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Preface 

The studies presented in this thesis were performed within the framework of the 

"Energy for domestic hot water in the Norwegian low emission society" project. This project 

was carried out in cooperation with the Norwegian University of Science and Technology 

(NTNU) and the research organization SINTEF Community. The project is a part of the 

ENERGIX-programme of the Research Council of Norway. The doctoral work was conducted 

under the supervision of Professor Natasa Nord at the Department of Energy and Process 

Engineering of NTNU, and co-supervision of senior research scientists Igor Sartori and Thale 

Sofie Wester Plesser at SINTEF Community. 
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Abstract 
Domestic hot water (DHW) systems are an integral component of buildings and a 

substantial consumer of energy. Due to the introduction of highly insulated structures, the 

share of DHW heat use in the total energy balance of buildings is continuously increasing. In 

modern passive houses, DHW heat use already exceeds the energy need for space heating. 

Despite this fact, the application of sustainable and energy efficient solutions in DHW 

systems is not widespread in Norway. The significant opportunities for energy savings have 

yet to be realized. Therefore, improving energy efficiency in DHW systems offers substantial 

potential for further energy savings in buildings in Norway. 

Utilization of demand side management, better design and sizing, progressive tariffs, 

low-temperature heating systems, wastewater technologies, combined DHW systems based 

on traditional and renewable energy sources, and other sustainable technologies and 

management solutions in DHW systems are essential for achieving energy efficiency in 

buildings. The proper implementation of these solutions requires the use of advanced data 

analysis, representative profiles, and accurate predictive models of DHW heat use. 

Nevertheless, the regulations applied for DHW heat use analysis and modeling, as well as 

knowledge about actual DHW heat use in buildings in Norway, contain many gaps. This PhD 

work aimed to improve the methods of DHW heat use analysis and achieve a better 

understanding of the DHW heat use in buildings in Norway.  

The thesis starts with the consideration of the problems associated with the collection 

and preprocessing of the DHW heat use data. Firstly, the attention in this thesis was paid to 

the issue of restoring information about the DHW heat use in conditions when only the total 

heat use in buildings is measured. Further, the selection of influencing variables and 

prediction modeling for DHW heat use were investigated. Finally, the methods for 

development and analysis of representative DHW heat use profiles for residential and non-

residential buildings were presented. At the end of the thesis, the work addressed the 

problems of total heating and DHW heat use planning and profiles analyses for buildings in 

Norway in normal conditions and during the COVID-lockdown. 

In this thesis, the study of DHW heat use was carried out based on data measured in 

hotels, nursing homes, schools, and apartment blocks. The periods of data collection varied 

for different buildings. In most cases, the hourly values over 1-3 years were received. 

However, for the particular buildings, only the monthly DHW heat use and 2-second 

measurements for several months were collected. Therefore, depending on the data 
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availability, different data processing techniques were used to analyze DHW heat use. The 

data handling and modeling in the presented work were performed with the Python software 

tools. 

The obtained from different sources data revealed that imperfection of measurement 

systems in buildings was a serious obstacle for DHW heat use analysis. Unfortunately, in 

many buildings in Norway, the heat meters measure the total heat use only, typically not 

divided into space heating (SH) and DHW. Therefore, the method for splitting the hourly 

total heat use into SH and DHW heat use was proposed. The method was based on the energy 

signature curve and the singular spectrum analysis. The results showed that the application of 

this method allowed us to extract useful information about hourly DHW heat use. 

Further, the PhD thesis addressed the DHW heat use prediction modeling in two 

widespread situations. The first situation considers the prediction based only on historical 

data of DHW heat use. In the second situation, additional variables that affect DHW heat use 

were selected and applied for the modeling. These variables were identified by using the 

Wrapper approach. The most accurate model for DHW heat use was selected from different 

time series and machine learning techniques. For a hotel building, the Prophet model 

performed best for accurate prediction in both situations. 

The comparison of the actual DHW heat use in building with existing national and 

international standards showed that the standards commonly used in Norway are not accurate 

enough and cannot correctly express the daily variation of DHW heat use. Application of 

these profiles in building simulation tools may lead to significant overestimation of the heat 

use.  

To improve the existing approaches for profiles development, the methods that 

allowed us to build unified profiles for the months and days of the week with similar 

characteristics of the DHW heat use were recommended. The profiles based on 

measurements for different categories of the building were proposed. After, the method for 

statistical grouping of the DHW hourly heat use was applied to recognize the timing of the 

peak, average, and low heat use in the considered buildings.  

The data from the educational institutions in Norway were used for the analysis of the 

total heat use in normal conditions and during the COVID-lockdown. The investigation found 

that the shape of the heat use profiles on weekdays before and during the COVID-lockdown 

remains almost unchanged, although the occupancy was largely reduced. This fact showed 

that some buildings during the COVID-lockdown were using energy inefficiently. Moreover, 

the month after the reopening of the buildings was characterized by a remarkable increase in 
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heat use, regardless of the warmer weather conditions. For heat use planning in educational 

institutions, the following scenarios were developed: operation according to a normal year 

setting; reducing the heating to the level of the night heat use; and using settings that were 

applied during the lockdown. The study showed that applying the proper setting of the 

heating system during a pandemic may help us to reduce energy use in buildings. 

This thesis proposed methods for DHW heat use analysis, predictive models, and 

profiles prediction to provide the basis for further implementation of energy saving measures 

and improving the energy efficiency of DHW systems in Norway.  
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Sammendrag 

Varmtvannssystemer er en integrert komponent i bygninger og en betydelig forbruker 

av energi. På grunn av strengere byggtekniske krav som medfører sterkt isolerte 

konstruksjoner, øker andelen varmtvannsbruk i det totale energiforbruket til bygninger 

kontinuerlig. I moderne passivhus overstiger bruk av varmtvann allerede energibehovet for 

romoppvarming. Til tross for dette er anvendelsen av bærekraftige og energieffektive 

løsninger i varmtvannssystemer ikke utbredt i Norge. De betydelige mulighetene for 

energibesparelser har ennå ikke blitt realisert. Forbedring av energieffektivitet i 

varmtvannssystemer gir derfor et betydelig potensiale for ytterligere energibesparelser i 

bygninger i Norge. 

Utnyttelse av ulike teknologier som såkalt behov-utnyttelse (demand response) i 

bygninger, bedre design og dimensjonering, progressive tariffer, lavtemperatursystemer, 

spillvarme, kombinerte varmtvannssystemer basert på tradisjonelle og fornybare energikilder, 

og andre bærekraftige teknologier samt med styringsløsninger i varmtvannssystemer er 

avgjørende for å oppnå energieffektivitet i bygninger. Riktig implementering av disse 

løsningene krever bruk av avansert dataanalyse, representative profiler og nøyaktige 

prediktive modeller for varmtvannsbruk. Likevel er det fortsatt nødvendig å forbedre 

regelverket som benyttes som underlag for analyser og modellering av varmtvannsbruk, samt 

kunnskap om faktisk varmtvannsbruk i bygninger i Norge. Dette doktorgradsarbeidet hadde 

som mål å forbedre metodene for varmtvannsanalyse og oppnå en bedre forståelse av 

varmtvannsbruken i bygninger i Norge. 

Oppgaven starter med å vurdere problemene knyttet til innsamling og forbehandling 

av varmtvannsforbruksdataene. Deretter ble spesiell oppmerksomhet gitt til spørsmålet om å 

hente igjen informasjon om varmtvannsbruk under forhold der kun det totale varmeforbruket 

i bygninger måles. Videre ble det valgt ut påvirkningsvariabler og prediksjonsmodellering for 

varmtvannsbruk ble undersøkt. Følgelig ble metodene for utvikling og analyse av 

representative varmtvannsforbruksprofiler for bolig og andre bygningstyper presentert. Til 

slutt tok arbeidet for seg problemene med total oppvarming og planlegging av 

varmtvannsbruk, og profilanalyser for bygninger i Norge under vanlige forhold og under 

COVID-nedstengning. 

I denne oppgaven ble studien av varmtvannsforbruk basert på måledata fra hotell, 

sykehjem, skoler og boligblokker. Perioden for datainnsamling varierte for de forskjellige 

bygningene. I de fleste tilfellene ble data over 1-3 år mottatt. For de utvalgte bygningene ble 
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det imidlertid bare samlet inn månedlige varmtvannsforbruk og 2-sekunders målinger for 

flere måneder. Avhengig av datatilgjengelighet, ble de forskjellige 

databehandlingsteknikkene brukt til å analysere varmtvannsforbruk. Datahåndteringen og 

modelleringen i det presenterte arbeidet ble utført med Python sine programvareverktøy. 

De innhentede dataene avslørte at ufullkommenhet i målesystemer i bygningene var 

en alvorlig hindring for varmtvannsanalyse. Dessverre er det slik at i mange bygninger i 

Norge måler varmemålere bare det totale varmeforbruket, og det er vanligvis ikke delt inn på 

romoppvarming og varmtvann. Derfor ble det foreslått en metode for oppdeling av det totale 

timebruken av varme på romoppvarming og varmtvannsforbruk. Metoden var basert på 

energisignaturkurven og singular spektrumanalyse. Resultatene viste at anvendelsen av denne 

metoden gjør det mulig å hente ut nyttig informasjon om bruk av varmtvann hver time. 

Videre adresserte avhandlingen modellering av forutsigelse av varmtvannsforbruk i to 

utbredte typer situasjoner. Den første situasjonen er prediksjonen kun basert på historiske 

data om varmtvannsbruk. I den andre situasjonen ble flere variabler som påvirker 

varmtvannsbruk brukt og valgt for modelleringen. Disse variablene ble identifisert ved hjelp 

av Wrapper-tilnærmingen. Den mest nøyaktige modellen for varmtvannsbruk ble valgt fra 

forskjellige tidsserier og maskinlæringsmetoder. For en hotellbygning fungerte 

Profetmodellen best i begge situasjoner. 

Sammenligningen av faktisk varmeforbruk for varmtvann i bygging med eksisterende 

nasjonale og internasjonale standarder viste at standardene som ofte brukes i Norge ikke er 

nøyaktige nok og ikke kan uttrykke den daglige variasjonen av varmtvannsbruk. Anvendelse 

av disse profilene i bygningssimuleringsverktøyet kan føre til betydelig overvurdering av 

varmebruk til varmtvannssystemer. 

For å forbedre eksisterende metoder for profilutvikling, ble det anbefalt å bruke 

metodene som tillot oss å utvikle lignende profiler for månedene og ukedagene med lignende 

egenskaper ved varmtvannsforbruk. Profilene basert på målinger for forskjellige kategorier 

av bygningen ble foreslått. Deretter ble metoden for statistisk gruppering av 

varmtvannsforbruk for hver time brukt for å gjenkjenne tidspunktet for topp-, gjennomsnitts- 

og lavvarebruk i de aktuelle bygningene. 

Data fra utdanningsinstitusjoner i Norge ble brukt til analysen av den totale 

varmebruken under normale forhold og under COVID-nedstengning. Undersøkelsen fant at 

formen på varmebrukprofilene på ukedager før og etter COVID-nedstengning forble nesten 

uforandret, til tross for at belegget ble svært redusert. I tillegg var det slik at måneden etter 

gjenåpning av bygningene var karakterisert av en formidabel økning av varmebruk, 
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uavhengig av værforholdene. For planlegging av varmebruk i utdanningsinstitusjonene, ble 

følgende scenario utviklet: styring i tråd med et normalt år, redusere varmen til nivå for 

nattbruk, bruk av innstillingene som ble brukt under nedstengningen. Studien viste at 

anvendelse av rett innstilling på varmesystemet under en pandemi kan hjelpe oss å redusere 

energibruk i bygninger. 

Denne oppgaven foreslo metoder for analyse av varmtvannsforbruk, utvikling av 

prediktive modeller samt med profileringsprognoser for å gi grunnlag for videre 

implementering av energisparetiltak og forbedring av energieffektiviteten til 

varmtvannsanlegg i Norge. 
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List of symbols and indexes 

This section expounds the meaning of the symbols used in PhD thesis. The symbols 

are arranged in the order of their appearance in the text of the work.  

 

List of symbols in Chapter 3. Methods for splitting measurements of the 

total heat demand in a hotel into domestic hot water and space heating heat 

use 𝑓(𝑥) (−)  – is a piecewise regression model for the energy signature curve 𝑥 (°C)   – is an independent variable in a piecewise regression, which is the  

   outdoor temperature for the considered case  𝛽𝑖 (−)   – the ith coefficient of the piecewise model ε (−)   – residual error 𝐸𝑆𝐻  (−)  – SH heat use model 𝐸𝐷𝐻𝑊 (−)  – the model of the DHW heat use 𝐸𝑇𝐻 (−)  – the measured total heat use 𝐸𝐿𝑜𝑠𝑠 (−)  – the heat losses in the DHW system 𝐸𝑇𝐻 (−)  – the time series of the total hourly heat use in the building 𝐸𝑖 (−)   – the heat use in ith hour 𝑁 (−)   – number of the elements in the data sample 𝐿 (−)   – the window length �̃�𝑛 (−)   – elementary time series components �̃�𝑖 (−)   – ith elementary time series component ∑ �̃�𝑘  (−)  – sum of the components selected from �̃�𝑖 that related to space heating 𝐸𝑆𝐻′  (−)  – SSA model of space heating heat use 𝐸𝐷𝐻𝑊′  (−)  – SSA model of domestic hot water heat use 
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List of symbols in Chapter 4. Methods for DHW heat use prediction 

modeling in buildings 𝑔(𝑡) (−)  – is a trend of the Prophet model for non-periodic changes  𝑠(𝑡) (−)  – is a seasonal (periodical) component of the Prophet model  ℎ(𝑡) (−)  – is a component of the Prophet model that takes into account the  

     effects of holidays and other untypical days with irregular schedules 

   of DHW heat use 𝐺𝑠𝑡𝑎𝑟𝑡 (−)  – artificial variable that reflects the hourly influence of the guests  

   presence on DHW heat use 𝐶𝑔𝑝𝑖  (−)  – the coefficients for the guest DHW use intensity for ith-hour on the  

   given day 𝐶𝑔𝑝𝐿𝑎𝑔1.𝑖 (−)  – the coefficients for the guest DHW use intensity for ith-hour on one  

   day before 𝐺𝑠𝑡 (−)  – number of guests on a given day 𝐺𝑠𝑡𝐿𝑎𝑔1 (−)  – number of guests on the day before 

 

List of symbols in Chapter 5. Methods of development and analysis of DHW 

heat use profiles 𝑔(𝑡) (−)  – is a trend of the Prophet model for non-periodic changes  𝑇𝑐𝑎𝑙 (−)  – calculated t-test statistical value 𝑇𝑐𝑟 (−)  – critical value t-test statistical value �̅�𝑝𝑟𝑜𝑓1 (𝑘𝑊)  – mean values of the DHW heat use in the first considered data sample �̅�𝑝𝑟𝑜𝑓2 (𝑘𝑊)  – mean values of the DHW heat use in the second considered data  

   sample 𝑆𝑝𝑟𝑜𝑓1 (𝑘𝑊)  – standard deviations of the DHW heat use profiles in the first  

   considered data sample 𝑆𝑝𝑟𝑜𝑓2 (𝑘𝑊)  – standard deviations of the DHW heat use profiles in the second  

   considered data sample 𝑛𝑝𝑟𝑜𝑓1 (−)  – number of elements in the first in the first considered data sample 𝑛𝑝𝑟𝑜𝑓2 (−)  – number of elements in the first in the second considered data sample 𝐸𝑝𝑟𝑜𝑓𝑖.𝑗 (−)  – DHW heat use in j-th element in i-th data sample 𝑖 (−)   – number of data sample 
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𝑗 (−)   – number of element in the data sample 𝑓𝑐𝑎𝑙  (−)  – calculated value of Fisher’s criterion 𝑓𝑐𝑟 (−)   – critical value of Fisher’s criterion ni.j (%)  – number of matches, when the DHW profiles of i-th and j-th days  

   were similar 𝑁𝑖.𝑗  (−)  – number of the weeks, when statistical tests showed that the i-th and  

   j-th days were similar 𝑁𝑡𝑜𝑡𝑎𝑙  (−)  – number of the weeks in the statistical data sample of DHW heat use 𝐸 (−)   – the sorted sample of DHW heat use, where 𝐸𝑖+1 > 𝐸𝑖, 𝑖 is the number  

   of element in sample 𝐸 𝑅1 (−)   – the first statistical subsample in the statistical grouping of the hourly  

   DHW heat use method 𝑅2 (−)   – the second statistical subsample in the statistical grouping of the  

   hourly DHW heat use method �̅�𝑔𝑟𝑜𝑢𝑝.1 (𝑘𝑊)  – mean values of the DHW heat use in the first group �̅�𝑔𝑟𝑜𝑢𝑝.𝐾−1 (𝑘𝑊) – mean values of the DHW heat use in the next to the last group 𝑀𝑔𝑟𝑜𝑢𝑝.1 (−)  – numbers of the elements in the first group 𝑀𝑔𝑟𝑜𝑢𝑝.𝐾−1 (−) – numbers of the elements in the next to the last group 𝑆𝑔𝑟𝑜𝑢𝑝.1 (−)  – standard deviations in the first group 𝑆𝑔𝑟𝑜𝑢𝑝.𝐾−1 (−) – standard deviations in the next to the last group 𝑇𝑐𝑟.1 (−)  – critical values of the t-criteria for the first group 𝑇𝑐𝑟.𝐾−1 (−)  – critical values of the t-criteria for the the next to the last group Emin (𝑘𝑊)  – critical border that separate the average and peak DHW heat use  Emax (𝑘𝑊)  – critical border that separate the minimum and average DHW heat use  
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1. Introduction 

1.1. Motivation 

Energy efficiency and decarbonization are essential considerations for the functioning 

and development of the energy industry in European countries. Among all the sectors, the 

building stock is one of the most energy-intensive in the European Union (EU). The Energy 

Performance of Buildings Directive (EPBD) estimates the share of energy use in building as 

40% of the total energy use in the EU [1]. Energy saving in buildings is crucial from both an 

economic and environmental perspective [2]. For this reason, the European Commission (EC) 

develop a set of long-term and short-term goals for increasing energy efficiency in buildings 

[3]. For example, the Energy roadmap 2050 [4] set the target for 80–95% CO2 emission 

reduction by 2050, when compared to the 1990 level. In order to achieve this ambitious goal, 

all technical systems in buildings must be designed and operated in such a way as to ensure 

efficient energy use.  

Out of all the technical systems in buildings in Europe, space heating (SH) and 

domestic hot water (DHW) are the most significant consumers of energy [5]. Until recently, 

in European countries, including Norway, a lot of effort has been put into the investigation of 

the SH systems performance [6]. Meanwhile, the DHW heat use was considered as a small 

part of the energy needs required for heating. Therefore, DHW heat use has obtained little 

focus, especially in countries with a cold climate [7]. Currently, the situation is changing. 

With the implementation of highly insulated structures, the SH heat use in buildings is 

continuously decreasing. At the same time, the reduction of heat use in DHW systems 

remains insignificant [8]. Currently, the share of the DHW energy is approximately 20% in 

regular apartment buildings [7] and reaches 50% in passive houses and well-insulated 

buildings [9]. The projections of energy demand for buildings show that DHW heat use tends 

to increase in the nearest future [10]. For this reason, achieving more efficient DHW heat use 

is a critical issue for further energy saving in buildings. 

DHW systems are an important part of buildings technical systems in Norway, which 

ensure a high level of hygiene and living conditions. A comprehensive comparison of DHW 

heat use in buildings in Scandinavian countries is performed in the nineties [11]. 

Scandinavian countries share a similar living standard, comparable patterns of household 

formation, and a similar climate. Nevertheless, the research study on electricity use in 
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Scandinavian households concludes that the national average electricity use per capita for the 

DHW heating in Norway has almost not changed for 15 years, and remains high when 

compared with other European countries [11]. More recent research confirms this statement, 

and it shows that the average individual DHW use reaches 40 L/person/day in Norway, while 

in Denmark it is 20 L/person/day [12]. Currently, sustainable and energy efficient solutions 

for DHW systems in Norway are not fully implemented. In this regard, DHW systems in 

Norway have a huge potential for improving energy performance. 

Operation of DHW systems is a complex and a multidisciplinary issue. DHW heat use 

in buildings is strongly affected by technical, economic, environmental, health, and comfort 

aspects. These conditions lead to various possibilities for energy saving in DHW systems, as 

shown in Fig. 1.  

 

Fig. 1 Data analysis as a tool for improving energy efficiency 
 

The proper implementation of energy saving solutions for DHW systems, as shown in 

Fig. 1, requires the use of data-driven analysis, simulation tools, accurate predictive modeling, 

and representative profiles. 

The issue of DHW heat use analysis in buildings is investigated by many leading 

researchers in Norway and abroad [7]. Due to the specific technical characteristic of the 

buildings, their location and differences in user behavior, as well as the quality of available 

data, currently, there is no unique method of performing data-driven analysis of the DHW 

heat use.  

Practice shows that the knowledge about DHW heat use in residential and non-

residential buildings in Norway is currently incomplete [13]. The investigations of DHW heat 

use performed in other countries are not representative for Norwegian conditions [14]. The 

methods and profiles for DHW heat use analysis presented in national and international 
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standards cannot correctly reflect the actual DHW heat use [15]. Thus, the development of 

methods for DHW heat use analysis and investigation on the DHW heat use for different 

types of buildings in Norway are required.  

 

1.2. Thesis objective, research questions, and tasks 

The main objective of the PhD research is to improve the methods for data-driven 

analyses of DHW heat use and to achieve a deeper understanding of DHW heat use in 

buildings in Norway. Primarily, the research is intended to develop accurate prediction 

models and representative profiles for DHW heat use in Norway, which may be used for 

increasing energy efficiency in DHW systems.  

The study was carried out based on statistical data obtained from schools, hotels, 

nursing homes, and apartment buildings. These buildings have diverse operating regimes and 

technological solutions for DHW systems. Therefore, the methods proposed in the PhD thesis 

were aimed at being applicable for analysis in various categories of buildings. Finally, the 

following research questions (RQ) were identified: 

RQ 1 : Which data preprocessing techniques should be used before applying data-

based analysis? 

RQ 2 How can information on the DHW heat use be restored from measurements of 

the total heat use in buildings? 

RQ 3 : What factors affect DHW heat use in buildings and should be taken into 

account when modeling and developing DHW heat use profiles? 

RQ 4 : How to perform accurate prediction of DHW heat use and what models 

should be used for this purpose? 

RQ 5 : How can the methods for developing and analyzing DHW heat use profiles 

be improved? 

RQ 6 : How can the heat use in buildings be modeled for conditions of COVID-

lockdown? 

In order to answer the research questions and achieve the objective of the PhD 

research, the following tasks were defined: 

 Explore the peculiarities of heat use measurements in Norwegian buildings, the 

problems of data collection and preprocessing required for further DHW heat use 

analysis.  
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 Develop the approach for splitting the measurements of the total heat use in a 

building into the DHW and the SH heat use. Solving this problem should allow us 

to gain valuable information about the DHW in buildings where only one heat 

meter for the total heat use is available.  

 Identify variables that have a significant impact on DHW heat use in different 

types of residential and non-residential buildings in the condition of the north 

climate and behavioral traditions in Norway. 

 Built accurate hourly and daily predictive models of DHW heat use for various 

sets of influencing variables and conditions of modeling 

 Improve methods for the development and analysis of DHW heat use profiles 

based on statistical methods. 

 Create representative profiles of DHW heat use for different types of buildings in 

Norway and compare them with profiles proposed in standards and other literary 

sources.  

 

1.3. Thesis organization 

According to the research tasks, the thesis was divided into eight main chapters. The 

chanters have the following content: 

 Chapter 2 presents an overview of the implementation of sustainable and energy 

saving solutions in DHW systems, challenges in DHW heat use data collection and 

preprocessing, DHW heat use analysis, predictive modeling, and profiles 

development for residential and non-residential buildings in Norway and abroad. 

This chapter demonstrates the limitations of existing knowledge about DHW heat 

use in buildings and motivates further improvements.  

 Chapter 3 considers the issues of the Energy Signature Curve (ESC) development 

and splitting the measurements of the total heat demand in buildings into DHW 

and SH heat use. 

 Chapter 4 presents the methods for DHW heat use prediction modeling in the 

following situations: Situation 1, only historical data about DHW heat use are 

known; Situation 2, the additional parameters that could influence DHW heat use 

are available. Further, in this chapter, the influence of different parameters on 

DHW heat use was investigated. 
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 Chapter 5 introduces the methods for development and analysis of DHW heat use 

profiles. It represents the statistical methods for assessing the similarities of the 

profiles by days of the week and seasons. Based on this assessment, the unified 

profiles for days of the week and month with similar parameters of DHW heat use 

may be identified. Furthermore, the method of a statistical grouping of the DHW 

hourly heat use for recognizing the timing of the peak, average, and low heat use is 

shown.  

 Chapter 6 contains the results and discussions from the performed studies as a 

summary of the papers collection. Each paper covers the specific topic and aspects 

of the DHW heat use analysis. 

 Chapter 7 demonstrates the main conclusions of the PhD study. 

 Chapter 8 shows the limitations of the research and recommendations for the 

further work.  

The main results of the PhD research were introduced in the papers attached at the end 

of the thesis. The list of these papers is given below in Section 1.4. 
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1.4. Publications  

The PhD thesis consists of 11 papers: four papers in high-quality journals, six papers in 

international conference proceedings, and one in the popular science journal. The publications 

correspond to the research questions addressed in the PhD study and their relation to research 

questions is given in Table 1. 

