high 

bioaccumulation rate is due to their high lipid 

solubility (Govind & Madhuri, 2014). The 

less toxic inorganic Hg, in the form of 

mercuric ions (Hg2+), is mostly soluble in 

water. In aquatic environments, organisms 

can take up Hg2+ from water by adsorption 

onto and absorption through biological 

membranes, in addition to food ingestion 

(Boening, 2000). The toxic action of Hg can 

in turn be counteracted by the essential 

nutrient selenium (Se). In the biota, Se 

binding to Hg yields an insoluble and inert 

Hg-Se complex, which reduces the 

bioavailability of Hg and potentially mitigates 

its toxicity (Raymond & Ralston, 2004). 

 

Antidepressants 

Pharmaceutical residues are widespread 

pollutants in aquatic ecosystems. Some of the 

most frequently found pharmaceutical 

residues in aquatic ecosystems are 

antidepressants, which inhibit the reuptake of 

different neurotransmitters (Fent et al., 

2006). Antidepressants enter aquatic 

ecosystems through multiple pathways, most 

importantly through wastewater and the 

household disposal of unused products 

(Bound & Voulvoulis, 2005). By directly 
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affecting the nervous systems, exposure to 

antidepressants can alter the behaviour, 

development, reproduction and survival of 

aquatic biota (Brodin et al., 2014; Sehonova 

et al., 2018). 

 

Environmental variation 

Despite organisms in nature commonly 

experiencing environmental variation, 

standard ecotoxicological studies generally 

overlook potential pollutant interactions with 

environmental factors. For example, trophic 

interactions can greatly influence the 

bioavailability of metals and hence their 

toxicity. Indeed, aquatic biofilms (algae) have 

been shown to readily accumulate Hg 

(Dranguet et al., 2017). Because they serve as 

food for aquatic grazers (Siehoff et al., 2009), 

biofilms can affect the accumulation of 

metals in Daphnia. Despite the effect that 

biofilms may have on the bioaccumulation 

and toxicity of metals, classic toxicity studies 

prevent their growth in the exposure media. 

Other environmental factors that may 

influence the effect of pollutants to Daphnia 

are temperature and population density. At 

elevated temperatures, a higher metabolic 

rate and cell membrane permeability can e.g. 

increase metal uptake from food and the 

aqueous environment (Sokolova & Lannig, 

2008). In turn, high population density and 

associated high intraspecific competition, can 

reduce the per capita amount of resources 

available for allocation to detoxification and 

repair processes (Heugens et al., 2001). 

Resource availability and abundance is an 

additionally important factor in 

pharmaceutical pollution in aquatic 

ecosystems. Indeed, interactive effects 

between antidepressant disruption of 

neurotransmitter systems and resource 

abundance have been previously 

documented in aquatic biota (Campos et al., 

2012), but remain understudied. 

 

Plasticity, life history and food 

Phenotypic plasticity is an environmentally 

induced phenomenon, whereby a given 

genotype displays different phenotypes in 

response to a changing environment (West‐

Eberhard, 2003). The slope and elevation of 

the relationship between environment and 

phenotype can be described as a reaction 

norm (Ghalambor et al., 2007). Under natural 

selection, adaptive phenotypic 

plasticity evolves such that the resulting 

reaction norm maximizes fitness across the 

changing environment (Ghalambor et al., 

2007; Lande, 2009). Phenotypic plasticity can 

also be transferred from mothers to 

offspring, with effects to offspring fitness 

(Marshall, 2008). Therefore, expressing 

adaptive reaction norms is important for 

maintaining high fitness and population 

viability in environments that vary across 

space and in time. This is especially true for 

reaction norms in response to food 

abundance, as changes in these can have 
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strong effects on different components of 

life history, such as reproduction, growth and 

somatic maintenance (Boggs, 2009). Indeed, 

trade-offs between life-history traits are 

common, due to the need to allocate a limited 

amount of resources to one life-history trait 

versus the other (Ricklefs & Wikelski, 2002). 

In turn, food abundance can alter how 

individuals allocate their resources to 

different traits, thereby affecting these trade-

offs (Kaiser et al., 2015). 

 

Dopamine and food 

Dopamine is a key neurotransmitter in 

crustaceans and other biota. It is involved in 

many different metabolic pathways, with 

widespread effects in the nervous, 

cardiovascular, and endocrine systems, as 

well as potentially involved in modulating 

adaptive behaviour (Tierney et al., 2003). 

Dopamine has been shown to play an 

important role in regulating behavioural and 

morphological responses to food availability 

(See Barron et al. (2010) for a review on 

dopamine-mediated behavioural and 

morphological responses to food across 

taxa). Hence, the dopamine system may also 

be important in regulating the responses of 

life-history traits to food availability and 

abundance. If this is the case, chemically 

induced changes to dopamine levels, through 

for example the action of antidepressants 

that modulate the reuptake of dopamine, can 

be expected to alter these life-history 

responses. 
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Aims 
Individual and population-level responses to 

long-term chemical exposures are typically 

understudied. Moreover, most of the existing 

data have been collected from laboratory 

experiments conducted under highly 

standardized conditions that exclude 

interactions with environmental factors. This 

leads me to the first aim of this thesis: to 

extend the knowledge on both individual and 

population-level effects of chemical 

pollutants in aquatic ecosystems, with focus 

on Hg and antidepressants, under different 

environmental scenarios. The second aim of 

this thesis is to answer questions about 

ecology and evolution from an 

ecotoxicological perspective, using pollutant 

exposure studies. Daphnia magna was used as 

a focal species to address these aims. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specific questions 

1. Is metal toxicity a function of the 

environment and population density 

(papers I and III)? 

 

2. Is dopamine involved in regulating life-

history responses to food and how do 

changes in dopamine affect fitness 

(papers II and IV)? 

 

3. Which additional fitness measures that 

are typically overlooked in pollutant 

exposure studies are important to 

consider (papers II, III and IV)? 
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General methods 
Daphnia as a model organism 

Daphnia are short-lived, with a relatively short 

generation time, freshwater keystone 

zooplankton (Decaestecker et al., 2009). 

They are highly suitable for and widely used 

as model organisms in toxicological and 

ecological studies (Lampert, 2011; Shaw et 

al., 2008), and have also been used in studies 

of the dopamine signalling system (Bownik et 

al., 2018; McCoole et al., 2012). Daphnia are 

keystone consumers of phytoplankton, 

bacteria and fungi, as well as a key food 

source for fish and larger invertebrates 

(Miner et al., 2012). In addition to their key 

ecological role in freshwater ecosystems, 

Daphnia display a worldwide distribution 

(Adamowicz et al., 2009). These 

characteristics are only a few of the reasons 

why Daphnia, specifically D. magna, were 

chosen as a study species in this thesis.  

D. magna, including most Daphnia species, are 

facultative parthenogenetic organisms with 

an asexual (parthenogenetic) phase and a 

sexual phase (Fig. 1). During the asexual 

phase, the mature female produces diploid 

eggs that develop directly into daughters that 

are genetically identically to their mother. 

This is the primary mode of reproduction in 

D. magna (Ebert, 2005), and it allows for 

clones (genetically identical individuals) to be 

maintained asexually for many generations. 

Daphnia clones are in turn a useful tool for 

studying phenotypic plasticity. On one hand, 

using individuals of the same clone allows for 

the observed phenotypic variation in 

response to environmental change between 

individuals, to be attributed directly to 

phenotypic plasticity rather than genetic 

variation amongst these individuals. On the 

other hand, different clones of Daphnia can 

be used to study the genotype-by-

environment interaction (i.e. the genetic 

variation of reaction norms; Barata & Baird, 

1998; Gianoli & Valladares, 2012). 

The production of resting eggs, through 

sexual reproduction, is another characteristic 

of Daphnia that makes them particularly 

relevant to this thesis. The sexual cycle in 

Daphnia is initiated when environmental 

conditions deteriorate, starting by the asexual 

production of diploid males. Upon 

maturation, the males can fertilize haploid 

eggs produced by other females. This cycle 

ends with haploid eggs developing into 

resting eggs, which are enclosed in a 

protective membranous shell called an 

ephippium. The ephippium, typically 

containing two resting eggs, is released from 

the female’s brood chamber through 

moulting (Ebert, 2005). The resting eggs 

within the ephippium can survive 

unfavourable environmental conditions for 

years and are thus a crucial component of the 

long-term fitness of Daphnia (Hebert, 1978). 
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Individuals that hatch from the resting eggs 

are genetically different from their mother 

(Ebert, 2005). This maintains genetic 

diversity within Daphnia populations and 

hence their potential for adaptation to new 

environmental conditions. 

 

Fig.  1. Life cycle of the facultative parthenogenetic D. 

magna. Artwork: Ebert (2005). 

 

Three different clones from a single wild 

population of D. magna were studied in this 

thesis. D. magna is one of the largest daphnid 

species in Norway, reaching a body length of 

6 mm, which facilitates handling and 

observing experimental individuals. Ephippia 

containing resting eggs resulting from sexual 

reproduction of D. magna were collected in 

November 2014, in a pond at Værøy Island 

(1.0 ha, 67.687°N 12.672°E), northern 

Norway. Ephippial eggs were hatched in the 

laboratory and propagated clonally to obtain 

the three clones used in this thesis. The 

culture medium (and simultaneously the 

exposure medium) in which the daphnids are 

grown is a modified “Aachener Daphnien 

Medium” (ADaM), prepared according to 

the recipe of Klüttgen et al. (1994) but with a 

50% reduction in the concentration of 

selenium dioxide (SeO2). 

 

Exposure compounds 

Mercury (II) chloride (HgCl2) 

Mercury (II) chloride is a highly toxic water-

soluble compound. When it dissolves, HgCl2 

releases mercuric ions (Hg2+), which can be 

found in natural waters (Chau & Saitoh, 

1970). In papers I and III, D. magna were 

exposed to non-lethal and environmentally 

relevant concentrations of Hg using 99.5% 

pure mercury (II) chloride. 

 

Bupropion hydrochloride (C13H19Cl2NO) 

Bupropion was first introduced in the United 

States of America (US) in 1989 as an 

antidepressant for treatment of patients with 

major depressive disorder (Fava et al., 2005). 

Bupropion inhibits the neuronal reuptake of 

norepinephrine and dopamine, increasing 

their concentration in the synaptic cleft (Fig. 

2; Richmond & Zwar, 2003; Stahl et al., 

2004). It is also used as treatment for 

smoking cessation (Richmond & Zwar, 

2003). In paper II, D. magna mothers were 

exposed to environmentally relevant 

concentrations of bupropion using 

bupropion hydrochloride. 
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Fig.  2. Bupropion (BUP) inhibits the reuptake of 

dopamine into the presynaptic neuron by blocking the 

dopamine reuptake pump (DAT). This causes an increase 

in the synaptic levels of dopamine. Original artwork: 

Smedlib (based on original work by Pancrat). The original 

artwork has been modified for use in this thesis. 
 

Dopamine hydrochloride (C8H12ClNO2) 

Dopamine hydrochloride, the hydrochloride 

salt form of dopamine, was first introduced 

as a drug in the US in 1982 for treatment of 

low blood pressure, low cardiac output and 

low blood flow to the kidneys (National 

Center for Biotechnology Information, 

2020). In papers II and IV, D. magna 

mothers were exposed to dopamine 

hydrochloride at a concentration chosen for 

successfully inducing changes in their growth 

rate, based on previous work by Weiss et al. 

(2015). This was done to directly manipulate 

dopamine concentrations in the experimental 

organisms. 

 

Chemical analysis 

Analyses of Hg and Se (an ingredient of 

ADaM), in the daphnid tissue samples and 

exposure media, were performed at the 

department of chemistry at NTNU, using 

high resolution inductively coupled plasma 

mass spectrometry. This was done to detect 

changes in overall Hg and Se levels in the 

presence of biofilm. A detailed description of 

the chemical analyses can be found in paper 

I.  

Analyses of dopamine and bupropion in the 

exposure media, were performed at the 

Faculty of Natural Sciences at NTNU, using 

ultra-performance liquid chromatography 

coupled to a triple quadrupole mass analyser. 

This was done to detect overall levels of 

dopamine and bupropion in the media. A 

detailed description of the chemical analysis 

can be found in paper II. 

 

Demographic and life-history data 

In paper III, the number of resting eggs 

produced by D. magna during the sexual 

phase was counted on a weekly basis. In 

addition, estimates on the number of live 

daphnid individuals and their sizes were 

obtained from weekly video recordings that 
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were analysed using the R package trackdem. 

From these estimates, weekly rates of 

biomass growth were derived. The data 

collected allowed us to study effects of Hg on 

the sexual and asexual phases of D. magna 

under varying environmental conditions. 

In papers II and IV, a range of life-history 

traits were recorded in D. magna. These 

included age at maturation and age at second 

reproduction (defined as the time when eggs 

were first visible in the brood chamber), body 

length at maturation (measured from the 

upper margin of the eye to the junction of the 

carapace and spine), clutch size (defined as 

the number of live progeny released at a 

given reproductive event), body length of 

offspring, maternal longevity and offspring 

longevity under starvation. Rates of somatic 

growth and intrinsic population growth (r) 

were also calculated (See paper II for a 

detailed description of the equations used). 

Using this data, we investigated changes to 

life-history reaction norms in response to 

food abundance from maternal dopamine 

exposure, as well as associated fitness costs to 

offspring. 
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Main results and discussion
Metal toxicity as a function of the 

environment and population density 

In paper I, we examined whether 

environmental variation in the form of 

biofilm affected metal bioavailability to 

individuals of D. magna. Specifically, we 

investigated how trophic interactions 

between Daphnia and biofilm growing in the 

exposure media altered Hg and Se 

accumulation in the animals. An important 

finding was the negative effect of biofilm on 

Hg content in Daphnia. Active uptake of Hg 

by biofilm can reduce Hg uptake by animals 

through multiple mechanisms. One 

mechanism is by reducing the amount of 

aqueous Hg available for uptake by the 

animals (Tsui & Wang, 2004). The other 

mechanism is by diluting the concentration 

of metals per algal cell, either through bloom 

dilution, as algal biomass increases (Chen & 

Folt, 2005), or through growth biodilution, 

specific to fast growing plankton (Hill & 

Larsen, 2005). Bloom dilution and growth 

biodilution lead to lower Hg exposure 

concentrations from diet than from the 

aqueous phase. However, since our findings 

did not show significant uptake of aqueous 

Hg by biofilm, the exact driver of the lower 

tissue Hg content in the presence of biofilm 

could not be determined. Nonetheless, there 

was successful uptake of aqueous Se by 

biofilm, which then acted as a dietary source 

of Se to the animals. Indeed, dietary uptake 

may be the predominant exposure route of 

Se to aquatic biota (Stewart et al., 2004). In 

turn, higher tissue Se content in the presence 

of biofilm boosted Se/Hg molar ratios in the 

animals, providing potential protection 

against Hg toxicity. These results overall 

show that biofilms can affect the transfer of 

metals across the aquatic food web. Hence, 

including interactions with biofilms in 

pollutant exposure studies may produce 

more realistic estimates on metal toxicity in 

aquatic ecosystems. 

An additional biotic interaction that can 

influence effects of metals to focal organisms 

is intraspecific competition for food. In 

paper III, we examined how this interaction 

altered effects of Hg to Daphnia populations 

through density dependence at different 

temperatures. Biomass growth rate, which 

was a result of individual somatic growth, 

asexual reproduction and mortality, was 

surprisingly unaffected by Hg when 

population density and temperature were 

included. Generally, metal stress can affect 

biomass growth rate through changes in 

body size and population size. For example, 

energy expenditure associated with 

detoxification costs can lower survival and 

fecundity (Muyssen et al., 2006). Moreover, 

metal stress can impair feeding activity and 

thereby reduce the mean body size in the 

population (Enserink et al., 1995), or 
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contrastingly, eliminate smaller individuals 

from the population and increase mean body 

size (Bianchini et al., 2002). Previous studies 

have also shown that temperature and 

intraspecific competition can interact to 

enhance metal toxicity to Daphnia. 

Specifically, a higher metal uptake with 

increasing temperature, coupled with 

intraspecific competition and the metabolic 

costs of metal detoxification, can lower the 

amount of resources available for allocation 

to somatic growth and/or reproduction 

(Heugens et al., 2006). This was however not 

observed in our study, as population density 

interacted with temperature alone to 

influence biomass growth rate. Specifically, 

the density dependence of biomass growth 

rate increased with temperature, thereby 

reducing carrying capacity (i.e. the maximum 

population size sustainable by the 

environment over time) at high temperature. 

This two-way interaction was likely due to 

high metabolic rates at high temperature 

worsening food conditions for competing 

individuals (Savage et al., 2004). 

 

Dopamine effects on life-history 

responses to food and fitness 

Food abundance is one environmental factor 

that varies extensively in space and time. 

Expressing adaptive reaction norms in 

response to food abundance is important for 

individual fitness and population viability. At 

the molecular level, dopamine plays an 

important role in modulating behavioural 

and morphological responses to food 

(Adams et al., 2011; Wright et al., 2010). 

Through pollutant exposure studies II and 

IV, we showed that dopamine was also 

important in regulating life-history reaction 

norms to food abundance. Specifically, in the 

controls, low food abundance slowed 

somatic growth, thereby delaying 

reproduction and increasing size at 

maturation. Additionally, we observed a 

trade-off between offspring size and 

offspring number in paper II, with offspring 

size increasing at low food abundance at the 

expense of clutch size (same response in 

offspring size to food abundance in paper 

IV). Resource allocation theory predicts 

increased investment in adult size at the 

expense of early reproduction at low food 

levels (Ernande et al., 2004). In Daphnia, this 

is caused by an increase in the filtering rate 

and hence feeding rate with increasing body 

size (Porter et al., 1983), which is 

metabolically advantageous when food is 

scarce. This and the fact that mothers are 

energetically constrained, drives investment 

towards offspring size at the expense of 

clutch size at low food levels (Ebert, 1993). 

Hence, in both papers II and IV, controls 

responded adaptively to changes in food 

abundance.  

Maternal dopamine exposure accelerated 

somatic growth and reproduction at the 

expense of adult size and offspring size at low 
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food abundance (papers II and IV). This 

resulted in higher population growth rates (r) 

at low food, compared to controls, without 

any costs to maternal longevity (paper II). 

Hence, by showing that changes to dopamine 

levels induced changes to life-history reaction 

norms in response to food abundance, we 

demonstrated for the first time that 

dopamine was a key regulator of life-history 

responses to food. However, the observed 

boost in fitness under dopamine exposure 

(boost in r), was unexpected, given that 

controls were supposed to have the highest 

fitness from having evolved adaptive reaction 

norms in response to food abundance. 

Moreover, the boost in r did not come at any 

observed costs to the fitness of mothers, 

raising the question of why D. magna do not 

evolve towards higher endogenous dopamine 

levels. We therefore suspect there may be 

proximate and ultimate constraints on why 

individuals do not produce higher 

endogenous dopamine. One proximate 

constraint may be that increased dopamine 

production potentially promotes dopamine 

oxidation and the production of reactive 

oxygen species (Blesa et al., 2015). This may 

in turn lead to oxidative stress and ultimately 

increased mortality risk, in the case of limited 

investment in energetically costly antioxidant 

defences (Alonso-Alvarez et al., 2006). On 

the other hand, a higher investment in 

antioxidant defences from increased 

dopamine oxidation may reduce investment 

in immune defences (Takahashi et al., 2017), 

making animals more vulnerable to parasites 

and diseases, as well as reduce investment in 

reproduction (Speakman & Garratt, 2013). 

Moreover, a faster growth from enhanced 

dopamine levels (papers II and IV), may 

increase predation risk from increased 

feeding in the presence of predators (Urban, 

2007). Hence, investigating these potential 

fitness costs of enhanced dopamine levels 

may help explain the evolution of the 

dopamine system.  

Our findings emphasize the role of dopamine 

as regulator of life-history responses to food 

abundance, as well as demonstrate that 

pharmaceutical pollution can strongly affect 

the life history of aquatic species such as D. 

magna. 

 

Overlooked fitness measures in 

toxicity studies 

Offspring survival and fitness 
In papers II and IV, we found that maternal 

exposure to dopamine accelerated the life 

cycle of D. magna at the expense of offspring 

size. A smaller offspring size may have 

detrimental effects on offspring survival 

under low food levels because of lower 

feeding efficiency (Gliwicz & Guisande, 

1992). Offspring survival and fitness is an 

important component of maternal fitness 

(Wolf & Wade, 2001), yet toxicity studies 

typically ignore maternal effects on offspring 

fitness (González-Pérez et al., 2018; Guo et 
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al., 2012). In paper IV, we investigated the 

potential costs to offspring survival under 

starvation from enhanced maternal 

dopamine levels. Mothers at low food 

abundance produced larger offspring than at 

high food abundance in both control and 

dopamine treatments. The larger offspring in 

turn survived longer under starvation. 

Mothers that experience low food abundance 

tend to produce offspring with a larger 

maternal lipid reserve, which can increase 

offspring starvation resistance (Tessier et al., 

1983). Nonetheless, maternal dopamine 

exposure reduced offspring size at low food 

compared to controls. This however did not 

negatively affect offspring longevity. Indeed, 

offspring from mothers with enhanced 

dopamine levels survived longer than 

controls across food levels. Hence, we did 

not detect any costs to offspring survival and 

fitness from enhanced maternal dopamine 

levels. Further research on the ultimate and 

proximate costs of higher dopamine 

production is needed to better understand 

the evolution of the dopamine system. 

 

Resting egg production 
An additional fitness measure that is 

commonly overlooked in toxicity studies is 

one specific to Daphnia: resting egg 

production. Resting eggs are produced via 

sexual reproduction and can survive 

unfavourable environmental condition for a 

long period of time, making them crucial for 

long-term fitness in Daphnia (Hebert, 1978; 

Pijanowska & Stolpe, 1996). In paper III, we 

investigated for the first time how Hg affects 

sexual reproduction and the associated 

production of resting eggs in D. magna, under 

varying temperature and population density. 

