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Department of Electrical Engineering

Technical University of Denmark
Kgs. Lyngby, Denmark

{danmul, hjjo}@elektro.dtu.dk

©2020 IEEE. DOI: 10.1109/ISGT-Europe47291.2020.9248789

Abstract—We propose a method for estimating the activity
of oscillatory modes in power systems. The frequencies and
mode shapes of the modes of interest are assumed to be known
beforehand, either from linear modal analysis or from empirical
mode estimation methods, and are used in combination with
measurements from Phasor Measurement Units to estimate the
instantaneous mode excitation in terms of amplitude and phase.
The estimation is carried out using non-linear least squares to
fit a set of curves to the measured data. Combining mode shapes
with measured data allows the activity to be estimated from only
a low number of consecutive measurement snapshots, resulting
in a problem of low computational complexity that can be solved
fast enough for the method to run online.

The purpose of estimating the mode activity is, firstly, to con-
tribute to increased situational awareness and facilitate methods
that build further upon this information, and secondly, to be
able to synthesize signals that can serve as input to controllers for
power oscillation damping. It is expected that using this excitation
measure will result in a more robust controller that is less prone
to disturbances and noise.

Index Terms—Empirical modal analysis, non-linear least
squares, power oscillations, wide area monitoring and control

I. INTRODUCTION

Inter-area oscillations often appear in power systems con-
sisting of areas of generation that are connected by weak
interties. Increasing the intertie transfer generally reduces the
damping of the oscillations [1], potentially leaving the full
thermal capacity of the lines unexploited. Low-damped or
negatively damped oscillations might also appear when the
system is operated in a critical state, e.g. following severe
faults or disturbances [2]. This motivates the development
of monitoring applications that increase our knowledge about
oscillatory modes of the power system. More accurate infor-
mation allows the system to be operated closer to the stability
limits, and enables us to take proper action in case of critical,
growing oscillations.

Further measures can be implemented to ensure secure
operation of the grid; A Power Oscillation Damper (POD)
can be introduced, whose basic functioning is to measure
the activity of oscillatory modes, and to apply control action
attempting to damp the oscillations. The control action could
for instance be applied through generator excitation systems,
SVCs or HVDC links.

To measure the activity of the oscillatory mode, serving as
the input to the controller, the voltage angle can be measured
using a Phasor Measurement Unit (PMU) at a location where
the oscillatory mode to be damped has a high observability.
The observability of a mode at a specific location can be
obtained by performing an offline model based modal analysis.
The right eigenvectors resulting from the modal analysis deter-
mine the relative amplitude and phase of the oscillatory mode
within a measurement, often referred to as the observability
mode shape. Choosing the location with the highest amplitude
therefore ensures a good observability of the mode.

In [3], a Wide Area POD is described, which uses the angle
difference between two widely separated locations as input
to the POD, which controls the voltage setpoint of a Static
VAr Compensator. In [4] a Phasor POD is described, which
controls a Thyristor Controlled Series Capacitor in order to
mitigate oscillations. The frequency of the particular mode to
be damped is assumed to be known on beforehand in this
case, and a phasor which represents the amplitude and phase
of the mode is estimated and used to modulate the reactance
reference of the device.

The method presented in this paper can be viewed as the first
development steps towards an extended version of the Phasor
POD described above. Given recent development of empirical
modal analysis [5]–[9], from which estimates of mode shapes
can be obtained in near real-time, we assume that not only the
frequency of the mode to be damped is known, but also that the
corresponding observability mode shape is prior knowledge.
We further use this in combination with a high number of
input measurements to estimate the mode phasors.

The scope of this paper is solely demonstrating the proposed
phasor estimation method. The obvious next step, which
will constitute the continuation of this work, is to use this
information to synthesize control signals to be injected with
a suitable phase at suitable locations to damp oscillations.
Ultimately, this is expected to result in a power oscillation
damper that applies control action only when all the generators
involved in the observability mode shape oscillate with the
particular frequency of the mode, and also with the relative
phase and amplitude as determined by the mode shape.

Estimating the mode activity is carried out by generating
a set of functions that represent curves one would expect to
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observe given the frequency and observability mode shape of
the mode. Further, non-linear least squares is used to find
the amplitude and phase of the mode that best fits with the
measurements.