Table 1 Relationship among research questions and publications 

Publication number Publication number 
I II III IV V VI VII VIII IX X XI 

RQ1 Which data preprocessing techniques should 
be used before applying data-based analysis? 

Papers I-X 

RQ2 How can information on the DHW heat use 
be restored from measurements of the total heat 
use in buildings? 

 Papers II-III         

RQ3 What factors affect DHW heat use in 
buildings and should be taken into account when 
modeling and developing DHW heat use profiles? 

  
Papers III-V  
for modeling 

Papers VII-X 
for profiles development  

RQ4 How to perform accurate prediction of DHW 
heat use and what models should be used for this 
purpose? 

   
Papers 
IV-V 

      

RQ5 How can the methods for developing and 
analyzing DHW heat use profiles be improved? 

     Papers VI-X  

RQ6 How can the heat use in buildings be 
modeled, and how it changes during COVID-
lockdown? 

          
Paper 

XI 

 

Publishing information and author contribution to the papers are given below.  

 

Paper I 

T. Tereshchenko, D. Ivanko, N. Nord, I. Sartori, Analysis of energy signatures and 

planning of heating and domestic hot water energy use in buildings in Norway. The 13th 

REHVA World Congress CLIMA 2019, E3S Web of Conferences, Volume 111, 2019, 06009 

Author contribution: The paper was initiated by Tymofii Tereshchenko and me. I 

contributed to the development of the methodology for the SH and DHW heat use planning, 

mathematical modeling, testing the research methodology, and writing the original draft. 

Tymofii Tereshchenko conducted a literature review, data curation, data-driven analysis of 

heat use, and writing the original draft. Igor Sartori and Professor Natasa Nord provided 

valuable feedback for improving the research methodology, carried out supervision, revision, 

and editing of the paper.  
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Paper II 

S.K. Lien, D. Ivanko, I. Sartori, Domestic hot water decomposition from measured 

total heat load in Norwegian buildings, in: International Conference Organised by IBPSA-

Nordic, 13th–14th October 2020, OsloMet. BuildSIM-Nordic 2020. Selected papers, SINTEF 

Academic Press, 2020. 

Author contribution: The concept of the paper was defined by the joint efforts of all 

co-authors. I prepared the literature review, data processing and computational modeling, 

restoring DHW heat use profiles based on considered methods, and wrote a part of the 

original draft. Synne Krekling Lien carried out data processing and computational modeling, 

testing the methodology, and writing the original draft. Igor Sartori compared the case study 

results with reference DHW heat use obtained from different sources. In addition, he 

conducted supervision, revision, and editing of the paper. 

 

Paper III 

D. Ivanko, A.L. Sorensen, N. Nord, Splitting measurements of the total heat demand 

in a hotel into domestic hot water and space heating heat use. Energy, Volume 219, 2021, 

119685 

Author contribution: The paper was initiated by me. I contributed to methodology 

development, data processing and computational modeling, testing the research methodology, 

and writing the original draft. Ase Lekang Sorensen was responsible for data curation, 

reviewing, and editing of the paper. Professor Natasa Nord held supervision, revision, and 

editing of the paper. 
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Paper IV 

D. Ivanko, N. Nord, A.L. Sorensen, I. Sartori, T.S. Wester Plesser, H.T. Walnum, 

Prediction of DHW energy use in a hotel in Norway. 10-th International Conference on 

Indoor Air Quality, Ventilation and Energy Conservation in Buildings IAQVEC 2019. IOP 

Conference Series: Materials Science and Engineering. Volume 609, 2019, 052018 

Author contribution: The conceptualization of the paper was done by me. I, as the 

principal author, developed the methodology for DHW heat use prediction, tested the research 

methodology based on a case study, wrote the original draft of the paper. The co-authors Ase 

Lekang Sorensen, Igor Sartori, Thale Sofie Plesser, and Harald Taxt Walnum performed data 

curation, reviewing and editing of the paper. Professor Natasa formulated the research 

objectives, conducted supervision, revision, and editing of the paper. 

 

Paper V 

D. Ivanko, A.L. Sorensen, N. Nord, Selecting the model and influencing variables for 

DHW heat use prediction in a hotel in Norway. Energy and Building, Volume 228, 2020, 

110441 

Author contribution: The paper was initiated by me. I contributed to identifying 

variables that influence DHW heat use, developing prediction models, testing the proposed 

methods, and writing the original draft. Ase Lekang Sorensen carried out data curation, 

reviewing and editing of the research paper. Professor Natasa Nord performed the formal 

analysis for the research methodology and conducted supervision, revision, and editing of the 

paper. 

 

Paper VI 

D. Ivanko, N. Nord, A. Tartaglino, Analysis of DHW energy use profiles for energy 

simulations in a hotel located in Norway. REHVA European HVAC Journal, Volum 56 (4), 

2019. 

Author contribution: The paper was initiated by me and Professor Natasa Nord. I 

carried out the development of DHW heat use profiles, simulated DHW heat use, prepared 

results and conclusions of the investigation, and wrote the original draft. Andrea Tartaglino 

and Natasa Nord developed the simulation model for the investigation. Professor Natasa Nord 

conducted supervision, revision, and editing of the paper. 
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Paper VII 

H.T. Walnum, A.L. Sorensen, B. Ludvigsen, D. Ivanko, Energy consumption for 

domestic hot water use in Norwegian hotels and nursing homes. 10-th International 

Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings 

IAQVEC 2019. IOP Conference Series: Materials Science and Engineering. Volume 609, 

2019, 052020 

Author contribution: The conceptualization of this paper was done by the joint efforts 

of all co-authors. Harald Taxt Walnum, as the principal author, performed data curation and 

analysis, DHW heat use profiles comparison, and writing the original draft. Dmytro Ivanko, 

Ase Lekang Sørensen, Bjørn Ludvigsen carried out the formal analysis, revision, and editing 

of the paper. 

 

Paper VIII 

D. Ivanko, H.T. Walnum, N. Nord, Development and analysis of hourly DHW heat 

use profiles in nursing homes in Norway. Energy and Building, Volume 222, 2020, 110070 

Author contribution: The paper was initiated by me. I proposed the methodology for 

DHW heat use profiles development and analysis, contributed to DHW heat use modeling and 

analysis, tested the proposed methods, and wrote the original draft. Harald Taxt Walnum 

carried out data curation, reviewing and editing of the paper. Professor Natasa formulated the 

research objectives, held supervision, revision, and editing of the paper. 

 

Paper IX 

D. Ivanko, N. Nord, A.L. Sorensen, T.S. Plesser Wester, H.T. Walnum, I. Sartori, 

Identifying typical hourly DHW energy use profiles in a hotel in Norway by using statistical 

methods. The 13th REHVA World Congress CLIMA 2019, E3S Web of Conferences, Volume 

111, 2019, 04015 

Author contribution: The conceptualization of the paper was done by me. I carried out 

the literature review, developed the methodology, tested the research methodology, and wrote 

the original draft of the paper. The co-authors Ase Lekang Sorensen, Igor Sartori, Thale Sofie 

Plesser, and Harald Taxt Walnum conducted data curation, reviewing and editing of the 

paper. Professor Natasa carried out the formal analysis of the study, supervision, revision, and 

editing of the paper.  
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Paper X 

D. Ivanko, N Nord, A.L. Sorensen, H.T. Walnum, Analysis of monthly and daily 

profiles of DHW use in apartment blocks in Norway. Nordic Symposium on Building Physics 

in Tallinn, Estonia, NSB 2020 E3S Web of Conferences, Volume 172, 2020, 12002  

Author contribution: The paper was initiated by me. I conducted the literature review, 

developed and analyzed monthly and daily profiles of DHW use in the apartment block in 

Norway, and wrote the original draft of the paper. Ase Lekang Sorensen, Harald Taxt 

Walnum, and Professor Natasa Nord carried out supervision, revision, and editing of the 

paper. 

 

Paper XI 

D. Ivanko, Y. Ding, N. Nord, Analysis of heat use profiles in Norwegian educational 

institutions in conditions of COVID-lockdown. Submitted to Journal of Building Engineering 

(Status 17/2/2021: Minor revision) 

Author contribution: The paper was initiated by me. I proposed methods for scenario-

based analysis and planning of heat use in educational institutions for conditions of COVID-

lockdown, performed data analysis and computational modeling, and wrote the original draft 

of the paper. Yiyu Ding conducted data curation and analysis, revision, and editing of the 

paper. Natasa Nord provided valuable recommendations for improving the research 

methodology, carried out supervision, revision, and editing for the research paper. 
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2. Literature Review  
This chapter is structured as follows. Section 2.1 presents sustainable and energy 

efficient solutions for DHW systems and explains the need for data-driven analysis in order to 

implement them. Section 2.2 considers the issues of DHW data collection and describes 

preprocessing techniques that were used in PhD investigation. Section 2.3 describes the 

problem of extracting information about the SH and DHW heat use in buildings where the 

only one meter for the total heat use is operating. Section 2.4 discusses the influencing 

variables that existing publications suggest to use to explain the variation of the DHW heat 

use in buildings. Section 2.5 is dedicated to the problem of DHW heat use prediction. Section 

2.6 considers the issue of DHW heat use profiles development and analysis. 

It is important to stress that the majority of existing publications are focused mainly on 

the analysis and modeling of DHW volumetric use rather than heat use. It is well known that 

these two parameters have a strong positive correlation [7]. In addition, the factors that affect 

the DHW volumetric use have a similar effect on the DHW heat use. Since not so many 

publications are dedicated to DHW heat use analysis, both the literature review for DHW 

volumetric and heat use was included in the literature review. 

 

2.1. Sustainable and energy efficient solutions in DHW 
systems 

The introduction of modern technical energy solutions in DHW systems is essential for 

energy efficiency in buildings [16]. The requirements related to these solutions are discussed 

below. 

Wastewater technologies are considered as one of the promising solutions for achieving 

energy saving in DHW systems. These technologies are based on the idea of gaining benefits 

from the reuse of water. The conceptual designs for DHW heating systems with the application 

of wastewater technologies are considered in [17]. The research shows that the DHW system 

control is prioritized to operate with the wastewater technologies and heat pumps. This control 

should be performed based on DHW predictive models and profiles.  

Using solar-assisted DHW water heating systems in buildings becomes popular all over 

the world [18]. The prediction of DHW heat use is necessary for the optimal operation of these 

systems [19]. Different types of DHW heating systems are investigated in [20]. This study 
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summarises that DHW energy use may be reduced by using combined techniques based on 

traditional and renewable energy solutions. However, due to the unstable behavior of 

renewable energy sources, development of accurate prediction models of DHW heat use is 

becoming crucial for successful operation of combined DHW heating systems. 

Operation of the DHW systems is associated with sanitary and health safety problems. 

Among them, the appearance of the Legionella bacterium in DHW systems is a severe issue 

[21]. Legionella bacterium may lead to different forms of pneumonia and even death. The 

conditions for Legionella spreading are water temperatures from 25°C to 42°C, nutrients, and 

stagnating water. Therefore, many countries, including Norway, develop regulations to 

minimize the risk of the Legionella disease appearance. For example, despite energy 

ineffectiveness, to prevent chances of the bacteria growth, the DHW systems in Norway store 

and distribute hot water at the temperatures above 60°C. Currently, the different solutions that 

allow us to use low-temperature DHW systems and at the same time to avoid Legionella risks 

were developed [22]. Some of these solutions require knowledge of the profiles and timing 

when DHW water is used. 

The economic analysis of DHW pricing is performed in [23]. The study shows that the 

DHW use positively correlated with income and reacts to the changes in water prices. 

Therefore, the introduction of better energy or heat tariffs is a way of reducing the DHW use in 

buildings. However, in order to implement advanced and flexible energy or heat tariffs, in-

depth knowledge about profiles and prediction models of DHW use are necessary.  

Energy management and control systems are powerful tools for implementing effective 

heat management activities and strategies in buildings. They enable us to reduce unnecessary 

heat use, respond correctly to tariff changes, save energy costs, and facilitate the utilization of 

other technical energy solutions. Data-driven analysis is a key element of these systems [24]. 

Building simulation software tools are a powerful instrument for estimating energy use 

in buildings. Most of these software tools such as IDA ICE, EnergyPlus, TRNSYS, 

TRANSOL, etc. require DHW profiles as the basis for the simulation of DHW systems 

performance in buildings [7]. For example, it is noted that the variations between the simulated 

and the real heat use for DHW are caused by inappropriate profiles from standards [25].  

The study of Bohm [26] shows that the efficiency of domestic hot water systems 

should be improved. Heat losses from the hot water tanks and the circulation systems in single-

family houses, semi-detached houses, blocks of flats, schools, and institutions are found to be 

very high, and equals approximately to 65% of DHW energy use. In order to avoid these 
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losses, the proper design, sizing, and operation of DHW systems are required. Practical 

experience shows that the profiles from standards that are commonly used for heat system 

design often do not correspond to the real state of the art [27]. These profiles could lead to 

oversizing of the components for DHW systems and additional financial and energy losses 

[28]. The development of more accurate profiles will help to improve this situation.  

As we can see, the proper functioning of the energy saving solutions in buildings is 

based on the application of accurate DHW usage profiles and predictive models that are 

capable to capture the real heat use in buildings. Therefore, it is important to develop the 

approaches that will help to improve the DHW heat use analysis and modeling for different 

types of buildings.  

 

2.2. Data collection and preprocessing techniques 

Prior to applying certain methods for analyzing the DHW heat use or other related 

parameters, it is necessary to collect reliable data. The time-frequency of data measurements 

is an important feature that should be considered. The paper [29] investigates the effect of 

measurement intervals on the DHW peak flow rate in different Norwegian. Within the 

analysis, the measured peak flow rate is calculated as a moving average for different time 

steps. Compared to using an interval of 2 s, averaging the data over 10-second shows 

underestimation of the peak flow rate by a factor of 0.8-1.0, and 0.67-0.94 for a 30-second 

interval. The work presented in [30] also determined that the resolution of data has a large 

influence on the measured and simulated peak flow rates. The authors conclude that hourly 

data may be used for the DHW heat use analysis. However, for the design of the peak flow 

rates, it is better to use data collected with a higher frequency.  

Although data sampling with high time-frequency resolution may give us valuable 

information about DHW heat use, hourly measurements of heat use are the most commonly 

used for buildings in Norway. Hourly time resolution is convenient for storing and analyzing 

DHW heat use data. Therefore, in this work, the preference was given to hourly data. 

However, to make a broader study, the investigations based on other data resolutions were 

also performed. 

After the data resolution for analysis was identified, the data samples for all the 

variables should be time-synchronized and reshaped with the same time resolution. In this 

work, the Python software tools were used for corresponding data handling. 
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Practice shows that the data obtained from measurement systems of the buildings or 

other sources usually cannot be used for the analysis of DHW heat use without preprocessing. 

Pre-processing covers a number of issues. The outliers, incorrect data, gaps of information 

may occur in data samples. For example, due to problems with the measurement systems, 

negative or unrealistically high values of DHW heat use may appear in data samples. In 

addition, the temporary changes in DHW heat use that do not represent regular DHW system 

performance may occasionally occur (systems maintenance, repairs, etc.). Throughout the 

investigation, the data which do not correspond to physical principles and generally accepted 

norms were removed from consideration. The statistical tests were used to identify and 

remove these types of data. In detail, these tests are considered in [31]. 

 

2.3. Splitting measurements of the total heat demand in 
buildings into SH and DHW heat use 

The European Directive 2018/844 [32] claims that analysis of the energy performance 

of buildings should be conducted based on calculated or actual energy use. The estimations 

shall reflect the typical energy use for SH, DHW, and other technical systems in a building 

[32]. This approach to analysis is important for the development of energy-saving solutions 

for all the technical components in buildings. The proper implementation of this approach 

requires that energy meters are installed for the main energy-consuming systems in buildings. 

As a part of the smart meter promotion strategy, at least 80% of the EU electricity meters 

should be replaced by smart meters until 2020 [33]. Smart heat meters, on the other hand, are 

usually not available in buildings [34]. A significant share of buildings uses only one heat 

meter for the total heat use. In such systems, this single meter cannot measure the SH and 

DHW heat use separately. SH and DHW systems have different regimes of work and 

influencing factors on their performance. Accordingly, the analysis of heat use in these two 

systems should be performed independently [35]. Separate statistical data for the DHW and 

the SH heat use are essential for improving a number of issues, such as SH and DHW systems 

sizing, designing of energy management and control systems, as well as improving the 

existing standards, the prediction models and the energy use profiles. Thus, the separation of 

the total heat demand into the components associated with the SH and DHW heat use is an 

important task.  

Several research groups investigate the problem of extracting the SH and the DWH 

heat use from the total heat use measurements [36, 37]. However, due to nontrivially of the 
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problem and different requirements to results set by the researchers, there is no unique method 

for performing such data analysis. Some of the existing solutions are discussed in the text 

below.  

A method for separating the total heat demand in the building into SH and DHW heat 

use is presented in [36]. In this research, 10-minute resolution data from a single-family house 

in Denmark is used. The method assumes that the DHW heat use generates short-lived spikes 

in the time series. Opposite, the SH heat use changes slowly during the day due to climate and 

user behavior. For this reason, the authors in [36] propose to estimate the SH heat use by a 

non-parametric kernel smoother. All the values significantly above the kernel smoother are 

considered as the DHW heat use spikes. Currently, this method is not yet verified by the SH 

and the DHW heat use data which are measured separately.  

Splitting weekly heat use from one meter into DHW and SH is considered in [37]. The 

authors in [37] assume that the period when the outdoor temperature is higher than the base 

temperature [38] is only the DHW heat use period. In this way, they found DHW heat use for 

several warm weeks during the year. Afterward, the same authors proposed to use the DHW 

monthly variation factors to extrapolate the DHW heat use from warm months to other 

months of the year [37]. For dwellings in the United Kingdom, these factors are given in the 

standard [39]. However, for Norwegian conditions, the factors are not developed. 

The research work in [40] shows a method that estimates the hourly SH and the daily 

DHW heat use profile. The mentioned study uses the hourly values of the total heat demand in 

the building. The method includes the following steps: 1) the daily total heat use profile for an 

average summer day is calculated; 2) the non-DHW use is calculated as a minimum of the 

total heat use profile for an average summer day or average for hours from 0:00–04:00 

o’clock; 3) the DHW profiles are calculated by deducting the non-DHW heat use from the 

value of the heat use at each hour of the day. This study in [40] shows that the above method 

gives satisfactory results when the DHW use during summer is at least at the same level as the 

space heating. The method does not consider the DHW heat use in other periods, except for 

the warm season. 

Some authors propose to use the models and profiles of the SH and DHW heat use 

created based on statistical data from the buildings stock databases [41, 42]. For instance, the 

Neural Networks model of the SH and DHW heat use in typical Canadian households is 

considered in [41]. The model uses data from the 1993 Survey of Household Energy Use 

(SHEU) database, which represents information from the Canadian housing stock. Similar 
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models may serve as a basis for the separation of the SH and DHW heat use in typical 

buildings. However, their development requires the availability of the appropriate database. 

Moreover, the accuracy of the splitting for individual buildings will be questionable.  

Linear regression models may be used to predict heat demand in buildings, e.g. as 

done in [43]. Pedersen in [44] and Sørensen et al. in [45] use linear regression models to 

separate DHW from the total heat delivery. For instance, the linear regression model for the 

total heat delivery that takes into account the outdoor temperature, hour of the day, weekdays, 

and holidays is proposed in [45]. When estimating DHW, the outdoor temperature is set to the 

approximate break-point temperature of the model, resulting in a DHW daily load profile with 

hourly mean values [45]. 

The separated SH and DHW heat use profiles are also modeled in [42]. The modeling 

approach is the coupling of the behavioral, stochastic, and energy balance models. The 

synthetic load profile captures the typical hourly, daily, and annual characteristics of the 

DHW heat use. The SH model is a combination of a simplified physical method with a 

behavioral model for standardized buildings. The approach requires knowledge about the 

activity categories, such as occupant’s presence at home, sleeping, hygiene, and cooking 

activities. Such modeling approach may give good results, but the data required for new 

studies on a bigger scale (hotels, nursing homes etc.) requires much effort and usually not 

feasible. 

The literature review shows that the problem of splitting the hourly total heat use into 

the parts related to the SH and DHW is not yet solved, especially for larger buildings with 

limited knowledge about the users. Some of the above-mentioned methods allow us to obtain 

general models of SH and DHW heat use for particular buildings category, but not for an 

individual building [41]. The other methods solve the considered problem only for several 

warm months [40]. The number of methods requires extensive knowledge about user 

behavior, which limits their application [42]. For this reason, further investigations on this 

topic are necessary. 
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2.4. Identifying variables affecting the DHW volumetric and 
heat use 

Identifying influencing variables with significant impact on the DHW heat use in the 

building is an initial step for both prediction modeling and profiles development. There is a 

number of scientific papers that analyze the influence of different factors on DHW volumetric 

and heat use, as shown in Table 2.  

Most of the articles in Table 2 assume that the number of occupants, seasons, day of 

the week, and time of the day have a significant influence on the DHW heat use. The 

information about activities, such as occupant's presence, sleeping, hygiene and cooking, as 

well as a time when appliances are in use (sinks, showers, baths, clothes washer, and 

dishwasher) gives a better understanding of the DHW heat use [42]. Opinion on the influence 

of certain parameters on DHW heat use varies in different studies. For example, in the article 

[46], the occupant's presence is considered as an essential variable, while research [47] 

revealed the weak correlation between occupant's presence and DHW use in households. It 

should be noticed that the factors influencing DHW heat use may vary from one building type 

to another and may depend on the location of the building. For instance, in the investigation in 

[48], it is concluded that the influence of seasons, the outdoor temperature, and rainy days on 

DHW in the dwellings is negligible. However, in the articles [49, 50], the seasons and the 

outdoor temperature are considered as essential variables and taken into account. Therefore, 

to determine the variables that affect the DHW heat use in Norway, it is necessary to conduct 

a study based on reliable statistical methods collected from buildings located in this country.  
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Table 2 Investigations of variables that have a significant impact on DHW volumetric 

use and heat use 

Influencing variables  Authors 
Number of occupants, day of the week  Ferrantelli, Ahmed [51] 
Day of the week  de Santiago, Rodriguez-Villalón [48] 
Number of rooms in the flat, area of the flat Chmielewska, Szulgowska-Zgrzywa [52] 
The magnitude of the drains, the start times of 
DHW use, the time between drains 

Beeker, Malisani [53] 

Activities, number of DHW tap starts, time of 
tapping, the duration of tapping 

Fischer, Wolf [42] 

Flow rates, cold and supply temperatures Verhaert, Bleys [30] 
Type of the tap (conventional mixer tap or low 
flow electronic tap) 

Fidar, Memon [54] 

Activities, appliances  Good, Zhang [55] 
Outdoor temperature, season, number of 
tenants, type of building (apartment or 
detached), the location, the household area, 
month, density of water, specific heat of water, 
reference temperatures, cold inlet temperature 

Gutierrez-Escolar, Castillo-Martinez [49] 

Socioeconomic characteristics, activities, 
appliances, and type of apparatuses that use 
water 

Fan, Liu [56] 

Occupant behavior, appliances, demographic 
conditions, and occupancy rate 

Swan, Ugursal [46] 

Draw-off temperatures Barteczko-Hibbert, Gillott [57] 
Appliances, flow rates and times of DHW use Hendron and Burch [58] 
The day of the week, time of the day, season, 
appliances, age of occupants (seniors or not), 
pay or does not pay for hot water 

Lutz, Liu [59] 

Family size, season, day of the week, time of the 
day 

Papakostas, Papageorgiou [50] 

Occupant behavior, type of building, 
appliances, type of the tap 

Wahlstrom, Nordman, Pettersson [60] 

Season, day of the week, time of the day, 
behavior and individual differences in how 
people use DHW 

Bagge, Lotti [47] 
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2.5. DHW heat use prediction modeling in buildings 

The number of publications dedicated to prediction modeling in DHW systems is 

considerably small compering to other buildings energy systems [19]. The review of the 

methods proposed by different researchers for the DHW volumetric and heat use prediction is 

presented below.  

The application of artificial neural networks (ANNs) for DHW modeling in Canadian 

households is considered in [41]. The DHW heat use as an ANNs model of draw-off 

temperatures is presented in [57]. The model is tested in three residential DHW systems. The 

archived ANNs model accuracy is higher than 89% for the trained data. However, the use of 

the ANN model for new data obtained from other systems shows significant inaccuracy. 

Creation of easy to use forecasting model of DHW use is considered in [61]. Autoregressive 

moving average (ARMA) model as a solution to this problem is proposed. The ARMA model 

takes into consideration the periodicity of the week, the water use of the days before, and 

random fluctuations of the DHW use. The model based on data from eight apartments in 

France is examined in [61]. 

The heat use in a large housing cooperative in Norway is investigated in [45]. In this 

work, the linear regression model is used for modeling the DHW heat use in apartments. 

The survey of DHW use in 626 apartments in Poland is carried out in [52]. The 

authors create a database of DHW use for residential buildings with different parameters. The 

configuration of apartments in these buildings is randomly selected by using the bootstrap 

method. Based on the database, the regression model is constructed. This model considers 

DHW use as a function of the number of rooms and the floor area [52]. 

The stochastic analysis of the DHW use for 65 apartments is performed in Hungary 

[62]. As an input for the stochastic model, the authors use the number of apartments in the 

building, the duration curve, daily average, the minimum and the maximum values of the 

DHW use. 