We found that resting egg production was 

density dependent as well as overall higher at 

high temperature. This was expected, given 

that low resource availability and high 

encounter rates between females at high 

population density, in addition to heat stress, 

induce the production of resting eggs 

(Carvalho & Hughes, 1983; Holm et al., 

2018). Temperature rise combined with high 

population density, can in turn lead to 

resource limitation, with negative effects on 

sexual reproduction under Hg stress. Indeed, 

Hg stress under high resource limitation can 

negatively affect resting egg production, if 

detoxification and repair processes are 

prioritized over reproduction (Heugens et al., 

2001; Sokolova & Lannig, 2008). However, 

Hg interacted solely with temperature to 

affect resting egg production in this study. 

Specifically, resting egg production increased 

with increasing Hg levels at low temperature. 

Thermal stress at high temperature may have 

been more important at inducing resting egg 

production than Hg stress. Nonetheless, our 

findings support previous studies that have 

shown an increased production of resting 

eggs in response to metal exposure, 

suggested as an adaptive strategy against 
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adverse environmental conditions (Aránguiz-

Acuña & Serra, 2016). The overall findings of 

paper III show that rates of sexual 

reproduction in D. magna can respond to 

metal exposure and that this depends on 

environmental conditions. Hence, resting egg 

production should be considered in toxicity 

studies using Daphnia, especially given its 

importance for individual fitness and 

population viability. 
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Synthesis and perspectives
Classic toxicity tests usually apply high levels 

of standardization. Hence, results from these 

can be difficult to extrapolate to natural 

environments considering that natural 

populations are constantly subjected to 

spatial and temporal environmental variation. 

With focus on metal and pharmaceutical 

pollution, we showed that effects of 

chemicals on individuals and populations 

vary with environmental conditions. By 

measuring effects of chemicals at 

environmentally relevant concentrations and 

under more natural conditions, we can obtain 

more realistic estimates of toxicity. In the 

case of metals, we found that the 

bioaccumulation of Hg and Se in 

zooplankton individuals depended on 

trophic interactions with biofilm 

components. Although biofilms are an 

important dietary source to aquatic grazers, 

classic toxicity tests hinder their growth in 

exposure media (OECD, 1992, 2012), likely 

because they vary highly in their composition 

across space and time. Nonetheless, we 

provided evidence that they are an important 

dietary source of Se to zooplankton, 

potentially providing additional protection 

against Hg toxicity. Since biofilm grazers can 

also act as conduits of metals to higher 

trophic levels (Cardoso et al., 2013), this may 

change the toxicity of Hg across the food 

web. Hence, excluding biofilm from metal 

exposure studies may lead to inaccurate 

predictions on metal toxicity to individuals 

and the aquatic ecosystem. 

Temperature and population density are 

other environmental factors that were 

included in our focus on Hg toxicity in 

aquatic ecosystems. Indeed, a higher 

metabolic rate with increasing temperature, 

combined with an increase in intraspecific 

competition as the population grows, should 

potentiate resource depletion. This would 

then lower the amount of resources available 

for allocation to metal detoxification 

(Heugens et al., 2001). Hence, accurately 

predicting effects of Hg to populations under 

a scenario of climate change requires 

accounting for density dependence. Our 

results indeed showed that Hg-induced 

changes in Daphnia population dynamics 

depended on population density and 

temperature. Specifically, when temperature 

and density dependence were accounted for, 

Hg effects on population growth became 

relatively unimportant.  

Not only did we show the importance of 

including environmental variation when 

looking at effects of metals, we also 

highlighted the importance of including 

resting egg production, an often-ignored life 

cycle component of Daphnia, despite its high 

relevance to long-term fitness. This is to our 

knowledge, the first study to look at effects 

of Hg on sexual reproduction in Daphnia. We 
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found that contrary to population growth, 

resting egg production responded to 

environmentally relevant concentrations of 

Hg, but only under specific temperature 

conditions. Hence, our findings build a solid 

case for including this aspect of Daphnia life 

cycle and biology, in addition to 

environmental variation, in toxicity studies. 

Resource availability does not only affect 

metal toxicity to species, it can also largely 

alter their life history. Indeed, life-history 

traits can respond plastically to changes in 

food availability, with important implications 

for individual fitness (Ernande et al., 2004). 

Hence, expressing appropriate reaction 

norms in response to food is crucial. We 

investigated life-history responses to food 

abundance and the molecular pathways 

underlying these, by chemically enhancing 

dopamine levels in Daphnia. We found that 

life-history reaction norms to food 

abundance changed under dopamine and 

antidepressant exposure. This is the first 

study to ever show a role for dopamine in 

regulating life-history responses to food in 

species, as previous studies focused mainly 

on morphological and behavioural responses 

(Barron et al., 2010). Moreover, with specific 

focus on pharmaceutical pollution, we 

provided novel results on the effects of 

bupropion as a pollutant in aquatic 

ecosystems, while demonstrating that low but 

environmentally relevant levels of 

antidepressants can alter the life history of 

zooplankton species. Our results were 

nonetheless surprising, given that controls 

were expected to express adaptive reaction 

norms that procure the highest fitness. 

Indeed, life-history changes from dopamine 

and antidepressant exposure resulted in an 

accelerated life cycle and overall higher 

population growth rates, when food was 

restricted. This apparent boost in fitness 

without any detected maintenance costs 

raised the question of why Daphnia do not 

evolve towards higher endogenous dopamine 

levels. In order to try and answer this, we 

investigated potential costs to offspring 

survival from enhanced maternal dopamine 

levels under varying food abundance.  

The negative maternal effects on offspring 

size from dopamine exposure did not lower 

offspring survival under starvation. This 

finding did not support a positive 

relationship between offspring size 

and starvation resistance in Daphnia (Gliwicz, 

1990; Tessier & Consolatti, 1989). 

Contrastingly, maternal dopamine exposure 

boosted Daphnia offspring survival across 

food levels. By showing that maternally 

induced changes in offspring phenotype can 

affect offspring fitness, we highlight the 

importance of including maternal effects in 

chemical exposure studies. Moreover, we 

demonstrate the potential for using chemical 

exposures in evolutionary research. Indeed, 

our work opens for new questions regarding 

the evolution of the dopamine system. 
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Further understanding of the evolution of 

this system will require looking at other 

factors than offspring survival under 

starvation. These may include more 

proximate factors such as the energetically 

costly process of dopamine oxidation, which 

may ultimately lower survival through 

oxidative stress, or lower immunity and 

reproduction through increased investment 

in antioxidant defences. Other ultimate 

factors include increased predation risk from 

faster growth, expressed under enhanced 

dopamine levels. Hence, further 

understanding of the evolution of the 

dopamine signalling system may require a 

combined investigation of ultimate and 

proximate causes. 
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Abstract
Experiments examining mercury (Hg) toxicity in Daphnia are usually conducted in highly standardized conditions that
prevent the formation of biofilm. Although such standardization has many advantages, extrapolation of results to natural
conditions and inference of ecological effects is challenging. This is especially true since biofilms can accumulate metals/
metalloids and play a key role in their transfer to higher trophic level organisms. In this study, we experimentally tested the
effects of spontaneously appearing biofilm in Daphnia cultures on accumulation of Hg and its natural antagonist selenium
(Se) in Daphnia magna. We added Hg (in the form of mercury (II) chloride) at two concentrations (0.2 μg/L and 2 μg/L) to
experimental microcosms and measured the uptake of Hg and Se by D. magna in the presence and absence of biofilm. To
test for consistent and replicable results, we ran two identical experimental sets one week apart. Biofilm presence
significantly reduced the accumulation of Hg, while increasing the tissue Se content in D. magna, and these findings were
reproducible across experimental sets. These findings indicate that highly standardized tests may not be adequate to predict
the bioaccumulation and potential toxicity of metals/metalloids under natural conditions.

Keywords Ecotoxicity testing ● Trophic transfer ● Metal exposure ● Biotic interaction

Introduction

Lab-based aquatic toxicity tests are usually conducted under
highly standardized conditions (OECD 1992, 2004), which
allows for comparisons of toxicity of different compounds
from experiments run in different laboratories and during
different times. Yet, extrapolating results of such studies to

natural populations is challenging, as they overlook the
potential for interactions with other components in the biotic
community to influence the effects of toxins on focal organ-
isms (Holmstrup et al. 2010; Bone et al. 2012). Daphnia,
freshwater zooplankton, are highly suitable for and widely
used as model organisms for standardized tests to infer toxicity
thresholds of aquatic organisms (Shaw et al. 2008). They are
keystone grazers of phytoplankton as well as known con-
sumers of bacteria and fungi (Kagami et al. 2004; Eckert and
Pernthaler 2014). Understanding how toxic compounds affect
the fitness of Daphnia is essential to understand the ecological
consequences of pollution in freshwater ecosystems.

The inclusion of biotic interactions between Daphnia and
biofilm in toxicity tests could provide a more ecologically
realistic approach. Biofilms are aggregates of microorganisms
(algae, cyanobacteria, bacteria, fungi, and protozoa) growing
on surfaces and embedded in a matrix of extracellular poly-
meric substances (EPS; Decho 2000). In aquatic environ-
ments, biofilms are involved in organic matter cycling,
primary production and respiration (Wetzel 1993; Kühl et al.
1996; Decho 2000). They serve as food to higher trophic
levels through grazing (Huws et al. 2005; Siehoff et al. 2009),
and their algal components exude organic carbon to be taken
up by bacteria (Søndergaard et al. 1995; Goto et al. 2001).
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Despite the role played by biofilms in the aquatic food web,
classic toxicity tests apply standardized methods that hinder
their growth in exposure media (OECD 2012).

One aspect of biofilms that makes them potentially
relevant for toxicity studies is the fact that they efficiently
accumulate metals. This makes biofilms useful for mon-
itoring metal contamination in aquatic ecosystems (Leguay
et al. 2016), but may also influence the exposure experi-
enced by higher trophic levels (Stewart et al. 2004; Cardoso
et al. 2013). For example, aquatic biofilms can readily
accumulate mercury (Hg) (Dranguet et al. 2017), as well as
its natural antagonist selenium (Se) (Janz et al. 2014). In
media and living organisms, selenide ions (Se2−) can bind
to mercuric ions (Hg2+) to form mercuric selenide (HgSe), a
stable and biologically inert complex, thereby reducing the
risk of Hg toxic effects. Se/Hg molar ratios in organisms
that approach or exceed one indicate that toxic effects of Hg
are likely counteracted by Se (Yang et al. 2008). Successful
accumulation of Hg and Se in biofilms may in turn affect
their accumulation in Daphnia.

In this study, we experimentally tested for the effect of
biofilm presence on Hg and Se uptake by Daphnia magna.
Biofilm is an important food source for Daphnia (Siehoff
et al. 2009) and can provide aquatic animals with an addi-
tional source of both Hg and Se through grazing. Because
diet is the main source of Se accumulation in aquatic ani-
mals (Sandholm et al. 1973), biofilm is expected to have a
positive effect on Se bioaccumulation. On the other hand,
direct uptake of Hg by biofilm could reduce the amount of
aqueous Hg available for uptake by animals (Ayangbenro
and Babalola 2017), but may increase their dietary uptake of
Hg. Hence, biofilms may play a central role in the transfer
of both Hg and Se to higher trophic levels, possibly altering
the effects of Hg pollution in aquatic ecosystems. Given the
high international concern for Hg, due to its long-range
transport across the globe and its various toxic properties
(UNEP 2013), knowledge about how ecological interactions
between Daphnia and biofilms may influence the relative
uptake of Hg and Se and hence influence toxicity levels,
seems crucial, but is currently lacking.

Materials and methods

Study organisms

Ephippia containing resting eggs resulting from sexual
reproduction of D. magna were collected in November
2014, in a pond at Værøy Island (1·0 ha, 67·687°N 12·672°
E), northern Norway. Ephippial eggs were hatched in the
laboratory and propagated clonally. For this experiment,
juveniles of a single clone (clone 47) of D. magna were
asexually propagated for eight successive generations prior

to use. D. magna were cultured in 2.5 L aquaria at 20 °C in
a modified “Aachener Daphnien Medium” (ADaM)
(Klüttgen et al. 1994, SeO2 concentration reduced by 50%),
under long photoperiods (16 h L: 8 h D) using white fluor-
escent lamps. The medium was exchanged weekly and the
animals were fed three times a week with Shellfish Diet
1800® (Reed mariculture Inc.; Rikard and Walton 2012) at a
final concentration of 3.2 × 105 algal cells/mL.

Experimental design

To test for consistent and replicable results, we ran two
identical experimental sets (Fig. 1), one week apart, where we
allowed for the spontaneous growth of biofilm in the Daphnia
culture medium, which may have resulted in differences in
biofilm composition between the experimental sets.

For each experimental set, a full factorial design with two
different starting concentrations of Hg (0.2 μg/L and 2 μg/L)
and two biofilm treatments (present or absent) was applied,
with five replicate beakers for each of the four combina-
tions. In addition, two blanks containing only ADaM
medium were used parallel to each experimental set and
were treated to the same conditions as the exposure beakers.
The two exposure concentrations (0.2 μg/L and 2 μg/L)
were selected for being non-lethal and environmentally
relevant concentrations of Hg based on literature research
(Table A.1). Hg stock solutions (0.0016 g/L) were prepared
at the onset of each experimental set, by dissolving 99.5%
pure mercury (II) chloride (HgCl2) (Fluka, Switzerland) in
Milli-Q water (18.2 MΩ cm) (Milli-Q Plus, Millipore
Corp.). The exposure glass beakers and equipment used for
making Hg stock solutions were acid-washed overnight
before use with 1M HNO3 suprapure quality prepared with
a sub-boiling distillation system (Milestone, SubPUR) and
subsequently washed with Milli-Q water. The stock solu-
tions were added to ADaM to create the desired Hg expo-
sure concentrations. For the biofilm absence treatment, glass
beakers were used immediately after the cleaning procedure
was completed. For the biofilm presence treatment, glass
beakers were allowed to develop biofilm on their walls, in
the presence of ten juveniles of a single clone of D. magna

Fig. 1 Schematic diagram of the experimental design. ×2 sets: two
identical experimental sets were run one week apart. Two replicates
per set for the control (×2), 5 replicates per treatment (×5). Treatments
are defined by the Hg concentration (0 μg/L Hg versus 0.2 μg/L Hg
and 2 μg/L Hg), presence of biofilm (absent (−B) versus present (+B))
and presence of Daphnia (absent (−D) versus present (+D))
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(clone 47), during two weeks prior to the experiment.
Moreover, a total of eight controls containing only ADaM
were added parallel to the beakers with biofilm and were
subjected to identical biofilm growth conditions.

In each experimental replicate beaker (600 mL non-
aerated borosilicate beakers, Fisherbrand), 30 adults of the
same clone were kept in 400 mL medium at 20 °C for a
period of 96 h. The ADaM medium was not replaced during
the experimental period, and the animals were maintained
under long photoperiods (16 h L: 8 h D) and fed with
Shellfish Diet 1800® on days 1 and 3 of each experimental
set at a final concentration of 3.2 × 105 algal cells/mL.

Sampling procedure

On the third day of the biofilm growth period, we sampled
the medium in the biofilm-containing beakers and their
associated blanks (n= 28) for Hg and Se analysis. On the
first and last experimental days, we sampled 100 mL of
medium for measurements of pH (WTW pH 340i), con-
ductivity (WTW LF 330 conductivity meter), and dissolved
oxygen (WTW Multi 3410 multiprobe meter), and took
5 mL of medium for measurements of Hg, Se, chloride (Cl),
calcium (Ca) and magnesium (Mg) (n= 88; experimental
beakers and their associated blanks). In addition, ADaM
used for Hg dilution and exposure was sampled (n= 4) on
the first experimental days for testing of Hg and Se levels.
Immediately after collection, all medium samples (N= 120)
were filtered through 25 mm diameter polyethersulphone
membrane (0.45 μm) disposable syringe filters (VWR
International) and acidified to 0.1 M HNO3 (Milestone,
SubPUR). Prior to sample withdrawal, the syringe filters
were flushed with a few mL of clean ADaM and subse-
quently with the medium. Ca and Mg concentrations were
used to calculate Ca hardness as follows: CaCO3 (mg/L)=
2.5 Ca (mg/L)+ 4.1 Mg (mg/L).

To obtain tissue blanks for Hg and Se analysis, animals
were collected from the Daphnia cultures (clone 47) prior to
the start of each experimental set. For analysis of final tissue
Hg and Se content, animals were sampled on the last
experimental day, and then washed in a new culture med-
ium for 5 min to remove Hg from the carapace fluid.
Finally, all tissue samples (N= 44) were freeze-dried and
stored at room temperature until further analysis (for more
details on quality control check Table A.2).

Chemical analysis

The medium samples were analyzed using high resolution
inductively coupled plasma mass spectrometry (HR-ICP-
MS, Element 2, Thermo-Fisher Scientific). The freeze-dried
tissue samples (6.30 ± 0.12 mg dry mass per replicate bea-
ker, mean ± SE) were first acid digested using 3 mL 50%

HNO3 per tissue sample (Milestone, SubPUR) in a high-
pressure microwave system (Milestone UltraClave, EMLS,
Leutkirch Germany) according to a temperature profile that
increases gradually from room temperature up to 250 °C
within 1 h, followed by a cooling step that allows tem-
perature to return back to its initial value within ca. 1 h.
After cooling to room temperature, the digested samples
were diluted with Milli-Q water (18.2 MΩ cm) (Milli-Q
Plus, Millipore Corp.) in polypropylene vials to achieve a
final HNO3 concentration of 0.6 M. Finally, samples were
analyzed with HR-ICP-MS and the tissue Hg and Se content
was calculated on a dry-mass basis. Seven blank samples
containing Milli-Q water and HNO3 (0.6M in final solution)
were run parallel to the digestion of the tissue samples. Results
were corrected for reagent blank values. Certified reference
material Polish Virginia Tobacco Leaves (INCT-PVTL-6)
(Samczyński et al. 2012) was used to verify the accuracy of
the Hg and Se analysis. The mean concentrations found
(0.0264 ± 0.0006 μg/g dry weight) were in good agreement
with the certified values (0.0232 ± 0.0016 μg/g dry weight).

Statistical analysis

All statistical analyses and graphic illustrations were per-
formed in R v. 3.4.3. (R Development Core Team 2016).
For exposure and water quality variables (Hg, Se, Cl, cal-
cium hardness, dissolved oxygen, conductivity and pH),
summary statistics (mean ± standard error) were calculated
and full models were fitted using Hg concentration, biofilm
and experimental set (hereafter “set”) as fixed predictor
variables and replicate beaker as a random predictor vari-
able. For tissue Hg and Se content and Se/Hg molar ratios in
Daphnia, full models with fixed predictor variables being
Hg concentration, biofilm and set were fitted.

The models were implemented using the lme and gls
functions in the package nlme (Pinheiro et al. 2018). Model
selection followed a backwards selection procedure, where
variables were removed sequentially, starting with random
effects, using likelihood ratio tests (Zuur et al. 2009). Model
residuals were checked for homogeneous variance and for
normal distribution. The VarIdent command from the nlme
package was used to allow residual variance to differ among
Hg concentrations, biofilm levels and sets. Tukey’s multiple
comparison test was implemented where groups were sig-
nificantly different. We used a significance level α= 0.05
for hypothesis testing.

Results

No mortality occurred during the exposure. The Hg con-
centration was significantly higher in media without biofilm
compared to media with biofilm that were exposed to 2 μg/L
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Hg in set 1 only (Table 1). Se in the medium, pH and
conductivity significantly decreased in the presence of
biofilm (Table 1). Furthermore, Cl, hardness and con-
ductivity were significantly higher in set 1 compared to set 2
(Table 1). The opposite was true for pH and dissolved
oxygen (Table 1). In addition, dissolved oxygen sig-
nificantly increased in the presence of biofilm in set 1 only
(Table 1). Nevertheless, despite significant effects of treat-
ments and/or sets on conductivity, dissolved oxygen, pH, Cl
and hardness, the magnitude of change in these measures
was relatively small. Indeed, pH, conductivity and Cl varied
by a maximum of 5%, hardness by 8% and dissolved
oxygen by 11% (Table 1).

Tissue Hg content was significantly higher in daphnids
exposed to 2 μg/L Hg compared to 0.2 μg/L Hg (6.1 ±
0.5 μg/g dry mass versus 0.8 ± 0.07 μg/g dry mass, P <
0.001) and approximately twofold higher in set 2 com-
pared to set 1 (4.6 ± 0.8 μg/g dry mass versus 2.4 ± 0.4 μg/
g dry mass, P < 0.001) (Fig. 2). In addition, biofilm pre-
sence significantly reduced the overall Daphnia tissue Hg
content from 0.9 ± 0.1 to 0.7 ± 0.1 μg/g dry mass at 0.2 μg/
L Hg, and from 6.4 ± 0.7 to 5.8 ± 0.7 μg/g dry mass at
2 μg/L Hg (P < 0.001) (Fig. 2). On the other hand, the
overall Daphnia tissue Se content significantly increased
in the presence of biofilm from 3.4 ± 0.2 μg/g dry mass to
5.1 ± 0.1 μg/g dry mass (P < 0.001) (Fig. 3). Conse-
quently, Se/Hg molar ratios significantly increased in the
presence of biofilm in set 1 from 11 ± 0.9 (no biofilm) to
31 ± 2.1 (with biofilm; P < 0.001) under exposure to
0.2 μg/L Hg and from 1.8 ± 0.1 (no biofilm) to 3.5 ± 0.1
(with biofilm; P < 0.001) under exposure to 2 μg/L Hg.
However, biofilm presence did not significantly affect
molar ratios in set 2 (12 ± 0.7 versus 8.8 ± 1.1 at 0.2 μg/L
Hg, ns, and 1.6 ± 0.1 versus 1.1 ± 0.1 at 2 μg/L Hg, ns)

(Fig. 4). More detailed results can be found in the Sup-
plementary Material Tables A.3 and A.4.