The work presented is a continuation of previous research
on power oscillation monitoring. In [8], [9], it is shown that the
frequency and observability mode shape of oscillatory modes
can be estimated within seconds after standing oscillations
appear in measurements. This motivates the development of
monitoring and control applications that make use of this
information.

The current stage of development of the method is described
in the succeeding sections, specifically: In Section II relevant
modal analysis theory is presented, Section III presents the
proposed method, Section IV presents the results obtained
when testing the method on simulated data and on PMU mea-
surements, and finally Section V and VI contains discussion
and conclusions.

II. MODAL ANALYSIS

Analysing electromechanical oscillations in power systems
is often approached using modal analysis on a linearized
system model. The linearized state space equations, describing
the dynamics of the system perturbed by small disturbances
at a given operating point, can be written as [10]:

∆ẋ(t) = A∆x(t) + B∆u(t) (1)

∆y(t) = C∆x(t) + D∆u(t) (2)

Performing an eigendecomposition of the system matrix A,
we get a set of eigenvalues and left- and right eigenvectors.
The eigenvalues characterize the modes of the system, of
which the ones with a non-zero imaginary part are related
to oscillatory modes. Further, the left and right eigenvectors
describe controllability- and observability mode shapes for
each of the modes. The time evolution of the system states
can be written as a function of the modes of the system:

∆x(t) =

ns∑
j=1

Φjzj(t) (3)

Here, Φj is the observability mode shape (right eigenvec-
tors) of mode j, zj is the time variation of mode j and ns
is the order of the system. For oscillatory modes, the right
eigenvectors determine the amplitude and phase with which
mode j is observed in the states. We can also define the mode
shape describing how the modes are observed in each of the
measurements:

∆y(t) = C∆x(t) =

ns∑
j=1

CΦjzj(t) (4)

Assuming that the system is excited by an arbitrary input
∆u, the time variation of mode j can be written as [11]

zj(t) =

∫ t

0

eλj(t−τ)ΨjB∆u(τ)dτ (5)

where λj and Ψj are the eigenvalue and left eigenvector
corresponding to mode j. The product of left eigenvector and
input matrix B describes how the mode j is excited by the
disturbance ∆u and therefore indicates the controllability of
mode j by the inputs related to the disturbance.

Since the eigenvalues corresponding to oscillatory modes
are complex, the series zj(t) is also complex for these modes.
One can therefore describe the mode activity in terms of
amplitude |zj(t)| and phase arg zj(t). The proposed method
described in the following section allows to extract this in-
formation by estimating the amplitude and phase of a given
mode from PMU measurements.

III. AMPLITUDE AND PHASE ESTIMATION USING
NON-LINEAR LEAST SQUARES

Applying to intuition, one could consider the following
simple example: We assume a power system consisting of
a number of generators divided into two main areas, where
the dominant mode is the inter area mode related to oscilla-
tions between the areas. We assume that the frequency and
observability mode shape of the dominant mode is available.
Following a disturbance, one would from studying only a few
consecutive PMU snapshots be able to say that the inter area
mode was excited if the generators in the first area accelerated
while those in the other area decelerated. An even clearer
indicator would be that the magnitude of the acceleration of
each individual generator was according to the corresponding
magnitudes in the observability mode shape of the mode.

This idea forms the basis of the proposed method where we
use the mode shape and a set of measurements to formulate
a fitting problem that is solved using non-linear least squares
minimization [12].

We start by collecting the last n voltage angle snapshots
from m PMU locations in the matrix Y as follows:

Y =


y1

y2

...
ym

 =


y11 y12 · · · y1n
y21 y22 · · · y2n

...
. . .

ym1 ym2 ymn

 (6)

The indexing is such that the element yik corresponds to the
measurement obtained at location i at time tk. We assume that
each measurement closely resembles the state corresponding to
the rotor angle of one generator. (This assumes deployment of
PMUs in major substations. If necessary, the rotor angle could
also be estimated based on measured voltage and current.)