The issue of the DHW use forecasting for demand-side management in residential 

buildings in the UK is reviewed in [63]. Various time series forecasting techniques, such as 

exponential smoothing, seasonal autoregressive integrated moving average, seasonal 

decomposition by Loess model and a combination of them, were tested on data from 120 

dwellings.  

A model for DHW use prediction that consists of 16 equations is proposed in [59]. 

These equations take into account season, day of the week, and hours with similar DHW use. 
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To improve the model, the authors propose to consider additional factors to adjust the 

predicted hot water use. These factors include the availability of dishwashers, cloth washers, 

age of occupants, and whether the residents should pay for the DHW use or not.  

The existing articles are mostly focused on the DHW use in residential buildings. 

Practice shows that for residential buildings, information about DHW use is more opened and 

accessible [7]. For this reason, the DHW heat use prediction for non-residential buildings has 

not received enough attention. Despite this fact, the share of DHW heat use in non-residential 

buildings is significant. Therefore additional studies for these types of buildings are needed 

[15].  

As we can see from the above considered papers, various methods may be used for the 

DHW heat use prediction, and there is no best technique for solving this problem. The most 

accurate model for a specific building or group of buildings should be selected from several 

modeling techniques. In such a way, the models that consider the characteristics of the 

buildings, their type, and available data will be taken into account. Unfortunately, such an 

analysis has not yet been carried out for buildings in Norway. Therefore, it is necessary to 

perform an investigation and give recommendations for the DHW heat use prediction for 

Norwegian conditions. 

 

2.6. Existing methods for development and analyses of DHW 
heat use profiles 

DHW heat use profiles are the primary instrument for estimating the DHW heat use in 

the buildings [7]. Analysis of these profiles shows how the heat use for DHW changes in 

different time intervals [64]. These profiles allow us to determine the hours of peak energy 

loads and other energy load characteristics of the building. Depending on available 

information, the profiles may be obtained from the standards, developed based on measured, 

or calculated DHW heat use [7].  

Practice shows that profiles obtained based on measurements are more reliable and 

better reflect the actual DHW heat use in the buildings. Therefore, many publications 

recommend using the measurement data for DHW heat use investigations [7]. For example, 

weekdays and weekends load profiles for DHW heat use in Norwegian buildings, which use a 

heat supply from district heating, is investigated in [65]. For calculations, the authors use 

hourly measurements obtained by regular heat meters. Hourly DHW profiles for five groups 
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of buildings with 1, 3, 10, 31, and 50 residents are developed based on measurement data 

from Finnish apartments in [66].  

If the measured data for the DHW heat use are not available, the calculational 

approaches for identifying DHW heat use profiles may be used. For instance, the common 

approach applies the following parameters for DHW heat use calculation: average DHW use 

in l/(person·day), occupant number, DHW supply temperature and cold-water temperature, 

and DHW usage profile [7]. The so-called bottom-up approach for DHW profiles 

development is based on operating schedules for the primary DHW energy users (showers, 

baths, sinks, dishwashers, and clothes washers) and occupant activities. As an illustration, the 

Building America House Simulation Protocols document provides guidance for such analysis 

in new and existing apartment buildings [67]. Lombardi in [68] shows that domestic water use 

can be presented as the result of probabilistic use of domestic appliances, each one with its 

particular characteristics. The research of Good and Zhang in [55] share the experience of 

calculation for DHW heat use profiles based on occupant activities. Time-use data of 

activities in households in Sweden are used for generating DHW profiles in [69]. Most of the 

above reviewed research works are dedicated to the apartments and households, meaning that 

required parameters were easier to obtain. However, in non-residential buildings obtaining in-

depth knowledge about occupant activities and equipment operation become time consuming 

and expensive task [7]. The available input data limits the practical application of bottom-up 

approaches. 

In certain publications, instead of DHW heat use measuring or calculating, the profiles 

from the standards are used for system design, simulation, and heat use analysis. Comparing 

the actual DHW heat use profiles with the standards, and their verification, are also not going 

unnoticed. For example, the comparison of the actual DHW profiles in apartments with 

profile proposed by the American Society of Heating, Refrigeration and Air Conditioning 

Engineers (ASHRAE) is conducted in [70]. The research shows that the primary difference 

between the actual and the ASHRAE derived data is that the water use is less evenly 

distributed in the actual data, and there are higher peaks and lower troughs and much less use 

in the early morning hours in the actual data. Differences in shapes and parameters of the 

actual DHW heat use profiles for particular types of buildings and profiles presented in 

publications and standards are considered in [71]. As a conclusion, in this work, the authors 

recommend relying on actual profiles obtained from measurement systems for the analysis of 

DHW use in the existing buildings.  
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The literature review showed that there is no single method for developing and 

analyses of DHW profiles. Usually, analyses of profiles, dividing them by influencing 

variables (day of the week, month etc.), determining the hours of peak energy loads are 

carried out intuitively, not based on statistical methods. This situation may lead to incorrect 

interpretation of profiles for certain buildings. Therefore, the methods for performing data-

driven analysis of DHW heat use profiles in buildings should be improved.   
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3. Method for splitting measurements of the total heat 
demand in buildings into SH and DHW heat use 

Chapter 3 presents methods that were used in Papers I-III for restoring information 

about the SH and the DHW heat use from the measurements of the total heat use in buildings. 

In addition, the ESC method in Section 3.1 was used for SH heat use modeling in Paper XI.  

The methods in Chapter 3 are considered in two sections. Section 3.1 is dedicated to 

the application of the ESC to extract the information about the SH and the DHW heat use from 

the total heat use in buildings. Section 3.2 proposes the method which is based on the singular 

spectrum analysis (SSA) for the decomposition of the SH and the DHW heat use. 

 

3.1. Energy Signature Curve for the SH and the DHW heat 
use analysis 

The method proposed in this thesis used the assumption that the SH and the DHW have 

different factors affecting them. It is well known that the main influencing factor on the SH 

heat use is the outdoor temperature [72, 73]. In addition, for DHW use, a seasonal variation is 

found related to the outdoor temperature [74]. However, on an hourly basis, the research in 

[75] shows that the correlation between the DHW use and the outdoor temperature is 

insignificant. Thus, the regression model between the total heat use in buildings and the 

outdoor temperature is caused by the SH. Meanwhile, the DHW heat use can be found in the 

residuals of this model.  

The ESC is a powerful instrument for heat use analysis in buildings [76]. It shows the 

relationship between the heat use in an observed building and the outdoor temperature [44, 

77]. An example of the ESC is shown in Fig. 2. 

For a building with a heating season and no cooling taking into consideration, the ESC 

often consists of two parts. These parts are divided by the change point temperature (CPT), 

see Fig. 2. The CPT is a critical outdoor temperature that sets the boundary between the start 

and the end of the heating season. At the right-hand side of the CPT, the SH use in the 

building is limited. The part of the curve at the left-hand side of the CPT shows the SH 

season. Usually, in this period, the SH heat use is significantly higher than the DHW heat use. 

The function at the right-hand side of the CPT shows the warm season when SH is not 

required. During this time, the main share of heat use is related to the DHW system. 
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Nevertheless, depending on the system type, a small amount of heat use associated with the 

operation of the SH system may occur.  

 

Fig. 2. An example of the energy signature curve 

 

For some buildings, the last day of the heating season or the CPT is known. If the CPT 

is known, the ESC can be built by using the least square method for two parts of the model, 

see Fig. 2. Otherwise, the CPT may be identified by using the piecewise regression method. 

This method allowed us to find the CPT and construct separate models for the two parts of the 

ESC as the following:  𝑓(𝑥) = {𝛽0 + 𝛽1(𝑥 − 𝐶𝑃𝑇) + 𝜀          If 𝑥 <  CPT𝛽0 + 𝛽2(𝑥 − 𝐶𝑃𝑇) + 𝜀          If 𝑥 >  CPT                                  (3.1) 

where 𝑓(𝑥) is a model for the ESC, 𝑥 is the outdoor temperature, 𝛽0, 𝛽1, 𝛽2 are the 

coefficients of the piecewise model, and ε is the residual error. 

The research work within this PhD showed that the ESC model explained well the 

behavior of the SH heat use. However, since the total heat use also includes DHW, the model 

was shifted relative to the SH heat use by a certain constant value. In this work, this value was 

called the shifting coefficient. The shifting coefficient can be revealed from the behavior of 

the SH system in the warm season, when the outdoor temperature is above the CPT. During 

the warm season, there were hours when the SH heat use in the building was equal to zero. 

The research presented in [38] showed that the minimum value of the ESC coincides with 

these hours. Thus, in this study, the coefficient of shifting was defined to be equal to the 

minimum value of the total heat use determined by the ESC. Extracting this coefficient from 
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the ESC allowed us to obtain the SH heat use model. Finally, the following equation was 

suggested for the SH heat use model: 𝐸𝑆𝐻 = 𝑓(𝑥) − min (𝑓(𝑥))                                                     (3.2) 

The values of the total heat use, which lies above the modeled SH heat use gave 

information about the trend of the DHW heat use [36]. Therefore, initially, it was assumed 

that the positive residuals, obtained as the difference between the total heat use and the 

modeled SH heat use, represented the DHW heat use. When the negative values appeared in 

the residuals, the DHW heat use was supposed to be equal to zero. In a DHW system with 

continuous circulation, the DHW system operates continuously to deliver hot water. 

Accordingly, the system losses should be added to the DHW heat use obtained from the 

residuals. These losses may be found as an average value of the heat use at the night time, as 

proposed in [40]. Then the model of the DHW heat use may be identified by the following: 𝐸𝐷𝐻𝑊 = {𝐸𝑇𝐻 − 𝐸𝑆𝐻 + 𝐸𝐿𝑜𝑠𝑠          If 𝐸𝑇𝐻 > 𝐸𝑆𝐻𝐸𝐿𝑜𝑠𝑠                                    If 𝐸𝑇𝐻 ≤ 𝐸𝑆𝐻                                  (3.3) 

where 𝐸𝑇𝐻  is the measured total heat use and 𝐸𝐿𝑜𝑠𝑠 presents the heat losses in the DHW 

system. 

Finally, the SH heat use was balanced according to the DHW heat use model. The SH 

heat use model was recalculated as a difference between the actual total heat use and the 

DHW heat use obtained by Equation 3.3. In addition, it was introduced a condition that both 

the DHW and the SH heat use should be positive. In a case, if one of these parameters 

becomes negative, the negative value was compensated from another parameter until both of 

them become positive. In such a way, all the values for the restored DHW and SH heat use 

were positive, and their sum was equal to the total heat use.  

The flowchart of the above-introduced algorithm for splitting SH and DHW heat use 

based on the ESC is shown in Fig. 3. 
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Fig. 3. Flowchart of the algorithm for splitting the total heat use into the SH and the DHW 

heat use by using the ESC 

 

The proposed method based on the ESC might give a reasonable estimation for the 

trend of the SH heat use. However, the ESC is using linear functions. For this reason, it 

cannot capture spikes and rapid fluctuations of the SH heat use. The residuals of the ESC 

model also contained some noise from the SH. This noise reduced the accuracy of the DHW 

model. To capture the spikes in the SH heat use in a better way and to improve both the SH 

and the DHW heat use models, the additional analysis was suggested. Particularly, after the 

application of Equation (3.2), a time series decomposition was applied. For this purpose, the 

SSA was used. This step is further explained in Section 3.2. 

 

3.2. Application of Singular Spectrum Analysis for identifying 
the SH and DHW heat use  

SSA is a useful method for time series analysis and data mining [78]. This method 

allowed us to decompose the time series of the total heat use into a sum of components, �̃�𝑖. 
The components may give an interpretation of the time series structure. There are several 

software tools in Python [79] and R [80] for the SSA. The two groups of the components, 

related to the SH and the DHW heat use, could be found. The summation of the components 

within each group made it possible to restore the SH and the DHW heat use from the total 

heat use. 
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In this PhD work, the time series 𝐸𝑇𝐻 = (𝐸1, 𝐸2, … , 𝐸𝑁) of the total hourly heat use in 

the building was analyzed. Where 𝐸𝑖 is the hourly heat use, and N is the number of the 

elements in the data sample. For a one-year hourly data sample, N was equal to 8760. 

The algorithm of the SSA is well developed and presented in many articles and books 

[81, 82]. For example, the book [81] gives detailed explanations of the SSA technique, as well 

as examples of its application.  

In order to separate the SH and the DHW heat use by the SSA method, two main 

problems were solved. The first problem was the selection of an appropriate window length L 

for the SSA decomposition. The SSA does not have strict recommendations for the selection 

of the optimal window length. Therefore, quite often, the trial and error method is applied. 

The second problem was identifying the groups of the components related to the SH and 

DHW. These two problems were attempted to be solved based on the SH heat use model 

obtained by the ESC method, as described in Section 3.1, see Equation (3.2). The SSA was 

iteratively applied for different windows length L (2, 3,…,𝑁/2). On each iteration for 𝐿𝑖 the 

SSA components were calculated. Out of all the components, only the components associated 

with the SH heat use were identified. These components were selected in such a way that their 

additive sum has a maximum correlation with the SH heat use model, see Equation (3.2), as 

the following: 𝑐𝑜𝑟𝑟(𝐸𝑆𝐻, ∑ �̃�𝑘) → 𝑚𝑎𝑥                                                    (3.4) 

where ∑ �̃�𝑘 is the sum of the components selected from �̃�𝑖. 
From the considered window lengths, the one that gives the maximum value for 

Equation (3.4) was selected. For the best window length, the new SH heat use model as a sum 

of the components was identified. This SSA model was also shifted in a similar way as in 

Equation (3.2): 𝐸𝑆𝐻′ = ∑ �̃�𝑘 − min (∑ �̃�𝑘)                                                 (3.5) 

Using the 𝐸𝑆𝐻′  and 𝐸𝑇𝐻, the new model for the DHW heat use (𝐸𝐷𝐻𝑊′ ) was identified 

by Equation (3.3). Finally, the values for both the restored SH heat use and the DHW heat use 

were balanced in such a way that both became positive, and their sum was equal to the total 

heat use. The SH heat use model was recalculated as a difference between the actual total heat 

use and the DHW heat use obtained by Equation 3.3. In addition, it was introduced a 

condition that both the DHW and the SH heat use should be positive. In a case, if DHW or SH 

heat use became negative, the negative value of this parameter was compensated from another 
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parameter until both of them become positive. The flowchart of the algorithm for splitting the 

SH and DHW heat use based on SSA is shown in Fig. 4. 

 

Fig. 4. Flowchart of the algorithm for splitting the total heat use into the SH and the DHW 

heat use by using the SSA  
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4.  Methods for DHW heat use prediction modeling in 
buildings 

Traditionally, predictive modeling includes the following main steps: selecting the 

influencing variables, identifying the method for prediction, and determining the parameters 

of this model. This chapter follows this way of DHW heat use model development. 

Chapter 4 introduces the methods that were used to determine the influencing 

variables and develop daily and hourly predictive models for DHW heat use in Papers IV-V. 

The chapter consists of two sections that are dedicated to modeling in Situation 1 and 

Situation 2. In Situation 1, only information from the historical DHW heat use was used for 

prediction. While in Situation 2, additional variables that affect the DHW heat use were 

selected and included in the prediction model. 

Situation 1 is presented in Section 4.1 and it meant the hourly prediction based on the 

historical time series of DHW heat use. Section 4.2 considers the issue of identifying 

variables that affect DHW heat use, followed by making prediction when using these 

variables. For this purpose, time series and machine learning techniques were used. In 

addition, in Section 4.2, a method that introduced the artificial variable reflecting the hourly 

intensity of the guests DHW use and improved the accuracy of the hourly DHW models for 

hotels was proposed. 

 

4.1. Prediction based on the historical time series of DHW 
heat use 

For certain types of buildings, information about user presence and other explanatory 

variables are unknown. In these conditions, only DHW heat use data from previous periods of 

time can be used for prediction. Practice shows that the DHW heat use may vary at different 

hours of the day, day of the week, and months. For this reason, the preference was given to 

methods that allowed us to make a prediction based on the historical time series of the DHW 

heat use and additionally take into account the day, week, and month when the DHW heat use 

occurred. Among different methods, such as classical methods for time series analyses, 

Exponential Smoothing (ES) and Autoregressive Integrated Moving Average (ARIMA), and 

modern methods of machine learning, Neural Network (ANN), Prophet, and XGBoost, were 

considered.  

The ES method uses recurrence relations between the current and the previous values 

of the parameter. According to ES, predictions are calculated by applying weighted averages 
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where the weights are exponentially decreasing as observations come further from the past 

[83]. In detail, the ES method is presented in [83]. According to [83], ES uses the following 

equation for prediction: �̂�𝑇+1│𝑡 = 𝛼 ∙ 𝐸𝑇 + (1 − 𝛼) ∙ �̂�𝑇│𝑡−1                                         (4.1) 

where �̂�𝑇+1│𝑡 is the predicted value and �̂�𝑇│𝑡−1 is the prediction for the previous moment of 

the time. 𝐸𝑇  is the most recent observation. 𝛼 is the smoothing parameter, accepted from 0 to 

1. 

The ARIMA method predicts the next step in the sequence as a linear function of the 

differenced observations and residual errors at previous time steps [84]. This method 

combines autoregressive (AR), Moving Average (MA) and the integrated (I) parts in one 

model. An integrated part of the model performs a differentiation preprocessing step of 

modeling that removes the non-stationarity of the time series. AR and MA are the core of 

prediction. The algorithm and theoretical bases of ARIMA modeling technique are well 

explained in [84]. 

The Prophet is a package for time series prediction developed by Facebook [85]. 

Prophet uses the additive regression model 𝐸(𝑡) that includes the following components: 𝐸(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡)                                                      (4.2) 

where 𝑔(𝑡) is the trend for non-periodic changes that may be obtained by a simple Piecewise 

Linear Model. 𝑠(𝑡) is the seasonal (periodical) component of the model obtained based on the 

Fourier series. ℎ(𝑡) is the component of the model that takes into account the effects of 

holidays and other untypical days with irregular schedules of the DHW heat use. 

XGBoost is a machine learning prediction technique based on the gradient boosting 

decision tree method [86]. XGBoost sequentially sums the prediction of multiple weak 

learners, such as regression trees models, in order to ensemble a robust prediction model [87]. 

By adding additional regression trees models in such a way, the errors made by the initial 

model are reduced. The regression trees models are added until further improvements of the 

initial model can no longer be obtained. The gradient boosting is related to a gradient descent 

algorithm that is used in XGBoost to minimize the loss when adding new models [88]. 

Mathematically, gradient boosting can be represented by the following equation [88]: �̂�𝑖 = ∑ 𝑓𝑘𝐾𝑘=1 (𝑋𝑖), 𝑓𝑘 ∈ F                                                       (4.3) 

where �̂�𝑖 is the predicted DHW heat use. 𝑋𝑖 are influencing variables. 𝐾 is the number of 

functions (regression trees) in the function space F.  
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In XGBoost the parameters of the functions can be found automatically by solving the 

following optimization function [88]: 𝑜𝑏𝑗(𝜃) = ∑ 𝑙(�̂�𝑖, 𝐸𝑖)𝑛𝑖 + ∑ 𝛺𝐾𝑘=1 (𝑓𝑘)                                         (4.4) 

where 𝑙 is the differentiable loss function. 𝛺 is the regularizing function that introduces 

penalties for the complexity of the model. A more extensive introduction to XGBoost 

modeling technique and its mathematical apparatus is given in [89]. 

Artificial Neural Network (ANN) is a powerful modeling technique that mimics the 

behavior of the brain with its homogeneous elements - neurons. For prediction, classification, 

and solving of other tasks, ANN uses the number of simple nonlinear functional blocks that 

are called neurons. Multiple neurons are organized into layers [90], where the actual 

processing of data is performed via a system of weighted connections [89]. The ANN 

represents the group of mathematical models of high complexity. This method demonstrates 

good results for nonlinear relationships among variables. In this work, the ANN model with 

the two-layer feed-forward network [91] was used for the DHW heat use prediction. 

In order to estimate the accuracy of the DHW heat use models, cross-validation was 

used. The prediction for all the above-mentioned methods, except ANN, was performed in 

Python, using Statsmodels, XGBoost, and Prophet packages [92]. For Neural Networks 

modeling, the Neural Network Toolbox in MATLAB software was utilized [91]. The 

comparison of the models was performed based on the Coefficient of Determination (R2), 

Mean Absolute Error (MAE), and Mean Squared Error (MSE) criteria of the model adequacy 

[92]. 

 

4.2. Prediction based on the variables that have a significant 
influence on the DHW heat use 

Compared to Section 4.1, Section 4.2 considers more favorable conditions for the 

DHW heat use prediction. In these conditions, in addition to DHW heat use data from 

previous periods of time, information about occupancy and other explanatory variables are 

known. The procedure for the DHW heat use prediction in this section includes three main 

steps: data preprocessing, identifying variables that affect DHW heat use, and selection of the 

best model for hourly prediction of DHW use. The preprocessing step included removing 

outliers and unrealistic data. For hotels, as a part of preprocessing, a method for introducing 

an artificial variable, which reflects the influence of hourly guest presence on DHW heat use, 

was proposed. This method, in detail, is explained in Section 4.2.1. The set of variables that 
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affect the DHW heat use was selected according to the Wrapper approach. This approach is 

explained in Section 4.2.2. Afterward, the selected set of influencing variables was used as 

input for modeling. The accuracy evaluation of various machine learning methods for the 

DHW heat use prediction was carried out. General information about the considered methods 

is presented in Section 4.2.3.  

 

4.2.1 Preprocessing the daily data of the guest presence in 
hotels 

It is well known that occupancy has a significant effect on DHW heat use in buildings 

[7]. Among all influencing factors, the number of guests being present in a hotel is typically 

the key factor that affects DHW heat use the most.  

Traditionally, a hotel booking system stores information about the number of guests 

who were booked into the hotel for each day. For a given date, both the number of guests 

booked in one day before, GstLag1, as well as on the observed day itself, Gst, are influencing 

the DHW heat use. In general, Gst shows the number of guests who are staying in the hotel 

after 15.00 o’clock, and GstLag1 reflects information about people who are leaving before 

12:00 o’clock. Nevertheless, despite the official check-in/out time, in practice, the actual time 

when guests are arriving and leaving may vary. Sometimes guests arrive before the set time of 

check-in, and it happens that some guests can stay longer in the building after the check-out 

time.  

The daily profiles in the hotel showed that the highest DHW heat use occurs before 

12:00 o’clock. Consequently, the influence of GstLag1 on daily DHW heat use may be more 

significant than Gst. For this reason, it is crucial to take both factors Gst and GstLag1 into 

account in the model. 

The investigation showed that using Gst and GstLag1 allowed us to perform a quite 

accurate daily prediction of DHW heat use. However, if we consider the hourly analysis of the 

DHW heat use, Gst and GstLag1 do not give sufficient information about hourly occupancy in 

the hotel. These parameters do not show whether the guests are present in the hotel at certain 

hours or not. For this reason, the considered factors cannot substantially enhance the accuracy 

of the hourly model of the DHW heat use. To increase the accuracy of the hourly model, an 

additional artificial variable (Gstart) was proposed to reflect the hourly influence of the guests 

presence on the DHW heat use. The following equation was proposed to determine the 

numerical value of the Gstart for each separate hour: 
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𝐺𝑠𝑡𝑎𝑟𝑡 = 𝐺𝑠𝑡 ∙ 𝐶𝑔𝑝𝑖 + 𝐺𝑠𝑡𝐿𝑎𝑔1 ∙ 𝐶𝑔𝑝𝐿𝑎𝑔1.𝑖 (4.5) 

where 𝐶𝑔𝑝𝑖 and 𝐶𝑔𝑝𝐿𝑎𝑔1.𝑖 are the coefficients for the guest DHW use intensity for ith-hour, 

which were identified based on the number of people booked into the hotel on the observed 

day Gst and one day before GstLag1.  

In order to identify the coefficients of the guest DHW use intensity for ith-hour the 

following optimization problem was solved: max (𝑐𝑜𝑟𝑟({𝐶𝑔𝑝𝑖=1 ∙ (𝐺𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗  ) + 𝐶𝑔𝑝𝐿𝑎𝑔1.𝑖=1 ∙ (𝐺𝑠𝑡𝐿𝑎𝑔1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗), … , 𝐶𝑔𝑝𝑖=24 ∙ (𝐺𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗  )   +𝐶𝑔𝑝𝐿𝑎𝑔1.𝑖=24 ∙ (𝐺𝑠𝑡𝐿𝑎𝑔1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) }, 
{�⃗� 𝑖=1, … , �⃗� 𝑖=24}) 

(4.6

) 

where 𝐶𝑔𝑝𝑖 and  𝐶𝑔𝑝𝐿𝑎𝑔1.𝑖 are the target variables. �⃗� 𝑖 is the vector of the DHW energy use 

data in the hotel in ith-hour, 𝐺𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗  , 𝐺𝑠𝑡𝐿𝑎𝑔1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ are vectors of the daily number of guests booked 

into the hotel on the given day and one day before. 

By solving the optimization problem in Equation (4.6), the values of the coefficients 

for the guest DHW use intensity for each hour of the day might be obtained. These 𝐶𝑔𝑝𝑖 and 𝐶𝑔𝑝𝐿𝑎𝑔1.𝑖 coefficients were maximizing the correlation between Gstart and the DHW heat use. 

Application of these coefficients for the guest DHW use intensity for ith-hour made Gstart 

based predictions more accurate.  