Discussion

In this study, we examined whether biofilm could affect Hg
and Se accumulation in Daphnia magna through aqueous
and dietary uptake pathways. The Hg exposure concentra-
tions used were lower than the acute LC50 of 2.2 μg/L Hg in
cladocerans (Nichols et al. 1997), although exceeding mean
total concentrations of 0.006 μg/L typically found in the
aquatic environment (Chen et al. 2000). Conductivity, dis-
solved oxygen and pH were also within the recommended
range for testing metals in OECD test protocols for this
species (OECD 2004). While hardness exceeded the
recommended range, hardness has a negligible effect on Hg
toxicity, in contrast to other heavy metals (Rathore and
Khangarot 2003). Overall, there was no observed Daphnia
mortality from either Hg exposure or changes in water
quality.

There was a clear difference in Hg bioaccumulation
between experimental sets, with higher tissue Hg content in
set 2 compared to set 1. This was not due to differences in
medium Hg concentrations but was possibly related to the
higher medium Cl concentrations in set 1. Increased Cl has
been shown to reduce the bioavailability of inorganic Hg
through speciation (Wang and Wang 2010). In addition,
dissolved organic carbon (DOC) could differ between sets,
although this was not assessed in the current study. It is
therefore important to always record and consider the
potential influence of water quality variables when inter-
preting results from experimental exposure studies in
aquatic microcosms. Moreover, differences between sets

Table 1 Exposure and water quality variable averages (averaged over the first and last experimental days) are compared across all sets and
treatment combinations

Treatment

Biofilm present 0.2 Hg (μg/L) Biofilm absent 0.2 Hg (μg/L) Biofilm present 2 Hg (μg/L) Biofilm absent 2 Hg (μg/L)

Set 1 2 1 2 1 2 1 2

Hg2+ (μg/L) 0.024 ± 0.003a 0.026 ± 0.003a 0.050 ± 0.01a 0.027 ± 0.01a 0.12 ± 0.01a 0.15 ± 0.02a 0.51 ± 0.1b 0.14 ± 0.03a

Se2− (μg/L) 5.8 ± 0.05b 5.7 ± 0.1b 5.9 ± 0.05a 5.9 ± 0.09a 5.7 ± 0.06b 5.7 ± 0.07b 5.9 ± 0.04a 5.7 ± 0.04a

Conductivity
(mS/cm)

2.2 ± 0.004bc 2.1 ± 0.01bd 2.2 ± 0.01ac 2.2 ± 0.01ad 2.2 ± 0.004bc 2.1 ± 0.01bd 2.3 ± 0.002ac 2.1 ± 0.01ad

Dissolved
oxygen (mg/L)

7.9 ± 0.05bc 8.1 ± 0.1bd 7.5 ± 0.08a 8.2 ± 0.06bd 7.8 ± 0.1bc 8.2 ± 0.1bd 7.6 ± 0.02a 8.3 ± 0.1bd

pH 7.7 ± 0.02bc 7.8 ± 0.04bd 7.8 ± 0.04ac 7.9 ± 0.02ad 7.7 ± 0.02bc 7.9 ± 0.05bd 7.8 ± 0.05ac 8.0 ± 0.08ad

Ca hardness (mg/L) 350 ± 3a 320 ± 10b 340 ± 5a 340 ± 4b 340 ± 5a 320 ± 8b 340 ± 3a 330 ± 8b

Cl− (mg/L) 630 ± 4a 605 ± 9b 630 ± 6a 610 ± 8b 630 ± 3a 602 ± 6b 630 ± 3a 610 ± 6b

Values are given as mean ± SE. Means with the same letter are not significantly different from each other
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could be due to a potential difference in Daphnia age, albeit
unlikely, and evidence to support this is currently lacking.

Daphnia tissue analysis showed that the increase in Hg
content with increasing medium Hg concentrations was less
significant in the presence of biofilm. Furthermore, biofilm
presence increased Daphnia tissue Se content. These find-
ings were replicable across experimental sets, which is
important to highlight, as consistent and replicable effects
are critical for improving risk analysis approaches (National
Research Council 2009).

Previous research has provided evidence of aquatic
biofilms accumulating heavy metals (Hill and Larsen
2005; Kohušová et al. 2011), through rapid absorption
and removal from the aqueous solution (Chang et al.
2006; Ancion et al. 2010). This is because biofilms have a
high capacity to absorb metals, which makes them a
useful bioremediation tool (Dixit et al. 2015). Therefore,

the biofilm in our study may potentially have acted as an
available dietary source of Hg to the Daphnia, which
could however not be confirmed as we were unable to
analyze the Hg and Se content in the whole biofilm in this
study. To determine the total mass balance of Hg and Se
(total mass of biofilm and its Hg and Se content) in the
exposure beakers, we would need to sample the entirety of
the biofilm from the beakers. This was unfortunately not
possible as it adhered to the walls and could not be
entirely scraped off. Future studies should consider the
possibility of growing the biofilm in filters placed inside
the beakers at the start of the experiment for collection
later. However, Tsui and Wang (2004) showed that D.
magna accumulated Hg(II) mainly from the aqueous
phase, through absorption, rather than from the ingestion
of Hg enriched food. In the current study, uptake of
aqueous Hg by daphnids may have been more important
than dietary uptake as the presence of biofilm decreased
the accumulation of Hg in the Daphnia. Indeed, biofilm
may have indirectly reduced Hg accumulation in the
animals, by reducing the amount of bioavailable aqueous
Hg. However, this is not supported by our measurements
in the medium, as observed changes in medium Hg con-
centrations (Table 1) do not suggest extensive uptake of
the metal by biofilm.

Alternatively, biofilms can further reduce metal accu-
mulation at higher trophic levels through “bloom dilution”,
whereby increased phytoplankton biomass reduces the
concentration of metal per cell available to grazers (Pic-
khardt et al. 2002). Another phenomenon is “growth bio-
dilution”, observed in rapidly growing phytoplankton,
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where the concentration of metals within cells is diluted by
growth during the day (measured as photosynthetically
fixed carbon) (Hill and Larsen 2005; Poste et al. 2015). Hill
and Larsen (2005) showed how this phenomenon sub-
stantially decreased metal concentrations in biofilm within a
short period of 4 days, equal to the duration of the current
experiment. Thus, if biofilm was an important dietary
source of Hg to the Daphnia in the current study, the ani-
mals would have been exposed to lower Hg concentrations
from diet than from the aqueous phase because of “growth
biodilution”. However, it was not possible to determine
unambiguously the main source of Hg to the daphnids in
our study, as we were unable to determine the total mass
balance of Hg (total mass of biofilm and its Hg content) in
the exposure beakers.

Although the exact mode of action of biofilm presence
on Hg accumulation in Daphnia is unknown, the presence
of biofilm significantly reduced tissue Hg content and
increased tissue Se content in Daphnia. The latter suggests
dietary uptake of Se from biofilm. Lower Se concentrations
measured in media with biofilm imply the metalloid’s
uptake by biofilm microorganisms. Indeed, biofilm com-
ponents are known to readily absorb Se under both
laboratory and field conditions, rendering it bioavailable to
higher trophic levels through diet (Fan et al. 2002; Ranjard
et al. 2003; Tuzen and Sarı 2010). In agreement with the
majority of studies that have investigated Se transfer in
aquatic ecosystems (Stewart et al. 2004; Conley et al. 2009),
our findings support that diet may be the predominant route
of Se exposure for organisms in aquatic food webs.
Nevertheless, at high aqueous Se concentrations, the pro-
portion of dietary to direct Se uptake may decrease. This
was previously detected in daphnids exposed to 31.6 μg/L
Se (Guan and Wang 2004), a concentration that is however
far above those observed in the current experiment.

Biofilm-induced changes in tissue Se and Hg content led
to an increase in Se/Hg molar ratios in the animals, which
remained above one in all treatments. This suggests that
tissue Se content was probably high enough to counteract
toxic effects of Hg in the Daphnia in the current experiment
(Peterson et al. 2009).

In summary, the presence of biofilm reduced Hg accu-
mulation in Daphnia. This reduction was probably not due
to a reduction in dissolved Hg available to animals or to
“growth biodilution” in the biofilm, as these processes
would require significant uptake of Hg by the biofilm,
which was not supported by observed changes in medium
Hg concentrations. Therefore, the exact driver of the lower
tissue Hg content in the presence of biofilm remains
unknown and future analysis of biofilm content and DOC is
strongly recommended. On the other hand, the presence of
biofilm increased the accumulation of Se in the animals.
Thus, biofilms could play a central role in the transfer of Se

through the freshwater food web, subsequently providing
potential protection against Hg toxicity in the animals.
Thus, aquatic biofilms can affect the transfer of Hg and Se
to grazing zooplankton, which then act as conduits of Hg
and Se to subsequent higher trophic levels of the food web.
Our findings support the observation that including natural
variability in toxicity studies and allowing for food web
interactions may be important for more realistic environ-
mental exposure assessments (De Laender et al. 2008;
Viaene et al. 2015). Therefore, in order to obtain ecologi-
cally relevant results, we recommend that aquatic toxicity
studies on metals/metalloids should include interactions
with biofilm components. However, further research is
necessary to conclude on the main mechanism of Hg and Se
accumulation in Daphnia in the presence of biofilm.
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Fig A1. Final dry mass of Daphnia (mg) in response to growth medium Hg concentrations, 

biofilm presence versus absence and set (mean ± SE). The y-axis is on a linear scale. 
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Table A.3. Model selection using AICc of candidate models for testing effects of Hg 

concentration (0.2 μg/L Hg(II) versus 2 μg/L Hg(II)), Biofilm (absent versus present) and Set (1 

versus 2) on Hg and Se concentrations in the medium and their content in the animals; Se/Hg 

molar ratios in the animals; Cl, calcium hardness, pH, conductivity and dissolved oxygen in the 

medium; and final dry mass of Daphnia (mg). Models were sorted by ΔAICc. The best random 

effect structure was first determined with REML on models that included all listed fixed 

effects. Fixed effects were then compared with ML using the best random effect structure. K 

is the number of parameters estimated. The least complex model within 2 ΔAICc is bolded. vI 

refers to the varIdent function. 

 

Response variable Model K AICc ∆AICc wAICc 

      

Hg in medium (μg/L)      

Fixed effects 

Hg medium ~ Biofilm:Set:Hg 10 -200.20 0.00 0.94 

Hg medium ~  Biofilm:Set + Biofilm:Hg + Hg:Set 9 -193.20 6.98 0.03 

Hg medium ~ Biofilm:Hg + Hg:Set 8 -190.50 9.65 0.01 

Hg medium ~ Biofilm:Set + Biofilm:Hg 8 -190.40 9.72 0.01 

Hg medium ~  Biofilm:Set + Hg:Set 8 -189.20 11.01 0.00 

Random effects 

vI (Hg) 10 -151.80 0.00 0.79 

vI (Hg) + (1 | Beaker) 11 -149.10 2.69 0.21 

vI (Biofilm) 10 -109.70 42.14 0.00 

vI (Biofilm) + (1 | Beaker) 11 -107.00 44.83 0.00 
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vI (Set) 10 -74.00 77.78 0.00 

      

Se in medium (μg/L)  K AICc ∆AICc wAICc 

Fixed effects 

Se medium ~ Biofilm 4 -12.10 0.00 0.33 

Se medium ~ Biofilm + Set 5 -11.00 1.12 0.19 

Se medium ~ Biofilm + Hg 5 -10.40 1.76 0.14 

Se medium ~ Biofilm + Set + Hg 6 -9.20 2.93 0.08 

Se ~ Biofilm:Set 6 -8.80 3.30 0.06 

Random effects 

vI (Set) 10 25.20 0.00 0.69 

vI (Set) + (1 | Beaker) 11 27.90 2.69 0.18 

vI (Hg) 10 29.70 4.52 0.07 

vI (Biofilm) 10 32.00 6.87 0.02 

vI (Hg) + ( 1| Beaker) 11 32.40 7.22 0.02 

      

Cl in medium (mg/L)  K AICc ∆AICc wAICc 

Fixed effects 

Cl ~ Set 4 1794.20 0.00 0.44 

Cl ~ Biofilm + Set 5 1796.30 2.04 0.16 

Cl ~ Set + Hg 5 1796.40 2.20 0.14 

Cl ~ Biofilm:Set 6 1797.60 3.43 0.08 

Cl ~ Biofilm + Set + Hg 6 1798.50 4.30 0.05 

vI (Set) 10 1654.90 0.00 0.72 
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Random effects 

vI (Set) + (1 | Beaker) 11 1657.60 2.69 0.19 

vI (Hg) 10 1659.50 4.64 0.07 

vI (Hg) + (1 | Beaker) 11 1662.20 7.33 0.02 

vI (Biofilm) 10 1665.20 10.30 0.00 

      

Calcium hardness  

(mg/L) 
 K AICc ∆AICc wAICc 

Fixed effects 

Hardness ~ Set 4 1816.40 0.00 0.30 

Hardness ~ Set + Hg 5 1817.30 0.93 0.19 

Hardness ~ Biofilm + Set 5 1818.70 2.27 0.10 

Hardness ~ Biofilm:Set 6 1819.00 2.64 0.08 

Hardness ~ Hg:Set 6 1819.60 3.24 0.06 

Random effects 

vI (Set) 10 1671.10 0.00 0.79 

vI (Set) + (1 | Beaker) 11 1673.80 2.69 0.21 

vI (Biofilm) 10 1685.00 13.90 0.00 

vI (Biofilm) + (1 | Beaker) 11 1686.30 15.11 0.00 

vI (Hg) 10 1690.70 19.54 0.00 

      

pH  K AICc ∆AICc wAICc 

Fixed effects 
pH ~ Biofilm + Set 5 -91.40 0.00 0.32 

pH ~ Biofilm + Set + Hg 6 -90.30 1.11 0.18 
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pH ~ Biofilm:Set 6 -89.40 2.01 0.12 

pH ~ Biofilm:Hg + Set 7 -89.00 2.48 0.09 

pH ~ Hg:Set + Biofilm 7 -88.90 2.56 0.09 

Random effects 

vI (Hg) 10 -46.40 0.00 0.61 

vI (Hg) + (1 | Beaker) 11 -43.70 2.69 0.16 

vI (Set) 10 -42.50 3.91 0.09 

vI (Biofilm) 10 -42.50 3.94 0.08 

vI (Set) + (1 | Beaker) 11 -39.80 6.60 0.02 

      

Conductivity  

(mS/cm) 
 K AICc ∆AICc wAICc 

Fixed effects 

Conductivity ~ Biofilm + Set 5 -263.90 0.00 0.25 

Conductivity ~ Biofilm:Set 6 -263.70 0.15 0.23 

Conductivity ~ Biofilm + Set + Hg 6 -262.70 1.14 0.14 

Conductivity ~ Biofilm:Set + Hg 7 -262.50 1.39 0.13 

Conductivity ~ Hg:Set + Biofilm 7 -261.00 2.92 0.06 

Random effects 

vI (Set) 10 -192.10 0.00 0.82 

vI (Set) + (1 | Beaker) 11 -189.00 3.01 0.18 

vI (Hg) 10 -167.50 24.54 0.00 

vI (Biofilm) 10 -166.70 25.38 0.00 

(1 | Beaker) 10 -166.70 25.38 0.00 
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Dissolved oxygen  

(mg/L) 
 K AICc ∆AICc wAICc 

Fixed effects 

Dissolved oxygen ~ Biofilm:Set 6 35.40 0.00 0.50 

Dissolved oxygen ~ Biofilm:Set + Hg 7 38.00 2.59 0.14 

Dissolved oxygen ~ Biofilm:Set + Hg:Set 8 39.10 3.72 0.08 

Dissolved oxygen ~ Set 4 39.50 4.04 0.07 

Dissolved oxygen ~ Biofilm:Set + Biofilm:Hg 8 39.50 4.11 0.06 

Random effects 

vI (Set) 10 64.70 0.00 0.67 

vI (Set) + (1 | Beaker) 11 67.80 3.08 0.14 

vI (Hg) 10 69.30 4.55 0.07 

vI (Biofilm) 10 69.80 5.11 0.05 

(1 | Beaker) 10 70.90 6.16 0.03 

      

Hg in animals (μg/g)  K AICc ∆AICc wAICc 

Fixed effects 

Hg animals ~ Biofilm:Set + Hg:Set 8 25.10 0.00 0.35 

Hg animals ~ Hg:Set + Biofilm 7 25.10 0.06 0.34 

Hg animals ~ Biofilm:Hg + Hg:Set 8 26.80 1.69 0.15 

Hg animals ~ Biofilm:Set + Biofilm:Hg + Hg:Set 9 26.90 1.85 0.14 

Hg animals ~ Biofilm:Set:Hg 10 30.5 5.42 0.02 

vI (Hg) 10 49.90 0.00 1.00 
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Random effects 
vI (Set) 10 89.50 39.58 0.00 

vI (Biofilm) 10 100.00 50.08 0.00 

      

Se in animals (μg/g)  K AICc ∆AICc wAICc 

Fixed effects 

Se animals ~ Biofilm:Set 5 93.60 0.00 0.48 

Se animals ~ Biofilm:Set + Hg 6 96.10 2.49 0.14 

Se  animals ~ Biofilm:Set + Hg:Set 7 96.60 2.98 0.11 

Se animals ~ Biofilm 3 96.80 3.22 0.10 

Se animals ~ Biofilm + Set 4 98.40 4.84 0.04 

      

Se/Hg molar ratio in 

animals 
 K AICc ∆AICc wAICc 

Fixed effects 

Se/Hg animals ~ Biofilm:Set:Hg 10 124.10 0.00 1.00 

Se/Hg animals ~  Biofilm:Set+ Biofilm:Hg + Hg:Set 9 143.80 19.67 0.00 

Se/Hg animals ~  Biofilm:Set+ Biofilm:Hg 8 153.50 29.34 0.00 

Se/Hg animals ~ Biofilm:Set+ Hg:Set 8 157.60 33.50 0.00 

Se/Hg animals ~ Biofilm:Set+ Hg 7 161.10 36.92 0.00 

Random effects 

vI (Hg) 10 124.80 0.00 1.00 

vI (Set) 10 173.90 49.09 0.00 

vI (Biofilm) 10 176.30 51.43 0.00 
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Final Daphnia  

dry mass (mg) 
     

Fixed effects 

Dry mass ~ Biofilm:Hg + Set 6 73.3 0.00 0.43 

Dry mass ~ Biofilm:Hg + Hg:Set 7 75.3 2.06 0.15 

Dry mass ~ Biofilm:Set + Biofilm:Hg 7 76.0 2.76 0.11 

Dry mass ~ Biofilm:Hg 5 76.6 3.34 0.08 

Dry mass ~  Biofilm + Set 4 76.9 3.61 0.07 
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Table A.4. Summary statistics of fitted final models. 

Response variable Final model Parameter Estimate ± SE 

Hg in animals (μg/g) 
Hg animals ~ Hg:Set + Biofilm + 

vI (Hg) 

Intercept 4.29 ± 0.28 

  Biofilm presence -0.16 ± 0.04 

  Set 2 3.84 ± 0.39 

  0.2 μg/L Hg -3.66 ± 0.28 

  0.2 μg/L Hg:Set 2 -3.29 ± 0.39 

    

Se in animals (μg/g) Se animals ~ Biofilm:Set  Intercept 2.95 ± 0.22 

  Biofilm presence 2.37 ± 0.32 

  Set 2 0.82 ± 0.32 

  Biofilm presence:Set 2 -1.22 ± 0.45 

    

Se/Hg molar ratio in 

animals 

Se/Hg animals ~ Biofilm:Set:Hg 

+ vI (Hg) 

Intercept 1.78 ± 0.12 

  Biofilm presence 1.71 ± 0.17 

  Set 2 -0.70 ± 0.17 

  0.2 μg/L Hg 8.92 ± 1.34 

  0.2 μg/L Hg:Biofilm presence 19.05 ± 1.89 

  0.2 μg/L Hg:Set 2 -1.22 ± 1.89 

  Biofilm presence:Set 2 -1.23 ± 0.24 
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   0.2 μg/L Hg:Biofilm presence:Set 2 -15.84 ± 2.68 

    

Cl in medium (mg/L) Cl ~ Set + vI (Set) Intercept 633.31 ± 2.05 

  Set 2 -25.88 ± 4.16 

    

Calcium hardness 

(mg/L) 

Hardness ~ Set + vI (Set) Intercept 344.92 ± 2.08 

  Set 2 -14.16 ± 5.14 

    

Hg in medium (μg/L) Hg medium ~ Biofilm:Set:Hg + 

vI (Hg) 

Intercept 0.51 ± 0.06 

  Biofilm presence -0.40 ± 0.09 

  Set 2 -0.37 ± 0.09 

  0.2 μg/L Hg -0.46 ± 0.06 

  Biofilm presence:Set 2 0.41 ± 0.12 

  0.2 μg/L Hg:Set 2 0.35 ± 0.09 

  0.2 μg/L Hg:Biofilm presence 0.37 ± 0.09 

  0.2 μg/L Hg:Biofilm presence:Set 2 -0.39 ± 0.12 

    

Se in medium (μg/L) Se medium ~ Biofilm + vI (Set) Intercept 5.89 ± 0.03 

  Biofilm presence -0.14 ± 0.04 

    



 

19 
 

pH pH ~ Biofilm + Set + vI (Hg) Intercept 7.8 ± 0.02 

  Biofilm presence -0.1 ± 0.03 

  Set 2 0.14 ± 0.03 

    

Conductivity  

(mS/cm) 

Conductivity ~ Biofilm + Set +  

vI (Set) 

Intercept 2.26 ± 0.003 

  Biofilm presence -0.02 ± 0.004 

  Set 2 -0.1 ± 0.007 

    

Dissolved oxygen 

(mg/L) 

Dissolved oxygen ~ 

Biofilm:Set + vI (Set) 

Intercept 7.56 ± 0.07 

  Biofilm presence 0.28 ± 0.1 

  Set 2 0.74 ± 0.11 

  Biofilm presence:Set 2 -0.4 ± 0.15 

    

Final Daphnia  

dry mass (mg) 

Dry mass ~ Biofilm:Hg + Set Intercept 5.77 ± 0.19 

  Set 2 -0.41 ± 0.17 

  Biofilm presence 1.28 ± 0.24 

  0.2 μg/L Hg 0.66 ± 0.24 

  0.2 μg/L Hg:Biofilm presence -0.94 ± 0.34 
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Table A.5. Exposure variable averages on the first and last experimental days are compared 

across all sets and treatment combinations. Values are given as mean ± SE.  