We further assume that the frequency fj of the mode is
known. For the observability mode shape, we need to know
the elements which correspond to the states we are measuring,
i.e. the states corresponding to rotor angles. The elements of
the mode shape, which are complex for oscillatory modes, can
be written in terms of amplitude and angle:

CΦj =


a1j∠δ1j
a2j∠δ2j

...
amj∠δmj

 (7)



In the following, we focus on only one mode and skip the
mode index j. From the frequency and mode shape of the
mode, we construct the following set of functions, which
represent signals one would expect to observe given activity
of the mode:

g(A, θ, t) =


g1(A, θ, t)
g2(A, θ, t)

...
gm(A, θ, t)

 (8)

The individual functions are defined as follows:

gi(A, θ, t) = Aai cos (ωt+ δi + θ) (9)

Here, ω = 2πf is the angular frequency of the mode of
interest.

Further, we evaluate the functions at the same time instants
as the measurements in Y are obtained:

S(A, θ) =
[
g(A, θ, t1) g(A, θ, t2) . . .g(A, θ, tn)

]
(10)

The matrix S now has the same dimension as Y, where each
element is a function that can be fitted to the corresponding
measured data in Y. The residuals are given by

R(A, θ) = Y − S(A, θ) (11)

Finally, we perform a non-linear least squares minimization
to find the amplitude A and angle θ that minimizes the error,
given by

e =

m∑
i=1

n∑
k=1

rik(A, θ)2 (12)

where rik(A, θ) denotes the elements of R(A, θ).
The minimization is performed for each new PMU snapshot

received at tk, resulting in one estimate of amplitude and phase
of z(tk) per time stamp.

IV. RESULTS

The above described method is tested on simulated data
from the Kundur Two-Area System and on measured PMU-
data from the nordic power grid.

A. Simulated data from the Kundur Two-Area System

The Kundur Two-Area system, described in [1] is often used
as a benchmark system for small signal stability related meth-
ods. The system consists of four generators distributed among
two areas which are connected by a relatively weak intertie.
The system has three electromechanical oscillatory modes;
one negatively damped interarea mode whith a frequency of
0.61 Hz, and two local modes with a frequency around 1 Hz
and a damping of about 9 %.

In order to demonstrate the performance of the proposed
method, a time series based on the linearized system model
is generated where the modes are excited by two separate
disturbances: The first disturbance occurs at t = 1 s, where
a step change of 0.01 p.u. is applied to the voltage reference
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Fig. 1. The speed response obtained from the linear simulation of a model
of the Kundur Two-Area System is shown.
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Fig. 2. The oscillations caused by the second local mode, involving G3
& G4, are shown (where the same colors as those in Fig. 1 are used for
each generator). The four thick lines shows the oscillations for each generator
computed using the linear model. The thin lines show the fitted curves for
each time instant, and the markers correspond to the instantaneous estimate
at that time.

of generator 1. Additionally the voltage reference of generator
3 is increased by 0.02 p.u. at t = 6 s.

The simulated time series is shown in Fig. 1, where the
sampling frequency is 25 Hz. The method is applied, using
15 consecutive PMU snapshots in the curve fitting problem,
resulting in matrices Y and S both having dimensions 4×15.
An impression of the curve fitting is presented in Fig. 2 where
the estimate of local mode 2 during the second disturbance is
compared with the response of the linear system. The estimates
of amplitude and phase are shown in Fig. 3, along with the
mode shapes corresponding to each of the modes.

The estimation converges to the value obtained from the
linearized system showing that it is possible to accurately
estimate the phase and magnitude of the mode activity. As
might be expected, the amplitude and phase are estimated more
accurately with an increasing level of excitation. From both
the linear system and the estimate it is apparent that the two
disturbances affect both the amplitude and phase of all the
modes.
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Fig. 3. The result from applying the method to simulated time series from the Kundur Two-Area System is shown. Each row corresponds to one mode,
where the mode shapes (which are prior knowledge) are shown to the left. The estimated amplitude |zj | and phase arg zj are shown in cyan for each mode
in the two plots to the right, while the values from the linear model are shown in dashed red lines. The estimated phase is colored in grey in regions where
the estimated amplitude of the mode is approximately zero.

B. Measured PMU-data from the Nordic Power Grid

The measured PMU-data is shown in the first plot of Fig. 4,
captured with a sampling frequency of 10 Hz. The voltage an-
gle is measured at seven locations distributed across Norway.
The mode being analyzed describes the severe oscillations
starting around t = 280 s, lasting until around t = 400 s. The
frequency and mode shape of the oscillations are estimated
beforehand using the empirical method described in [9]. The
frequency of the oscillation is 1.04 Hz in average, and the
observability mode shape is shown in Fig. 5.