 

4.2.2 Wrapper approach for selecting the influencing variables 
of the DHW heat use 

Choosing the proper set of influencing variables is a crucial step for the DHW heat use 

prediction. The use of irrelevant and redundant input variables in the model leads to an 

increase in computational demand, an inadequate interpretation of the model, and generally 

makes prediction more complicated and less accurate. Traditionally, three different 

approaches may be used for feature selection: Filtering, Wrapper, and Embedded method 

[93].  

In this work, the Wrapper method was used for optimal variables selection. This 

method is one of the most precise methods, because it detects possible interactions between 

variables and takes into account the specific characteristics of the prediction algorithm [93]. 

According to the Wrapper method, first, all the variables were sorted by the absolute value of 

the correlation criteria between a variable and the DHW energy use. Afterward, an iteration 

algorithm was applied. In each iteration step, one additional variable from the sorted list of the 
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variables was added to the model. For each step, parameters and accuracy criteria of the 

model were recalculated. The obtained criteria of model accuracy on a current step were 

compared with the criteria from the previous step. Thus, parameters that do not improve the 

accuracy of the model were identified and eliminated from the model, and a set of variables 

that made predictions more precise was selected. Despite the higher computational time 

compared to commonly used analysis based on the correlation matrix (Filtering method), the 

application of the Wrapper method is a more potent instrument for assessing the impact of 

different combinations of variables on the DHW heat use and selecting their proper set for 

accurate prediction [93]. 

 

4.2.3 Prediction techniques for modeling DHW heat use based 
on influencing factors 

The advanced time series techniques have the ability to take into account explanatory 

variables. For this reason, some models in Section 4.1 were also used for prediction in current 

conditions. In addition to the models in Section 4.1, the availability of data on influencing 

factors allowed us to apply more diverse prediction techniques.  

Group Method of Data Handling (GMDH) is a computer-based method for calculating 

complex multivariable models. GMDH stands on self-organization theory for mathematical 

models. The method recursively combines selective sub-models (base function) to obtain a 

more accurate predictive model. At each step of the modeling, the number of sub-models 

included in the main model is gradually growing. In this way, the accuracy and complexity of 

the model are increasing. The GMDH allows us to find a model structure with optimal 

complexity based on the minimum value of an external criterion [94]. As base functions in 

GMDH various models may be used: linear,  polynomials, exponential, etc. 

Partial Least Squares Regression (PLSR) is a powerful instrument for prediction in 

conditions when a large number of independent variables is used in the model. PLSR works 

well with highly collinear variables, too. This method performs the decomposition of the 

initial data into a subspace of latent variables (scores and loadings). Latent variables are 

representing the main features of co-variance among the dependent and the independent 

variables [95]. PLSR calculates the linear regression model via the projection of the predicted 

variables and the observable variables to a subspace of the latent variables [95]. 

Support Vector Regression (SVR) is based on the computation of a linear regression 

function in high dimensional feature space [96], where the input data are mapped via a 
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nonlinear function. SVR is minimizing the generalized error bound [97]. The generalization 

error bound includes the training error and a regularization term that controls the complexity 

of the hypothesis space [97]. The comprehensive overview of this method is given in [98]. 

Ridge and LASSO methods are used to deal with overfitting and variables that may be 

affected by multicollinearity [99]. Both these methods are based on principals of 

regularization, i.e. introduction penalties to the coefficients of features. Ridge Regression is 

penalizing the square of the magnitude of coefficients [100]. LASSO introduces penalties to 

the absolute value of the magnitude of the coefficients [100]. 

In Section 4.2, the general principles for the DHW heat use modeling were applied in 

the same way as in Section 4.1. The best model was selected based on R2, MAE, and MSE 

criteria of the model adequacy. The prediction for the methods mentioned above was 

performed in Python, using Statsmodels and GmdhPy packages.  
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5. Methods for development and analyses of DHW heat use 
profiles 

Chapter 5 presents methods that were used for the development and analyses of DHW 

heat use profiles in Papers VIII-IX. The methods for the analyses of DHW profiles included 

the four main steps as shown in Fig. 5.  

 

Fig. 5. Methods for the analysis of DHW heat use profiles 

 

The three following sections cover the methods that were used to solve issues in 

shown Fig. 5. Section 5.1 describes the method for comparison of the DHW heat use profiles 

from different days of the week and assessing their similarities. In this study, we did not 

assume beforehand that the profiles might be divided in a certain way. Student's t-test and 

Fisher's exact test were used for solving this issue. By using this method, the data tests may be 

used for samples with standard normal distribution and t-distribution. This allowed us to 

determine the statistically justified days of the week with similar DHW heat use profiles. In 

Section 5.2, a method for determining the duration and boundaries of time zones with peak, 

minimum, and average heat use during the day was showed. In Section 5.3, a statistical 

method for identifying the number of seasons, as well as the months included in each season, 

was described. By using this method, the impact of seasonality on DHW heat use was 

considered. 

 



 

37 
 

5.1. Comparing the similarity of DHW heat use profiles in 
different days of the week 

To determine the days of the week with similar characteristics of the DHW heat use, a 

method based on test statistics was proposed. The similarity of two DHW heat use profiles 

was checked based on the Student's t-test and Fisher's exact test. Appropriate tests may be 

used for samples with the standard normal distribution and t-distribution.  

By applying the Student’s t-test, it was possible to check if the mean values of the 

DHW heat use from two days of the week were equal or not. To achieve this, the DHW heat 

use within each day was considered as a statistical sample with 24 elements, which 

represented the number of hours in the day. The t-test statistical value was calculated as the 

following: 𝑇𝑐𝑎𝑙 = ⌈�̅�𝑝𝑟𝑜𝑓1 − �̅�𝑝𝑟𝑜𝑓2⌉√𝑆𝑝𝑟𝑜𝑓12𝑛𝑝𝑟𝑜𝑓1 + 𝑆𝑝𝑟𝑜𝑓22𝑛𝑝𝑟𝑜𝑓2
 

(5.1) 

where �̅�𝑝𝑟𝑜𝑓1, �̅�𝑝𝑟𝑜𝑓2 are the mean values of the DHW heat use in the first and second 

samples. 𝑆𝑝𝑟𝑜𝑓1, 𝑆𝑝𝑟𝑜𝑓2 are the standard deviations of the DHW heat use profiles in the first 

and second samples. 𝑛𝑝𝑟𝑜𝑓1, 𝑛𝑝𝑟𝑜𝑓2 are the number of elements in the first and second 

samples. Finally, the equation for the standard deviation for i-th day was written as: 

𝑆𝑝𝑟𝑜𝑓𝑖 = √∑(𝐸𝑝𝑟𝑜𝑓𝑖.𝑗 − �̅�𝑝𝑟𝑜𝑓𝑖)2𝑛𝑝𝑟𝑜𝑓𝑖 − 1  (5.2) 

where 𝑖 is the number of the sample, 𝑗 is the number of elements in the sample, 𝐸𝑝𝑟𝑜𝑓𝑖.𝑗 is the 

DHW heat use in j-th element in i-th sample. 

The obtained value for t-criteria, 𝑇𝑐𝑎𝑙, was compared with the critical value, 𝑇𝑐𝑟. 𝑇𝑐𝑟 

may be found in the literature for different degrees of freedom and significance level 𝑘. The 

comparison may lead to three possible situations as the following: 

 If 𝑇𝑐𝑎𝑙 ≤ 𝑇𝑐𝑟 (𝑛𝑝𝑟𝑜𝑓1 + 𝑛𝑝𝑟𝑜𝑓2 − 2, 𝑘 = 0.05), then the mean values of the 

first and the second samples are similar; 

 If 𝑇𝑐𝑎𝑙 ≥ 𝑇𝑐𝑟 (𝑛𝑝𝑟𝑜𝑓1 + 𝑛𝑝𝑟𝑜𝑓2 − 2, 𝑘 = 0.01), then the mean values of the 

first and the second samples have a significant difference; 

 If 𝑇𝑐𝑎𝑙 ≤ 𝑇𝑐𝑟 (𝑛𝑝𝑟𝑜𝑓1 + 𝑛𝑝𝑟𝑜𝑓2 − 2, 𝑘 = 0.01) and 𝑇𝑐𝑎𝑙 ≥ 𝑇𝑐𝑟 (𝑛𝑝𝑟𝑜𝑓1 +𝑛𝑝𝑟𝑜𝑓2 − 2, 𝑘 = 0.05), then the mean values of the first and the second 
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samples may be considered as similar. However, the final decision should be 

done based on the knowledge of researchers. 

Meanwhile, the Fisher’s criterion allowed us to estimate the similarity of two samples 

by variances: fcal = max(Sprof12 ,  Sprof22 )min(Sprof12 ,  Sprof22 ) (5.3) 

The comparison obtained by calculations of the Fisher criterion, 𝑓𝑐𝑎𝑙 with its critical 

value, 𝑓𝑐𝑟 led to the following results: 

 If 𝑓𝑐𝑎𝑙 ≤ 𝑓𝑐𝑟 (𝑛𝑝𝑟𝑜𝑓1 + 𝑛𝑝𝑟𝑜𝑓2 − 2, 𝑘 = 0.05), then the variances of the first 

and the second samples are similar; 

 If 𝑓𝑐𝑎𝑙 > 𝑓𝑐𝑟 (𝑛𝑝𝑟𝑜𝑓1 + 𝑛𝑝𝑟𝑜𝑓2 − 2, 𝑘 = 0.05), then the variances of the first 

and the second samples have significant difference. 

The two profiles are considered to be similar if both the Student's t-test and the 

Fisher's exact test show the same results. If at least one of two tests shows that the mean 

values or variances of profiles in the first and the second samples are not similar, it is possible 

to conclude that the profiles are dissimilar and should be analyzed separately.  

Splitting the DHW profiles by the days of the week should be made based on a large 

dataset, which represents DHW heat use during the year. Therefore, in this study, it was 

proposed to divide initial statistical data into separate weeks. Within each week, all 

combinations of the daily DHW profiles should be compared among themselves by the 

Student's t-test and the Fisher exact test. For instance, profiles for Monday and Thursday, 

Monday and Wednesday, Saturday and Sunday and so on should be compared. Afterward, for 

all the combinations of days, the number of the weeks can be identified, when statistical tests 

show that profiles in considered pairs of days are similar. For further analysis, for each 

combinations of days of the week, the number of matches of the DHW profiles in percentage 

can be found as: ni.j = Ni.j ∙ 100/Ntotal (5.4) 

The elements in Equation (5.4) are the following: ni.j is the number of matches in 

percentage, when the DHW profiles of i-th and j-th days were similar. 𝑁𝑖.𝑗 is the number of 

the weeks, when statistical tests showed that the i-th and j-th days were similar. 𝑁𝑡𝑜𝑡𝑎𝑙 is the 

total number of the weeks in the statistical data sample of the DHW heat use. 𝑖 is the day of 

the week of the first comparable profile (from 1 to 7). 𝑗 is the day of the week of the second 
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comparable profile (from 1 to 7). For better clarity, the results could be presented in the form 

of the matrix of matches as in Table 3. 

Table 3. Form of the matrix of matches 

 Mo. Tu. We. Thu. Fr. Sa. Su. 
Mo. 𝑛1.1 − − − − − − 
Tu. 𝑛2.1 𝑛2.2 − − − − − 
We. 𝑛3.1 𝑛3.2 𝑛3.3 − − − − 
Th. 𝑛4.1 𝑛4.2 𝑛4.3 𝑛4.4 − − − 
Fr. 𝑛5.1 𝑛5.2 𝑛5.3 𝑛5.4 𝑛5.5 − − 
Sa. 𝑛6.1 𝑛6.2 𝑛6.3 𝑛6.4 𝑛6.5 𝑛6.6 − 
Su. 𝑛7.1 𝑛7.2 𝑛7.3 𝑛7.7 𝑛7.5 𝑛7.6 𝑛7.7 

 

Based on the matrix of matches, the groups of the days of the week with the similar 

profiles for the DHW heat use could be identified. Namely, the days of the week, which have 𝑛𝑖.𝑗 ≥ 100 − 𝑒𝑟𝑟𝑜𝑟, have similar characteristics of the DHW heat use and should be placed in 

one group and analyzed together. The value of the error included the accuracy of the Student's 

t-test, the Fisher's exact test, and the percentage of days in the year when the building is not in 

operation in typical regimes such as holidays. 

 

5.2. Determining the time zones with peak, minimum, and 
average heat load for daily profiles of DHW heat use 

To implement energy management in buildings, it is essential to identify the typical 

duration and boundaries of time zones with the peak load, the minimum, and the average heat 

load during the day. To solve this issue, it was proposed to perform statistical grouping of the 

hourly heat use of the DHW system based on the method presented by Nakhodov in [101]. 

Initially, this method is used for identification of the tariff zones of electrical energy use in the 

power system. In this work, the method was adapted for analysis of DHW heat use in 

buildings. The method allowed us to divide the hours of DHW heat use into several groups 

with statistically different mean values within each group. It is based on an iteration procedure 

and analysis of the mean values of DHW heat use by applying the Student's t-test. In this case, 

a DHW heat use profile was considered as a statistical sample 𝑒. The sample contained N=24 

elements (hours) with the DHW heat use in these hours equal 𝑒𝑗 (where 𝑒𝑗 is the DHW heat 

use in the j-th hour.  𝑗 is the number of the element in the sample). The flowchart for the 

algorithm for determining the time zones with the peak, the minimum, and the average heat 

load for daily profiles of the DHW heat use is shown in Fig. 6. 
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Fig. 6. Flowchart for the algorithm for determining the time zones with the peak, the 

minimum, and the average heat load for daily profiles of DHW heat use 

 

The detailed algorithm of the method for determining the time zones was as the 

following: 

Step 1. Sorting the elements of the sample in the order of their increase  

The elements 𝑒𝑗 in the sample 𝑒 were sorted in the order of their increase. Such an 

arrangement of elements from smaller values of the hourly DHW heat use to higher values 

allowed us to obtain the sorted sample 𝐸 with N elements 𝐸𝑖 (where 𝐸𝑖+1 > 𝐸𝑖, 𝑖 is the 

number of elements in sample 𝐸). 

Step 2. Identifying the initial groups for the elements that could be considered 

statistically similar 

Based on the sample 𝐸, an iterative procedure of generating of two statistical 

subsamples 𝑅1 and 𝑅2 with variable number of elements was applied. For each step of 

iteration, sample 𝑅1 contained M elements, while 𝑅2 should have M+1 elements. The 

elements in samples 𝑅1 and 𝑅2 were taken consistently from the initial sample 𝐸. With each 

iteration, the number of elements M in these subsamples increased by one. The value of M 

varied from 1 to 23. 

For each step of these iterations, the value of the Student’s t-test for the two 

subsamples 𝑅1 and 𝑅2 were calculated by using Equation (5.1). 

For instance: 
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iteration 1) 𝑅1 = [𝐸1], 𝑅2 = [𝐸1, 𝐸2], M=1, and 𝑇𝑐𝑎𝑙1; 

iteration 2) 𝑅1 = [𝐸1, 𝐸2], 𝑅1 = [𝐸1, 𝐸2, 𝐸3], M=2, and 𝑇𝑐𝑎𝑙2; 

……….. 

iteration 23) 𝑅1 = [𝐸1, 𝐸2 …𝐸23], 𝑅1 = [𝐸1, 𝐸2 …𝐸24], M=23, and 𝑇𝑐𝑎𝑙23; 

Step 3. Checking the possibility of merging the closest groups according to 

Student's t-test 

Based on the iteration procedure in Step 2, the series of t-criteria for all the 

combinations of the subsamples 𝑅1 and 𝑅2, 𝑇𝑐𝑎𝑙 =[𝑇𝑐𝑎𝑙1,𝑇𝑐𝑎𝑙2 …𝑇𝑀] were found. 

If an ordered sample of hourly DHW heat use was monotonous, then the numerical 

values of the elements in this sample increase evenly. In that case, the series of the t-criteria 

obtained by the iteration procedure would also be monotonous. This means that the values of 

the t-criteria obtained by Equation (5.1) would decrease monotonically with each next 

iteration (𝑇𝑐𝑎𝑙1 > 𝑇𝑐𝑎𝑙2 … > 𝑇𝑀). If the ordered sample of the hourly DHW heat use was 

uneven, then a monotonic decrease of the calculated values of the t-criteria would be violated 

by periodic abrupt growth (𝑇𝑐𝑎𝑙𝑖 < 𝑇𝑐𝑎𝑙𝑖+1). Thus, the identification of points of growth of the 

calculated values of the t-criteria allowed us to determine between which hours there is a 

noticeable statistical difference of the DHW heat use. This assumption allowed us initially to 

divide hours in the profile of DHW heat use into several groups. Each of these groups was the 

sample of data, where DHW heat use data varied monotonously. Created in this way, 

neighboring groups of hourly DHW heat use could be checked in terms of the possibility for 

their further merge. For this purpose, the data samples of the two neighboring groups were 

assessed by the Student's t-test (see Equation (5.1)). As a result, the calculated value of the t-

criteria, 𝑇𝑐𝑎𝑙, could be compared with the critical value, 𝑇𝑐𝑟. This comparison could lead to 

the three possible situations such as: 

 If 𝑇𝑐𝑎𝑙 ≤ 𝑇𝑐𝑟 (𝑛𝑔𝑟𝑜𝑢𝑝1 + 𝑛𝑔𝑟𝑜𝑢𝑝2 − 2, 𝑘 = 0.05), then the mean values of the 

two groups were similar and should be merged; 

 If 𝑇𝑐𝑎𝑙 ≥ 𝑇𝑐𝑟 (𝑛𝑔𝑟𝑜𝑢𝑝1 + 𝑛𝑔𝑟𝑜𝑢𝑝2 − 2, 𝑘 = 0.01), then the mean values of the 

two groups were different and they should be considered separately; 

 If 𝑇𝑐𝑎𝑙 ≤ 𝑇𝑐𝑟 (𝑛𝑔𝑟𝑜𝑢𝑝1 + 𝑛𝑔𝑟𝑜𝑢𝑝2 − 2, 𝑘 = 0.01) and 𝑇𝑐𝑎𝑙 ≥ 𝑇𝑐𝑟(𝑛𝑔𝑟𝑜𝑢𝑝1 +𝑛𝑔𝑟𝑜𝑢𝑝2 − 2, 𝑘 = 0.05), then the mean values of the two groups could be 

considered as similar. However, the final decision should be made based on the 

knowledge of the researcher.  
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After the groups were merged based on the above explained conditions, the new set of 

groups was created. The calculations in Step 3 should be repeated from the beginning with the 

new set of groups in the sample. Iterative calculations in Step 3 were continued until the t-test 

showed that no groups can be merged together and that the total number of groups could not 

be reduced. 

Step 4. Based on the groups with the elements, identifying the critical borders 

that separated the DHW heat use profile into zones with the peak, the average, 

and the minimum heat use 

Critical borders that separated the DHW heat use profile into zones with the peak, the 

average, and the minimum heat use may be identified by the following: 

Emin = E̅group.1 + Tcr.1(Mgroup.1 + 1 − 2, 𝑘 = 0.01)√Sgroup.12Mgroup.1 (5.5) 

 

Emax = E̅group.K−1 + Tcr.K−1(Mgroup.K−1 + 1 − 2, 𝑘 = 0.01)√Sgroup.K−12Mgroup.K−1 (5.6) 

where �̅�𝑔𝑟𝑜𝑢𝑝.1, �̅�𝑔𝑟𝑜𝑢𝑝.𝐾−1 are the mean values of the DHW heat use in the first group and 

the next to the last group. 𝑀𝑔𝑟𝑜𝑢𝑝.1, 𝑀𝑔𝑟𝑜𝑢𝑝.𝐾−1 are the numbers of the elements in the first 

group and the next to the last group. 𝑆𝑔𝑟𝑜𝑢𝑝.12 , 𝑆𝑔𝑟𝑜𝑢𝑝.𝐾−12  are the standard deviations in the 

first group and the next to the last group. 𝑇𝑐𝑟.1, 𝑇𝑐𝑟.𝐾−1 are the critical values of the t-criteria 

for the first group and the next to the last group.  

The hours in which the DHW heat use was below 𝐸𝑚𝑖𝑛 should be considered as the 

zone with the minimum DHW heat use. If the DHW heat use was between 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥, it 

could be assumed that in these hours, the DHW heat use was in a zone of the average heat 

use. The hours with the DHW heat use higher than 𝐸𝑚𝑎𝑥 lied within the zone of the maximum 

heat use. 
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5.3. Determining the seasons of DHW heat use 

The method described in Section 5.2 may be applied in order to identify the groups of 

months with similar characteristics of the DHW heat use. In this case, in contrast to the 

sample of 24 hours for each daily profile as considered in Section 5.2, the initial sample 

contains 12 elements for the monthly DHW heat use during the year. The basic principles and 

procedure of calculations in both hourly and monthly analysis were the same. As a result, the 

number of seasons of the DHW heat use in the year and the months included in each season 

could be identified. 
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6. Results and discussions 

Chapter 6 gives a summary of the publications, which represent the primary outcomes 

of this PhD work. The titles of sections in this chapter coincide with the titles of the papers in 

Section 1.4. Each section in this chapter was dedicated to a specific paper. Chapter 6 contains 

a brief overview, results, and discussions for a particular problem related to DHW heat use 

analysis and modeling. More detailed descriptions and results of the research are presented in 

Papers I-XI. 

The order of the subsections follows the order of papers in Section 1.4 and the 

structure of the thesis. Sections 6.1-6.3 investigate the problem of restoring information about 

the SH and the DHW heat use from the measurements of the total heat use in buildings. These 

chapters give the motivation to separate the SH and the DHW heat use analysis in buildings. 

Sections 6.4-6.5 consider the issue of selecting the best model and influencing variables for 

DHW heat use prediction. Sections 6.6-6.10 are devoted to the problem of development and 

analysis of DHW heat use profiles in different building types in Norway. Section 6.11 

addressed the problems of the total DHW and SH heat use profiles analyses and scenario-

based modeling for Norwegian buildings in normal conditions and during the COVID-

lockdown. Section 6.12 summarizes the results of studies presented in the publications. 

 

6.1. Analysis of energy signatures and planning of heating 
and domestic hot water energy use in buildings in Norway 

Section 6.1 and Paper I explored the problem of heat use planning in buildings. The 

case study for this research was a school located in Oslo, Norway. Even though the 

considered building is modern and constructed according to the passive house standard, the 

measurement system for heating in this school is simplified. This measurement system 

allowed us to obtain information only on the hourly total heat use, not divided into SH and 

DHW. The observed school is connected to the district heating and has only meter for the heat 

measurement, while if necessary, sometimes electricity is used for heating. 

The ESC method, see Section 3.1, was applied for the analysis of heat use in a school. 

To recall, the ESC consists of two different parts: temperature-dependent (TD) and 

temperature-independent (TI) heat use. The TD part of the heat use is characterized by the SH 

and the DHW heat use in the cold season. During this period, the SH system is in operation 

and generates the main heat load. The TI part is the heat use in the warm season. In the warm 
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season, SH is not needed, and therefore DHW use is the primary consumer of heat. In order to 

make a more accurate analysis, the TD and TI parts were considered individually. First, the 

correlation and the PCA analysis were applied to estimate the influence of different 

parameters on heat use in the school. Afterward, the data-driven modeling for the TI and the 

TD heat use was executed. 

The study showed that weekends and weekdays influence both the TD and the TI heat 

use in the school. Moreover, in working hours (from 7 o’clock till 17 o’clock on weekdays) 

the heating use is fluctuating and is higher compared to the other time of the week. In non-

working hours and weekends, the heat use is much lower and more uniform.  

For the TD heat use, the seasonality and the outdoor temperature are the essential 

variables that should be considered. The electricity use has a moderate positive correlation 

with the TD heat use heating. It might be that some school areas are heated up with electrical 

panels, and this is the reason for the positive correlation. Further, the temperature lag of 14 

hours was identified as a parameter that considered the thermal inertia of the building. For the 

TD heat use, several modeling techniques were compared by statistical criteria. The 

investigation showed that a multiple linear regression resulted in better accuracy for the TD 

heat use modeling than SVR, PLSR, and LASSO models. The R2 for the regression model 

was equal to 0.832. 

It was found that the TI part of the heat use, related to the DHW use, may be observed 

from April to October. The PCA of the TI heat use showed that hour of the day, day of the 

week, and seasonality were influencing parameters. However, unlike the TD part, the TI heat 

use has no other explanatory variables. Therefore, instead of a regression model, the profiles 

for working days and weekends were used to explain the TI heat use for each month from 

April to October. The value of R2 showed that the proportion of the total outcome variation 

described by the profiles was equal to 0.71. Moreover, the profiles obtained in this way were 

quite informative and allowed us to retrieve information about daily and monthly variations of 

the TI heat use for the summertime. 

The approach proposed in the Paper I suites for the total heat use planning in building. 

Analyses of the TI part of the heat use may give some hints about DHW heat use in the warm 

months. However, the results indicate that for better understanding and modeling of the DHW 

heat use in buildings, the more advanced methods should be applied. For this reason, the 

method for splitting the total heat use into the SH and DHW is required. Thus, Sections 6.2-

6.3 are dedicating to this issue.  
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6.2. Domestic hot water decomposition from measured total 
heat in Norwegian buildings 

This section discusses in more detail the problem of splitting the total heat use into 

DHW and SH heat use. The analysis performed in this study aimed at comparing and 

verifying different methods for restoring typical DHW heat use profiles from the total heat 

use in buildings. Three methods were tested for solving this problem: the seasonal method 

(SM), the energy signature method (ESM), and the hybrid summer-signature method (HSM-

ES). The first two of these methods are well known and commonly used. The hybrid summer-

signature method is a modified approach that was proposed in Paper II.  