  Treatment 
  Biofilm present 

0.2 Hg (μg/L) 
Biofilm absent 
0.2 Hg (μg/L) 

Biofilm present 
2 Hg (μg/L) 

Biofilm absent 
2 Hg (μg/L) 

      
  Day 1 Day 3 Day 1 Day 3 Day 1 Day 3 Day 1 Day 3 
 Set         

Hg2+ 
(μg/L) 

1 
0,026 

± 
0,003 

0,021 
± 

0,005 

0,076 
± 

0,007 

0,023 
± 

0,01 

0,15 
± 

0,01 

0,080 
± 

0,01 

0,84 
± 

0,02 

0,19 
± 

0,08 

2 
0,027 

± 
0,004 

0,025 
± 

0,005 

0,028 
± 

0,009 

0,026 
± 

0,01 

0,11 
± 

0,01 

0,20 
± 

0,006 

0,20 
± 

0,05 

0,080 
± 

0,03 
          

Se2- 

(μg/L) 

1 
5,8 
± 

0,09 

5,7 
± 

0,04 

5,8 
± 

0,04 

6,0 
± 

0,06 

5,7 
± 

0,1 

5,7 
± 

0,06 

5,9 
± 

0,04 

6,0 
± 

0,08 

2 
5,9 
± 

0,05 

5,5 
± 

0,2 

5,7 
± 

0,06 

6,2 
± 

0,1 

5,8 
± 

0,06 

5,6 
± 

0,1 

5,7 
± 

0,07 

5,7 
± 

0,06 
 

 



Paper II 



 

 

 

 

 

 

 

 

 



royalsocietypublishing.org/journal/rspb

Research
Cite this article: Issa S, Gamelon M, Ciesielski

TM, Vike-Jonas K, Asimakopoulos AG, Jaspers

VLB, Einum S. 2020 Dopamine mediates

life-history responses to food abundance in

Daphnia. Proc. R. Soc. B 287: 20201069.
http://dx.doi.org/10.1098/rspb.2020.1069

Received: 9 May 2020

Accepted: 10 June 2020

Subject Category:
Ecology

Subject Areas:
ecology, evolution, physiology

Keywords:
phenotypic plasticity, reaction norms,

bupropion

Author for correspondence:
Semona Issa

e-mail: semona.issa@ntnu.no

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5036300.

Dopamine mediates life-history responses
to food abundance in Daphnia

Semona Issa1, Marlène Gamelon1, Tomasz Maciej Ciesielski2,
Kristine Vike-Jonas3, Alexandros G. Asimakopoulos3, Veerle L. B. Jaspers2

and Sigurd Einum1

1Centre for Biodiversity Dynamics (CBD), Department of Biology, 2Department of Biology, and 3Department of
Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway

SI, 0000-0002-5628-2516; MG, 0000-0002-9433-2369; SE, 0000-0002-3788-7800

Expression of adaptive reaction norms of life-history traits to spatio-temporal
variation in food availability is crucial for individual fitness. Yet little is known
about the neural signalling mechanisms underlying these reaction norms. Pre-
vious studies suggest a role for the dopamine system in regulating behavioural
and morphological responses to food across a wide range of taxa. We tested
whether this neural signalling system also regulates life-history reaction
norms by exposing the zooplankton Daphnia magna to both dopamine and
the dopamine reuptake inhibitor bupropion, an antidepressant that enters
aquatic environments via various pathways. We recorded a range of life-
history traits across two food levels. Both treatments induced changes to the
life-history reaction norm slopes. These were due to the effects of the treat-
ments being more pronounced at restricted food ration, where controls had
lower somatic growth rates, higher age and larger size at maturation. This
translated into a higher population growth rate (r) of dopamine and bupropion
treatments when food was restricted. Our findings show that the dopamine
system is an important regulatory mechanism underlying life-history trait
responses to food abundance and that bupropion can strongly influence the
life history of aquatic species such as D. magna. We discuss why D. magna
do not evolve towards higher endogenous dopamine levels despite the
apparent fitness benefits.

1. Introduction
Phenotypic plasticity is the propensity of a genotype to produce different pheno-
types across environments [1,2]. Under natural selection, the slope and elevation
of the relationship between environment and phenotype (i.e. the reaction norm)
can evolve such that it approaches optimality with respect to fitness [3]. In this
case, the reaction norm is adaptive since it gives higher fitness in each environ-
ment than any alternative reaction norm [4–6]. Expression of adaptive reaction
norms is therefore crucial to maintain high fitness in environments that vary
across space and time. One of the environmental factors that shows extensive
spatial and temporal variation is food availability. Expression of reaction norms
to food availability includes allocation patterns to different components of the
life history such as reproduction, growth and somatic maintenance [7–9]. For
example, resource allocation to somatic maintenance (survival) increases at the
cost of growth and reproduction under food limitation in short-lived species
[7,10–12]. Thus, expressing appropriate reaction norms for different life-history
traits in response to food availability has important fitness consequences.

At the molecular level, the responses to environmental stimuli that produce
these reaction norms are mediated by neural signalling mechanisms. Thus,
knowledge about these mechanisms is important to understand how organisms
adjust their phenotypes under environmental change (see [13] for a review on

© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.



neuronal pathways involved in phenotypic plasticity). For the
specific case of food abundance, the neurotransmitter dopa-
mine, which is synthesized by most animals, has been shown
to play an important role in modulating behavioural and mor-
phological responses. In the nematode C. elegans, dopamine is
released from dopaminergic neurons when food is present
[14], causing a reduction in the animal’s rate of locomotion
[15] and possibly regulating their lifespan [14]. In mammals,
obese individuals releasemore dopamine upon food consump-
tion and hence experience a higher reward sensation from
food intake compared with lean individuals [16]. In honeybees
(Apis mellifera carnica) and Drosophila larvae, dopamine is
involved in learning to associate food odour with aversiveness
of taste, and therebymediates an avoidance behaviour towards
toxic and/or unpalatable food [17,18]. In sea urchin larvae
(Strongylocentrotus purpuratus), dopamine reduces food
acquisition through a shortening in arm length when food is
abundant, which preserves energy that can be allocated to
other functions [19]. Hence, the dopamine system appears
to be tightly linked to the regulation of food responses and
may therefore be a likely candidate neural signalling system
regulating the life-history reaction norms. If so, chemically
induced changes to dopamine levels are predicted to change
the slopes of these reaction norms.

Insights into the mediation of reaction norms by neuro-
transmitters are also of potential value for environmental
risk assessment of pharmaceutical products. Specifically, in
aquatic biota, neurotransmitter systems can be directly altered
by anthropogenic activity through environmental release of
antidepressants. Following administration to humans, anti-
depressants can be eliminated unmetabolized or as active
metabolites and enter the aquatic environment through waste-
water [20]. Another path by which pharmaceuticals can enter
the aquatic environment is by the disposal of unused products
[21]. Exposure to released pharmaceuticals can influence the
behaviour, development, reproduction and survival of fish,
invertebrates and amphibians [22,23]. Hence, more research
on ecological effects of antidepressants in aquatic habitats
is needed, as these can impact individual fitness and popu-
lation viability [23]. Furthermore, interactive effects between
antidepressant disruption of neurotransmitter systems and
environmental variables such as food abundance can be
expected. Of particular interest in the case of the dopamine
system is bupropion, which is used both as an antidepressant
and as treatment for smoking cessation [24]. Bupropion inhibits
the neuronal reuptake of norepinephrine and dopamine,
increasing their concentration in the synaptic cleft [25]. Bupro-
pion has previously been detected in natural surface water,
stream sediments as well as in fish brain tissue [26,27], and
has been shown to affect the physiology, morphology and be-
haviour of aquatic animals. For example, bupropion can alter
the morphology and predator avoidance behaviour of fathead
minnows (Pimephales promelas), as well as directly affect their
survival [28,29]. Hence, if dopamine is indeed involved in
regulating life-history reaction norms in response to food
abundance, then disruption of the dopamine system by bupro-
pion is expected to lead to changes in the slopes of these
reaction norms.

In this study, we experimentally tested for the effects of
dopamine and bupropion exposure on the reaction norms of
life-history traits of Daphnia magna in response to high versus
restricted food ration. Daphnia are keystone zooplankton in
freshwater ecosystems and model organisms for studying

anthropogenic and natural stressors in these ecosystems [30].
They have also been used in studies of the dopamine signalling
system [31,32]. We hypothesize that D. magna with natural
dopamine levels will have life-history reaction norms that
approach optimality with respect to fitness in response to
food abundance, and that disruption of these levels will lead
to a change in the response to food abundance and hence the
slopes of these reaction norms. Furthermore, bupropion
administration causes an increase in extracellular dopamine
in the brain [33]. Thus, if this is the dominating effect of this
treatment, we expect dopamine and bupropion exposure to
induce similar changes to the slopes of these reaction norms
relative to the control treatment.

2. Material and methods
(a) Study organisms
Ephippia containing resting eggs resulting from sexual reproduc-
tion of D. magna were collected in November 2014, in a pond at
Værøy Island (1.0 ha, 67.687°N 12.672°E), northern Norway.
Ephippial eggs were hatched in the laboratory and propagated
clonally. For this experiment, juveniles of a single clone (clone
47) ofD. magnawere asexually propagated for four successive gen-
erations prior to use. A maximum of 30 individuals of D. magna
were cultured in 2.5 l aquaria at 20°C in a modified Aachener
Daphnien Medium (ADaM) [34] (SeO2 concentration reduced by
50%), under long photoperiods (16 h L : 8 h D) using white fluor-
escent lamps. The medium was exchanged weekly and the
animals were fed three times a week with Shellfish Diet 1800 (Reed
Mariculture Inc.) at a final concentration of 3.2 × 105 cells ml−1.

(b) Experimental design
A full factorial design with control, dopamine, bupropion and
two food rations (high versus restricted) was used, with thirty
50 ml replicate tubes for each of the six combinations (electronic
supplementary material, figure A1). Aqueous exposure to dopa-
mine allows us to directly manipulate this compound in the
experimental organisms. The exposure concentration of dopamine
(2.3 mg l−1) was chosen for successfully inducing changes in
D. magna growth based on a study by Weiss et al. [35], and that
of bupropion (1 μg l−1) was selected for being an environmentally
relevant concentration that can be expected to influence life-history
traits based on a pilot studywe conducted prior to this experiment
(see [36] and electronic supplementary material, figures A2
and A3). Bupropion stock solutions (0.0016 g l−1) were prepared
by dissolving bupropion hydrochloride (Sigma-Aldrich, St Louis,
MO, USA) in ultrapurewater (18.2 MΩ cm;Milli-Q Plus, Millipore
Corp.). The stock solutions were then added to ADaM to create the
desired bupropion exposure concentration. For the dopamine
treatment, dopamine hydrochloride (Sigma-Aldrich, St Louis,
MO, USA) was first dissolved in 100 ml ultrapure water before
dilution in ADaM to the desired exposure concentration. Controls
containing only ADaM medium were performed parallel to the
exposure replicates.

For each replicate tube, a single female neonate (less than 24 h
old) was introduced and kept at 20°C under long photoperiods
(16 h L: 8 h D) until death. The medium was renewed in all repli-
cates (n = 180) three times a week, and the animals were fed at
each renewal event with Shellfish Diet 1800 at a final concentration
of 2.88 × 105 cells ml−1 (ad lib at 20°C) for the high food ration and
8.6 × 104 cells ml−1 (30% ad lib at 20°C) for the restricted food
ration. Day 0 marks the start of the experiment, which
was completed when the last individual died. Male individuals
(n = 9) and individuals that died from pipetting (n = 2) were
removed and not replaced.
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(c) Sampling procedure and measurements of life-
history traits

Conductivity (WTW LF 330 conductivity metre), pH (WTW pH
340i) and dissolved oxygen (WTW Multi 3410 multiprobe metre)
weremeasured throughout the experiment, aftermedium renewal,
in the new exposure solutions and ADaM medium used for the
controls (n = 27; nine samples collected in total from each of the
dopamine, bupropion and control treatments). Simultaneously,
the new exposure solutions and ADaM medium were sampled
for bupropion and dopamine analysis (n = 21; seven samples col-
lected in total from each of the dopamine, bupropion and control
treatments).

The sampleswere storedat−20°C foramaximumof fourmonths
after collection, prior to analysis. Two complementary sample prep-
aration protocols were employed to cover all concentration ranges:
(i) dilute-and-shoot and (ii) liquid–liquid extraction. Subsequent
analysis was performed by ultra-performance liquid chromato-
graphy coupled to a triple quadrupole mass analyser (UPLC-MS/
MS). Further details on the method are provided in electronic sup-
plementary material. Over the course of the experiment, pH,
conductivity and dissolved oxygen were within the recommended
range for testing of chemicals inD.magna, according toOECDguide-
lines [37]. The conductivity remained at 1.1 mS/cm, mean dissolved
oxygen at 9.0 mg l−1 and pH at 8.3 across treatments, whereas
measured average concentrations of dopamine and bupropion
were within 13% and 10% of their nominal concentrations, respect-
ively (electronic supplementary material, table A2). Lower than
expected concentrations of these compounds may have been
caused by degradation during storage.

Immediately prior to exposure on day 0, neonates were
photographed for body length measurements (BL, mm,
measured from the upper margin of the eye to the junction of
the carapace and spine) using ImageJ v. 1.52a (National Institutes
of Health, Bethesda, MD). BL measurements were then trans-
formed to dry mass (DM, mg) using the equation by
Yashchenko et al. [38]: DM= 0.00535 × BL2.72. Thereafter, individ-
ual replicates were checked daily to record age at maturation
and age at second reproduction, defined as the time when eggs
were first visible in the brood chamber. Body length at first repro-
duction was also measured using ImageJ as described above.
Live progeny released were collected and counted to yield first
and second clutch size. For each replicate, we measured the BL
of three offspring that were randomly sampled from each of
the first and second clutch. As a derived parameter, we calcu-
lated the first clutch biomass as the product of clutch size and
average offspring DM for that clutch. Offspring from all sub-
sequent clutches were removed at each medium change, and
the longevity of the mothers was recorded.

The somatic growth rate (SGR) of each replicatewas calculated
using the equation

SGR ¼ lnðDMendÞ � lnðDMstartÞ
duration

, ð2:1Þ

where DMstart is the dry mass (in mg) of the replicate at the
neonatal stage, DMend is the dry mass (in mg) of the replicate at
maturation and duration is the number of days between the two
stages.

The intrinsic population growth rate (r) was calculated based
on the two first reproductive events from the Euler–Lotka
equation,

X1

x¼0

lxmxe�rx � 1 ¼ 0, ð2:2Þ

where age x can be either age at maturation or age at second
reproduction, lx is the probability of survival to age x and mx is
the average number of offspring produced by an individual of
age x.

(d) Statistical analyses
All statistical analyses and graphic illustrations were performed
in R v. 3.5.2. [39]. We first tested whether the slopes of the reac-
tion norms of the measured life-history traits in response to food
abundance differed among treatments. To assess this for DM
at maturation and SGR, we used generalized least-squares
regression (GLS) models including the effects of the two categori-
cal predictors, treatment and food (high versus restricted) and
their interaction. For offspring DM (first and second clutch ana-
lysed separately), linear mixed effects (LME) models were fitted
with treatment, food and their interaction as fixed predictor vari-
ables and replicate as a random predictor variable. We also tested
the effects of treatment, food and their interaction on clutch size,
age at maturation, age at second reproduction and longevity,
using Poisson generalized linear models (Poisson GLMs).

Model selection followed a backwards selection procedure,
where variables were removed sequentially, starting with random
effects, using likelihood ratio tests [40]. For GLS and LME
models, residuals were checked for homogeneous variance and
for normal distribution. The VarIdent command from the nlme
package was used to allow residual variance to differ among treat-
ments and food (see [41] for an example using a variance function
[42]). PoissonGLMmodelswere tested for overdispersion and their
Pearson and deviance residuals were checked for patterns and lack
of fit. To deal with overdispersion for models for age at maturation
and longevity, we used a quasi-Poisson GLM instead of a Poisson
GLM. Tukey’s multiple comparison test was implemented where
groups were significantly different. For intrinsic population
growth rates (r), bootstrapped samplemeanswere used to compute
r values for which 95% confidence intervals were derived using the
percentile method. Between-group differences in rwere considered
statistically significant in the case where 95% confidence intervals
did not overlap. The models were implemented using the lme
and gls functions in the package nlme [43] and the glm function in
the package stats.

Todetermine the causalpathways fromfood ration to first clutch
biomass through age and DM at maturation, we used confirmatory
path analyses [44,45]. Becausewe expected the causal pathmodel to
be the same for the three treatments (dopamine, bupropion and con-
trol) but the relationships between life-history traits to differ in terms
of strength and/or direction among treatments, we fitted amodel of
hypothesized paths between traits, which we applied separately for
each of the control, bupropion and dopamine datasets. This path
model consisted of a sequence of linear regressions where food
rationwasusedasamain effect explaining thevariation in thediffer-
ent traits.Note, however, that an interactionbetween food ration and
age at maturation was added in the path model for the bupropion
treatment (see results). For each linear regression, we recovered
both standardized and unstandardized regression coefficients and
their SE. The overall goodness-of-fit of the models was assessed
using Shipley’s test of directional separation which yields a chi-
squared distributed Fisher’s C statistic. A p > 0.05 indicates that no
significant paths aremissing from themodel and that it fits the data-
set well [44]. The paths models were implemented using the
piecewiseSEM package [46].

3. Results
(a) Reaction norms in response to food ration
For all traits except longevity, the reaction norm slopes in
response to food rationwere of the same sign for the dopamine,
bupropion and control treatments. This indicates that life-
history traits responded in the same direction to a change in
food ration, irrespective of the treatment. For all treatments,
SGR, first and second clutch size increased with higher
food ration ( p < 0.001), whereas age at maturation, DM at
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maturation, DM of first and second clutch and age at second
reproduction decreased when the resources became sufficient
( p < 0.01) (figures 1 and 2). For longevity, food restriction
tended to increase it in both control and bupropion treatments
(ns for control treatment, p < 0.05 for bupropion treatment),
whereas the opposite pattern was observed in the dopamine
treatment ( p < 0.001). Although the sign of the reaction norm
(i.e. positive versus negative slope) did not depend on the
exposure treatment for most traits, their steepness did (for
model selection results see electronic supplementary material,
table A3). This was generally due to a more pronounced effect
of dopamine and bupropion under restricted than under high
food regimes (figures 1 and 2).

Specifically, at high food ration, treatment had no effect for
SGR, age at maturation and age at second reproduction (ns),
whereas a strong effect of dopamine treatment was observed
for DM at first reproduction ( p < 0.01). By contrast, at restricted
food ration, the differences between control on one hand and
dopamine and bupropion treatments on the other hand,
became more pronounced ( p < 0.01) (figure 1a–d; electronic
supplementary material, table A5). Moreover, exposure to
dopamine and bupropion induced lower DM for first and
second clutch compared to controls, independent of food
level ( p < 0.01) (figure 2; electronic supplementary material,
table A5). Finally, whereas the effects of food ration on life-
history traits described above translated into an expected
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strong decline in population growth rate (r) at restricted food,
this effect was steeper for the control than for the dopamine
and bupropion treatments ( p < 0.05). Under restricted food
ration, r was 159% and 114% higher in the dopamine and
bupropion treatments than in the control, respectively
(figure 1f; electronic supplementary material, table A5).

(b) Relationships among life-history traits at different
food rations

The path models for the exposure treatments and the control fit
the datasets very well (p = 1 for all groups). A high food ration
favoured earlier maturation (p < 0.05). The direct effect of food
on age was however much smaller in magnitude in the
dopamine and bupropion treatments compared to the control
(βcontrol=−27.82 ± 2.3, βdopamine=−9.86 ± 0.7 and βbupropion=
−13.40 ± 1.6, unstandardized coefficients; figure 3). In turn,
age at maturation was positively associated with DM at
maturation that was itself positively correlated with first
clutch biomass ( p < 0.05) (figure 3). DM at maturation was
also affected by food ration directly (ns for control treatment,
p < 0.05 for dopamine and bupropion treatments), but this
effect was of smaller magnitude (βcontrol =−0.03, βdopamine=
0.85 and βbupropion=−0.24, standardized coefficients) than its
indirect effect (through age at maturation), which is obtained
by multiplying the path coefficients (βcontrol=−0.85 × 0.93 =
−0.79, βdopamine=−1.32 and βbupropion=−0.54, standardized
coefficients; figure 3).

Direct effects of age at maturation and food ration on first
clutch biomass were observed in addition to the positive corre-
lation with DM at maturation ( p < 0.05). In the control and
dopamine treatments, the direct effect of age at maturation
on biomass was positive, whereas it was negative in the bupro-
pion treatment (figure 3). This negative effect was nonetheless
weaker under high food ration (βfood ration×age at maturation > 0,
p < 0.001; figure 3c; electronic supplementary material, figure
A4). Furthermore, the direct effect of food on biomass was
larger in magnitude than its indirect effect (βdirect = 1.00
versus βindirect =−0.71 in control; βdirect = 1.29 versus βindirect =
−1.07 in dopamine; βdirect =−4.17 versus βindirect = 1.82 in
bupropion, standardized coefficients; figure 3).