Applying the proposed method using five consecutive snap-
shots in the fitting problem (i.e. the matrices Y and S both
have dimensions 7 × 5) yields the result shown in the two
lower plots of Fig. 4. The second plot shows the estimated
amplitude of the oscillations, while the last plot shows the
estimated angle (where the regions where the amplitude is
approximately zero is colored in grey).

V. DISCUSSION

The results indicate that the method provides reasonable
estimates of amplitude and phase of oscillatory modes. The
accuracy generally increases with the level of excitation.

From the result when testing the method on measured
PMU data, two main conclusions can be drawn: Firstly, the
estimated amplitude and phase appear to fit well with what one
would expect by observing the measured time series. Both the
amplitude and angle estimates are relatively smooth during the

course of the oscillations. This indicates that a reliable control
signal can be synthesized based on these quantities. Given
knowledge of the controllability mode shape, synthesized
signals could be injected with a suitable phase at suitable
locations to contribute to the damping of the oscillations.

Secondly, the estimated angle and amplitude contributes to
situational awareness. Observing the third plot, we see that the
oscillations are increasing in amplitude until about t = 310 s,
where they start decreasing. There is also a distinct turn in the
trajectory of the angle at about the same time. The continually
decreasing angle before t = 310 s indicates that the frequency
of oscillations is slightly lower than the mean frequency used
as input to the method, while the opposite is true for the period
after t = 310 s. Observing that the trajectories of both the
amplitude and angle make distinct turns at the same time could
indicate that some remedial action was applied that changed
the operating point. The same observation is also made in [8].

One potential application building further upon the informa-
tion provided by this method could be to estimate information
about controllability mode shapes. From (5), we see that the
activity of a mode zj(t) can be determined from convolutions
of the mode impulse response and input signals. Assuming
that we also measure the inputs, the result from the proposed
method could be used to estimate the elements of the matrix
ΨjB. In practice, this could be used to indicate at what
locations and with which phase control signals could be
injected to mitigate the oscillations, or point out locations
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Fig. 4. The first plot shows the measured voltage angle time series. The
oscillations last from about t = 280 s to t = 380 s. The second and third
plots show the estimated amplitude and phase, respectively. The phase is
colored in grey in time regions where the amplitude is approximately zero.

Fig. 5. The observability mode shape describing the phase and amplitude
of the oscillations captured in the PMU measurements analysed in Fig. 4 is
shown.

where disturbances should be minimized.
The computation time for each instantaneous estimate in

the results above is in the range of milliseconds to tens
of milliseconds. The current implementation uses a general
non-linear least squares minimization. It is expected that
significant improvement can be achieved regarding the speed
by customizing the minimization algorithm, such that there
should be no issue with running the method online.

It should be mentioned that accurate frequency and ob-
servability mode shapes might be difficult to obtain in real
life. Assessing the performance of the method subject to
inaccurate frequency and mode shape estimates will constitute
an important part of the continuation of this research.

VI. CONCLUSION

The results from applying the method to simulated and
measured PMU data are promising. This indicates that the
fundamental idea, i.e. combining measurements with prior
knowledge of oscillatory modes in the form of frequency and
mode shapes, is feasible. At the current stage of development,
the activity estimates appear suitable for generating control
signals for damping of power oscillations, and also arguably
contributes to situational awareness. Further development will
reveal the potential benefit of using the output of the proposed
method as input in power oscillation dampers, and the potential
for estimating controllability from the mode activity.

REFERENCES

[1] M. Klein, G. J. Rogers, and P. Kundur, “A fundamental study of
inter-area oscillations in power systems,” IEEE Transactions on Power
Systems, vol. 6, no. 3, pp. 914–921, 1991.

[2] D. N. Kosterev, C. W. Taylor, and W. Fellow, “Model Validation for the
August 10, 1996 WSCC System Outage,” IEEE Transactions on Power
Systems, vol. 14, no. 3, pp. 967–979, 1999.

[3] E. Johansson, K. Uhlen, A. B. Leirbukt, P. Korba, J. O. Gjerde, and
L. K. Vormedal, “Coordinating power oscillation damping control using
wide area measurements,” in Power Systems Conference and Exposition.
IEEE/PES, 2009, pp. 1–8.
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