The seasonal method assumes that there is no heat demand for SH between June 1st 

and August 31st, and the total heat use during these summer months is used only for DHW 

purposes. Consequently, the DHW profiles for these months may be restored and extended for 

the rest of the year. ESM makes a similar assumption. However, instead of a summertime 

assumption, the TI part of the ESC was used to identify the period when the DHW use is the 

primary heat consumer. When using the HSM-ES, linear regression is applied to calculate the 

expected value of the total heat use in the summer months for the given hour at a given 

outdoor temperature. This method assumed that the heat use was solely for the DHW heating 

purposes at higher outdoor temperatures. Thus, the results of the modeling at temperatures 

above 16°C allowed us to restore the DHW heat use profile. An extensive explanation of all 

the three methods is given in Paper II. 

For the investigation, one- to three-year period of hourly measurements in 78 

Norwegian buildings were used for restoring typical DHW heat use profiles. The buildings 

are comprised of apartments and hotels. The restored profiles were compared with the actual 

DHW heat use profiles obtained from several sources. 

The DHW heat use profiles developed based on the considered methods and the 

reference profile are shown in Fig. 7. In Fig. 7 the reference profile is obtained from the real 

measurements. All the three methods allowed us to recreate the hourly variation of the DHW 

heat use. Nevertheless, the average daily profiles for the apartments and the hotels, created 

with the HSM-ES, were most similar to the reference profiles obtained from the real 

measurements. These HSM-ES profiles were "smoother", with less sharp morning and 

evening peaks compared to the other decomposition methods. Obtained by HSM-ES method 

profiles for the hotels showed a high morning peak, and a slight increase in the DHW heat use 

towards the evening/night, with a significant decrease in energy use during the late night. For 
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the apartment buildings, the profiles demonstrated two prominent peaks that occurred in the 

morning and evening, a small reduction of the DHW heat use during day time, and a 

significant decline at the late night.  

 

Fig. 7 Restored profiles of DHW heat use 
 

The investigation also showed certain limitations of the considered methods. These 

methods do not allow to consider the seasonal variation of the DHW heat use and changes in 

the number of residents in buildings within the year. As a result, the comparison of the 

developed DHW heat use profiles and the measurements indicated that all the three methods, 

have high chances to overestimate the heat use for the DHW purposes. For this reason, the 

considered methods are more suitable for planning the maximum values of the DHW heat 

demand, rather than the average DHW heat use.  

Splitting the total heat use into SH and DHW heat use on an hourly basis is more 

informative and useful than restoring typical DHW heat use profiles. Thus, the research 

presented in Section 6.3 aims to develop a method that allowed us to restore hourly values for 

the SH and the DHW heat use for the entire year. 
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6.3. Splitting measurements of the total heat demand in a 
hotel into domestic hot water and space heating heat use 

Section 6.3 presents a method for splitting the total hourly heat use into the SH and the 

DHW. The splitting follows the assumption that the outdoor temperature is the main parameter 

explaining the hourly SH heat use, while the hourly DHW heat use was not influenced by this 

parameter. Following this assumption, the modeled SH heat use was extracted from the total 

heat use by using the ESC and SSA methods. The method is explained in detail in Paper III, 

and in Section 3.2. 

The method was tested based on the one-year hourly data received at a hotel located in 

Oslo, Norway. At this hotel, two energy meters measured the actual SH and DHW heat use 

separately. The sum of their readings characterized the actual total heat use in the building. 

Thus, the investigation was performed in such a way that the results of the total heat use 

splitting could be compared and verified based on the actual measurements from two separate 

meters for DHW and SH. 

Using the piecewise regression method, the ESC with the CPT equal to 16°C was 

developed for the considered building. As it was mentioned before, the “classical” ESC 

method assumes that the TI part of the ESC is fully dedicated to DHW. The measurements in 

the hotel showed that all the time in the warm months, even after the CPT, a certain amount of 

heat was consumed by the SH system. When the outdoor temperature was above the CPT, SH 

was responsible for 7% of the heat use, while 93% was associated with DHW. Meanwhile, 

during the whole year, the SH contributed to 75% of the total heat use and 25% was related to 

DHW. The SH heat use in the warm season might be explained by the fact that the control 

valve for the heat exchanger connecting the SH system to the district heating was wrongly 

sized or had faults. This meant that even this control valve was completely closed, some 

amount of the water flow passed and gave the SH use even above the outdoor temperature of 

16°C. This heat amount was not usefully used in the building, yet it was just heat loss 

circulating in the system [102]. 

The analysis showed that the method that used the ESC and the SSA decomposition 

well explained the trend of the SH heat use in the hotel. Fig. 8 and Fig. 9 show the results of 

splitting the total heat use in the hotel into SH and DHW based on SSA for February. For the 

yearly data sample, R2 for the SSA SH heat use model reached 0.97, while for the DHW heat 

use R2 was 0.76. Moreover, the SSA allowed us to capture hourly spikes of the SH and DHW 

heat use.  
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Fig. 8 Restored SH heat use based on the SSA 
 

 

Fig. 9 Restored DHW heat use based on the SSA 
 

Fig. 10 shows that the restored DHW and SH heat use may be used for identifying the 

typical heat use profiles. The proposed method allows restoring well the average daily load 

profiles for the SH and the DHW heat use. The profiles obtained from the SSA model well 

captured the timing of the peak heat use during an average day. The profiles showed that the 

morning peak of the DHW use in the hotel occurs from 7:00 to 9:00 o’clock and the evening 

peak from 21:00 to 23:00 o’clock. Comparing to the DHW, the profile of the SH heat use was 

more uniform. However, it also showed a small increase in heat use in the morning and night-

time. 
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Fig. 10 Restored hourly SH and DHW heat use profiles: a) SH heat use and b) DHW heat 
 

The average monthly profile for the restored SH heat use was representative, 

compared to the actual SH heat use. This profile captured well the seasonal variation of the 

SH heat use. The months with the coldest outdoor temperature (November, December, 

January, February and March) showed the highest SH use. At the same time, in the warm 

season (May, June, July, August and September), the SH heat use was small. The monthly 

DHW heat use profile had inaccuracy for the months in the warm season. In these months, 

significant spikes of DHW heat use occurred, most likely related to an increased number of 

guests in the hotel in the warm season [75]. In addition, due to the unnecessary SH heat use 

that occurred after the CPT in the hotel, it was difficult to capture precisely the DHW heat use 

from the ESC model for warm months.  

The proposed method allowed us to split the SH and the DHW heat use from the total 

heat use. Even though the obtained values of the SH and the DHW heat use have particular 

inaccuracy, their application may still be useful. Both models for the SH and the DHW well 

represented the general trends of SH and DHW use. They provide essential information for 

solving energy saving issues in the heating systems of buildings.  

 

6.4. Prediction of DHW energy use in a hotel in Norway 

Section 6.4 and Paper IV present the results of daily prediction modeling of DHW heat 

use. The prediction modeling was performed using data collected in a hotel, located in 

Norway.  

Identifying influencing variables with significant impact on the DHW heat use in the 

building is an initial step for prediction. The variables Gst and GstLag1, which represent the 
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number of guests on an observed day and the day before, were investigated. The data of 

energy use for other needs (Eon) and the number of booked rooms (Rm) were also examined. 

In addition, the influence of the following meteorological parameters was analyzed: the 

outdoor air temperature (T), the relative humidity (Rh), the mean wind speed (Ff), the 

atmospheric pressure (Pa). The influence of the day of the week (DoW) and month (Mth) was 

also considered.  

The influencing variables that affect the daily DHW heat use were selected based on 

the Wrapper approach. The main parameters for daily DHW here use modeling in the hotel 

were Gst and GstLag1. Rm was highly correlated with the number of guests and was taken out 

of the model, because it did not give additional information and quality to the model. DoW, T, 

Rh, Eon, and Mth in the daily model improved the models, but not much. For example, when 

adding all these parameters to the model, depending on the modeling approach, R2 coefficient 

increased by 5-15%. Thus, if the target of modeling is to build a more accurate model, then 

these parameters may be considered, as we have done in this paper. However, if a simple 

model is preferable, then only data about the number of guests in the hotel may be used.  

The selection of the DHW energy use model and modeling techniques should be made 

individually for each building, taking into consideration its characteristics. For this reason, 

eight modeling techniques were applied for daily prediction, and the most accurate models 

were selected among them. Fig. 11 shows good results obtained by using SVR. 

 

Fig. 11 Daily modeling of the DHW heat use based on the SVR method 

 

The models were tested using both the cross-validation approach and one year ahead 

prediction. The best model for the daily prediction was the SVR. For the daily model, R2 
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equals 0.881 for the SVR model based on the cross-validation of the data set, and 0.777 for 

one year ahead data set. 

 

6.5. Selecting the model and influencing variables for DHW 
heat use prediction in a hotel in Norway 

Section 6.5 shows more in-depth research of DHW heat use modeling with the focus 

on hourly prediction. The case study for this investigation was heat use in a hotel located in 

Eastern Norway.  

For accurate prediction, it is crucial to select a proper set of input variables. These 

variables should include the main factors that affect the DHW heat use in the building. Yet, 

the data availability may vary from one building to another. Therefore, two common 

situations with data availability were considered. Situation 1 assumed that only information 

from the historical DHW heat use might be used for prediction. Situation 2 demonstrated 

more favorable conditions, where also additional variables that affect DHW heat use were 

included in the model. These variables were determined using the Wrapper approach. The 

Wrapper approach showed that factors related to the guest presence have the most significant 

influence on the DHW heat use in the hotel. Nevertheless, daily data about the number of 

guests booked at the hotel did not appear to be informative enough for precise hourly 

modeling. Therefore, to improve the accuracy of the prediction, it was proposed to use an 

artificial variable. This artificial variable is identified based on the coefficient intensity of the 

guests DHW use according to the method presented in Section 4.2.1 and Paper V. The 

coefficients for a given day and the day before are shown in Fig. 12 and Fig. 13. They allowed 

us to reflect the hourly habits of the DHW use in the hotel. 

For more precise prediction, the variation of the DHW heat use in different periods of 

time should be taken into account in Situation 1. The descriptive statistical analysis and box 

plots of DHW heat use in the hotel clearly showed that parameters such as hour, day of the 

week, and month should be included in the model. Accordingly, in Situation 1, the 

retrospective time series of the DHW heat use and the hour, day, and month were used as 

inputs for different prediction techniques.  
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Fig. 12 Coefficients of the guest DHW use intensity based on the booking in the given day in 
the hotel in 2015-2016 

 

 

Fig. 13 Coefficients of the guest DHW use intensity based on the booking one day before in 
the hotel in 2015-2016 

 

The classical time series modeling techniques, ES and ARIMA, showed poor accuracy 

of prediction with the high values of MAE and MSE, and R2 less than 0.6. The NN, Prophet, 

and XGBoost techniques showed better outcomes. Among the models considered for 

Situation 1, the Prophet had the best accuracy for the hourly DHW heat use modeling, as 

shown in Fig. 14. 
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Fig. 14. Hourly modeling of DHW heat use based on the Prophet method in Situation 1 
 

In addition, the Prophet model stayed robust. The R2 remained equal to 0.76 for both 

the training and the testing set. The analyses indicated that most of the actual values for the 

DHW heat use lay within the confidence intervals [103] for the model. This means that the 

Prophet model developed for Situation 1 may be used for predicting the DHW heat use in the 

hotel. However, despite this fact, the model may be improved. For this purpose, additional 

variables that affect the DHW heat use were considered in Situation 2. 

As a part of the investigation for Situation 2, the feasibility of using different variables 

for the DHW heat use modeling was tested. Initially, the study looked at the same set of 

variables as in Paper IV. In addition, to take into account the daily variation of the guest 

presence and improve the prediction, the artificial variable Gstart was used. Gstart was 

calculated according to the method in Section 4.2.1. Different modeling techniques with and 

without application of artificial variable Gstart were tested to determine the most accurate 

model. 

The Wrapper algorithm was applied to categorize the best set of influencing variables. 

It was found that the most influencing parameters for all the models are related to the guest 

presence in the building. Gst and GstLag1 showed the best result for the models created only 

based on measured data, and Gstart for the models where this artificial variable was applied. 

These three parameters allowed us to receive quite reliable models for the DHW heat use in 

the hotel. This fact shows the importance of taking into account the occupancy for DHW heat 

use modeling.  
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In the same manner as in the case of daily prediction (See Section 6.4), application of 

the mean wind speed (Ff) and the atmospheric pressure (Pa) in the hourly models did not 

increase prediction accuracy. In this regard, these parameters also should be excluded from 

hourly modeling. When the relative humidity (Rh), was used, only a few models showed 

insignificant improvement. Thus, the application of Rh is usually not reasonable. The outdoor 

air temperature (T), and energy use (Eon), for other needs improved the models, but just 

slightly. For example, when adding these parameters to certain models, R2 coefficient was 

increased by several percent. 

The parameters hour (H), day of the week (DoW), and month (Mth) represented 

changes in the DHW heat use in different periods of time. In complex and accurate models 

such as Prophet, NN, and XGBoost, applying these parameters gave us good effects. 

However, simple models were unable to extract useful information from H, DoW, and Mth for 

the DHW heat use prediction.  

Generally, two sets of influencing variables showed the best outcomes: 

a) the set of variables without using the artificial variable Gstart: Gst, GstLag1, T, Eon, H, 

DoW, and Mth; 

b) the set of variables with using the artificial variable Gstart: Gstart, T, Eon, H, DoW, 

and Mth. 

In order to select the most accurate DHW heat use prediction model, nine different 

prediction techniques were tested. When the set of the variables without Gstart was used, only 

the Prophet, the NN, the XGBoost, and the GMDH models showed satisfactory results of 

prediction. On the contrary, the application of the artificial variable, Gstart, allowed us to 

improve the accuracy of prediction. Therefore, more models met the minimum acceptable 

criteria with R2>0.65. In general, when the artificial variable Gstart was added into 

consideration, the models showed better outcomes. However, for advanced and complex 

prediction techniques, the effect of the application of Gstart was less evident. These 

consequences can be explained by the fact that the Prophet, the NN, the XGBoost, and the 

GMDH models may better reflect hidden relationships in explanatory variables than the other 

models. Accordingly, these models may give us a quite reliable forecast based on both sets of 

variables, both with and without the application of Gstart. 

The Prophet and the NN were the best models for hourly prediction DHW heat use in 

the hotel. The NN model showed better performance on the training set, while Prophet on a 

testing set. For the NN model, R2 calculated on the training set was 0.89. Nevertheless, for the 
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testing set, this criterion was reduced to 0.8. Such changes of R2 may indicate a tendency of 

the given model to overfitting.  

Compering to the NN model, the Prophet model allowed us to obtain more robust 

results with minor changes in R2, MAE, and MSE. For this reason, the Prophet method was 

selected as the best model for the DHW heat use prediction in the considered hotel. This model 

is shown in Fig. 15. 

 

Fig. 15. Hourly DHW heat use model based on the Prophet method in Situation 2 

 

The study confirmed that by means of easily accessible data, it is possible to obtain a 

fairly accurate model for the DHW heat use prediction for a hotel. Comparing the results in 

Situation 2 with the model that uses only the historical DHW heat use data (Situation 1), the 

application of additional variables (Situation 2) allowed us to improve the accuracy of 

prediction. For example, R2 was increased from 0.76 to 0.83 in the testing set, if using an 

artificial variable. For all the considered cases, the Prophet model proved to be an accurate and 

reliable model that may reflect periodical changes in DHW heat use. The developed models are 

useful for the DHW heat use modeling for other hotels under similar conditions. 
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6.6. Analysis of DHW energy use profiles for energy 
simulations in a hotel located in Norway 

Section 6.6 explores the influence of DHW heat use profiles on building energy 

simulations. In more detail, this problem and the results of the investigation were described in 

Paper VI. 

Dynamic simulation tools are widely applied for assessing the energy performance of 

buildings. The majority of simulation tools use DHW heat use profiles as a basis for 

estimating DHW energy needs. The case study for this investigation was a large hotel located 

in Eastern Norway. For this type of building, the EnergyPlus simulation model was 

developed. The model followed Norwegian building codes and requirements. 

The DHW heat use profiles obtained based on measurement in the real hotel, profiles 

derived from the international standard “ISO 18523-1:2016: Energy performance of 

buildings” [104] and the national standard “SN/TS 3031:2016: Energy performance of 

buildings. Calculation of energy needs and energy supply” [105] were used as an input in the 

simulation model. 

The simulated and the real yearly DHW energy use in the hotel is shown in Fig. 16. 

The results from EnergyPlus revealed the drawbacks of simulations when considering the 

standard values. For example, the difference between the annual DHW heat use simulated 

with the hourly profiles obtained from the measurements and the real total DHW energy use 

was approximately 10%. The SN/TS 3031:2016 profiles do not consider the circulation losses 

in the DHW system. For this reason, their application led to 32% underestimation of the 

annual DHW energy use. However, the standard ISO 18523-1:2016 overestimated the DHW 

heat use for 2.3 times. Consequently, when applying the standards, the energy balance 

obtained as a result of simulations was inaccurate. 
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Fig. 16 Simulated and real yearly DHW energy use in the hotel 
 

The investigation showed the need for improving the existing DHW heat use profiles 

given in the standards. The modern profiles should be based on accurate and up-dated 

statistical data obtained from real buildings. 

 

6.7. Energy use for domestic hot water in Norwegian hotels 
and nursing homes 

Section 6.7 and Paper VII discuss the results from a measurement campaign in 

Norwegian hotels and nursing homes. In this study, three hotels and nursing homes were 

involved. Heat use, water flow rates, and temperatures were measured on the DHW 

production systems in each building. At each location, the measurement equipment was 

installed for approximately six weeks period. Flow rates and temperatures were measured 

with an interval of 1 second, and then averaged to 2 seconds before the analyses. For the 

DHW heat use analyses, the data are averaged to hourly time step.  

For comparison of the DHW heat use profiles and distribution efficiencies between the 

buildings, the average daily heat use was calculated, assuming that the measurement period 

was representative for the whole year. 

Within this research, several parameters that may explain the variation of DHW heat 

use in different hotels were analyzed. In order to compare these parameters, the hourly DHW 

heat use profiles per heated floor area, per room, and per overnight number of guests were 
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developed. The analysis of the DHW heat use for three hotels showed that all of these profiles 

have a similar shape, with a large peak in the morning. However, the number of rooms or 

number of guests were better parameters for describing the variation of DHW heat use than 

the floor area, which was commonly used in standards and normative documents. 

A similar analysis was performed for the nursing homes. The shape of the DHW 

profiles showed that the nursing homes had similar routines when it comes to the DHW use, 

linked to morning routines and scheduled meals. As in the case of hotels, the comparison of 

profiles indicated that the heated area was not the best parameter to describe the hot water use.  

The measurements showed a large variation in circulation heat losses for considered 

buildings. For instance, for the three hotels, the shares of circulation losses were 15%, 19%, 

and 25% of the DHW heat use. In nursing homes, these losses constituted 11%, 37%, and 

39%. The malfunctioning and differences in types of the circulation system might explain 

such a diversity. 

A comparison between the measurement data and the Norwegian standard “SN/TS 

3031:2016: Energy performance of buildings. Calculation of energy needs and energy supply” 

[105] was performed. For the nursing homes, the normative numbers in the standard are the 

same as for the hotels, while the measurements showed a significant difference between these 

two building types.  

Compared to the normative values, the actual measurements deviated significantly. 

These deviations may have a significant impact on the design of the building energy system. 

The conformity of the profiles obtained in this work indicated that they better reflect a 

variation of DHW heat use than normative values in the standard. However, for further 

improving the daily and the monthly variation of the DHW heat use profiles should be 

considered. 

 

6.8. Development and analysis of hourly DHW heat use 
profiles in nursing homes in Norway 

Section 6.8 focuses on improving the existing methods for DHW heat use profiles 

development and analysis. More detailed study outcomes were presented in Paper VIII, which 

analyses the hourly DHW heat use profiles in nursing homes. The investigation was based on 

one-year hourly data obtained from the three nursing homes in Norway.  

The initial analysis showed a strong negative correlation between the monthly DHW 

heat use and the outdoor temperature. In nursing homes, it is expected that the routines for the 
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DHW use are similar around the year, and the variation of the monthly heat use for DHW 

may be described by the variation in cold water inlet temperature [74]. To consider the 

variation of the DHW heat use in the nursing homes over a year, the seasonality was 

investigated. The number of seasons during the year and the months associated with each 

season were identified based on the average daily DHW heat use for nursing homes in 

different months, applying the method described in Section 5.3. Using the Student's t-test, the 

months of the year were divided into two groups with substantially different mean values of 

the heat use within each group. The groups represent the cold and warm seasons. The cold 

season included the following months: January, February, March, April, May, November, and 

December. Meanwhile, June, July, August, September, and October were assigned to the 

warm season. Finally, for these seasons, separate profiles of DHW use were developed, as 

shown in Fig. 17.  

At the next step of the investigation, the days of the week were assessed for similarity. 

According to the method in Section 5.1, the days of the week in nursing homes that have 

statistically similar profiles were identified: 

 The first group: 1) Monday, Tuesday, Wednesday, Thursday and Friday, 

 The second group: 2) Saturday and Sunday. 

Further, the application of the method presented in Section 5.2 allowed us to determine 

the following borders of time zones: 

1) The peak heat use of the DHW heat use occurred when the heat use was higher than 

0.19 kWh/room for Monday-Friday in the cold season, 0.168 kWh/room for 

Saturday-Sunday in the cold season, 0.147 kWh/room for Monday-Friday in the hot 

season, and 0.137 kWh/room for Saturday-Sunday hot season;  

2) The minimum heat use of the DHW heat use occurred when the heat use was less 

than 0.066 kWh/room for Monday-Friday in the cold season, 0.065 kWh/room for 

Saturday-Sunday in the cold season, 0.053 kWh/room for Monday-Friday in the hot 

season, and 0.052 kWh/room for Saturday-Sunday in the hot season;  

3) The average heat use of the DHW heat use occurred when it was between 0.066 

kWh/room and 0.19 kWh/room for Monday-Friday in the cold season, between 

0.065 kWh/room and 0.168 kWh/room for Saturday-Sunday in the cold season, 

between 0.053 kWh/room and 0.147 kWh/room for Monday-Friday in the hot 

season, and between 0.052 kWh/room and 0.137 kWh/room for Saturday-Sunday 

in the hot season. 
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Fig. 17 Profiles for the DHW heat use in the nursing homes divided by day of week and 
seasons 

 

Profiles of the DHW heat use in the nursing homes divided by day of week and seasons 

are shown in Fig. 17. For the nursing homes, the profiles obtained by seasons showed that the 

DHW heat use in the cold season was higher than in the warm season. In addition, nursing 

homes used less heat for DHW on the weekends than on the working days. The maximum 

DHW heat use in nursing homes usually occurred from 9:00 o’clock to 11:00 o’clock, and 

minimum from 2:00 to 5:00 o’clock.  

Finally, the DHW heat use profiles obtained from the measurements in the nursing 

homes were compared with profiles from national standard SN/TS 3031:2016 and international 

standard NS-EN 12831-3:2017 [106]. The comparison showed that the European standard, 

NS-EN 12831-3, overestimated the daily DHW heat use by 1.65 times, and the Norwegian 

standard, SN/TS 3031, overestimated it by 3.5 times. The magnitude and timing of the peak 
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heat use in the buildings were also different from the standards. The European standard 

explains much better the actual DHW heat use in the nursing homes than the Norwegian 

standard. For practical application and relevant decisions related to building energy supply 

systems, preference should be given to profiles obtained based on statistical data collected in 

real buildings. 

 

6.9. Identifying typical hourly DHW energy use profiles in a 
hotel in Norway by using statistical methods 

Unlike Section 6.8, Section 6.9 is focused on the development and analysis of the 

DHW heat use profiles in hotels. The hotel reviewed as a case study have typical 

characteristics for Scandinavian conditions, and well aims to reflect the trends of DHW tap 

energy use in similar types of buildings. Paper IX gives the overall description of the methods 

and outcomes of this study. 

In the hotel, the DHW heat use constituted 19.5% of the total heat use in 2016 and 

23% in 2017. The annual trend of the DHW heat use was analyzed by calculating the 

Centered Moving Average. The trend showed that over a year, the DHW heat use in the hotel 

varies a lot more. Therefore, it was necessary to identify the number of seasons of DHW 

energy use in the year, the months included in each season, and finally, develop separate 

profiles of DHW for each of these seasons. Seasons were identified by using the average 

monthly DHW heat use data for the last three years, as described in Section 5.3. Based on the 

t-criteria, the months of the year were divided into two groups. The groups represented the 

cold and the warm seasons. The warm season includes the months May, June, July, August, 

September, and October. January, February, March, April, November, and December might 

be assigned to the cold season.  

At the second step of the investigation, the days of the week were assessed for 

similarity. Based on the method presented in Section 5.1, the groups of the days with the 

similar profiles were identified: 1) Monday, 2) Tuesday, Wednesday, Thursday, Friday, 3) 

Saturday, Sunday. 