4. Discussion
In this study, we examined how dopamine mediates the
responses of life-history traits to food abundance in D. magna,
through aqueous exposure to dopamine and the antidepressant
bupropion, a dopamine reuptake inhibitor. As hypothesized
based on previous studies documenting behavioural and mor-
phological effects of dopamine, dopamine and bupropion
treatments significantly changed the slopes of life-history reac-
tion norms to food abundance. The changes in slopes were due
to effects of the treatments being more pronounced at a
restricted food ration.

Life-history reaction norms to food abundance in the con-
trols were consistent with previous empirical and theoretical
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Figure 3. Structural equation models (SEM) exploring the effects of food ration on age at maturation, DM at maturation and first clutch biomass and the relation-
ships between these across the (a) control, (b) dopamine and (c) bupropion treatments. Single-headed arrows represent unidirectional relationships among variables
while double-headed arrows represent correlated errors between two dependent variables. Arrow for non-significant path ( p≥ 0.05) is shown in grey. R2 for
component models are given in the boxes of response variables. Standardized coefficients, obtained by scaling the coefficients β by the ratio of the standard
deviation of x over the standard deviation of y, are given in red (in parentheses) and unstandardized coefficients are given in black. (Online version in colour.)
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studies. Specifically, somatic growth rate decreased at restricted
food ration thereby delaying maturation [47,48]. In turn,
delayed maturation resulted in an increase in adult size
(measured as DM at maturation). A larger size at maturity is
believed to be metabolically advantageous, as it lowers the
threshold food concentration at which assimilation equals res-
piration,making larger individuals able to growand reproduce
at lower food levels compared to smaller individuals [47]. This
is caused by larger individuals having higher filtering rates
than smaller individuals [49] and consequently higher feeding
rates [50], which increases food uptake at low food concen-
trations. Once the threshold size is reached, energy can be
allocated to reproduction [51,52]. Therefore, at restricted food
ration, a higher somatic investment (adult size) at the expense
of early life reproduction is likely to be adaptive, in line with
resource allocation theory [12,53]. A similar argument can be
made for an adaptive role of the observed reaction norm in
terms of offspring size. At restricted food ration, offspring size
increased whereas offspring number decreased. This trade-off
between offspring size and number is due to energy limitations
[54,55]. The optimal solution to this trade-off depends in turn on
the food abundance [56]. Since the ability to support metabolic
requirements at low food concentrations increases with body
size in Daphnia, larger offspring have higher chances of surviv-
ing starvation [57]. Thus, mothers allocate their energy towards
few but large offspring at low food conditions [58,59].

Although growth, somatic investment and reproduction
responded qualitatively in the same way to food ration across
treatments, quantitative differences were observed. This sup-
ports the view expressed above that these reaction norms to
food abundance are under active physiological control and
hence can respond to selection in an adaptive way, rather
than being passive outcomes of energy availability. If observed
differences between high and restricted food rations were
solely based on the amount of energy available at each food
ration, there would be no difference observed between the
treatments at a given food ration.

At restricted food, under dopamine and bupropion
exposure, resource allocation to maturation increased, leading
to accelerated somatic growth rates, smaller adults, earlier ages
at maturity and eventually shorter generation times (i.e. mean
age of mothers) compared to the control. A positive effect of
dopamine upregulation on somatic growth rate was also seen
in Weiss et al. [35], who suspected it could be due to an effect
of dopamine on cell proliferation and/or cell volume. In
addition to accelerating growth, dopamine upregulation can
stress organisms by exacerbating dopamine autoxidation,
which produces reactive oxygen species and neurotoxins that
damage dopaminergic neurons and cause oxidative stress
[60,61]. Evidence for this may lie in the observed shorter gener-
ation times in the exposure treatments compared to the control.
Indeed, several empirical studies have shown that fast species
might exhibit accelerated life histories in response to stressful
environmental conditions by reproducing earlier and accele-
rating their turnover [62,63]. Accordingly, we found that
D. magna, a fast species, exhibits a faster pace of life under
dopamine and bupropion exposure at the expense of adult
size and offspring size. The smaller mothers in the exposure
treatments produced smaller offspring, as can be expected
from the known positive correlation between offspring size
and mother size [64,65].

Despite the similar effects of bupropion and dopamine
treatments on life-history reaction norms to food abundance,

path analyses identified differences in their resource allocation
responses. Specifically, the relative importance of direct and
indirect resource allocation (through age at maturation) to
reproduction (first clutch biomass) changed according to
food abundance across treatments. In the control and dopa-
mine treatments, indirect resource allocation to reproduction
increased at restricted food ration while direct allocation
decreased (βdirect > 0 and βindirect < 0 for both treatments). The
opposite was true in the bupropion treatment (βdirect < 0 and
βindirect > 0). Moreover, direct allocation at restricted food
rationwas, given itsmagnitude, sufficient to offset the negative
effect of delayed maturation on clutch biomass seen in the
bupropion treatment. The negative effect of delayed matu-
ration on clutch biomass in the bupropion treatment was
unexpected, given the positive association between adult age,
adult size and ultimately offspring size, and it could be due
to physiological disruptions specific to bupropion’s mode of
action. Previous studies on aquatic animals have reported a
variety of negative effects of bupropion exposure on repro-
ductive physiology and development. One study showed
bupropion negatively affecting the testicular morphology and
reproductive physiology of adult male fathead minnows [29].
Another study reported disruption of zebrafish (Danio rerio)
development, as well as a disruption of enzymatic activity
related to energy production, movement and detoxification
[66]. Finding differences in the resource allocation strategies
of aqueous dopamine and bupropion was surprising, given
that theywere expected to have similar effects on the dopamine
system and hence produce comparable physiological changes.
However, aqueous dopamine and bupropion may be differ-
ently metabolized upon uptake and thus differ in their
mechanisms of action and effects.

Regardless of their mode of action, aqueous dopamine and
bupropion induced similar changes with respect to population
growth rates (r). At restricted food ration, both treatments
caused an increase in population growth rate (r). Individuals
in these treatments allocated more resources to maturation
and reproduction, advancing the timing of reproduction,
which resulted in faster rates of population growth compared
to the control. This boost in fitness did not induce any apparent
long-term costs as longevity did not differ significantly across
treatments at restricted food. This is an important finding as
both the principle of allocation [9] and the disposable soma the-
ories [67] predict reduced longevity as a consequence of a
greater allocation to reproduction and/or growth early in
life. Thus, one question arising from the present study is why
D. magna do not evolve towards higher endogenous dopamine
levels. One potential explanation for this may be that popu-
lation growth rate estimates based on the timing and
fecundity of the first two clutches is not always an appropriate
fitness measure [68]. For example, this measure does not con-
sider offspring survival and reproduction, which is an
additional component of maternal fitness. Elevated dopamine
levels caused reduced offspring size, and this may have nega-
tive fitness effects at low food abundance due to the relatively
lower feeding efficiency of small individuals (see above). Alter-
natively, there may be ecological costs of expressing high
dopamine levels and hence rapid growth, due to biotic inter-
actions that were not quantified in this study. Rapid growth
can increase predation costs through higher risk-taking behav-
iour from increased feeding in the presence of predators
[69,70], as well as increased parasitism costs due to fewer
resources being allocated to disease resistance [71,72]. Thus,
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future studies should evaluate towhat extent such selective fac-
tors can shape the evolution of the dopamine signalling system.

In summary, we found that the sign of the reaction norm in
response to food abundance did not depend on the exposure
treatment for most traits. Indeed, we showed an increase in
adult size at the expense of growth and reproduction at
restricted food ration for all treatments. Despite this general
trend, the slopes of the reaction norms depended on the
exposure treatment, as resource allocation to maturation and
reproduction increased under dopamine and bupropion
exposure when food rations were restricted, resulting in the
advanced timing of reproduction at the expense of adult size
and offspring size. Accelerated life cycles in the dopamine
and bupropion treatments in turn resulted in higher popu-
lation growth rates compared with the control, without any
costs to longevity. This boost in fitness fromdopamine upregu-
lation contradicts our prediction that controls would have the
highest fitness from having evolved adaptive reaction norms
to food abundance. Further understanding of the evolution
of the dopamine signalling system may require alternative
measures of fitness that incorporate any effects on offspring
survival and reproduction, as well as evaluating the potential
for interactive effects between dopamine and ecological
factors (predation, parasitism) on fitness. Nonetheless, our
findings emphasize the role of the dopamine system as regula-
tor of trait responses to food abundance and demonstrate
that low but environmentally relevant concentrations of

bupropion can alter the life history of D. magna, with possible
consequences to individual fitness.
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Fig. A1. Schematic diagram of the experimental design. Thirty replicates per food ration for 

the control, dopamine and bupropion treatments (x30). “H” and “R” refer to high and 

restricted food ration, respectively. 

 

Bupropion pilot study 

A pilot study was performed to determine appropriate sublethal bupropion test 

concentrations for Daphnia magna. Three bupropion (bupropion hydrochloride (Sigma-

Aldrich, St. Louis, MO, USA)) concentrations (1 μg/L, 10 μg/L and 100 μg/L) and a control (0 

μg/L bupropion) were applied, with 30 replicates for each of the four treatments. For each 

treatment, 30 juvenile females of clone 47 were kept individually in 15 mL glass tubes at 20 

°C in a modified “Aachener Daphnien Medium” (ADaM). The medium was renewed three 

times a week during the experimental period, and the animals were maintained until maturity 

under long photoperiods (16h L: 8h D) and fed with Shellfish Diet 1800® three times a week 

at a final concentration of 2 × 105 cells/mL. Age and dry mass at maturation were measured 

at the end of the experiment. In addition, the mortality in each treatment was recorded. 

Based on our findings (Figures A2 and A3), we chose to use a bupropion concentration of 1 
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μg/L as this concentration induced significant changes in dry mass and age at maturation 

without having mortality effects. 

 

 

Fig. A2. Daphnia dry mass at maturation (mg) in response to growth medium bupropion 

concentrations (mean ± SE). 
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Fig. A3. Daphnia age at maturation (days) in response to growth medium bupropion 

concentrations (mean ± SE). 

 

 

Fig. A4. First clutch biomass in response to Daphnia age at maturation (days) at restricted and 

high food rations in the bupropion treatment. The negative effect of age at maturation on 

biomass is significantly reduced at high food ration. 
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UPLC-MS/MS determination of bupropion and dopamine 

The analysis of the samples was performed with two complementary sample preparation 

protocols to cover all concentration ranges: (1) dilute-and-shoot (Method A); and (2) liquid-

liquid extraction (LLE; Method B). In both protocols, all reagent blanks and samples were 

spiked with a known amount of internal standard (10 ng benzotriazole; IS) prior to initiation 

of sample preparation. Benzotriazole (≥98%) was purchased from Sigma-Aldrich (Steinheim, 

Germany). All samples were analysed first with the dilute-and-shoot method, where samples 

were diluted by a factor of 2, and thereafter analysed by the LLE method, where samples were 

preconcentrated by a factor of 2. The detect values with method A were further confirmed 

with method B, while the non-detect values with method A were either detected with method 

B (due to the preconcentration) or remained as non-detects.  

 

In the dilute-and-shoot method, a volume of 500 μL was transferred in an auto-sampler vial 

(for UPLC–MS/MS analysis), spiked with IS, and 500 μL of methanol were added reaching a 

total sample volume of 1 mL. Thereafter, the sample was directly injected to the UPLC–

MS/MS system. In the LLE method, a volume of 1 mL of sample was transferred into a 15 mL 

polypropylene (PP) tube, spiked with IS, 300 μL of 1.0 M ammonium acetate(aq.) were added 

in the samples, and thereafter, the samples were extracted 3 times with 3 mL of ethyl acetate 

each time (3 × 3). For each successive extraction, the mixture was shaken in an oscillator 

shaker for 30 min and then centrifuged. The supernatants were combined, and 2 mL of 

ultrapure water were added. The mixture was centrifuged again, and the supernatant was 

transferred into a PP tube and concentrated to near-dryness under a gentle nitrogen stream. 

Finally, 500 μL of MeOH: ultrapure water (1:1 v/v) was added, vortex mixed and transferred 

into an auto-sampler vial for UPLC–MS/MS analysis. 

 

The chromatographic separation was carried out using an Acquity UPLC I-Class system 

(Waters, Milford, U.S.) coupled to a triple quadrupole mass analyser (QqQ; Xevo TQ-S) with a 

ZSpray ESI ion source (Waters, Milford, U.S.). The used LC column was an Atlantis T3 (150 × 

2.1 mm, 3 μm) connected to a Phenomenex C18 guard column (2.1 × 2.0 mm). The injection 

volume was 2 μL and the column temperature was set at 30 °C.  The chromatographic 

separation was carried out using a gradient elution program with an aquatic (ultrapure water 

with 0.1% v/v formic acid; A) and an organic phase (methanol with 0.1% v/v formic acid; B) as 
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binary mobile phase at a flow rate of 0.3 mL/min. The gradient elution started at 50% (v/v) A, 

decreased to 0% A within 3.0 min (3.0rd min), and then reverted to 50% A that was held until 

the 5.0th min, for a total run time of 5.0 min. The retention times were 1.2 and 2.0 min for 

dopamine and bupropion, respectively. The electrospray ionisation (ESI) was applied at a 

potential of +2.5 kV. The cone and source offset voltages were set at 20 and 45V, respectively. 

The desolvation and cone gas flow rates were set at 800 and 150 L/hr, respectively. The 

collision gas flow was set at 0.15 mL/min, while the nebuliser gas pressure was set at 87 psi. 

The source and desolvation temperatures were set at 150 and 350 °C, respectively. The 

precursor–product ions (transitions), the collision energies and the cone voltage values that 

were set in the ESI method are presented in Table A1. The instrumental limits of detection 

(LODs) were calculated for each target analyte as 3 times the signal from the baseline noise 

(S/N ratio) and were 0.01 and 0.1 ng/mL for bupropion and dopamine, respectively. 

Quantification of the target drugs was accomplished based on the internal standard method 

and with matrix-matched standard addition calibration standards prepared by spiking target 

analytes into the specified matrices prior to extraction (Asimakopoulos et al., 2017). 
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Table A1. SRM transitions, collision energies and cone voltage values for UPLC-MS/MS 

analysis. 

Derivative Transition 1 

(T1; Quantitation 

ion) 

Transition 2 

(T2; confirmation 

ion) 

Collision 

energies (V) 

T1; T2 

Cone 

voltage 

values (V) 

Dopamine 154 > 137 154 > 91 10; 20 16 

Bupropion 240 > 184 240 > 131 12; 26 4 

Benzotriazole 

(IS) 

120 > 65 120 > 92 16; 14 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

Table A2. Exposure and water quality variables averaged over the entire experiment for all 

replicates. Conductivity, dissolved oxygen, pH and dopamine and bupropion concentrations 

are summarized by factors treatment (control versus dopamine and bupropion). Values are 

given as mean ± SE. Means with the same letter are not significantly different from each other 

(based on Tukey’s post hoc test using an alpha value of 0.05).  

 Treatment 

 Control Dopamine Bupropion 

Dopamine (mg/L) 0.0 ± 0.0 0.29 ± 0.2 0.0 ± 0.0 

Bupropion (μg/L) 0.0 ± 0.0 0.0 ± 0.0 0.096 ± 0.04 

Conductivity (mS/cm) 

 

1.1 ± 0.3 

a 

1.1 ± 0.3 

a 

1.1 ± 0.3 

a 

Dissolved oxygen 
(mg/L) 

 

9.0 ± 0.05 

a 

9.0 ± 0.05 

a 

9.0 ± 0.05 

a 

pH 

 

8.3 ± 0.1 

a 

8.2 ± 0.09 

a 

8.3 ± 0.1 

a 
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Table A3. Model selection using AICc and quasi-AICc (QAICc) of candidate models for testing 

effects of treatment (control versus dopamine and bupropion) and food ration (high versus 

restricted) on somatic growth rate (SGR), age at maturation, age at second reproduction, dry 

mass (DM) at maturation, 1st and 2nd clutch size, 1st and 2nd clutch offspring DM, longevity; 

and pH, conductivity and dissolved oxygen in the medium. Models were sorted by ΔAICc and 

ΔQAICc. The best random effect structure was first determined with REML on models that 

included all listed fixed effects. Fixed effects were then compared with ML using the best 

random effect structure. K is the number of parameters estimated. The least complex model 

within 2 ΔAICc (and ΔQAICc) is bolded. vI refers to the varIdent function. 

 

Response variable Model K AICc ∆AICc wAICc 

      

SGR      

Fixed effects 

SGR ~ Food: Treatment 8 -735.80 0.00 1.00 

SGR ~ Food 4 -695.10 40.71 0.00 

SGR ~ Food + Treatment 6 -694.60 41.13 0.00 

SGR ~ 1 3 -427.10 308.64 0.00 

SGR ~ Treatment 5 -423.50 312.31 0.00 

Random effects 
vI (Food) 8 -683.40 0.00 1.00 

vI (Treatment) 9 -657.50 25.84 0.00 

      

Age at maturation 

(days) 
 K QAICc ∆QAICc wQAICc 

Fixed effects 

Age maturation ~ Food: Treatment 6 713.38 0.00 1.00 

Age maturation ~ Food + Treatment 4 745.94 32.56 0.00 

Age maturation ~ Food 2 855.38 142.00 0.00 

Age maturation ~ Treatment 3 1346.85 633.47 0.00 

Age maturation ~ 1 1 1446.15 732.77 0.00 

      

DM at maturation (mg)  K AICc ∆AICc wAICc 

Fixed effects 
DM maturation ~ Food: Treatment 8 -1050.80 0.00 1.00 

DM maturation ~ Food + Treatment 6 -1030.10 20.62 0.00 
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DM maturation ~ Food 4 -1024.60 26.13 0.00 

DM maturation ~ Treatment 5 -942.00 108.75 0.00 

DM maturation ~ 1 3 -933.50 117.23 0.00 

Random effects 
vI (Food) 8 -987.30 0.00 1.00 

vI (Treatment) 9 -963.00 24.30 0.00 

      

1st clutch size  K AICc ∆AICc wAICc 

Fixed effects 

1st clutch size ~ Food: Treatment 6 654.60 0.00 0.51 

1st clutch size ~ Food + Treatment 4 654.70 0.09 0.49 

1st clutch size ~ Food 2 667.40 12.87 0.001 

1st clutch size ~ Treatment 3 707.20 52.62 0.00 

1st clutch size ~ 1 1 719.70 65.13 0.00 

      

Age at 2nd reproduction 

(days) 
 K AICc ∆AICc wAICc 

Fixed effects 

Age 2nd reproduction ~ Food: Treatment 6 943.80 0.00 1.00 

Age 2nd reproduction ~ Food + Treatment 4 975.40 31.54 0.00 

Age 2nd reproduction ~ Food 2 1062.40 118.55 0.00 

Age 2nd reproduction ~ Treatment 3 2137.10 1193.22 0.00 

Age 2nd reproduction ~ 1 1 2200.90 1257.04 0.00 

      

2nd clutch size  K AICc ∆AICc wAICc 

Fixed effects 

2nd clutch size ~ Food: Treatment 6 622.90 0.00 0.95 

2nd clutch size ~ Food 2 629.80 6.86 0.03 

2nd clutch size ~ Food + Treatment 4 631.20 8.25 0.01 

2nd clutch size ~ 1 1 777.40 154.51 0.00 

2nd clutch size ~ Treatment 3 779.70 156.78 0.00 

      

1st clutch offspring DM 
(mg) 

 K AICc ∆AICc wAICc 

Fixed effects 

1st clutch offspring DM ~ Food + 
Treatment 

7 -4876.30 0.00 0.79 

1st clutch offspring DM ~ Food: 
Treatment 

9 -4873.60 2.73 0.20 
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1st clutch offspring DM ~ Food 5 -4848.60 27.76 0.00 

1st clutch offspring DM ~ Treatment 6 -4764.50 111.83 0.00 

1st clutch offspring DM ~ 1 4 -4752.40 123.95 0.00 

Random effects 

vI (Food) + (1 | Replicate) 9 -4778.60 0.00 0.78 

vI (Treatment) + (1 | Replicate) 10 -4775.80 2.77 0.19 

(1 | Replicate) 8 -4771.50 7.02 0.02 

vI (Food) 8 -4568.80 209.73 0.00 

vI (Treatment) 9 -4555.90 222.66 0.00 

      

Offspring DM 2nd clutch (m
g) 

 K AICc ∆AICc wAICc 

Fixed effects 

 2nd clutch offspring DM ~ Food + 
Treatment 

6 -1919.60 0.00 0.83 

2nd clutch offspring DM ~ Food: 
Treatment 

8 -1915.60 3.97 0.11 

2nd clutch offspring DM ~ Treatment 5 -1912.50 7.10 0.02 

2nd clutch offspring DM ~ Food 4 -1912.40 7.23 0.02 

2nd clutch offspring DM ~ 1 3 -1910.80 8.84 0.01 

Random effects 

(1 | Replicate) 8 -1830.00 0.00 0.59 

vI (Food) + (1 | Replicate) 9 -1828.80 1.24 0.31 

vI (Treatment) + (1 | Replicate) 10 -1826.40 3.61 0.10 

vI (Treatment) 9 -1765.60 64.40 0.00 

vI (Food) 8 -1757.70 72.32 0.00 

      

Longevity (days)  K QAICc ∆QAICc wQAICc 

Fixed effects 

Longevity ~ Food: Treatment 6 365.83 0.00 1.00 

Longevity ~ Treatment 3 393.53 27.70 0.00 

Longevity ~ Food + Treatment 4 395.47 29.65 0.00 

Longevity ~ 1 1 396.45 30.63 0.00 

Longevity ~ Food 2 398.36 32.53 0.00 

      

pH  K AICc ∆AICc wAICc 

Fixed effects 
pH ~ 1 2 11.00 0.00 0.90 

pH ~ Treatment 4 15.50 4.43 0.10 
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Conductivity (mS/cm)  K AICc ∆AICc wAICc 

Fixed effects 
Conductivity ~ 1 2 67.60 0.00 0.93 

Conductivity ~ Treatment 4 73.00 5.32 0.07 

      

Dissolved oxygen (mg/L)  K AICc ∆AICc wAICc 

Fixed effects 
Dissolved oxygen ~ 1 2 -25.60 0.00 0.90 

Dissolved oxygen ~ Treatment 4 -21.30 4.32 0.10 
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Table A4. Summary statistics of fitted final models. 