Afterward, the method explained in Section 5.2 was applied and it allowed us to 

determine the borders of time zones for the hotel. The profiles of DHW energy use in the 

hotel divided by month and season are shown in Fig. 18. 
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Fig. 18 Profiles of DHW energy use in the hotel divided by seasons and days 
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The profile analyses showed that the DHW heat use on Mondays was much lower than 

in the other days. For instance, the maximum heat use on Monday in the cold season was 40 

kWh and 55 kWh in a hot season, while on the other days it was 60 kWh and 70 kWh, 

respectively. A smaller number of visitors of the hotel on Mondays compared to other days of 

the week might explain these results 

The maximum DHW heat use on working days usually occurred from 7:00 o’clock to 

9:00 o’clock. From 9:00 o’clock to 12:00 o’clock, the DHW heat use tended to decrease, 

although it still remained quite high and corresponded to the pick DHW heat use. The small 

spikes of DHW heat use may also be observed in the hot season in the evening time from 

21:00 o’clock to 23:00 o’clock. However, in the cold season, there were no peaks in the DHW 

heat use in the evening. The minimum DHW heat use may be observed at midday and at 

night.  

The peak DHW heat use in the weekends was shifted by one hour ahead compared to 

the working days. The maximum DHW heat use on weekends occurs from 9:00 o’clock to 

11:00 o’clock. 

In general, this study, presented in Paper IX, demonstrated that dividing the DHW 

heat use profiles by the seasons and the days of the week was reasonable for hotels. 

 

6.10. Analysis of monthly and daily profiles of DHW use in 
apartment blocks in Norway 

Section 6.10 presents the results related to the DHW use in apartment blocks. The 

detailed description of methods and the results of this investigation are given in Paper X, 

which analyzed the monthly and hourly profiles in apartment blocks in Norway. For this 

purpose, two data samples were used. Due to data availability, these data samples were 

obtained from different sources, nevertheless for similar apartment buildings. The first data 

sample contained data of the monthly DHW use in 49 apartments in Norway. The second data 

sample included hourly data on the DHW and the heat use in four apartment buildings. Two 

of these buildings belong to social housing and the other two to a housing cooperative.  

The monthly profiles in 49 apartments were used to obtain useful information on the 

structure of the DHW heat use, expected volumes, and influencing variables.  

The structure of monthly DHW use was estimated based on separate measurements in 

kitchens and bathrooms. The data revealed that approximately 30% of DHW was used in 

kitchens, and the rest 70% in bathrooms. The investigation of DHW use in Swedish 
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apartments shows a different share of DHW use, with 60% DHW use in bathrooms and 40% 

in kitchens [60]. The measured profiles of DHW heat use in apartments in Norway and 

Sweden were also compared in Paper II. Despite the similar living standard and weather 

conditions, the comparison showed significantly higher DHW heat use in Norway. This fact 

indicates a substantial possibility for improvement of DHW heat use in residential buildings 

in Norway. 

In order to estimate the influence of apartment sizes on the DHW use, the box plots for 

average DHW use for apartments with 33 m2, 51-52 m2, and 68-72 m2 floor areas were 

developed, as shown in Fig. 19. Apartments with 33 m2 floor area showed the highest average 

DHW use of 2.76 liters per m2 per day, while the average in the 51-52 m2 apartments was 1.78 

liters per m2, and the average in the 68-73 m2 apartments was 2.5 liters per m2.  

 

Fig. 19. Box plot for the average monthly DHW use for different apartment sizes 

 

The analyses revealed that even though the floor area was an essential parameter, it 

could not entirely explain the variation of DHW use in different apartments. The number of 

inhabitants may better explain this variation, especially for apartments that have similar sizes. 

However, for apartment blocks, information about the number of people who live in each 

apartment usually are not disclosed. Therefore, it was proposed to find groups of apartments 

that have similar levels of DHW use based on the cluster analysis. The assumption was that 

each of these clusters should represent DHW use in a group of apartments with a similar 

amount of people. The clustering method showed the three main clusters of the DHW use. 

Cluster 1 and Cluster 2 mainly contained apartments with 33 m2 and 51-52 m2 floor area. 

Cluster 3 included all the apartment types. The average DHW use in apartments within 

Cluster 1 was equal to 31 liters per day, while Cluster 2 – 76 liters per day, and Cluster 3 – 

167 liters per day. The standard “NS-EN 12831-3:2017: Energy performance of buildings” 



 

66 
 

[106] and the paper [12] give the reference values for the daily average DHW use per person. 

These values are equal to 30-40 liters per day. By using these values to estimate the number 

of residents in the apartments, Cluster 1 might consist of apartments with only one resident, 

Cluster 2 apartments with two residents, and Cluster 3 families with three or more residents. 

Both monthly profiles for the DHW heat use per floor area and for a different number 

of inhabitants displayed seasonal variation of the DHW heat use, with lower heat use from 

April to July. The significant decrease in the DHW use in the spring/summer months could be 

explained by the increased cold-water inlet temperature and vacation time in Norway.  

The hourly profiles in two multi-family social housing and two housing cooperatives 

were used to study the effect of ownership type on hot water use, as well as daily and weekly 

variations, and peaks in the DHW heat use. The average hourly DHW heat use for social 

housing and housing cooperative is shown in Fig. 20. 

 
Fig. 20. Average hourly DHW heat use for social housing and housing cooperative 

 

Social housing buildings are owned and managed by the state to provide affordable 

housing for people who need it. In housing cooperatives, people typically own their 

apartments, representing a regular type of ownership in Norway. The profile of the DHW heat 

use in housing cooperative has a typical shape with the morning peak from 8:00 o’clock till 

11:00 o’clock, reduction of the DHW heat use from 13:00 o’clock to 16:00 o’clock, and 

evening peak occurred from 18:00 o’clock until 21.00 o’clock. Unlike a housing cooperative, 

the DHW use profile for the social housing was more even through the day and with a 

morning peak, about one hour later than in the housing cooperative. The social housing 

profile had an increased DHW heat use in the daytime, from 13:00 to 16:00 o’clock. The 
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evening peak in the social housing took place before 20:00 o’clock. In general, social housing 

consumed more heat for DHW. An explanation of this might be that a larger share of the 

residents in social housing was staying home during the daytime. Both the social housing and 

the housing cooperative showed a weekly variation of the DHW heat use, with higher DHW 

use during the working days. 

The profiles of the DHW heat use for the social housing and the housing cooperative 

were compared with the reference profile presented in the national standard SN/TS 3031:2016 

[105]. SN/TS 3031:2016 provides valuable information about the peak values for the DHW 

heat use. However, compared to the four apartment buildings analyzed, the standard profile 

was not accurate enough and should be modified. In addition, it may be relevant for the 

standards to consider the difference between the social and the regular housing. 

 

6.11. Analysis of heat use profiles in Norwegian educational 
institutions in conditions of the COVID-lockdown 

Section 6.11 investigates the heat use profiles analyses and scenario-based modeling 

for Norwegian educational institutions in normal conditions and during the COVID-lockdown. 

The more extensive outcomes of this investigation were presented in Paper XI. 

In order to avoid unnecessary energy use and ensure the proper functioning of 

buildings, it becomes essential to have a better understanding and planning of heating use for a 

different type of building. This problem was especially important during the COVID-19 

pandemic when most countries have imposed a partial or full lockdown that aims to stop the 

spreading of the infection. Many people were compelled to avoid gatherings and crowds, stay 

at home and work remotely. Such drastic changes in the behavior of energy users have a 

significant impact on energy use in buildings and lead to substantial problems in the energy 

sector. 

The negative influence of the COVID-19 pandemic on the energy sector may be 

mitigated by ensuring the energy efficient operation of buildings, better energy planning, quick 

adaptation to new conditions, and introduction of proper operation measures. SH and DHW 

heat use profiles and scenario-based models provide us with valuable insights to analyze 

changes in energy use in buildings and take actions to respond to these changes. The study 

presented in this section aimed to improve the existing knowledge about heat use in 

educational buildings in Norway in normal conditions and during the period of the COVID-19 

pandemic. The research was based on heat use data obtained from eight kindergartens, twelve 



 

68 
 

schools, and buildings at the university campus located in Trondheim, Norway. Unfortunately, 

in considered educational buildings, the only one heat use meter for both SH and DHW was 

available. Subsequently, this PhD study had shown that this state of affairs is typical for many 

buildings in Norway and significantly complicates the analysis of the DHW heat use in such 

buildings. 

First, in this investigation, the profiles of heat use in buildings during the COVID-

lockdown and the previous year were compared. An example of the developed heat use 

profiles for kindergartens is shown in Fig. 21. For the other educational building, the profiles 

had a similar shape. 

 

a)       b) 

Fig. 21 Heat use profiles for kindergartens, where: a) profiles for weekdays, b) profiles 

for weekends 

 

Many publications assume that during the lockdown, the operation of educational 

institutions would follow the weekend patterns. The investigation in this study found that the 

shape of the heat use profiles on weekdays before and during the pandemic remains almost 

unchanged and differs significantly from the weekend profiles, see Fig. 21. The profiles 

revealed that in March 2020, the heat use was lower than in the same period of 2019. In April 

2020, the heat use was slightly higher than in April 2019. Differences between the profiles in 

March and April were mainly influenced by changes in the outdoor temperature, instead of 

changes in the heating system settings. The type of the heating system did not affect this state 

of affairs. The heat use profiles in buildings with electric heating systems had similar behavior 

to profiles for buildings using district heating. 
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The results showed that some primary educational institutions might have operated 

during the COVID-lockdown. In order to support parents who are working in critical positions 

such as health care, transportation, police, and others, some kindergartens and junior schools 

remained open during the pandemic. Our analysis also showed that all considered educational 

buildings did not reduce heat use, regardless of the transition to distance learning. The policy 

for reducing the heat use during the lockdown in educational institutions has not been 

developed. Therefore, it may be stated that during the COVID-lockdown, the energy system in 

many buildings was operated inefficiently.  

After the educational buildings were reopened in May 2020, the profiles showed an 

increase of the heat use. Such an increase might be explained by changes in DHW heat use due 

to the introduction of strict requirements for regular buildings’ disinfection and personal 

hygiene.  

For better heat use planning, this study suggested scenario-based modeling for possible 

settings of the heating system. The following scenarios were developed for educational 

institutions: 1) Scenario 1 − Modeling based on the settings for a normal year, 2) Scenario 2 − 

Modeling in accordance with night settings of heat use, 3) Scenario 3 − Modeling based on 

settings that were used during the lockdown. The scenarios were developed based on the 

application of ESC method, as introduced in Section 3.1, and adjustment with the outdoor 

temperatures of the typical cold and warm years. The detail explanation of the methods that 

were used in this investigation is given in Paper XI. It should be noted that since scenarios 

were developed based on a short-term lockdown, the study had some limitations. These 

limitation were presented in Paper XI. 

The methods showed high accuracy in modeling Scenarios 1 and 2. Scenario 3 was 

developed by monthly variation factors of the heat use. These factors were used in order to 

project the seasonal variations of the SH and DHW heat use in the COVID-lockdown 

conditions. The results for the scenario-based analysis for heat use in kindergartens are shown 

in Fig. 22. 
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Fig. 22 Heat use in kindergartens based on the scenario analysis 

 

The proposed scenarios can be used for planning the heat use and estimating the 

potential energy savings. For example, the analysis showed that application of night settings as 

in Scenario 2 during the lockdown in March might allow us to save 79 Wh/m2 per day for 

kindergartens, 72 per day Wh/m2 for schools, and 80 Wh/m2 per day for university building. In 

normal condition, the specific annual heat use in kindergartens was 102 kWh/m2 per year, in 

schools 63 kWh/m2 per year, and in university 123 kWh/m2 per year. Therefore, if annual heat 

use is considered, for kindergartens, the application of Scenario 2 may save 20.2 kWh/m2 per 

year, for schools –17.7 kWh/ m2 per year, and for university building 21 kWh/m2 per year. 

However, without having separate measurements for DHW heat use, it is difficult to say how 

DHW affected the total heat use in considered buildings. Therefore, the investigation in this 

work showed that the separate consideration of SH and DHW heat use in buildings is essential 

for better heat use planning and analyses. 
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6.12. Discussion 

This section summarizes the results of investigations presented in the selected 

publications and links them to research questions from the PhD study (See Section 1.2).  

The literature review showed that the proper implementation of sustainable and energy 

efficient solutions for DHW systems requires the application of advanced data analyses, which 

includes the development of accurate and representative profiles, prediction and simulation 

models for DHW heat use in buildings. Therefore, the research questions in Section 1.2 reflect 

the most critical aspects related to data analyses of DHW heat use in buildings in Norway. In 

more detail, these questions and their connection to the publications will be discussed below. 

The first research question was related to data preprocessing for DHW heat use 

analysis. The studies presented in Papers I-XI showed that the completeness and data quality 

on DHW heat use differ from one building to another. In some buildings in Norway, accurate 

data of hourly or monthly DHW heat use are measured regularly. However, for many 

buildings, DHW data are of poor quality or not measured separately from SH. Unfortunately, 

the last situation is very common for Norwegian buildings. For this reason, data preprocessing 

should be approached on a case-by-case basis, with particular attention to proper data 

synchronization, removal of outliers and incorrect data, and filling information gaps by using 

statistical methods. 

The second research question was dedicated to restoring DHW heat use information 

from measurements of the total heat use in buildings. Solving this problem may allow us to 

analyze DHW heat use in buildings with only one energy meter that measures the total SH and 

DHW heat use. Papers I-III explore various methods for solving this problem. The research 

showed that ESC and SSA methods allow us to split total heat use into SH and DHW 

components. In such a way, the hourly DHW heat use data may be restored. However, the 

restored DHW heat use data are less accurate than measured. For this reason, it is suggested to 

use the restored data as a temporary solution. At the same time, the gradual installation of 

DHW energy meters should be promoted in Norwegian buildings. 

The third research question considered the factors that influence the DHW heat use in 

buildings. The influence of different factors on the DHW heat use was investigated in Papers 

IV-X. These papers showed that the building type and its operating modes significantly affect 

DHW heat use. A comparison of DHW heat use in the social and the regular housing in Paper 

X revealed that the ownership form might also influence DHW heat use. The DHW system 

type, the floor area, and the number of people residing in buildings proved to be essential 



 

72 
 

parameters that may be used to explain the variation of DHW heat use in different buildings. It 

was also found that DHW heat use varies depending on the hours of the day, days of the week, 

and seasons. Therefore, for DHW heat use analysis, it is essential to take into account these 

variables. The Papers IV-V showed that the guest presence is an important factor influencing 

the DHW heat use in hotels.  

The fourth research question was dedicated to the prediction of DHW heat use. This 

issue was covered in Papers IV-V. The study confirmed that by means of easily accessible 

data, it is possible to obtain fairly accurate DHW heat use prediction. These data are 

retrospective time series of DHW heat use, information about the hour of the day, day of the 

week, and month. In addition, including information about the people presence and other 

parameters mentioned in Papers IV-V may significantly improve the accuracy of DHW heat 

use prediction. The statistical prediction method called the Prophet model showed the best 

accuracy and robustness for the DHW heat use prediction among various time series and 

machine learning prediction models. Therefore, this model is recommended for predicting the 

DHW heat use in buildings. 

The fifth research question considers the problem of developing and analyzing DHW 

heat use profiles. Different aspects of this problem were explored in Papers VI-X. The studies 

revealed that the commonly used standards in Norway could not correctly explain the timing 

and variation of DHW heat in buildings. In order to cover the drawbacks of standards, the 

representative profiles of DHW heat use should be developed based on the statistical data 

collected in real buildings. Therefore, in this study, the methods for developing unified profiles 

for the months and days of the week with similar characteristics of the DHW heat use were 

suggested. In addition, the method that allowed us to recognize the timing of the peak, average, 

and low heat use was proposed. In Papers V-X, the analysis and development of DHW profiles 

were performed in such a way that specific features of the considered buildings and available 

data were taken into account. Accordingly, the representative profiles of DHW heat use were 

obtained for different types of residential and non-residential buildings in Norway.  

The sixth research question and Paper XI explores the issue of heat use modeling in 

educational institutions during the COVID-lockdown. During the lockdown, the educational 

buildings are closed, and the employees have limited access to these buildings. The need for 

heating and DHW in buildings in this period reduces. Consequently, the heating system's 

exploitation in a way as before the lockdown, becomes excessive and inefficient. However, the 

analysis of actual heat use profiles showed that heat use before and during the lockdown in 
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buildings remained the same. Unnecessary energy use can be avoided by applying the proper 

settings to the buildings’ heating system in adjustment to the demand changes. In order to 

select proper settings and estimate the benefits of their implementations, scenario-based 

modeling was proposed in Paper XI. In addition, the potential for energy savings were assessed 

by comparing a scenario that represents the behavior of heating use under normal conditions 

with alternative scenarios for the lockdown period. 
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7. Conclusion 

The main objective of this PhD research was to improve the methods for performing 

data-driven analysis of the DHW heat use and achieve a deeper understanding of DHW heat 

use in buildings in Norway. This PhD study addressed the following issues: data analysis of 

the DHW heat use, splitting the total heat use in buildings into the DHW and the SH heat use, 

identifying variables that affect the DHW heat use, developing the accurate models for the 

daily and the hourly DHW heat use prediction, creating representative profiles for the DHW 

heat use for different building categories. The most important findings of this PhD study are 

presented below. 

The data collected within the PhD research showed that in Norwegian buildings, even 

modern passive houses, often only one heat meter is installed to measure the total heat use. 

Such measuring systems cannot quantify the SH and DHW heat use separately. The research 

work within this PhD study revealed that the regimes of work and the influence of different 

factors for SH and DHW systems did not coincide. Therefore, for the corresponding 

conditions, a method that will allow us to analyze the DHW and SH heat use individually is 

needed.  

The models for the TD and the TI parts of the total heat use in a passive school were 

developed. The consideration of the TI total heat use was useful for the DHW heat use 

analysis. However, it could not fully explain the variation of the DHW heat use in a building. 

For this purpose, the methods for restoring the DHW heat use from the total heat use are 

required. 

The methods for restoring the DHW heat use profiles from the total heat use were 

investigated. The widely used seasonal and the ES methods were compared with their 

modification - the HSM-ES method. The hybrid summer signature method had the resulting 

profiles, which were the most similar to the typical profiles obtained from the actual 

measurements. However, all the three methods tended to overestimate the DHW heat use. 

Their application was more suitable for planning the maximum DHW heat demand rather than 

the average DHW heat use. 

Splitting the total heat use into the SH and the DHW heat use on an hourly basis was 

more beneficial than restoring the typical DHW heat use profiles. The method for splitting the 

hourly DHW and SH heat based on the ESC and the SSA was proposed. The application of 

this method showed that the restored models for the hourly SH and the DHW presented well 
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the general trends of the heat use for most of the year. However, overestimation of the DHW 

heat use was observed for the summer months.  

The analyses indicated that the accuracy of the methods for the DHW heat use 

restoring might be affected by the unjustified SH heat use in the non-heating season. The SH 

heat use in the warm season occurs due to incorrect sizing and operation of the SH system in 

buildings. Despite inaccuracy, the proposed method in this PhD work for restoring the SH and 

the DHW heat use was useful for obtaining the valuable information for estimating the 

performance of the SH and the DHW systems, developing prediction models, and profiles. 

Nevertheless, the application of the methods for restoring the SH and DHW heat use is not an 

ultimate solution. For a more precise analysis of the heat use in buildings, it is recommended 

to use the DHW and SH data collected from the two separate meters. 

The literature review indicated that the data-driven prediction of the DHW heat use in 

buildings is not studied well enough, especially for non-residential buildings. The prediction 

modeling of the DHW heat use was carried out using hotels in Norway as a case study. In 

order to make the developed models and data processing techniques applicable to other 

categories of buildings, two situations with different input variables were studied. For 

Situation 1, the prediction was based only on data obtained from historical measured DHW 

heat use. For Situation 2, additional variables that affect DHW heat use were applied. 

The Wrapper approach showed its high efficiency in determining the variables that 

affect the DHW heat use and should be included in the prediction model. This approach 

indicated that the main factors that influenced the DHW heat use in the hotel were the number 

of guests booked in the hotel on the given day and the day before. Nevertheless, the number 

of guests was collected on a daily basis, which made them less efficient for hourly modeling. 

Therefore, to improve the accuracy of the hourly model, the introduction of an additional 

artificial variable that explained the hourly intensity of the guests DHW use was proposed. 

Identifying the DHW heat use model requires a comparison of various prediction 

methods. Selection of the best method among those considered should be based on the criteria 

of model adequacy. Among considered methods, the Prophet model showed the best accuracy 

and robustness for the DHW heat use prediction for both Situation 1 and Situation 2. The 

obtained models can be used to solve energy saving problems, as well as to build predictive 

profiles for the DHW heat use. 

The DHW heat use profiles obtained from the measurements in the nursing homes, the 

hotels, and the apartment blocks were compared with profiles from national standard SN/TS 
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3031:2016 and international standard NS-EN 12831-3:2017. The comparison revealed that 

the standards are not accurate enough. The magnitude and timing of the peak heat use for all 

building types were different from the values proposed in the standards. The analysis showed 

that using profiles from the national and the international standards caused significant 

deviation between the simulated and the real DHW heat use. At the same time, profiles that 

are based on the actual measurements allowed us to obtain more accurate simulation results. 

Therefore, for simulation purposes, practical applications, and decisions making related to 

DHW systems, the preference should be given to the DHW profiles obtained based on the 

statistical data collected in real buildings. 

Within the PhD research, several parameters that may explain the DHW heat use 

variation in the different buildings were analyzed. The analyses of the DHW heat use showed 

that the number of rooms or number of people who reside in the building were better 

parameters for describing the variation of DHW heat use than the floor area, which is 

commonly used in national regulations in Norway. 

The analyses of the time series for the DHW heat showed significant monthly and 

daily variating of DHW heat use. The statistical methods to assess the similarities of the 

profiles by days of the week and seasons were proposed. These methods were tested using 

data for the DHW heat use in the nursing homes and the hotels. By using the Student's t-test, 

the months of the year were divided into two groups with substantially different mean values 

of the heat use within each group. These groups represented the warm and the cold seasons. 

Further, the days with similar profiles were identified. In nursing homes, the DHW heat use 

was different on weekdays and weekends. Whereas for the hotels, the profiles on Mondays 

differed from the profiles on both weekends and weekdays. According to these results, unified 

profiles for the months and days of the week with similar characteristics of the DHW heat use 

were developed for hotels and nursing homes. Afterward, the method for statistical grouping 

of the DHW hourly heat use was proposed for recognizing the timing of the peak, the average, 

and the low heat use.  

Due to specific features of the apartment buildings, they were considered separately 

from the non-residential buildings. For apartment buildings, the monthly and the hourly DHW 

heat use profiles were investigated. In the considered apartments, nearly 30% of DHW was 

used in kitchens and the rest 70% in bathrooms. The box plot method showed that the size of 

apartments affected the DHW heat use. However, without considering the occupancy, the size 

of apartments could not entirely explain the variation of the DHW heat use in different 
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apartments. For many residential buildings, the information about number of inhabitants in a 

particular apartment was not known. The PhD study showed that the hierarchical cluster 

analysis could be used to identify the groups of apartments with similar numbers of residents 

and the approximate number of residents in each of these groups. The obtained monthly 

profiles demonstrated the monthly variation of DHW heat use with a noticeable reduction in 

the summer. More detailed hourly profiles in apartment blocks showed that the property 

ownership type had an impact on the DHW heat use. The shapes of the profiles in the social 

housing and the housing cooperative had a noticeable difference, with a higher DHW heat use 

in the social housing. Therefore, it was recommended to use the individual profiles for these 

types of apartment blocks. In addition, for both the social housing and the housing 

cooperative, the DHW heat use profiles for working and non-working days should be 

considered separately. 

The methods proposed in this PhD thesis for the DHW heat use analyses, prediction 

models, and profiles helps to form a basis for the proper implementation of energy saving 

measures and increasing the efficiency of DHW heat use in different types of buildings in 

Norway. 
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8. Limitations and recommendations for further work 

This project was limited to only several buildings categories located in Eastern 

Norway. The influence of the location on the DHW heat use requires additional consideration. 

For this reason, in the future work, the appropriate analyses for a larger number of buildings 

located in different parts of Norway should be performed. Furthermore, it is suggested to 

investigate the DHW heat use in those types of buildings that were not covered in the current 

study.  

The proposed method in this PhD study for restoring the hourly DHW heat use from 

the total heat use in the buildings has some limitations. This method was dedicated to the case 

when one meter measured the total heat use, which includes both DHW and SH. The restored 

DHW heat use for the summer months was less accurate than for the rest of the year. For this 

reason, the ways to modify the proposed approach and improve the model for DHW heat use 

will be investigated in the future work.  

The research showed that occupancy had a significant impact on the DHW heat use in 

buildings. However, due to many reasons, the data about occupancy were not easily 

accessible for regular buildings. Therefore, in this work, for the DHW heat use prediction 

modeling, only daily data about occupancy were used. In smart buildings, the occupancy may 

be identified in more detail, up to the location of a particular person. This information gives 

the basis for a more in-depth analysis of the DHW heat use. Thus, it would be interesting to 

evaluate how better knowledge about occupancy could be used to improve the developed 

models and profiles. 

The analysis of the heat use in considered buildings pointed out that circulation losses 

constitute a significant share of the DHW heat use. In order to improve energy efficiency in 

DHW systems, it is desirable to conduct a more detailed study of the technical aspects 

associated with circulation losses. The special attention should be paid to heat losses detection 

in DHW systems. 

The COVID-lockdown in educational institutions in Norway lasted for about two 

months. In this regard, the amount of data collected over this period was limited for a 

comprehensive analysis. Due to the lack of data, it is challenging to perform accurate heat use 

planning for the entire year. Furthermore, due to restrictions that were gradually imposed, the 

patterns of the heat use may be changed several times during and after the lockdown. 

Therefore when additional data will be collected, further work shall be performed for 
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improving scenarios of heat use in buildings In addition, it would be highly beneficial to study 

the changes in DHW heat use during the COVID pandemic relying on actual measurements. 

The prediction models and profiles may find practical applications for the integration 

of sustainable and energy efficient solutions in buildings in Norway. The development of such 

solutions based on the obtained DHW heat use models and profiles will be the main topic for 

future work. The following solutions are of particular interest for my further investigations: 1) 

better utilization of solar-assisted DHW water heating systems, 2) optimal operation and 

design of DHW systems based on dynamic energy prices, 3) using the DHW heat systems for 

grid congestion management via demand-side flexibility markets. 
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Abstract. Widespread introduction of low energy buildings (LEBs), passive houses, and 
zero emission buildings (ZEBs) are national target in Norway. In order to achieve better 
energy performance in these types of buildings and successfully integrate them in energy 
system, reliable planning and prediction techniques for heat energy use are required. 
However, the issue of energy planning in LEBs currently remains challenging for district 
heating companies. This article proposed an improved methodology for planning and 
analysis of domestic hot water and heating energy use in LEBs based on energy signature 
method. The methodology was tested on a passive school in Oslo, Norway. In order to divide 
energy signature curve on temperature dependent and independent parts, it was proposed 
to use piecewise regression. Each of these parts were analyzed separately. The problem of 
dealing with outliers and selection of the factors that had impact of energy was considered. 
For temperature dependent part, the different methods of modelling were compared by 
statistical criteria. The investigation showed that linear multiple regression model resulted in 
better accuracy in the prediction than SVM, PLS, and LASSO models. In order to explain 
temperature independent part of energy signature the hourly profiles of energy use were 
developed. 

1 Introduction 

Prediction of building’s heat energy use is a complex task. 
Particularly, this issue becomes challenging for district 
heating (DH) companies when heat energy planning is 
considered. Traditionally, the DH energy load include 
energy need for heating and domestic hot water (DHW). 

These days low energy buildings (LEBs) such as 
passive houses (PHs) and zero emission buildings (ZEBs) 
are set as a national target for achieving energy efficiency 
and increase in primary energy savings. Simultaneously, 
characteristics of energy use in these types of building and 
their interactions with energy system are not fully 
investigated. The introduction of newly constructed LEBs 
and renovation of existing buildings to LEB standard 
brings additional volatility to heat demand in energy 
system.  

DH production planning and operation involve 
decision making under uncertain conditions. Hence, 
accurate forecasting of daily and hourly heat loads is an 
important task in DH sector [1]. The need in advanced 
prediction technique arises, since load profiles of LEBs 
show variation in terms of energy use and duration of 
heating hours.  

Energy signature diagram is a widely used instrument 
for analysis and prediction of energy use in the buildings. 
Energy signature diagram estimates energy use for DHW 
and DH as a function of outdoor temperature and may 
include other parameters. In most cases, the task of DH 
energy use is forecasting in the buildings that results in 
development of an accurate and representative energy 
signature diagram. 

Two main approaches are available for modelling of 
DH energy use, which are physical modelling and data-
driven approach. 

Physical modelling is also called engineering 
approach, which employs physical principles to calculate 
thermal dynamics and energy behaviour on the whole 
building level and sub-level components [2]. A great 
example of physical modelling is software tools that were 
developed for energy use evaluation. Such simulation 
tools like EnergyPlus, ESP-r, IDA-ICE, BLAST, DOE 
eth. are well known and are mentioned in a number of 
research papers. The main drawback of mentioned above 
simulation tools that they require detailed input data for 
high quality modelling. To obtain these data is not always 
possible and economically reasonable. 

On the contrary, in a data-driven approach, building 
energy behaviour is analysed by defining its statistical 
relationships with one or more different driving forces or 
parameters [3]. This approach got a lot of attention during 
recent years and is used for many applications. In 
particular, Machine learning techniques are widely 
applied for solving practical tasks in DH modelling and 
demonstrate high level of accuracy.  

The widely used methods for energy use prediction 
are: Linear Regression, Support vector machine (SPV), 
Artificial neural networks (ANNs), Decision threes and 
other algorithms for development of linear and non-linear 
models. It should be noticed that mentioned methods are 
considered as advanced techniques. Some of them are 
quite sophisticated and may require application of special 
software, considerable amount of detailed input data, 
expert work and long computation time. In addition, these 
methods are not always applicable for utility companies. 
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Nevertheless, prediction based on energy signature 
diagram, applying regression analysis is one of the most 
popular methods that is employed by a number of 
companies.  

Regression analysis is statistical tool, which allow us 
to describe the variation of energy use in the building by 
the changes in influencing variables [2]. The goal of the 
regression analysis is to find an appropriate mathematical 
model and to determine the best fitting coefficients of the 
model from the given data [4].  

Employment and comparison of algorithms based on 
multiple linear regression (MLR) analysis, general linear 
regression (GLR), ordinary least squares regression 
(OLS), autoregressive (AR), autoregressive integrated 
moving average (ARIMA), Bayesian regression, 
polynomial regression (poly), exponential regression, 
multivariate adaptive regression splines (MARS), case-
based reasoning (CBR), and k-nearest neighbours (kNN) 
for building energy use prediction is given in [5]. Some 
applications of regression algorithms are described 
further. The study performed in [6] has proven that 
regression based prediction can be efficiently used as a 
tool for long-term energy use prediction. The modelling 
of monthly heating demand for residential buildings is 
investigated in [7]. The comparison of energy signature 
method and Eta method based on statistical regression 
model can be found in [8]. The authors found high degree 
of predictability for both heating and cooling loads 
treating them simultaneously. Aranda et. al [9] apply 
regression models to predict the annual energy use in the 
banking sector. Multiple regression model for fast 
prediction of heating energy demand with application on 
residential multifamily building is done in [4]. Prediction 
of annual energy use for office building from heating and 
cooling perspective is investigated in [10]. Hence, it can 
be concluded that the regression algorithm is widely used 
due to its simplicity and accuracy. Therefore, this paper 
describes improved methodology for planning and 
analysis of heating and DHW energy use by means of 
energy signature method with application of advance 
regression techniques.  

The main objective of this study is to support heat and 
DHW energy planning that involves LEBs by providing 
rapid and simple solution of energy demand assessment 
with high level of accuracy. 

2  Methodology  

2.1 Low energy school building 

The analysis performed in this work aimed to improve a 
degree of predictability of energy prediction tool. Due to 
increasing share of LEB in a building stock it is important 
to have a tool able to work on every building type and 
category. For this reason, a passive school was introduced 
as a source of energy use data. The school was constructed 
in 2010 in Oslo and has 6 454 m2 heated area. Specific 
heat use calculated in 2011 was 31.76 kWh/m2a. The 
energy signature diagram is shown in Fig. 1. The 
characteristics of the mentioned passive school building 
are typical for Norwegian conditions and energy use 

threshold was found in the range with other similar 
buildings in Norway. 

 

Fig. 1. Energy signature diagram of analysed building 
Obtained data samples from school building were 

hourly based with one year duration. The building 
monitoring system sampled data that included various 
categories explained in Table 1. From Fig. 1 it can be 
noticed that there is no a clear pattern in energy use while 
the outdoor temperature is below zero. Simultaneously 
three-tailed pattern in the left part of Fig. 1 can be 
distinguished. The reason for this is unknown and may be 
caused by various reasons. Some of them could be due to 
applied control strategies or operation regimes in analysed 
building. Therefore, the aim of energy predictor is to 
capture shown volatilities in energy use data and provide 
reliable model that would be capable to identify them 
under various conditions in different types of buildings. 

2.2 Regression model 

In the most cases, analysis of energy signature diagram is 
based on using simple regression models in order to 
describe the behaviour of energy use in the building. 
Considering that energy signature diagram is dependent 
in terms of start and end of heating season, the division on 
temperature dependent and temperature independent parts 
that could be found in many publications is usually 
explained by the following equations: 
 
If �� < CPT:  

� = �� + ���� + �	�	 + ⋯ + ���� + � (1)  
If �� > CPT:  

� = �� + � (2)  

where, � is random error. ��, ��,…, and �� describes the 
expected change in the predicted variable � in response to 
a unitary change in � when the rest of predictors remain 
constant. The �  is explanatory variables, such as wind 
speed, temperature, eth. CPT is change point temperature, 
with physical meaning of start and end of heating season. 
This means that temperature dependent part considers 
space heating and domestic hot water (SH+DHW), while 
temperature independent part considers DHW only.  

In order to solve the introduced above equations, 
traditionally the least squares method is applied separately 
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to each segment of the model. This lead to composition of 
two regression lines that fit the data as closely as possible, 
while minimizing the sum of squares of the differences 
(SDD) between observed and calculated values of 
dependent variable. The reasonable modification of the 
method of energy signature modelling is proposed in the 
article of Lindberg et. al [11]. The authors of this work 
introduce a temperature moving average (TMA) of last 24 
hours as additional explanatory variable in the model in 
order to take in account building inertia in the model. Also 
in the article the change point temperatures, as well as, 
models are identified for each hour of day.  

Despite the relative simplicity, there are many 
drawbacks and unsolved issues in considered methods. 
For example, the question of identifying exact value of 
CPT is usually not considered. Moreover, in a number of 
publications, selection of CPT is relies only on intuition 
and experience of researches. In addition, the possibility 
to increase the accuracy of the energy signature model by 
using advanced modelling techniques has not been 
studied sufficiently. Therefore, the improved approach of 
energy signature analysis is proposed in this article. 

The analysis of energy signature proposed to conduct 
in the following way. First, the available statistical data 
should be pre-processed by division in two samples 
related to (SH+DHW) needs and related to DHW needs. 
This was done by a piecewise regression method 
combined with additional conditions related to month of 
the year. The piecewise regression allows us 
automatically to figure out the exact value of CPT in 
energy signature diagram. In such way, two regression 
lines are used to fit the data set as closely as possible. This 
minimizes the sum of squares of the differences (SSD) 
between the observed and the calculated values of energy 
use in different segments of energy use diagram.  

When there is only one breakpoint, at x = CPT, the 
model can be written as follows [12]: 

 
� = �� + ��x      for x ≤ CPT 
� = �	 + �	x      for x ≥ CPT 

(3) 

 
In order for the regression function to be continues at 

breaking point, the two equations for � need to be equal 
at breakpoint (when x = CPT): 
 

�� + ��CPT = �	 + �	CPT (4) 
 

Solving for one of the parameters in terms of the others 
by rearranging the equation above: 
 

�	 = �� + ���(�� − �	) (5) 
 

Then by replacing �	 with the equation above, the result 
is a piecewise regression model that is continuous at x = 
CPT: 
 
 

� = �� + ��x                                    for x ≤ CPT 
� = �� + ���(�� − �	) +  �	�       for x ≥ CPT 

(6) 

 

where: �� and �	 are regression coefficients, which 
indicating the slope of the line segments; �� , �	 are 
regression constants, which indicates the intercept at the 
Y-axis. 

In this study the CPT was defined by computational 
means applying  Python software. Temperature dependent 
heating energy use was explained via multivariable 
regression models. In order to obtain reliable models that 
considers the variety of data points, energy use data were 
separated in four sample groups: 1) weekends, 2) working 
days – working hours 3) working days – non-working 
hours 4) non-typical energy use. Untypical energy use 
data were investigated based on confidence intervals to 
regression models. For each group of samples, separate 
models were obtained. In order to choose the best model 
that explains energy signature diagram, several advanced 
models like: support vector machines (SPV), partial least 
square regression (PLS), least absolute shrinkage selector 
operator (LASSO) were compared applying statistical 
criteria. The final model is a combination of four sub-
models separated by four sample groups and used to 
generate prediction output. The testing and training sets 
were defined and model was tested.  

Instead of considering values of temperature 
independent energy use as an intercept shown by Eq.(2), 
it is suggested to present them by means of energy profiles 
with division on months, working and non-working days. 

The statistical analysis and model development of 
energy signature diagram for LEBs was implemented 
with software tools like R and Python. 

3  Results  

The results given in this section show workflow how the 
analysis on model was done and improvements were 
introduced. The results are divided in several sections 
with specific tasks to analyse. 

3.1 Correlation analysis 

One of the most important tasks in prediction of building 
energy use is selection of input variables. A number of 
studies dealing with parameter evaluation could be found 
in literature. Several studies show that solar irradiation 
has impact, others that wind speed effects energy use [13, 
14]. In addition, the day of the week or working hours 
correlate a lot. In order to figure out which variables have 
the highest impact, a correlation analysis was introduced 
in this study. A correlation analysis is a simple way to 
select the input variables and see the degree of linear 
relationship between them. Quite often, it is not always 
possible to collect all the variables when it comes to real 
operation, therefore, correlation analysis aimed to identify 
factors that have the highest impact on analysed parameter 
and to reduce the total number of components. In such 
way, the most insignificant parameters are eliminated. 
The building monitoring system sampled various data 
categories shown below, together with energy signature 
diagram shown in Fig. 1 the correlation analysis was 
conducted. The correlation analysis aimed to find out how 
various factors effect heating load when system is 
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operated under temperature dependent (SH + DHW) and 
temperature independent (DHW) modes. A correlation 
matrix was created and the results are shown in Table 1. 

Table 1. Correlation matrix results  
Component SH+DHW DHW 

Month -0.370  -0.070 
Weekend day -0.235 -0.167 
Working day -0.362  -0.058 
Day of the week -0.202 -0.127 
Hour 0.021 0.012 
Outdoor temperature -0.516  -0.237 
Medium outdoor  
temperature during  
24 hours 

-0.554  -0.426 

Wind -0.006  0.270 
Medium wind  
during 24 hours 

-0.160  0.292 

Season -0.364  -0.455 
Electricity use 0.595  0.431 

To recall, the correlation coefficient measures strength 
and direction of a linear relationship between the 
variables. The week positive or negative correlation starts 
from value of ±0.30.  

From Table 1, it can be noticed that SH+DHW heating 
load shows low correlation with wind, medium wind, and 
hour of the day. Hour of the day and wind are below 
significance level, while medium wind has low 
correlation with heating load. The weak correlation was 
observed for parameters like weekend/weekday, month 
and season. The correlation is negative for all parameters 
and this can be explained as all these components are 
similar in terms of time factor. The highest negative 
correlation was found for outdoor temperature and 
medium outdoor temperature. This indicates that heating 
load increases while temperature decreases. The 
electricity use has moderate positive correlation with 
heating. It might be that some school areas are heated up 
with electricity panels and this is the reason of positive 
correlation.  The analysis of temperature independent part 
(DHW) shows moderate correlation with medium outdoor 
temperature, season and electricity use. This is 
reasonable, because energy use in DHW part would be 
different due to seasonality, e.g. summer vacation, Easter 
holidays or beginning of school season. 

3.2 Building’s energy use profile 

The analysis of energy signature diagram is key to 
understanding of future energy use for a particular 
building type and a building category. Therefore, it is 
important to figure out the reasons for typical and 
untypical energy use patterns that were found in Fig. 1. 
The tailed data shown in left side of Fig. 1 were 
investigated by separation of existing data points on 
hourly basis intervals. The idea behind this was to find 
cluster formations that could explain tails. 

Unfortunately, hourly data distribution could not 
provide clear explanation about energy use extremes. In 

order to see more clearly energy use pattern, the boxplot 
was established and is shown in Fig. 2. The spikes in data 
were observed practically during each hour of the day. 
However, it can be noticed that energy use increases 
drastically starting from 7 AM and decreasing by 5 PM 
(17 o’clock in Fig. 3). Before that time energy use showed 
maximum at 150 kW, but later increased up 250-300 kW.  

 
a) Building’s energy use weekdays 

 
b) Building’s energy use weekends 

Fig. 2. Hourly energy use 
The boxplot depicts data for weekdays and weekend 

days. The maximum, median and minimum energy use 
and density of data points are shown. In addition, outliers 
and suspected outliers that are not typical to the analysed 
data range are shown. The suspected outliers are shown as 
dots with higher density, while outliers are randomly 
distributed dots far beyond of suspected outliers. Fig. 2 
shows that the building energy use has clear visible 
pattern, showing increase during working hours in the 
period between 7–17 o’clock. The weekend profile shows 
pretty smooth energy use pattern without sudden peaks 
and drops during the day.  

3.3 Analysis of temperature lag 

As it was mentioned before, TMA of last 24 hours has to 
be introduced in order to consider building inertia in the 
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model, see [11]. The analysis on TMA aimed to figure out 
how lagged outdoor temperature in terms of hour of the 
day effects on building energy. It is known that building 
it a subject to thermal inertia. Depending on building 
constructions, some buildings can accumulate more heat 
and use it afterwards to improve indoor thermal comfort. 
In order to figure out to which extent temperature lag has 
effect on energy use, the outdoor temperature was shifted 
by each hour for 48 hours see correlation between 
mentioned parameters. Fig. 3 shows correlation between 
TMA and heating energy use.  

 

Fig. 3. Effect of temperature lag on energy use of building  

 
Fig. 3 shows that if the correlation factor has a bigger 

absolute value, this indicates better fit between TMA and 
heating energy use. This is a good indication that thermal 
inertia in the building takes place, because better 
correlation was achieved when the TMA was shifted.  The 
largest correlation for TMA was found for 14 hours. This 
shows that lag of 24 or 48 hours that are commonly used 
for model definition and description of building inertia is 
misleading. The found results showed that value of this 
parameter is dependent on building’s construction type 
and time constant parameter. 

3.4 Model formulation 

Next step of the analysis aimed to check if cluster 
formations could be distinguished among available data. 
Therefore, several clustering algorithms have been tested. 
The main focus here was on temperature dependent part 
(SH+DHW), due to high variety in data points. The tests 
were conducted with the following algorithms: k-means 
clustering, hierarchical clustering, density based 
clustering, and model based clustering. In spite of 
different approach used in each method, most of the them 
did not show a good degree of clusterization. The cluster 
formations did not follow specific pattern that would 
explain tailed data. For this reason, the decision was made 
to apply techniques that would allow to separate untypical 
data points in existing data range. Hence, confidence 
interval (CI) was applied to analysed data. The CI was 
calculated by next equation [15]: 

 

C.I=  ��� ±  �� × � �1 − �
	 , ��� ×  �1 + �

� + (����!)"
(���)#$" 

 

(7) 
 

where, �% is predicted value of energy use; �(1 − &/2, ��) 
is Student's criteria, which depends on probability & and 

�� degrees of freedom; ' is the sample size; �� is the 
residual standard deviation of actual energy about the 
regression line; *! is the mean value of independent 
variable; *  actual value of independent variable; �- is the 
standard deviations of the of independent variable. 

Fig. 4 show regression model with upper and lower 
bounds of the confidence interval. This step aimed to 
separate data that did not fit in typical model population. 
The shape of many sample distributions can be 
approximated by a normal distribution. A convenient 
aspect of normal population distribution is that we can 
apply 95% confidence interval to describe desired 
population range. The confidence interval was created for 
each group of dataset described in Section 2.1, weekends, 
working days – working hours and working days – non-
working hours. The results are given in Fig. 4. 

 
a) Weekends 

 
b) Working days working hours 

 
c) Working days non-working hours 

Fig. 4. Regression models with confidence interval 

The accuracy of all models was evaluated by few 
statistical criteria: multiple determination coefficient (R2), 
mean absolute error (MAE), and mean square error 
(MSE). The mathematical formulation of statistical 
criteria is shown below.  
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.	 = 0�3(�4)
0�3(�) = 1 − 0�3(e)

0�3(�) 
(8) 

 
 

567 =  ∑ |� −  �4|�9�
'  

(9) 

 

5�7 =  ∑ (� −  �4)	�9�
'  

(10) 

 
where, �  is the predicted output variable and �4 is the 
actual output variable for :�; entry in the analyzed 
database, and ' is the number of samples in training 
subset. < is error term. The results are summarized in 
Table 2 and Table 3. 

Table 2 and Table 3 shows prediction results for 
testing and training sets for different predictive algorithms 
under various statistical criteria. To recall, R2 criteria 
means the better  model when it is closer to 1, for MAE 
and MSE, the lower value, the better model.  

Table 2. The accuracy of main models 

№ 
 

Model 
type 

R2 MAE MSE 
Train
ing 
set 

Testi
ng set 

Traini
ng set 

Testi
ng 
set 

Trainin
g set 

Testing 
set 

1 
Linear 

regressi
on 

0.834 0.832 7.71 7.84 202.18 208.09 

2 SVM 0.828 0.829 7.26 7.60 208.41 209.71 
3 PLS 0.833 0.829 7.59 7.80 200.92 206.80 

4 
LASS

O 
0.834 0.831 7.29 7.49 185.41 189.04 

Table 3. The accuracy of outliers’ model 

№ 
 

Model 
type 

R2 MAE MSE 
Traini
ng set 

Testin
g set 

Traini
ng set 

Testin
g set 

Traini
ng set 

Testin
g set 

1 
Linear 

regressi
on 

0.814 0.725 14.94 17.14 
485.4
8 

661.2
1 

2 SVM 0.801 0.709 14.26 17.50 
514.3
7 

706.0
5 

3 PLS 0.773 0.657 15.35 18.36 
461.1
6 

644.7
4 

4 
LASS

O 
0.717 0.554 13.20 18.89 

351.2
0 

497.9
6 

 
From Table 2, it can be noticed that obtained 

regression model shows good prediction ability to explain 
heating energy use. Both training and testing results 
scores were found in the same range for all statistical 
criteria. It can also be noticed that more advanced 
algorithms resulted in close values to regression model. 
This shows that improvements introduced to regular 
regression model resulted in good explanation degree of 
analysed energy use data of school building. The results 
for outliers’ model that are shown in Table 3 were found 
as less accurate. This can be explained by sparse data and 
occasion occurrence of it. In general, it can be concluded 
that improvements made to regression model led to better 
prediction capability. This is valuable information, since 

in such way the prediction done by utility companies 
become more reliable and security of supply increases.  

3.5 Analysis of outliers 

The analysis of data points separated as outliers from  
Fig. 4 was investigated. The total number of identified 
points was 2.6% of total annual data points, which 
corresponds to 17% of total heating energy use. The 
analysis showed that the occurrence of outliers mainly 
appeared in two consecutive months such as January and 
December. The distribution of these points showed 
random pattern without clear cluster formations except 
Thursday. During that day energy use cluster was 
identified between 18–22 o’clock (6-10 PM). This is 
particularly relevant for January. The reason for this could 
be that the building was used for purposes other than 
education. It is quite common that in Norway schools are 
booked for Christmas celebration by local companies. 
Other reasons could be particularities in the in operation 
of the heating and ventilation system in the building. 
Unfortunately, analysed data were received without any 
explanation about equipment installed inside the building 
and therefore, it was hard to conclude something about its 
operation. During other months the number of outliers 
was negligible and this information was considered as 
insignificant. 

3.6 Analyses of temperature independent part 
of energy signature 

As has been mentioned above, energy signature consists 
of two different parts – temperature dependent 
(SH+DHW) and temperature independent (DHW) energy 
use. These parts are separated by CPT and the additional 
condition related to the month of the year. The analysis of 
temperature independent part showed that statistical data 
covered months from April to October. It was found that 
occasionally temperatures lower than CPT were observed 
during this period. Nevertheless, analysis shows that these 
temperatures do not last for a long time and the need in 
SH does not occur. Therefore, it can be concluded that 
temperature independent energy use can only be observed 
within considered months.  

DHW energy use profiles is the primary instrument for 
understanding people behaviour and their effect on DHW 
use in buildings. Analysis of DHW profiles showed 
changes of energy use under different time intervals. 
Primarily, DHW energy use depends on a number of 
people who are present in a building. However, 
information about people presence is usually not 
available. The month of the year and the day of the week 
are factors that have direct influence on building 
attendance and, consequently, DHW energy use. 
Statistical analysis showed that unlike SH, DHW energy 
use has no other important explanatory variables. 
Therefore, an approach that differs from regression 
analysis should be used to explain temperature 
independent part of energy signature. The profiles found 
for working days and weekends are shown in Fig. 5 and 
represent average values in selected period. 
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a) Working days 

Fig. 5 Profiles of temperature independent part of energy 
signature 

The value of R2 showed that the proportion of total 
variation of outcomes explained by the profiles was equal 
to 0.71. This value of R2 justified the expediency of using 
profiles. Moreover, the profiles obtained in this way were 
quite informative and allow us retrieve additional 
information about DHW energy use in buildings.  
 
 

 
b)  Weekends 

As we can see from Fig. 5 the energy use in April and 
October are higher than in other months. This is due to the 
fact that in these months the school building was fully 
occupied by students. In addition, the outdoor temperature 
was lower and could induce to extra energy use. The 
smallest DHW energy use was in June, July, and August 
when there was no classes in the school and most of 
employees were on vacation. Further, DHW energy use is 
oscillating along zero line during the summer time, the 
reason for this could be that hot water circulation (bypass) 
took place to keep the system in operation. The energy use 
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in working and non-working days was different. In 
working days the maximum value was higher, as well as 
variation of energy use in general. Finally, it can be 
concluded that information retrieved from profiles is very 
useful to understand occupant behavior and will be used 
in further research. 