 

Response variable Final model Parameter Estimate ± SE 

SGR SGR ~ Food: Treatment + 

vI (Food) 

Intercept 0.37 ± 0.004 

  Dopamine treatment -0.003 ± 0.005 

  Bupropion treatment -0.004 ± 0.005 

  Restricted food -0.27 ± 0.008 
  Restricted food: Dopamine 

treatment 
0.07 ± 0.01 

  Restricted food: Bupropion 
treatment 

0.06 ± 0.01 

    

Age at maturation (days) Age maturation ~ 

Food: Treatment 

Intercept 1.96 ± 0.08 

  Dopamine treatment 0.04 ± 0.12 

  Bupropion treatment 0.01 ± 0.11 

  Restricted food 1.60 ± 0.09 
  Restricted food: Dopamine 

treatment 
-0.76 ± 0.13 

  Restricted food: Bupropion 
treatment 

-0.57 ± 0.13 

    

DM at maturation (mg) DM maturation ~ 
Food: Treatment+ vI (Food) 

Intercept 0.07 ± 0.001 

  Dopamine treatment 0.007 ± 0.002 

  Bupropion treatment -0.0004 ± 0.002 

  Restricted food 0.036 ± 0.003 
  Restricted food: Dopamine 

treatment 
-0.02 ± 0.004 

  Restricted food: Bupropion 
treatment 

-0.01 ± 0.004 

    

1st clutch size 1st clutch size ~ Food + 
Treatment 

Intercept 1.43 ± 0.08 
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  Dopamine treatment 0.31 ± 0.10 

  Bupropion treatment 0.36 ± 0.09 
  Restricted food -0.57 ± 0.08 

    

Age at 2nd reproduction 
(days) 

Age 2nd reproduction ~ 
Food: Treatment 

Intercept 2.31 ± 0.06 

  Dopamine treatment 0.03 ± 0.08 

  Bupropion treatment -0.02 ± 0.08 

  Restricted food 1.45 ± 0.07 
  Restricted food: Dopamine 

treatment 
-0.58 ± 0.10 

  Restricted food: Bupropion 
treatment 

-0.14 ± 0.09 

    

2nd clutch size 2nd clutch size ~ Food: 
Treatment 

Intercept 1.97 ± 0.07 

  Dopamine treatment -0.14 ± 0.10 
  Bupropion treatment -0.13 ± 0.10 

  Restricted food -1.30 ± 0.16 

  Restricted food: Dopamine 
treatment 

0.68 ± 0.21 

  Restricted food: Bupropion 
treatment 

0.11 ± 0.23 

    

Offspring DM 1st clutch 
(mg) 

1st clutch offspring DM ~ 
Food + Treatment +  

vI (Food) + (1 | Replicate) 

Intercept 0.003 ± 0.0001 

  Dopamine treatment -0.0004 ± 0.0001 
  Bupropion treatment -0.0009 ± 0.0001 

  Restricted food 0.001 ± 0.0001 

    
Offspring DM 2nd clutch 

(mg) 
2nd clutch offspring DM ~ 
Food + Treatment + 
(1 | Replicate) 

Intercept 0.004 ± 0.0003 

  Dopamine treatment -0.0009 ± 0.0003 

  Bupropion treatment -0.0006 ± 0.0003 
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  Restricted food 0.0009 ± 0.0003 

    
Longevity (days) Longevity ~ Food: Treatment Intercept 4.21 ± 0.05 

  Dopamine treatment 0.31 ± 0.07 

  Bupropion treatment 0.07 ± 0.07 
  Restricted food 0.12 ± 0.07 

  Restricted food: Dopamine 
treatment 

-0.44 ± 0.10 

  Restricted food: Bupropion 
treatment 

0.10 ± 0.10 

    

pH pH ~ 1 Intercept 8.28 ± 0.05 
    

Conductivity (mS/cm) Conductivity ~ 1 Intercept 1.06 ± 0.15 

    
Dissolved oxygen (mg/L) Dissolved oxygen ~ 1 Intercept 8.99 ± 0.03 
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Table A5. Mean trait responses to high and restricted food rations are compared between 

the control, and the dopamine and bupropion treatments. Statistically significant differences 

from the control group are reported as average percentage changes. “+” and “─” indicate an 

increase and a decrease, respectively, in mean trait response compared to the control. Means 

that are not significantly different from each other are reported as “ns”. 

 

 

 

 

 

 

 

 

 
High food Restricted food 

Trait Dopamine Bupropion Dopamine Bupropion 

Somatic growth rate ns ns + 72 % + 57 % 

Age at maturation (days) ns ns ̶  51 % ̶  43 % 

Mass at maturation 

(mg dry mass) 

+ 11 % ns ̶  14 % ̶  15 % 

1st clutch size + 32 % + 26 % + 48 % + 86 % 

Age at 2nd reproduction 
(days) 

ns ns ̶  42 % ̶  15 % 

2nd clutch size ns ns + 72 % ns 

Offspring mass 1st clutch 
(mg dry mass) 

̶  13 % ̶  26 % ̶  15 % ̶  26 % 

Offspring mass 2nd clutch 
(mg dry mass) 

̶  14 % ̶  21 % ̶  21 % ̶  10 % 

Longevity (days) + 37 % ns ns ns 

Intrinsic population growth 
rate 

ns ns + 159 % + 114 % 
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Table A6. Mean trait responses to high and restricted food rations in the dopamine group are 

compared to those in the bupropion group. Statistically significant differences are reported 

as average percentage changes in the dopamine group compared to the bupropion group. “+” 

and “─” indicate an increase and a decrease, respectively, in mean trait response under the 

effect of dopamine compared to that of bupropion. Means that are not significantly different 

from each other are reported as “ns”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 High food Restricted food 

Trait Dopamine vs. 
Bupropion 

Dopamine vs. 
Bupropion 

Somatic growth rate ns ns 

Age at maturation (days) ns ns 

Mass at maturation 

(mg dry mass) 

+ 12 % ns 

1st clutch size ns ns 

Age at 2nd reproduction 
(days) 

ns ─ 32 % 

2nd clutch size ns + 76 % 

Offspring mass 1st clutch 
(mg dry mass) 

+ 17 % + 16 % 

Offspring mass 2nd clutch 
(mg dry mass) 

ns ns 

Longevity (days) + 27 % ─ 26 % 

Intrinsic population growth 
rate 

ns ns 
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Table A7. Coefficient values, standard errors (SE), degrees of freedom (DF), z-scores, P-values 

(P) and standardized path coefficients for each fitted structural equation model. 

 

Path Estimate SE DF z value P 
Standardized 

estimate 
       
Control 
 

      

Food ration → Age at maturation -27.825 2.3207 54 -11.9899 0 -0.8526 
Food ration → DM at maturation -0.0014 0.0035 53 -0.3885 0.6992 -0.0309 
Age at maturation → DM at maturation 0.0012 0.0001 53 11.6448 0 0.9266 
Age at maturation → First clutch biomass 0.0003 0.0001 53 3.7021 0.0005 0.8276 
Food ration → First clutch biomass 0.0108 0.0024 53 4.4973 0 1.0053 
First clutch biomass ~~ DM at maturation 0.3402 NA 56 2.6338 0.0055 0.3402 
 
 

      

Dopamine 
 

      

Food ration → Age at maturation -9.8648 0.6987 52 -14.1195 0 -0.8906 
Food ration → DM at maturation 0.0256 0.0053 51 4.8230 0 0.8516 
Age at maturation → DM at maturation 0.004 0.0005 51 8.3831 0 1.4802 
Age at maturation → First clutch biomass 0.0014 0.0003 51 4.8265 0 1.2024 
Food ration → First clutch biomass 0.0162 0.0031 51 5.1612 0 1.2857 
First clutch biomass ~~ DM at maturation 0.7172 NA 54 7.3493 0 0.7172 
 
 

      

Bupropion       
       
Food ration → Age at maturation -13.4038 1.5550 52 -8.6198 0 -0.767 
Food ration → DM at maturation -0.0068 0.0027 51 -2.5066 0.0154 -0.2398 
Age at maturation → DM at maturation 0.0011 0.0002 51 7.3336 0 0.7016 
Age at maturation → First clutch biomass -0.0004 0.0001 50 -3.5641 0.0008 -0.6487 
Food ration → First clutch biomass -0.0491 0.0123 50 -3.9776 0.0002 -4.1701 
Food ration: Age at maturation → First clutch biomass 0.0059 0.0017 50 3.5393 0.0009 3.6415 
First clutch biomass ~~ DM at maturation 0.2835 NA 54 2.1114 0.0198 0.2835 
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• Biomass growth rate inDaphniawas un-
affected by mercury but was density de-
pendent

• Density dependence of biomass growth
rate also increased at high temperature

• Sexual reproduction in Daphnia was
density dependent

• Sexual reproduction also increased with
mercury exposure at low temperature

• Sexual reproduction responds to
lower mercury levels than biomass
growth rate
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Toxicity studies on freshwater organisms are commonly conducted by quantifying effects on asexual (clonal) re-
productive rates inDaphnia, whereas studies of effects on sexual reproductive rates remain relatively rare. Sexual
reproduction in Daphnia and the associated production of resting eggs allows them to survive unfavorable envi-
ronmental conditions and is thus a crucial component of their long-term fitness. It also maintains genetic diver-
sity within Daphnia populations and hence their potential for adaptation to new environmental conditions. This
aspect of their biology may therefore be important to consider in toxicity studies. The aim of this study was to
investigate for thefirst time howmercury (Hg) affects sexual versus asexual reproduction inDaphnia under vary-
ing environmental conditions. Specifically, we experimentally tested the interactive effects of Hg and tempera-
ture on the population dynamics of Daphnia magna. For this purpose, we exposed D. magna to
environmentally relevant concentrations (0 μg/L, 0.5 μg/L and 2 μg/L) of Hg (in the form of mercury (II) chloride)
found in stream water and measured biomass growth rate resulting from asexual reproduction, and resting egg
production resulting from sexual reproduction. This was done at both 17 °C and 24 °C. Biomass growth rate did
not vary across Hg treatments and depended mainly on temperature and population density. Density depen-
dence of biomass growth rate was indeed more pronounced at 24 °C than at 17 °C, as resource limitation from
intraspecific competition was further exacerbated by the rise in feeding rates with temperature. Density depen-
dence of resting egg production was unaffected by Hg and temperature, but resting egg production was higher
under Hg exposure at low temperature. These findings show that depending on environmental conditions,
rates of sexual reproduction in D. magna may respond to metal exposure at lower concentrations than those
impacting population growth during the asexual phase.
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1. Introduction

Studies of metal toxicity in aquatic environments are commonly
conducted using the freshwater keystone species Daphnia (Altshuler
et al., 2011).Daphnia reproduce asexually (clonally)when environmen-
tal conditions are favorable and switch to production of resting eggs
through sexual reproduction when environmental conditions deterio-
rate. In southern populations of Daphnia that generally experience hot
and dry summers, a rise in temperature provides such a cue (Bernot
et al., 2006). Other cues include high population density (Carvalho
and Hughes, 1983), and low food abundance (Alekseev and Lampert,
2001). The dormant resting eggs survive stressful environmental condi-
tions over long periods of time (Cáceres and Tessier, 2003), and are cru-
cial for long-term fitness in Daphnia (Gerber et al., 2018; Hebert, 1978).
Yet, few previous studies have looked at effects of metals on daphnid
sexual reproduction (Araujo et al., 2019; Chen et al., 1999). One of the
most toxic metals is mercury (Hg). Hg pollution in aquatic environ-
ments is a worldwide concern (Lavoie et al., 2013), with effects on
aquatic biota that range from developmental and reproductive toxicity
to neurotoxicity (Scheuhammer et al., 2007). Whereas Hg is known to
have toxic effects on asexual reproduction in Daphnia (Doke et al.,
2014; Fong et al., 2019; Tsui and Wang, 2005a), to our knowledge no
studies have tested for effects of Hg on Daphnia sexual reproduction
and the production of resting eggs.

Aquatic invertebrates, like Daphnia, regularly experience extensive
spatial and temporal variation of environmental factors, which may in-
teract with metals to influence important characteristics of individuals
and populations (Issa et al., 2020; Wang, 1987). Temperature is one en-
vironmental factor that can largely alter the biochemistry and physiol-
ogy of organisms, with population-level consequences (Atkinson,
1994; Somero, 2005). Within their natural range, a rise in temperature
generally increases population growth of ectotherms when food is un-
limited (Doorslaer et al., 2010; Sweeney et al., 2018). However, biolog-
ical factors such as intraspecific competition for food can interact with
temperature to affect population growth through density-dependent
responses. As population density increases and resources become
more limited, the positive effect of temperature on population growth
decreases (Giebelhausen and Lampert, 2001; Orcutt and Porter, 1984).
In the context of climate change, temperature mean and variance is ex-
pected to increase (IPCC, 2013), which can threaten the stability of
aquatic ecosystems.

Temperature and population density interactions also play a role in
determining species sensitivity to metals, although this is generally
not included in classic toxicity tests (OECD, 2004, 2012). At elevated
temperatures, species' sensitivity to metals increases (Rathore and
Khangarot, 2002). One reason for this is that higher metabolic activity
and cell membrane permeability lead to increased metal uptake from
food and the aqueous environment (Dijkstra et al., 2013; Sokolova and
Lannig, 2008). The rise in metabolic demand for energy at high temper-
ature, andparticularly if coupledwith high intraspecific competition, re-
duces the per capita amount of resources available for allocation to
detoxification and repair processes (Heugens et al., 2001). Hence,
population-level effects of metals may be expected to be shaped by an
interaction between temperature and population density. In aquatic en-
vironments, warmer temperatures in a climate change scenario are ex-
pected to increase the concentrations of bioavailable Hg (Dijkstra et al.,
2013; Schartup et al., 2019). By increasing the bioaccumulation of Hg,
higher temperatures can enhance Hg toxicity to aquatic biota (Dijkstra
et al., 2013; Jordan et al., 2019), unless potentially offset by high food
availability and hence higher energy available for detoxification
(Jordan et al., 2019). Indeed, Hg interactions with temperature and
food availability can affect the physiology and population dynamics of
aquatic ectotherms. For example, in rotifers (Proales similis and
Brachionus plicatilis), a temperature rise shortens generation times,
thereby reducing the negative effects of Hg on population growth rate
in the absence of competition for food (Rebolledo et al., 2018). High

food availability can also alleviate Hg-stressed populations of rotifers
(Brachionus patulus) through higher longevity and fecundity
(Ramírez-Pérez et al., 2004; Sarma et al., 2001). Hence, incorporating
both temperature and population density effects in metal toxicity tests
could provide a more comprehensive understanding of individual and
population-level responses to Hg stress in aquatic ecosystems.

In this study, we investigated for thefirst time howmercury (Hg) af-
fects sexual versus asexual reproduction in Daphnia magna, under vary-
ing environmental conditions. Specifically, we experimentally tested for
the interactive effects of Hg and temperature on the population dynam-
ics ofDaphniamagna, through chronic exposure to environmentally rel-
evant concentrations of Hg, during which biomass growth rate and
resting egg production were quantified. We hypothesized that the met-
abolic costs of Hg detoxification would either induce stress that leads to
increased sexual reproduction and the production of resting eggs, or if
these costs were too high, would lower the amount of energy available
for sexual reproduction and prevent the production of resting eggs. Fur-
thermore, this would depend on the per capita amount of resources
available, which varies with population density and temperature, moti-
vating the inclusion of these factors in the current study.

2. Materials and methods

2.1. Study organisms

Ephippia containing resting eggs resulting from sexual reproduction
ofD.magnawere collected in November 2014, in a pond at Værøy Island
(1.0 ha, 67.687°N 12.672°E), northern Norway. Ephippial eggs were
hatched in the laboratory and propagated clonally. For this experiment,
juveniles of a single clone (clone EF7) of D. magnawere asexually prop-
agated for sixteen successive generations prior to use. During this pe-
riod, a maximum of 30 D. magna individuals were cultured in 3 L
aquaria at 17 °C and 24 °C in a modified “Aachener Daphnien Medium”
(ADaM) (Klüttgen et al., 1994, SeO2 concentration reduced by 50%),
under long photoperiods (16 h L: 8 h D) using white fluorescent
lamps. The medium was exchanged weekly to prevent poor medium
quality, and the animals were fed three times a week with Shellfish
Diet 1800® (Reed mariculture Inc.; Rikard and Walton, 2012) at a
final concentration of 2.4 × 105 algal cells/mL (75% ad lib at 20 °C).

2.2. Experimental design

Replicates were run in two identical experimental sets (Fig. 1) in
parallel, which were sampled on different days. For each experimental
set, a full factorial design with three different starting concentrations
of Hg (0 μg/L, 0.5 μg/L and 2 μg/L) and two temperature treatments
(17 °C and 24 °C) was applied, with five replicate beakers for each of
the six combinations. The two exposure concentrations (0.5 μg/L and
2 μg/L) were selected for being environmentally relevant concentra-
tions (Berzas Nevado et al., 2003; Gray et al., 2000) that are lower
than the acute LC50 of 2.2 μg/L Hg in cladocerans (Nichols et al., 1997).
Moreover, a pilot study conducted prior to this experiment did not de-
tect any effect of these concentrations onD.magnamortality or their ca-
pacity to undergo asexual reproduction (see Supporting information).
Hg stock solutions (0.0016 g/L) were prepared at the onset of each ex-
perimental set, by dissolving 99.5% pure mercury (II) chloride (HgCl2)
(Fluka, Switzerland) in Milli-Q water (18.2 MΩ cm) (Milli-Q Plus,
Millipore Corp.). The exposure glass beakers (600mLnon-aerated boro-
silicate beakers, Fisherbrand) and equipment used for making Hg stock
solutions were acid-washed overnight before use with 1 M HNO3

suprapure quality preparedwith a sub-boiling distillation system (Mile-
stone, SubPUR) and subsequently washed with Milli-Q water. The stock
solutions were added to ADaM to create the desired Hg exposure con-
centrations while controls (0 μg/L Hg) contained only ADaM.

Populations in each replicate beaker (containing 400mL ofmedium)
were founded by 5 female juveniles (< 48 h old) originating from the
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same acclimation temperature as their experimental temperature
(17 °C or 24 °C). These populations were thereafter observed for a pe-
riod of eightweeks throughoutwhich theyweremaintained under sim-
ilar culture medium and feeding conditions as the aquaria cultures. The
mediumchangewas conductedweekly to renew exposure toHg aswell
as prevent poor medium quality. The latter was needed to ensure that
the crowding effect measured in the experiment was due to competi-
tion for food and not other factors that can originate from poor medium
quality. The beakers were changed biweekly.

2.3. Sampling procedure

At each weekly medium renewal, the content of each replicate bea-
ker was poured into a deep glass tray placed on a light plate with an
overhanging video camera. The ephippia were collected and counted,
and a 15-second-long video recording was taken to be analyzed using
the R package trackdem (Bruijning et al., 2018). The trackdem package
estimates both the number of live individuals (based on moving parti-
cles) and their sizes (in pixels). Individual drymass (mg)was calculated
based on an empirical regression between pixel size and dry mass pre-
viously derived by Fossen et al. (2019) (Eq. (1)), and this allowed calcu-
lation of population biomass at each census (Eq. (2)).

Mean dry mass ¼ −0:006351290 þ 0:001003908 � pixelsð Þ ð1Þ

Biomass ¼ Mean dry mass � Population count ð2Þ

Weekly rates of biomass growth were calculated on a log scale from
mean population biomass estimated in two consecutive weeks (t) as
follows:

Biomass growth ratet ¼ logbiomasstþ1− logbiomasst ð3Þ

2.4. Statistical analysis

All statistical analyses and graphic illustrations were performed in R
v. 3.5.2. (R Core Team, 2020). For biomass growth ratet, wemodelled the
effect of log biomasst, Hg treatment, temperature, the three-way inter-
action and all two-way interactions between these, using a linear
mixed effects (LME) model. For number of resting eggs produced per
replicate beaker perweek (REt),wemodelled the effect of Hg treatment,
temperature, the direct effect of biomass growth rate during the week
resting egg production was quantified, as well as a lagged effect of bio-
mass growth in the precedingweek. The reasoning behind including the
lagged effect of biomass growth was that a low biomass growth rate
may trigger resting egg production, but that resources for resting egg
production may decline following a prolonged period of low biomass
growth. The log of biomasst was also used as an offset in order to stan-
dardize REt per unit of biomass, and the full model included all possible
two- and three-way interactions among predictors. To deal with
overdispersion and zero inflation, we used a zero-inflated negative
binomial generalized linear mixed (ZINB GLM) model instead of a

zero-inflated Poisson generalized linear mixed model. For both
dependent variables, setwas added as afixed effect and replicate beaker
as a random effect.

Model selection followed a backwards selection procedure, where
variables were removed sequentially, starting with random effects,
using likelihood ratio tests (Zuur et al., 2009). For biomass growth
ratet, models were implemented using the lme and gls functions in the
package nlme (Pinheiro et al., 2020) and residuals were checked for ho-
mogeneous variance and for normal distribution. The VarIdent com-
mand from the nlme package was moreover used to allow residual
variance to differ among Hg treatments, temperatures, sets and the
two-way interactions between these (Pinheiro and Bates, 2000). For
REt, models were implemented with the glmmTMB package (Brooks
et al., 2017). The regression results from the final models were plotted
using the visreg package (Breheny and Burchett, 2017).

3. Results

Candidate models for testing effects of biomasst, the direct and
lagged effects of biomass growth, Hg treatment, temperature and set
on biomass growth ratet and number of resting eggs produced per rep-
licate beaker perweek (REt) are depicted in Table A1. The summary sta-
tistics of the fitted final models are depicted in Table A2. Biomass
growth ratet was similar across Hg treatments but differed between
the two experimental sets and temperatures (Table A1, Fig. 2). At
17 °C, biomass increased steadily until sampling week seven and de-
creased in the final week of the experiment, while at 24 °C, biomass
peaked around week five and decreased thereafter (Fig. 2). Density de-
pendence was important, as growth rates decreased with increasing
biomass. The strength of density dependence was more pronounced
at 24 than at 17 °C (Table A1, Fig. 3). This caused the estimated carrying
capacity (i.e. biomass at which growth rate = 0, based on the model
parameters in Table A2) to be more than twice as high at 17 °C
compared to at 24 °C (9.3 vs. 4.2 mg biomass). Biomass growth ratet

was further higher in set 1 compared to set 2 (Table A1), yet the magni-
tude of this difference was relatively small (less than 5%, see Table A2).

In contrast to biomass growth ratet, the best model describing vari-
ation in REt included an effect of Hg (Table A1). The effect of Hg
depended however on temperature, with higher REt under high Hg ex-
posure at 17 °C only (Fig. 5). REt was also overall higher at 24 than at
17 °C, initiating earlier at 24 (week three) than at 17 °C (week five)
and thereafter increasing at both temperatures (Fig. 4). Population den-
sity was an additional important regulator of REt, as REt decreased with
increasing biomass growth rate during the week resting egg production
was quantified. This negative direct effect of biomass growth rate on REt

did not depend on temperature or Hg treatment but was strongly de-
pendent on biomass growth rate in the week before resting egg produc-
tion was quantified (Table A1, Fig. 6). Specifically, the negative direct
effect of biomass growth rate on REt became more pronounced as
lagged biomass growth rate increased (Table A1, Fig. 6). Hence, a low
biomass growth rate was associated with a high resting egg production
if biomass growth rate was high during the preceding week (Fig. 6).

Fig. 1. Schematic diagram of the experimental design.
The experimentwasdivided into two identical experimental sets run inparallel and sampledweekly on different days. Five replicates per set per treatment (x5). Treatments are defined by
the Hg concentration (0 μg/L Hg versus 0.5 μg/L Hg and 2 μg/L Hg) and temperature (17 °C versus 24 °C). Replicates in set 1 are illustrated with white circles, with remaining replicates
belonging to set 2.
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Fig. 2. Biomass growth ratet at 17 °C and 24 °C across Hg treatments (control versus low Hg and high Hg) and sets (1 versus 2). Scatter points represent measured data.

Fig. 3.Modelled effect of log biomasst (mg) on biomass growth ratet at 17 °C and 24 °C in the control, low Hg and high Hg treatments. Gray and white scatter points represent measured
data at 17 °C and 24 °C, respectively. Efron's R2, equal to the squared correlation between the predicted values and observed values, was 0.75.

Fig. 4. Number of resting eggs produced per replicate beaker per week (REt) at 17 °C and 24 °C across Hg treatments (control versus low Hg and high Hg) and sets (1 versus 2). Scatter
points represent measured data.
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4. Discussion

In this study, we examined the interactive effects of Hg, population
density and temperature on the population dynamics and resting egg
production of Daphnia magna. Biomass growth rate did not vary across
Hg treatments and depended mainly on temperature and population
density. This was however not the case for resting egg production,
which responded differently to Hg exposure compared to control.

The missing response of biomass growth rate to Hg exposure was
surprising, given that Hg stress can influence biomass growth through
changes in body size and population size. Indeed, animals under metal
stress directmore energy towards detoxification and recovery at the ex-
pense of other mechanisms such as feeding, somatic growth and repro-
duction (Muyssen et al., 2006), which can directly decrease population
growth rate through lower fecundity and survival rates (Fong et al.,
2019; Muyssen et al., 2006). Furthermore, studies show that metal
stress can have contrasting effects on mean population body size
through differentmodes of action that depend on the metal and its con-
centration. On one hand, metal stress can decrease the amount of re-
sources available to Daphnia directly, by decreasing their filtration rate
(Lopes et al., 2014), and indirectly, by impairing their swimming ability
through oxidative stress (Bownik, 2017). A reduction in food uptake can
subsequently result in a smaller mean body size for the population

(Enserink et al., 1995). On the other hand, metal stress may increase
mean population body size as several studies show a negative relation-
ship between body size and metal sensitivity (Alves et al., 2009;
Bianchini et al., 2002; Vesela andVijverberg, 2007), such that smaller in-
dividuals are eliminated through mortality. This is explained by smaller
individuals having a higher mass-specific metabolic rate that enhances
metal uptake (Yu andWang, 2002). A possible explanation for the over-
all missing response of biomass growth rate to Hg treatment may be
that exposure concentrations were too low to exert a strong effect on
body size or population size. Indeed, while the highest exposure con-
centration used was within the range of concentrations found to signif-
icantly lower asexual reproduction in D. magna (Biesinger et al., 1982),
this was not the case for adult survival and growth (Biesinger et al.,
1982; De Coen and Janssen, 1997).

Other than toxic metals, temperature rise and low resource avail-
ability are factors that are also known to stress populations. A rise in
temperature generally accelerates metabolic rates and hence popula-
tion growth rate (Savage et al., 2004). However, as the population
grows larger, intraspecific competition increases, thereby decreasing re-
source availability (Swanson et al., 2003), until the population reaches
its carrying capacity, i.e. the maximum population size sustainable by
the environment over time (Best et al., 2007). Once carrying capacity
is exceeded, the population growth rate drops (Best et al., 2007). The

Fig. 5.Effect of temperature on number of resting eggs producedper replicate beaker perweek (REt) in the control, lowHg and highHg treatments. Scatter points representmeasured data
(error bars give 1SE). A significant difference was observed between the high Hg and the control treatment at 17 °C only (*P < .05; ns: not significant).

Fig. 6. Modelled direct effect of biomass growth rate (Biomass growth ratedirect) on number of resting eggs produced per replicate beaker per week (REt) at 17 °C and 24 °C. To visualize
interactions, cross-sections were taken at the 10th, 50th and 90th percentiles of lagged biomass growth rate (growth ratelagged). White, black and blue scatter points represent measured
data for each of the control, low Hg and high Hg treatments, respectively. Efron's R2, equal to the squared correlation between the predicted values and observed values, was 0.35. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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stronger density dependence of biomass growth rate at 24 °C compared
to at 17 °C caused a significant reduction in carrying capacity at high
temperature. Carrying capacity should indeed decrease with increasing
temperature because of higher metabolic rates accelerating feeding
rates and resource depletion (Savage et al., 2004). Surprisingly though,
Hg did not interact with population density and temperature to affect
the population dynamics of D. magna in this study. Previous studies
have shown that temperature rise and low resource availability can en-
hance the negative effects of metals on Daphnia somatic growth and
asexual reproduction (Heugens et al., 2001; Heugens et al., 2006). A
high metal uptake rate at high temperature, coupled with intraspecific
competition and the metabolic costs of metal detoxification, is indeed
expected to lower the amount of energy available for allocation to so-
matic growth and/or overall reproduction and ultimately population
growth (Heugens et al., 2003; Luna-Andrade et al., 2002; Sokolova and
Lannig, 2008). Additional information on how temperature affects the
bioavailability of Hg to Daphnia in this study may help explain the ob-
served trends in population growth. The Biotic ligand model (BLM) is
one tool that is commonly used for predicting metal bioavailability
and toxicity. However, the BLM so far does not account for effects of
temperature on the binding ability of metals and competing cations to
sites of toxic action in organisms (Mebane et al., 2020). Therefore, it can-
not be used to predict the bioavailability of Hg, hence nor its toxicity, in
this study. Nonetheless, we suspect that, as discussed above, the Hg ex-
posure concentrations were too low to exert effects on growth, which
may explain the observed trends. It may also be that following their
long term exposure to low Hg concentrations, the individuals in this
study had acclimated across generations to Hg stress (Tsui and Wang,
2005b). This may have been driven by an increase in the concentration
of metallothionein-like proteins that lower the availability of metals to
cellular receptors (Tsui and Wang, 2007).

Despite the potential acclimation of exposed individuals in this
study, metal stress was still high enough to affect sexual reproduc-
tion and the production of resting eggs in D. magna. Specifically, we
observed a rise in resting egg production under high Hg exposure
at low temperature. A higher investment in sexual reproduction
under metal exposure has been previously observed in rotifers, as a
strategy to overcome unfavorable environmental conditions
(Aránguiz-Acuña and Pérez-Portilla, 2017; Aránguiz-Acuña and
Serra, 2016). This was not the case at high temperature, where ther-
mal stress was a more important factor at inducing resting egg pro-
duction than Hg exposure. Thus, depending on environmental
conditions, some stressors may be more important than others for
inducing resting egg production.

Population density and temperature are additional well-known en-
vironmental cues that can trigger resting egg production. Temperatures
close to species' upper and lower thermal tolerance limits promote the
production of resting eggs (Holm et al., 2018; Wojtal-Frankiewicz,
2012), explaining the observed rise in resting egg production at 24 °C.
Similarly, lower resource availability and higher encounter rates be-
tween females at high population density induce the production of rest-
ing eggs (Alekseev and Lampert, 2001; Ban and Minoda, 1994; Carvalho
and Hughes, 1983). Resting egg production peaked under high lagged
biomass growth, indicative of deteriorated food conditions. The sharp
decrease in resting egg production the following week showed a wors-
ening of food conditions with further population growth. High resource
limitation can negatively affect sexual reproduction, if the energy de-
mand for reproduction is not satisfied, or if maintenance is prioritized
over ephippia production (Dinh et al., 2018; Smith et al., 2009).
Hence, high resource limitation, whether from elevated temperatures,
high population density or a combination of these, should under Hg
stress reduce energy allocation to overall reproduction, in order to sat-
isfy the energetic requirements of detoxification and repair processes
(Fernández-González et al., 2011; Sokolova and Lannig, 2008), such as
metallothionein synthesis (Amiard et al., 2006). However, this was not
observed in this study.

In summary, both biomass growth rate and resting egg production,
the main parameters measured in the asexual and sexual phases of
D. magna, respectively, responded to population density and tempera-
ture, whereas only resting egg production responded to Hg exposure.
Specifically, the strength of density dependence on biomass growth
rate increased with temperature, as high metabolic rates worsened
food conditions for competing individuals, significantly reducing the
carrying capacity. Density dependence of resting egg production was
on theother hand independent of temperature andHg. However, Hg ex-
posure prompted a higher investment in resting egg production at low
temperature, indicative of stressful environmental conditions at low but
environmentally relevant concentrations. Hence, we conclude that de-
pending on temperature and population density, rates of sexual repro-
duction in D. magna may respond to metal exposure at lower
concentrations than those impacting population growth during the
asexual phase.
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Supplementary material of the paper 

Population dynamics and resting egg production in Daphnia: interactive effects of mercury, 

population density and temperature 

Semona Issa, Ane Simonsen, Veerle L. B. Jaspers, Sigurd Einum 

 

Pilot study 

A pilot study was performed to determine appropriate sublethal HgCl2 test concentrations for Daphnia 

magna at 17 °C and 24 °C. Two HgCl2 (99.5% pure mercury (II) chloride (Fluka, Switzerland)) concentrations 

(0.5 μg/L and 1.75 μg/L) and a control (0 μg/L HgCl2) were applied at the two temperatures (17 °C and 24 

°C), with 3 replicates for each of the six treatments. For each treatment, 10 adult females of clone EF7 

were kept collectively in 600 mL glass beakers in a modified “Aachener Daphnien Medium” (ADaM). The 

medium was not renewed during the experimental period, and the animals were maintained for two 

weeks under long photoperiods (16h L: 8h D) and fed with Shellfish Diet 1800® three times a week at a 

final concentration of 2.4 × 105 cells/mL. The mortality in each treatment was recorded visually. The results 

from the pilot showed no effect of treatment on Daphnia mortality or their capacity to undergo asexual 

reproduction. Based on these findings, we chose to use HgCl2 exposure concentrations of 0.5 μg/L and 2 

μg/L in the current study. 
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Table A1. Model selection using AICc of candidate models for testing effects of Log biomasst, the direct 

effect of biomass growth rate during the week resting egg production was quantified (Biomass growth 

ratedirect), the lagged effect of biomass growth in the preceding week (Biomass growth ratelagged), Hg 

concentration (control versus low and high), Temperature (24 °C versus 17 °C) and Set (1 versus 2) on 

Biomass growth ratet and number of resting eggs produced per replicate beaker per week (REt). Models 

were sorted by ΔAICc. The best random effect structure was first determined on models that included all 

listed fixed effects. Fixed effects were then compared using the best random effect structure. K is the 

number of parameters estimated. The least complex model within 2 ΔAICc is bolded. 

 

Response 

variable 
Model K AICc ∆AICc wAICc 

      

Biomass  

growth  

ratet 

     

Fixed 
effects 

Biomass growth ratet ~ Log biomasst:Temperature + Set 6 -90.30 0.00 0.59 

Biomass growth ratet ~ Log biomasst:Temperature 5 -88.50 1.85 0.23 

Biomass growth ratet ~ Log biomasst:Temperature + Hg + Set 8 -86.70 3.58 0.10 

Biomass growth ratet ~ Log biomasst:Temperature + Hg 7 -84.90 5.46 0.04 

Biomass growth ratet ~ Log biomasst:Temperature + Log biomasst:Hg + Set 10 -84.00 6.28 0.02 

      

REt  K AICc ∆AICc wAICc 

Fixed 
effects 

REt ~ Biomass growth ratedirect:Biomass growth ratelagged + Biomass growth  

ratelagged:Temperature + Temperature:Hg + offset (Log biomasst) 
12 2216.40 0.00 0.52 

REt ~ Biomass growth ratedirect:Biomass growth ratelagged +  

Biomass growth ratelagged:Temperature + Temperature:Hg + Set + 

offset (Log biomasst) 

13 2218.50 2.14 0.18 

REt ~ Biomass growth ratedirect:Biomass growth ratelagged + Biomass growth 
ratedirect:Temperature + Biomass growth ratelagged:Temperature +  

Temperature:Hg + Set + offset (Log biomasst) 

14 2220.20 3.83 0.08 
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REt ~ Biomass growth ratedirect:Biomass growth ratelagged + Biomass growth 
ratelagged:Temperature + Biomass growth ratelagged:Hg + Temperature:Hg + Set +  

offset (Log biomasst) 

15 2220.50 4.14 0.07 

REt ~ Biomass growth ratedirect:Biomass growth ratelagged +  

Biomass growth ratelagged:Temperature + Hg + Set + offset (Log biomasst) 
11 2221.60 5.25 0.04 
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Table A2. Summary statistics of fitted final models. 

Response 
variable 

Final model Parameter Estimate ± SE 

Biomass 
growth 

ratet 

Biomass growth ratet ~ Log biomasst:Temperature + Set Intercept 0.89 ± 0.03 

 

  Set 2 -0.04 ± 0.02 

 

  24 °C 0.16 ± 0.06 

 

  Log biomasst -0.40 ± 0.02 

 

  Log biomasst:24 °C -0.33 ± 0.04 

 

    

REt REt ~ Biomass growth ratedirect:Biomass growth ratelagged +  

Biomass growth ratelagged:Temperature + Temperature:Hg +  

offset (Log biomasst) 

Intercept 0.57 ± 0.22 

 

  Biomass growth ratedirect -1.04 ± 0.30 

 

  Biomass growth ratelagged -0.96 ± 0.42 

 

  24 °C 0.71 ± 0.26 

 

  Low Hg 0.22 ± 0.25 

 

  High Hg 0.70 ± 0.24 

 

  Biomass growth ratedirect:Biomass 
growth ratelagged 

-4.03 ± 0.87 

 

  Biomass growth ratelagged:24 °C 2.25 ± 0.51 
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  Low Hg:24 °C 0.09 ± 0.32 

 

  High Hg:24 °C -0.68 ± 0.31 
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and some secondary effects. 

1993 Bård Pedersen Dr. scient 
Botany 

Theoretical studies of life history evolution in modular 
and clonal organisms 

1993 Ole Petter Thangstad Dr. scient 
Botany 

Molecular studies of myrosinase in Brassicaceae 

1993 Thrine L. M. 
Heggberget 

Dr. scient 
Zoology 

Reproductive strategy and feeding ecology of the 
Eurasian otter Lutra lutra. 

1993 Kjetil Bevanger Dr. scient 
Zoology 

Avian interactions with utility structures, a biological 
approach. 

1993 Kåre Haugan Dr. scient 
Botany 

Mutations in the replication control gene trfA of the 
broad host-range plasmid RK2 

1994 Peder Fiske Dr. scient 
Zoology 

Sexual selection in the lekking great snipe (Gallinago 
media): Male mating success and female behaviour at 
the lek 

1994 Kjell Inge Reitan Dr. scient 
Botany 

Nutritional effects of algae in first-feeding of marine 
fish larvae 

1994 Nils Røv Dr. scient 
Zoology 

Breeding distribution, population status and regulation 
of breeding numbers in the northeast-Atlantic Great 
Cormorant Phalacrocorax carbo carbo 

1994 Annette-Susanne 
Hoepfner 

Dr. scient 
Botany 

Tissue culture techniques in propagation and breeding 
of Red Raspberry (Rubus idaeus L.) 

1994 Inga Elise Bruteig Dr. scient 
Botany 

Distribution, ecology and biomonitoring studies of 
epiphytic lichens on conifers 

1994 Geir Johnsen Dr. scient 
Botany 

Light harvesting and utilization in marine 
phytoplankton: Species-specific and photoadaptive 
responses 



1994 Morten Bakken Dr. scient 
Zoology 

Infanticidal behaviour and reproductive performance in 
relation to competition capacity among farmed silver 
fox vixens, Vulpes vulpes 

1994 Arne Moksnes Dr. philos 
Zoology 

Host adaptations towards brood parasitism by the 
Cockoo 

1994 Solveig Bakken Dr. scient 
Botany 

Growth and nitrogen status in the moss Dicranum 
majus Sm. as influenced by nitrogen supply 

1994 Torbjørn Forseth Dr. scient 
Zoology 

Bioenergetics in ecological and life history studies of 
fishes. 

1995 Olav Vadstein Dr. philos 
Botany 

The role of heterotrophic planktonic bacteria in the 
cycling of phosphorus in lakes: Phosphorus 
requirement, competitive ability and food web 
interactions 

1995 Hanne Christensen Dr. scient 
Zoology 

Determinants of Otter Lutra lutra distribution in 
Norway: Effects of harvest, polychlorinated biphenyls 
(PCBs), human population density and competition 
with mink Mustela vision 

1995 Svein Håkon 
Lorentsen 

Dr. scient 
Zoology 

Reproductive effort in the Antarctic Petrel Thalassoica 
antarctica; the effect of parental body size and 
condition 

1995 Chris Jørgen Jensen Dr. scient 
Zoology 

The surface electromyographic (EMG) amplitude as an 
estimate of upper trapezius muscle activity 

1995 Martha Kold 
Bakkevig 

Dr. scient 
Zoology 

The impact of clothing textiles and construction in a 
clothing system on thermoregulatory responses, sweat 
accumulation and heat transport 

1995 Vidar Moen Dr. scient 
Zoology 

Distribution patterns and adaptations to light in newly 
introduced populations of Mysis relicta and constraints 
on Cladoceran and Char populations 

1995 Hans Haavardsholm 
Blom 

Dr. philos 
Botany 

A revision of the Schistidium apocarpum complex in 
Norway and Sweden 

1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated marine 
fish; inpact fish-bacterial interactions on growth and 
survival of larvae 

1996 Ola Ugedal Dr. scient 
Zoology 

Radiocesium turnover in freshwater fishes 

1996 Ingibjørg Einarsdottir Dr. scient 
Zoology 

Production of Atlantic salmon (Salmo salar) and Arctic 
charr (Salvelinus alpinus): A study of some 
physiological and immunological responses to rearing 
routines 

1996 Christina M. S. 
Pereira 

Dr. scient 
Zoology 

Glucose metabolism in salmonids: Dietary effects and 
hormonal regulation 

1996 Jan Fredrik Børseth Dr. scient 
Zoology 

The sodium energy gradients in muscle cells of Mytilus 
edulis and the effects of organic xenobiotics 

1996 Gunnar Henriksen Dr. scient 
Zoology 

Status of Grey seal Halichoerus grypus and Harbour 
seal Phoca vitulina in the Barents sea region 

1997 Gunvor Øie Dr. scient 
Botany 

Eevalution of rotifer Brachionus plicatilis quality in 
early first feeding of turbot Scophtalmus maximus L. 
larvae 

1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spruce forest of Central Norway. 
Diversity, old growth species and the relationship to 
site and stand parameters 

1997 Ole Reitan Dr. scient 
Zoology 

Responses of birds to habitat disturbance due to 
damming 

1997 Jon Arne Grøttum Dr. scient 
Zoology 

Physiological effects of reduced water quality on fish in 
aquaculture 



1997 Per Gustav Thingstad Dr. scient 
Zoology 

Birds as indicators for studying natural and human-
induced variations in the environment, with special 
emphasis on the suitability of the Pied Flycatcher 

1997 Torgeir Nygård Dr. scient 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 

1997 Signe Nybø Dr. scient 
Zoology 

Impacts of long-range transported air pollution on birds 
with particular reference to the dipper Cinclus cinclus 
in southern Norway 

1997 Atle Wibe Dr. scient 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), analysed 
by gas chromatography linked to electrophysiology and 
to mass spectrometry 

1997 Rolv Lundheim Dr. scient 
Zoology 

Adaptive and incidental biological ice nucleators 

1997 Arild Magne Landa Dr. scient 
Zoology 

Wolverines in Scandinavia: ecology, sheep depredation 
and conservation 

1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural 
transformation in Acinetobacter calcoacetius 

1997 Jarle Tufto Dr. scient 
Zoology 

Gene flow and genetic drift in geographically 
structured populations: Ecological, population genetic, 
and statistical models 

1997 Trygve Hesthagen Dr. philos 
Zoology 

Population responses of Arctic charr (Salvelinus 
alpinus (L.)) and brown trout (Salmo trutta L.) to 
acidification in Norwegian inland waters 

1997 Trygve Sigholt Dr. philos 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar) 
Effects of photoperiod, temperature, gradual seawater 
acclimation, NaCl and betaine in the diet 

1997 Jan Østnes Dr. scient 
Zoology 

Cold sensation in adult and neonate birds 

1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases and 
myrosinase-binding proteins 

1998 Thor Harald Ringsby Dr. scient 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

1998 Erling Johan Solberg Dr. scient 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable environment 

1998 Sigurd Mjøen 
Saastad 

Dr. scient 
Botany 

Species delimitation and phylogenetic relationships 
between the Sphagnum recurvum complex 
(Bryophyta): genetic variation and phenotypic 
plasticity 

1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic chemicals (VOCs) in a 
head liver S9 vial  equilibration system in vitro 

1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine grasslands. 
– A conservation biological approach 

1998 Bente Gunnveig Berg Dr. scient 
Zoology 

Encoding of pheromone information in two related 
moth species 

1999 Kristian Overskaug Dr. scient 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 

1999 Hans Kristen 
Stenøien 

Dr. scient 
Botany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts 
and hornworts) 

1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning 
in the outlying haylands at Sølendet, Central Norway 



1999 Ingvar Stenberg Dr. scient 
Zoology 

Habitat selection, reproduction and survival in the 
White-backed Woodpecker Dendrocopos leucotos 

1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis 

1999 Trina Falck Galloway Dr. scient 
Zoology 

Muscle development and growth in early life stages of 
the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.) 

1999 Marianne Giæver Dr. scient 
Zoology 

Population genetic studies in three gadoid species: blue 
whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gadus morhua) 
in the North-East Atlantic 

1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and 
Rhytidiadelphus lokeus 

1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon 
(Salmo salar) revealed by molecular genetic techniques 

1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various g-
forces 

1999 Stein-Are Sæther Dr. philos 
Zoology 

Mate choice, competition for mates, and conflicts of 
interest in the Lekking Great Snipe 

1999 Katrine Wangen 
Rustad 

Dr. scient 
Zoology 

Modulation of glutamatergic neurotransmission related 
to cognitive dysfunctions and Alzheimer’s disease 

1999 Per Terje Smiseth Dr. scient 
Zoology 

Social evolution in monogamous families: 

1999 Gunnbjørn Bremset Dr. scient 
Zoology 

Young Atlantic salmon (Salmo salar L.) and Brown 
trout (Salmo trutta L.) inhabiting the deep pool habitat, 
with special reference to their habitat use, habitat 
preferences and competitive interactions 

1999 Frode Ødegaard Dr. scient 
Zoology 

Host specificity as a parameter in estimates of 
arthropod species richness 

1999 Sonja Andersen Dr. scient 
Zoology 

Expressional and functional analyses of human, 
secretory phospholipase A2 

2000 Ingrid Salvesen Dr. scient 
Botany 

Microbial ecology in early stages of marine fish: 
Development and evaluation of methods for microbial 
management in intensive larviculture 

2000 Ingar Jostein Øien Dr. scient 
Zoology 

The Cuckoo (Cuculus canorus) and its host: adaptions 
and counteradaptions in a coevolutionary arms race 

2000 Pavlos Makridis Dr. scient 
Botany 

Methods for the microbial control of live food used for 
the rearing of marine fish larvae 

2000 Sigbjørn Stokke Dr. scient 
Zoology 

Sexual segregation in the African elephant (Loxodonta 
africana) 

2000 Odd A. Gulseth Dr. philos 
Zoology 

Seawater tolerance, migratory behaviour and growth of 
Charr, (Salvelinus alpinus), with emphasis on the high 
Arctic Dieset charr on Spitsbergen, Svalbard 

2000 Pål A. Olsvik Dr. scient 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown trout 
(Salmo trutta) in two mining-contaminated rivers in 
Central Norway 

2000 Sigurd Einum Dr. scient 
Zoology 

Maternal effects in fish: Implications for the evolution 
of breeding time and egg size 

2001 Jan Ove Evjemo Dr. scient 
Zoology 

Production and nutritional adaptation of the brine 
shrimp Artemia sp. as live food organism for larvae of 
marine cold water fish species 



2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to environmental changes in the 
managed boreal forest systems 

2001 Ingebrigt Uglem Dr. scient 
Zoology 

Male dimorphism and reproductive biology in 
corkwing wrasse (Symphodus melops L.) 

2001 Bård Gunnar Stokke Dr. scient 
Zoology 

Coevolutionary adaptations in avian brood parasites 
and their hosts 

2002 Ronny Aanes Dr. scient 
Zoology 

Spatio-temporal dynamics in Svalbard reindeer 
(Rangifer tarandus platyrhynchus) 

2002 Mariann Sandsund Dr. scient 
Zoology 

Exercise- and cold-induced asthma. Respiratory and 
thermoregulatory responses 

2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in 
boreal vegetation influenced by scything at Sølendet, 
Central Norway 

2002 Frank Rosell Dr. scient 
Zoology 

The function of scent marking in beaver (Castor fiber) 

2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of Phospholipase A2 in 
Monocytes During Atherosclerosis Development 

2002 Terje Thun Dr. philos 
Biology 

Dendrochronological constructions of Norwegian 
conifer chronologies providing dating of historical 
material 

2002 Birgit Hafjeld Borgen Dr. scient 
Biology 

Functional analysis of plant idioblasts (Myrosin cells) 
and their role in defense, development and growth 

2002 Bård Øyvind Solberg Dr. scient 
Biology 

Effects of climatic change on the growth of dominating 
tree species along major environmental gradients 

2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in cellular 
organisms. Studies of RAC GTPases in Arabidopsis 
thaliana and the Ral GTPase from Drosophila 
melanogaster 

2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequences of individual variation in 
fitness-related traits in house sparrows 

2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and medicinal plants in Norway – 
Essential oil production and quality control 

2003 Åsa Maria O. 
Espmark Wibe 

Dr. scient 
Biology 

Behavioural effects of environmental pollution in 
threespine stickleback Gasterosteus aculeatur L. 

2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed arctic and alpine 
vegetation – an integrated approach 

2003 Bjørn Dahle Dr. scient 
Biology 

Reproductive strategies in Scandinavian brown bears 

2003 Cyril Lebogang 
Taolo 

Dr. scient 
Biology 

Population ecology, seasonal movement and habitat use 
of the African buffalo (Syncerus caffer) in Chobe 
National Park, Botswana 

2003 Marit Stranden Dr. scient 
Biology 

Olfactory receptor neurones specified for the same 
odorants in three related Heliothine species 
(Helicoverpa armigera, Helicoverpa assulta and 
Heliothis virescens) 

2003 Kristian Hassel Dr. scient 
Biology 

Life history characteristics and genetic variation in an 
expanding species, Pogonatum dentatum 

2003 David Alexander Rae Dr. scient 
Biology 

Plant- and invertebrate-community responses to species 
interaction and microclimatic gradients in alpine and 
Artic environments 

2003 Åsa A Borg Dr. scient 
Biology 

Sex roles and reproductive behaviour in gobies and 
guppies: a female perspective 

2003 Eldar Åsgard 
Bendiksen 

Dr. scient 
Biology 

Environmental effects on lipid nutrition of farmed 
Atlantic salmon (Salmo salar L.) parr and smolt 

2004 Torkild Bakken Dr. scient 
Biology 

A revision of Nereidinae (Polychaeta, Nereididae) 



2004 Ingar Pareliussen Dr. scient 
Biology 

Natural and Experimental Tree Establishment in a 
Fragmented Forest, Ambohitantely Forest Reserve, 
Madagascar 

2004 Tore Brembu Dr. scient 
Biology 

Genetic, molecular and functional studies of RAC 
GTPases and the WAVE-like regulatory protein 
complex in Arabidopsis thaliana 

2004 Liv S. Nilsen Dr. scient 
Biology 

Coastal heath vegetation on central Norway; recent 
past, present state and future possibilities 

2004 Hanne T. Skiri Dr. scient 
Biology 

Olfactory coding and olfactory learning of plant odours 
in heliothine moths. An anatomical, physiological and 
behavioural study of three related species (Heliothis 
virescens, Helicoverpa armigera and Helicoverpa 
assulta) 

2004 Lene Østby Dr. scient 
Biology 

Cytochrome P4501A (CYP1A) induction and DNA 
adducts as biomarkers for organic pollution in the 
natural environment 

2004 Emmanuel J. Gerreta Dr. philos 
Biology 

The Importance of Water Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

2004 Linda Dalen Dr. scient 
Biology 

Dynamics of Mountain Birch Treelines in the Scandes 
Mountain Chain, and Effects of Climate Warming 

2004 Lisbeth Mehli Dr. scient 
Biology 

Polygalacturonase-inhibiting protein (PGIP) in 
cultivated strawberry (Fragaria x ananassa): 
characterisation and induction of the gene following 
fruit infection by Botrytis cinerea 

2004 Børge Moe Dr. scient 
Biology 

Energy-Allocation in Avian Nestlings Facing Short-
Term Food Shortage 

2005 Matilde Skogen 
Chauton 

Dr. scient 
Biology 

Metabolic profiling and species discrimination from 
High-Resolution Magic Angle Spinning NMR analysis 
of whole-cell samples 

2005 Sten Karlsson Dr. scient 
Biology 

Dynamics of Genetic Polymorphisms 

2005 Terje Bongard Dr. scient 
Biology 

Life History strategies, mate choice, and parental 
investment among Norwegians over a 300-year period 

2005 Tonette Røstelien PhD Biology Functional characterisation of olfactory receptor 
neurone types in heliothine moths 

2005 Erlend Kristiansen Dr. scient 
Biology 

Studies on antifreeze proteins 

2005 Eugen G. Sørmo Dr. scient 
Biology 

Organochlorine pollutants in grey seal (Halichoerus 
grypus) pups and their impact on plasma thyroid 
hormone and vitamin A concentrations 

2005 Christian Westad Dr. scient 
Biology 

Motor control of the upper trapezius 

2005 Lasse Mork Olsen PhD Biology Interactions between marine osmo- and phagotrophs in 
different physicochemical environments 

2005 Åslaug Viken PhD Biology Implications of mate choice for the management of 
small populations 

2005 Ariaya Hymete Sahle 
Dingle 

PhD Biology Investigation of the biological activities and chemical 
constituents of selected Echinops spp. growing in 
Ethiopia 

2005 Anders Gravbrøt 
Finstad 

PhD Biology Salmonid fishes in a changing climate: The winter 
challenge 

2005 Shimane Washington 
Makabu 

PhD Biology Interactions between woody plants, elephants and other 
browsers in the Chobe Riverfront, Botswana 

2005 Kjartan Østbye Dr. scient 
Biology 

The European whitefish Coregonus lavaretus (L.) 
species complex: historical contingency and adaptive 
radiation 



2006 Kari Mette Murvoll PhD Biology Levels and effects of persistent organic pollutans 
(POPs) in seabirds, Retinoids and α-tocopherol – 
potential biomakers of POPs in birds? 

2006 Ivar Herfindal Dr. scient 
Biology 

Life history consequences of environmental variation 
along ecological gradients in northern ungulates 

2006 Nils Egil Tokle PhD Biology Are the ubiquitous marine copepods limited by food or 
predation? Experimental and field-based studies with 
main focus on Calanus finmarchicus 

2006 Jan Ove Gjershaug Dr. philos 
Biology 

Taxonomy and conservation status of some booted 
eagles in south-east Asia 

2006 Jon Kristian Skei Dr. scient 
Biology 

Conservation biology and acidification problems in the 
breeding habitat of amphibians in Norway 

2006 Johanna Järnegren PhD Biology Acesta oophaga and Acesta excavata – a study of 
hidden biodiversity 

2006 Bjørn Henrik Hansen PhD Biology Metal-mediated oxidative stress responses in brown 
trout (Salmo trutta) from mining contaminated rivers in 
Central Norway 

2006 Vidar Grøtan PhD Biology Temporal and spatial effects of climate fluctuations on 
population dynamics of vertebrates 

2006 Jafari R Kideghesho PhD Biology Wildlife conservation and local land use conflicts in 
Western Serengeti Corridor, Tanzania 

2006 Anna Maria Billing PhD Biology Reproductive decisions in the sex role reversed pipefish 
Syngnathus typhle: when and how to invest in 
reproduction 

2006 Henrik Pärn PhD Biology Female ornaments and reproductive biology in the 
bluethroat 

2006 Anders J. Fjellheim PhD Biology Selection and administration of probiotic bacteria to 
marine fish larvae 

2006 P. Andreas Svensson PhD Biology Female coloration, egg carotenoids and reproductive 
success: gobies as a model system 

2007 Sindre A. Pedersen PhD Biology Metal binding proteins and antifreeze proteins in the 
beetle Tenebrio molitor - a study on possible 
competition for the semi-essential amino acid cysteine 

2007 Kasper Hancke PhD Biology Photosynthetic responses as a function of light and 
temperature: Field and laboratory studies on marine 
microalgae 

2007 Tomas Holmern PhD Biology Bushmeat hunting in the western Serengeti: 
Implications for community-based conservation 

2007 Kari Jørgensen PhD Biology Functional tracing of gustatory receptor neurons in the 
CNS and chemosensory learning in the moth Heliothis 
virescens 

2007 Stig Ulland PhD Biology Functional Characterisation of Olfactory Receptor 
Neurons in the Cabbage Moth, (Mamestra brassicae 
L.) (Lepidoptera, Noctuidae). Gas Chromatography 
Linked to Single Cell Recordings and Mass 
Spectrometry 

2007 Snorre Henriksen PhD Biology Spatial and temporal variation in herbivore resources at 
northern latitudes 

2007 Roelof Frans May PhD Biology Spatial Ecology of Wolverines in Scandinavia 

2007 Vedasto Gabriel 
Ndibalema 

PhD Biology Demographic variation, distribution and habitat use 
between wildebeest sub-populations in the Serengeti 
National Park, Tanzania 

2007 Julius William 
Nyahongo 

PhD Biology Depredation of Livestock by wild Carnivores and 
Illegal Utilization of Natural Resources by Humans in 
the Western Serengeti, Tanzania 



2007 Shombe Ntaraluka 
Hassan 

PhD Biology Effects of fire on large herbivores and their forage 
resources in Serengeti, Tanzania 

2007 Per-Arvid Wold PhD Biology Functional development and response to dietary 
treatment in larval Atlantic cod (Gadus morhua L.) 
Focus on formulated diets and early weaning 

2007 Anne Skjetne 
Mortensen 

PhD Biology Toxicogenomics of Aryl Hydrocarbon- and Estrogen 
Receptor Interactions in Fish: Mechanisms and 
Profiling of Gene Expression Patterns in Chemical 
Mixture Exposure Scenarios 

2008 Brage Bremset 
Hansen 

PhD Biology The Svalbard reindeer (Rangifer tarandus 
platyrhynchus) and its food base: plant-herbivore 
interactions in a high-arctic ecosystem 

2008 Jiska van Dijk PhD Biology Wolverine foraging strategies in a multiple-use 
landscape 

2008 Flora John Magige PhD Biology The ecology and behaviour of the Masai Ostrich 
(Struthio camelus massaicus) in the Serengeti 
Ecosystem, Tanzania 

2008 Bernt Rønning PhD Biology Sources of inter- and intra-individual variation in basal 
metabolic rate in the zebra finch, Taeniopygia guttata 

2008 Sølvi Wehn PhD Biology Biodiversity dynamics in semi-natural mountain 
landscapes - A study of consequences of changed 
agricultural practices in Eastern Jotunheimen 

2008 Trond Moxness 
Kortner 

PhD Biology The Role of Androgens on previtellogenic oocyte 
growth in Atlantic cod (Gadus morhua): Identification 
and patterns of differentially expressed genes in 
relation to Stereological Evaluations 

2008 Katarina Mariann 
Jørgensen 

Dr. scient 
Biology 

The role of platelet activating factor in activation of 
growth arrested keratinocytes and re-epithelialisation 

2008 Tommy Jørstad PhD Biology Statistical Modelling of Gene Expression Data 

2008 Anna Kusnierczyk PhD Biology Arabidopsis thaliana Responses to Aphid Infestation 

2008 Jussi Evertsen PhD Biology Herbivore sacoglossans with photosynthetic 
chloroplasts 

2008 John Eilif Hermansen PhD Biology Mediating ecological interests between locals and 
globals by means of indicators. A study attributed to 
the asymmetry between stakeholders of tropical forest 
at Mt. Kilimanjaro, Tanzania 

2008 Ragnhild Lyngved PhD Biology Somatic embryogenesis in Cyclamen persicum. 
Biological investigations and educational aspects of 
cloning 

2008 Line Elisabeth Sundt-
Hansen 

PhD Biology Cost of rapid growth in salmonid fishes 

2008 Line Johansen PhD Biology Exploring factors underlying fluctuations in white 
clover populations – clonal growth, population 
structure and spatial distribution 

2009 Astrid Jullumstrø 
Feuerherm 

PhD Biology Elucidation of molecular mechanisms for pro-
inflammatory phospholipase A2 in chronic disease 

2009 Pål Kvello PhD Biology Neurons forming the network involved in gustatory 
coding and learning in the moth Heliothis virescens: 
Physiological and morphological characterisation, and 
integration into a standard brain atlas 

2009 Trygve Devold 
Kjellsen 

PhD Biology Extreme Frost Tolerance in Boreal Conifers 

2009 Johan Reinert Vikan PhD Biology Coevolutionary interactions between common cuckoos 
Cuculus canorus and Fringilla finches 



2009 Zsolt Volent PhD Biology Remote sensing of marine environment: Applied 
surveillance with focus on optical properties of 
phytoplankton, coloured organic matter and suspended 
matter 

2009 Lester Rocha PhD Biology Functional responses of perennial grasses to simulated 
grazing and resource availability 

2009 Dennis Ikanda PhD Biology Dimensions of a Human-lion conflict: Ecology of 
human predation and persecution of African lions 
(Panthera leo) in Tanzania 

2010 Huy Quang Nguyen PhD Biology Egg characteristics and development of larval digestive 
function of cobia (Rachycentron canadum) in response 
to dietary treatments - Focus on formulated diets 

2010 Eli Kvingedal PhD Biology Intraspecific competition in stream salmonids: the 
impact of environment and phenotype 

2010 Sverre Lundemo PhD Biology Molecular studies of genetic structuring and 
demography in Arabidopsis from Northern Europe 

2010 Iddi Mihijai Mfunda PhD Biology Wildlife Conservation and People’s livelihoods: 
Lessons Learnt and Considerations for Improvements. 
The Case of Serengeti Ecosystem, Tanzania 

2010 Anton Tinchov 
Antonov 

PhD Biology Why do cuckoos lay strong-shelled eggs? Tests of the 
puncture resistance hypothesis 

2010 Anders Lyngstad PhD Biology Population Ecology of Eriophorum latifolium, a Clonal 
Species in Rich Fen Vegetation 

2010 Hilde Færevik PhD Biology Impact of protective clothing on thermal and cognitive 
responses 

2010 Ingerid Brænne Arbo PhD Medical 
technology 

Nutritional lifestyle changes – effects of dietary 
carbohydrate restriction in healthy obese and 
overweight humans 

2010 Yngvild Vindenes PhD Biology Stochastic modeling of finite populations with 
individual heterogeneity in vital parameters 

2010 Hans-Richard 
Brattbakk 

PhD Medical 
technology 

The effect of macronutrient composition, insulin 
stimulation, and genetic variation on leukocyte gene 
expression and possible health benefits 

2011 Geir Hysing Bolstad PhD Biology Evolution of Signals: Genetic Architecture, Natural 
Selection and Adaptive Accuracy 

2011 Karen de Jong PhD Biology Operational sex ratio and reproductive behaviour in the 
two-spotted goby (Gobiusculus flavescens) 

2011 Ann-Iren Kittang PhD Biology Arabidopsis thaliana L. adaptation mechanisms to 
microgravity through the EMCS MULTIGEN-2 
experiment on the ISS: The science of space 
experiment integration and adaptation to simulated 
microgravity 

2011 Aline Magdalena Lee PhD Biology Stochastic modeling of mating systems and their effect 
on population dynamics and genetics 

2011 Christopher 
Gravningen Sørmo 

PhD Biology Rho GTPases in Plants: Structural analysis of ROP 
GTPases; genetic and functional studies of MIRO 
GTPases in Arabidopsis thaliana 

2011 Grethe Robertsen PhD Biology Relative performance of salmonid phenotypes across 
environments and competitive intensities 

2011 Line-Kristin Larsen PhD Biology Life-history trait dynamics in experimental populations 
of guppy (Poecilia reticulata): the role of breeding 
regime and captive environment 

2011 Maxim A. K. 
Teichert 

PhD Biology Regulation in Atlantic salmon (Salmo salar): The 
interaction between habitat and density 



2011 Torunn Beate Hancke PhD Biology Use of Pulse Amplitude Modulated (PAM) 
Fluorescence and Bio-optics for Assessing Microalgal 
Photosynthesis and Physiology 

2011 Sajeda Begum PhD Biology Brood Parasitism in Asian Cuckoos: Different Aspects 
of Interactions between Cuckoos and their Hosts in 
Bangladesh 

2011 Kari J. K. Attramadal PhD Biology Water treatment as an approach to increase microbial 
control in the culture of cold water marine larvae 

2011 Camilla Kalvatn 
Egset 

PhD Biology The Evolvability of Static Allometry: A Case Study 

2011 AHM Raihan Sarker PhD Biology Conflict over the conservation of the Asian elephant 
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