4  Conclusions 

This paper aimed to improve prediction of heating energy 
use by introducing changes to general regression model 
algorithm. The analysis was done on the passive school 
on hourly data resolution. The model was divided into the 
sub-models that helped to separate untypical energy use 
data from typical energy data range points. The 
correlation analysis was performed and most influential 
variables were selected for model formulation. The results 
showed that introduced improvements resulted in high 
accuracy in comparison with more sophisticated 
algorithms like SVM, PLS, and LASSO. This is a good 
observation, because regression algorithm does not 
require sophisticated knowledge, high computational 
time, or expert work for its implementation. Further, the 
analysis of the temperature lag showed that it is 
misleading to introduce lag of 24 hours and 48 hours that 
could often be found in the literature. The reason for this 
is due to differences in thermal inertia of building types. 
The analysis of outliers showed some degree of 
clusterization during January and this could be explained 
by non-educational activities in the analysed building and 
operation particularities. The temperature independent 
part of energy use was analysed and hourly profiles were 
developed. In general, it can be concluded that 
improvements made to regression model led to better 
prediction capability. This is valuable information, since 
in such way the prediction done by utility companies 
become more reliable and security of supply increases.  
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Abstract 
In Nordic climates, the energy use in buildings is 
dominated by space heating (SH) and domestic hot water 
(DHW). Heat load measurements with hourly resolution 
from smart meters are now becoming the standard. 
However, in most cases, only the total heat use in the 
building is metered, without separation into DHW and SH 
use. The analysis performed in this work is aimed at 
comparing and verifying different methods for estimating 
typical DHW load profiles by decomposition of heat load 
measurements into SH and DHW. Three methods have 
been used for the decomposition of the same set of 
measurements of the heat load from 78 buildings 
comprised of apartments and hotels: the seasonal method, 
the energy signature method and hybrid summer-signature 
method. All three methods have limitations, but in this 
article it is shown that the hybrid-summer signature 
method, which is a new method that is proposed in this 
article, has the closest similarity to measurements of DHW 
energy use from similar buildings. 
Introduction 
The building stock is the most energy demanding sector in 
Norway. According to (Abrahamsen and Bergh, 2011), it 
accounts for about 40% of the total energy consumption. A 
characteristic feature of energy use in buildings in Norway 
is a high demand for space heating (SH) and domestic hot 
water (DHW) (Unander et al., 2004). For this reason, a 
huge potential for increasing energy efficiency in buildings 
in Norway can be gained through better design and 
operation of SH and DHW systems.  
Analysis of energy use in existing buildings is a powerful 
instrument for achieving energy savings in buildings, 
performing better design and dimensioning of the energy 
systems, as well as introducing energy planning and 
demand-side management. The European Directive 
2018/844 prescribes that energy analysis for building stock 
should include typical energy consumption for SH, DHW, 
and other technical systems in a building. However, the 
heat meter systems in most buildings are simplified and do 
not allow us to perform energy analysis in a proper way, 
and a significant share of buildings in Norway uses only a 
single heat meter for the total heat use. The readings from 
the meter are not separated into SH and DHW heat use. 
Experience shows that SH and DHW systems are 
technically detached. The factors affecting the energy 
performance in these two systems and are different 

(Tereshchenko et al., 2019). Accordingly, it is crucial to 
conduct the analysis of heat use in SH and DHW systems 
independently (Cai et al., 2018). Despite the obvious 
drawback of simplified heat metering systems, the 
measured total heat use still contains valuable information 
about the DHW and SH systems performance. However, to 
use this information correctly, the reliable and accurate 
method for extracting the DHW and SH heat use profiles 
from the total heat use should be applied. 
Currently, there are no generally accepted 
recommendations on how to separate the SH 
Acknowledgment and DHW profiles from the total heat 
use. The several approaches for decomposing the SH and 
DHW profiles from the total heat use that can be found in 
scientific publications are discussed in the text below.  
In the article (Tereshchenko et al., 2019), the energy 
signature curve (ESC) was used to find temperature-
dependent and temperature-independent part of the heat 
use in a Norwegian school. The temperature-independent 
part in ESC represents the DHW heat use. Based on this 
assumption, the DHW heat use profiles for working days 
and weekends were found.  When the DHW heat use 
profiles are known, the profiles for SH can be extracted 
from the total heat use. 
The modification of the ESC approach that takes into 
account the monthly variation of DHW heat use in 
dwelling in the United Kingdom (UK) is proposed in 
(Burzynski et al., 2012). The authors in (Burzynski et al., 
2012) consider the days when the outdoor temperature is 
higher than the base temperature (Tereshchenko et al., 
2019) as only the DHW heat use in the building. Hence, the 
DHW heat use profiles for several warm months can be 
found. After that, the DHW monthly variation factors from 
the UK national standard “The government’s standard 
assessment procedure for energy rating of dwellings" were 
used to extrapolate the DHW heat use from warm months 
to other months of the year (Burzynski et al., 2012).  
Linear regression models were used to extract DHW heat 
use profiles from the total heat delivery in (Sørensen et al., 
2019). A model for total heat delivery was built with using 
the outdoor temperature, separate hours of each day, 
weekdays and holidays as an input for the modelling. When 
estimating the DHW heat use, the authors set the outdoor 
temperature in the models equal to the break-point 
temperature, before calculating the DHW daily load profile 
with hourly mean values (Sorensen et al., 2019). 
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A time series method for extracting DHW heat use spikes 
from the total heat use is presented in (Bacher et al., 2016). 
The method uses the fact that the SH heat use changes 
gradually during the day due to changes in outdoor 
temperature and user behaviour. DHW heat use does on the 
other hand create short-lived spikes in the total heat use 
time series. In order to identify the slow changes of SH heat 
use, the authors in (Bacher et al., 2016) propose to apply a 
non-parametric kernel smoother. All heat use values which 
lie above the kernel smoother are considered to be DHW 
heat use spikes.  
Another method for detecting the SH and DHW heat use 
profile is proposed in (Marszal et al., 2019). The method 
consists of the following steps: 1) the daily profile for the 
total heat use in an average summer day is identified; 2) the 
non-DHW use is calculated as a minimum of total heat use 
profile for an average summer day or average for hours 
from 0:00–04:00 o’clock; 3) the DHW profiles are 
calculated by deducting the non-DHW heat use from the 
value of the heat use at each hour of the day.  
An investigation of SH and DHW heat load measurements 
is shown in (Riachi et al., 2014). Here, the authors propose 
to model the DHW heat use based on the volumetric DHW 
use, the building activity, and the type of DHW system 
within the building. The SH loads are estimated according 
to the changes in outdoor temperatures, the building 
setpoint temperature, the night setbacks, and days of the 
week. 
An alternative modelling approach that couples of the 
behavioural, stochastic, and energy balance models is 
proposed in (Fischer et al., 2016). The SH model in this 
approach uses a simplified physical method with a 
behavioural model for standardised buildings. The 
characteristics of the DHW heat use is found as a result of 
the SH model.   
The literature review shows that the issue of extracting the 
SH and DHW profiles from the total heat use is not solved 
yet. The methods described above require extensive 
knowledge about the characteristics of the DHW and SH 
systems, the monthly variation factors for DHW heat use 
and/or users behaviour in buildings. Usually, when an 
energy analysis is conducted on a group of buildings, this 
information is not available. Several of the methods 
described are not verified with actual measurements 
(Bacher et al., 2016). For this reason, the comparison and 
further investigation of methods for identifying DHW and 
SH profiles from the total heat use in buildings are 
required.  
Methodology 
The analysis performed in this work is aimed at comparing 
and verifying different methods for estimating typical 
DHW load profiles for different building types by 
decomposition of heat load measurements into SH and 
DHW. Three methods have been tested for the 
decomposition of the same total heat use data from 
measurements: measurements: the seasonal method, the 
energy signature method and the hybrid summer-signature 

method. The seasonal method and the energy signature 
method are classical methods. Meantime, the hybrid 
summer-signature is a new method proposed in this article 
The results from the decomposition with each method have 
then been compared against each other and against 
measurement of DHW heat loads, profiles from the 
national standard, as well as other studies conducted on 
decomposition and measurements of DHW in Norwegian 
buildings.  
Measurements 
DHW use is significantly influenced by user behaviour and 
the number of occupants in a building. For this reason, the 
analysis was performed on measurement data from a large 
number of buildings. In total, data from 78 Norwegian 
buildings have been used in this analysis. The buildings are 
comprised apartments and hotels. None of the buildings are 
considered to be passive houses or low energy buildings 
(very energy efficient). The measurements gathered for 
each building contain between 1-3 years of hourly data on 
the outdoor temperature and the total heat load (HtTot) in 
each building.  The total heat load is assumed to be the sum 
of energy use for SH and DHW. The HtTot is covered by 
district heating in all buildings. The buildings are not 
registered with secondary heating and/or heat storage 
inside the buildings, however it is uncertain whether this is 
actually true for all of them. Table 1 shows an overview of 
the number of buildings within each building category that 
were analysed in this paper.  
Table 1: Number of buildings sorted by building category. 

Building category Number of buildings 
Apartment blocks 58 

Hotels 20 
Total 78 

Decomposition method 1: Seasonal method (SM) 
The seasonal method – which is sometimes referred to as 
the summer method -  assumes that there is no demand for 
SH during the summer time (between June 1st and August 
31st) in any of the buildings, and that the HtTot during the 
summer months is used only for DHW purposes. For each 
building, a typical DHW profile for workdays and 
weekends is created by extracting the average value for 
HtTot for every hour of the day during the summer period. 
SH is assumed to be zero in the summer. SH energy use for 
the rest of the year is identified as a difference between the 
measured heat load in the building and typical DHW 
profiles.  
There are two approaches to treat holidays in seasonal 
method. The first approach ignores holidays when creating 
the typical DHW profile with the seasonal method. The 
second approach assumes that for a building there will be 
at least 30 days within each year when there will be little-
to-no operation of SH and DHW systems due to the 
residents/users being away during the holidays. Most of 
these days will occur during the summer months. 
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Therefore, the way of identifying holidays is to mark the 
30 days with the lowest heat load out of the warmest days 
within each year. These data should be eliminated from 
analysis to take effect of holidays into consideration. 

Decomposition method 2: Energy signature method 
(ES) 

In the energy signature method, an energy signature curve 
(ESC) is created for each building. The ESC shows the 
relationship between the total heat load in an observed 
building and the outdoor temperature, as shown in Figure 
1. For a typical building, the ESC consists of two parts,
divided by the change point temperature (CPT). The CPT 
is a critical temperature that indicates when the heating 
season ends. It is assumed that when the outdoor 
temperature is higher than the CPT, the SH system does not 
work and the heat use in the building is mainly related to 
the DHW use. 

Figure 1: An example of the energy signature curve for the 
considered apartment building (Csoknyai et al., 2019). 

The CPT can be identified by using the piecewise 
regression method. This method allowed us to find the CPT 
and construct separate models for the two parts of the ESC, 
as shown in Equation 1:  𝑓(𝑥) = { 𝛽0 + 𝛽1(𝑥 − 𝐶𝑃𝑇) + 𝜀    𝐼𝑓 𝑥 <  𝐶𝑃𝑇𝛽0 + 𝛽2(𝑥 − 𝐶𝑃𝑇) + 𝜀     𝐼𝑓 𝑥 >  𝐶𝑃𝑇   (1) 

where 𝑓(𝑥) is a model for the ESC, 𝑥 is the outdoor 
temperature, 𝛽0, 𝛽1, 𝛽2 are the coefficients of the piecewise
model, and ε is the residual error. 
Using Equation (1), the CPT values were determined for 
the considered buildings. After, based on the ESD, the heat 
use when SH system is not operating, and DHW is the main 
energy consumer in the buildings was identified. Finally, 
the DHW heat use profiles for each building and building 
categories were calculated.  

Decomposition method 3: Hybrid summer signature 
method (Hybrid SM-ES) 

In order to improve the existing methods for HtTot 
decomposition, the authors propose a hybrid SM-ES 
method that takes aadditional features of SH and DHW 
systems performance into account. 
Buildings with ventilation systems might have a heating 
demand for heating of ventilation air during the 
summertime in the hours when the outdoor temperature is 
low – such as in the night time, in the early morning hours 
and on particularly cold days. By simply extracting the 
average value for heat load for every hour of the day during 
the summer (as is done in the seasonal method and to a 
certain extent in energy signature method), heating of 
ventilation air may be faulty interpreted as heating of 
DHW. 
When using the hybrid summer signature method, the 
summer values for the heat load (HtTot) and outdoor 
temperature (Tout) for every hour of the day are plotted 
with the Temperature at the X-axis and the heat load on the 
Y-axis (in an so-called Energy-Temperature-/ET-curve). 
Linear regression is then used to calculate the expected 
value for HtTot for the given hour at a given temperature, 
as shown in Figure 2. When the interpolation is done at 
higher temperatures it can be assumed that there will be no 
space heating in the building, and that the interpolated 
value for the heat load is used solely for DHW heating 
purposes. In Norwegian buildings, the heating of 
ventilation air stops at above 16°C. Therefore, the typical 
DHW profiles created with the hybrid summer signature 
method has been tested at 16°C, 18°C and 20°C. 

Figure 2 Tout and HtTot in one of the considered 
apartments on weekdays at 07:00. 

In some buildings, the obtained value from the SM-ES 
method will become negative in some hours when the heat 
load is interpolated at higher temperatures, such as 20°C. 
When this occurs, the heat load is set to zero. In order to 
reduce the number of hours that get negative values for 
heating, whilst still aiming to reduce the effects of 
ventilation heating, the linear regression is performed at 
18°C in this analysis.  
Results 
The test data (measurements of HtTot from the 78 
apartments and hotels) have been decomposed into DHW 
and SH using three methods: the seasonal method (SM), 
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the energy signature method (ES-1) and the hybrid 
seasonal signature method (Hybrid SM-ES).  
The results have been compared to different reference data: 
• An application of the energy signature method on a

different set of measurements of HtTot (Lindberg,
2017) (ES-2)

• Actual measurements of DHW use from three different
sources (REF-1 from (Walnum et al., 2019),  REF-2
from  (Bagge et al., 2015) and REF-3 from (ElDek,
2020)). 

• Normative inout data for DHW energy use for building
modelling from the national standard "SN-NSPEK
3031:2020: Energy performance of buildings.
Calculation of energy needs and energy supply”.

The reference data is collected from different sources with 
differences in methodologies, system boundaries and 
building types. An overview of the modelling and the 
reference data sources is given in Table 2. 
Table 2 Overview of simulation and reference data. 

Description # Sirc. 
losses 

Energy 
supply 

Te
st

 d
at

a 

SM-1 Seasonal method without (1) 
and with marking (2) of 
holidays. 

58 
apartment 
blocks, 
20 Htl 

Yes DH 
SM-2 

Hybrid  
SM-ES 18 

Seasonal method with linear 
regression at 18°C 

ES-1 Energy signature 1 

Re
fe

re
nc

es
 

ES-2 Reference Energy signature 
values for apartments 
(Pedersen, 2007)  and for hotels  
(Lindberg et al., 2019).  

53 
dwellings,  
7 hotels 

Yes 
DH 

REF-1 Reference 1 from 
measurements. Flow and energy 
measurements on pipes in 
Norwegian hotels and 
apartments. (Walnum et al., 
2019)  

2 Apt. 
blocks 
3 hotels. 

Yes DH and 
EL  

No 

REF-2 Reference 2 from 
measurements. Flow 
measurements on pipes in 
Swedish apartments, later 
converted into energy with a fix 
conversion factor. Individual 
metering for each unit. (Bagge 
et al., 2015) 

4 apt. 
blocks with 
1000 units. 

No NA 

REF-3 Reference 3, measurements of 
DHW energy use in single 
family houses. Energy 
measurement on socket (ElDek, 
2020) 

Unknown. Yes EL 

NORM SN-NSPEK 3031:2020. 
Normative values of net energy 
demand for heating of DHW 
used in building modelling 

- No - 

Daily profiles 

To evaluate the different decomposition methods, the 
typical daily profiles for DHW energy use in hotels and 
apartments have been created based on the test data.  These 
daily profiles have been compared to the daily reference 
profiles for DHW energy use in apartments and hotels. 
The reference daily profiles on DHW energy use from 
measurements in apartments are shown in Figure 3 
(Weekdays) and Figure 4 (weekends). The reference 

measurements have been gathered from three different 
sources: REF-1 and REF-3 come from measurements of 
DHW energy use in Norwegian apartment buildings, while 
REF-2 is gathered from the measurement of DHW use in 
1000 Swedish apartments. REF-2 is plotted in the figures 
with a spread from the lowest 10th percentile to the highest 
10th percentile of DHW energy use from all of the 
apartment units, indicating a large spread in DHW energy 
use between different users. The apartment references 
indicate that usually during weekdays, apartment blocks 
will have a high morning peak and evening peak for DHW 
energy use, with a significant reduction in DHW energy 
use during the night time. On weekends, the references 
indicate that apartments typically will have a higher 
morning peak at a later time of day (compared to 
workdays), with higher consumption of DHW energy use 
throughout the day, but still with a low consumption during 
the night time.  
Figure 5 and Figure 6 show the typical profiles for 
apartments created from the test data with the different 
decomposition methods, plotted against REF-2, the 
reference energy signature profiles (ES-2) and normative 
values for DHW energy consumption (NORM). The 
seasonal-method profiles (SM-1 and SM-2) and the energy 
signature profiles (ES-1 and ES-2) show higher values for 
most hours compared to the typical profiles obtained from 
measurements, with little reduction in energy consumption 
during the night time. The hybrid SM-ES 18 profiles are 
closer to the average profile from REF-2, and show a more 
significant reduction in the energy consumption during the 
night time, although the typical daily profile from the 
Hybrid SM-ES method creates a "flatter" daily profile for 
the apartments with less significant morning and evening 
peaks, compared to the other decomposition methods.  
The typical daily profile for hotels (regardless of 
weekdays/weekends) from the test data and from the 
references is shown in Figure 7.  All of the daily profiles 
for DHW energy consumption in hotels indicate a high 
morning peak, and a slight increase in DHW consumption 
towards the evening/night, with a decrease in energy use 
during the night. The Hybrid SM-ES method has a bigger 
decrease in energy use during the night compared to the 
other decomposition methods. The weekend and weekday 
DHW profiles are not plotted individually for hotels, as the 
reference values don't separate between different days in 
the typical profile. The test data does however indicate a 
later morning peak in hotels on weekends compared to 
weekends regardless of the decomposition method used. 
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Figure 3 Reference measurements of DHW energy on 
weekdays in apartments. 

Figure 4 Reference measurements of DHW energy on 
weekends in apartment buildings. 

Figure 5 Average weekday profiles for DHW energy use in 
apartments created for the test buildings with different 
methods compared against REF-2 and NORM. 

Figure 6 Average weekend profiles for DHW energy use in 
apartments created for the test buildings with different 
methods compared against REF-2 and NORM.  

Figure 7 Average daily profiles for DHW energy use in 
hotels created for the test data with different methods 
compared against REF-1 and NORM. 

Figure 8 Variation in daily profiles for the apartment test 
data on weekdays created with Hybrid SM-ES method at 
18°C. 
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Figure 9 Variation in daily profiles for the hotel test data 
on weekdays created with Hybrid SM-ES method at 18°C. 

The average daily profiles for DHW energy use in 
apartments and hotels created with the hybrid SM-ES-
method has the resulting profile which is the most similar 
to the typical profiles obtained from actual measurements 
on the building category level. However, there is a large 
variation in the typical DHW energy consumption between 
all the buildings in the test data. Figure 8 and Figure 9 show 
the variation between the typical profiles created with the 
hybrid SM-ES method for the 78 apartments and hotels 
respectively, from the lowest 10th percentile to the highest 
10th percentile.  
Annual energy use for DHW 
The different methods for extracting the DHW energy use 
give different results on the annual consumption of energy 
use for DHW. The spread of the resulting annual energy 
use for DHW in the 78 test data is shown in the boxplots in 
Figure 10 and Figure 11 for apartments and hotels 
respectively.  

 
Figure 10 Boxplots of annual specific energy use for DHW 
decomposed with different methods in 58 apartment 
blocks. 

 
Figure 11 Boxplots of annual specific energy use for DHW 
decomposed with different methods in 20 hotels. 

The mean annual energy consumption is the lowest when 
the hybrid SM-ES method at 18°C is used, and highest 
when the SM-2 method is used. 
The mean annual specific energy use for DHW created for 
the test data with the different methods, as well as the mean 
energy use from the references is listed in Table 3. The 
results show that all the decomposition methods used on 
the test data have resulted in higher annual energy use for 
DHW in both apartments and hotels compared to most of 
the references. The exception is REF-1 with circulation 
losses which have higher annual consumption than the 
resulting mean created with SM-ES-18 for apartments.  
Table 3 Mean annual energy use DHW Heating. 

 

 Method 

Apartment 

[kWh/m2year] 

Hotel 

[kWh/m2year] 

T
e

st
 d

a
ta

 

 SM-1  50.2 56.9 

 SM-2  56.3 61.3 

 Hybrid SM-ES 16  42.4 50.5 

 Hybrid SM-ES 18  37.0 46.0 

 Hybrid SM-ES 20  31.8 41.9 

 ES-1  45.9 50.0 

R
e

fe
re

n
ce

 d
a

ta
  ES-2  48.8 46.9 

 NORM  25.1 30.1 

 REF-1 w/Losses  40.2 24.5 

 REF-1 wo/losses  34.3 - 

 REF-2  22.7 - 

 REF-3  18.2 - 

 
Discussion 
The comparison of decomposition methods is nescessary 
in order to create realistic energy profiles for achiving 
energy efficiency in buildings. The proposed Hybrid SM-
ES method has showed good results and can be applied in 
practice.  
The simple seasonal method assumes that there is no SH 
energy use during the summer, however this may not be 
true for all buildings, especially the buildings with 
ventilation systems, where the ventilation air is heated 
before being supplied in the building. By following 
traditional methods, heating of ventilation air may be faulty 
interpreted as heating of DHW, resulting in an 
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overestimated total annual demand for heating of DHW, as 
well as overestimating the hourly energy demand for 
DHW, especially at night and in the early morning hours 
when the outdoor temperature is lower, and the heating of 
ventilation air is higher. An alternative to the simple 
seasonal method would be to sort the heat load data by 
outdoor temperature, and look at the warmest days/hours 
instead of the summer dates. For buildings in colder 
climates, there may not be enough data points for higher 
temperatures (above 16°C) at all hours of the day. The 
hybrid seasonal-signature method offers an alternative 
approach where the expected value for the heat load is 
interpolated at higher temperatures. The hybrid summer-
signature method shares similarities with (Burzynski et al., 
2012), however, it doesn't identify the CPT/break point 
temperature for each building, and only measurements 
from the summer season are collected before the linear 
regression is applied. In some buildings, the interpolated 
value results in negative values when the SM-ES method 
is applied, especially when the heat load is interpreted at 
higher temperatures (20°C). When this occurs, the heat 
load is set to zero. Negative values suggest that the values 
should be low – and close to zero, however this is an 
underestimation as in reality, the circulation losses will be 
above 0. If the heat load is interpolated at too high 
temperatures, the resulting DHW value can get too low. 
Establishing the most suitable temperature for the 
interpolation must be balanced between reducing the 
effects of ventilation heating during the night, whilst not 
underestimating the heat load for DHW energy use during 
the day.  
The energy signature method is a widely used method for 
extracting the DHW energy use from heat load 
measurements. The ES-method is based on Piecewise 
Regression and optimization. If the ES-method is applied 
to a dataset without a classical shape, where there for 
instance is little dependence between the heat load and the 
outdoor temperatures, where there are a significant amount 
of data points, or where there heat is being turned off at 
different times (e.g. due to heat storages being used, load 
controls or other factors), the ES-algorithm will not work 
normally. Due to this, the ES-method will not be applicable 
to all datasets, and has not been possible to apply to all files 
in the test data set.  

All typical profiles created from the test data with the 
different decomposition method show a time-shift 
compared to the measurements. This could be due to a 
difference in the registration of data, or different user 
behaviour in the different data sets.  
In all three methods, it is assumed that there is no seasonal 
variation in the DHW consumption, however (Bagge et al., 
2015) has found a seasonal dependence of DHW 
consumption in apartment blocks, with higher 
consumption in the winter months. One could also assume 
that tourist oriented hotels have higher consumption in the 
summer months, while congress and business oriented 

hotels have higher consumption outside the summer 
months. Seasonal variation in DHW is also supported by 
(Gerin et al., 2014). The methods could be improved by 
combining the typical DHW-profiles with seasonal 
coefficients for DHW from (Gerin et al., 2014) or create 
coefficients based on (Bagge et al., 2015). 
The comparison of the DHW energy use in the test data 
created with the different methods and the measurements 
indicate that all methods for decomposition likely 
overestimates the energy use for DHW purposes in 
apartments and hotels. As the modelled DHW energy use 
might be used for dimensioning purposes, this is 
considered to be preferred compared to underestimation of 
DHW energy use.  
Conclusion 
Analysis of energy use in existing buildings is a powerful 
instrument for achieving energy savings in buildings, 
performing better design and dimensioning of the energy 
systems, as well as introducing energy planning and 
demand-side management. Currently, there are no 
generally accepted recommendations on how to separate 
the SH and DHW profiles from the total heat use. The aim 
of the analysis performed in this work has been to compare 
and verify different methods for estimating typical DHW 
load profiles by decomposition of heat load measurements 
into SH and DHW. Three methods have been used for the 
decomposition of the heat load from 78 apartments and 
hotels: the seasonal method, the energy signature method 
and hybrid summer-signature method. All methods have 
limitations in creating the typical DHW-profile for a 
building. The hybrid-summer signature method with linear 
regression at 18°C gave the best results for the 
decomposition of DHW compared to the measurements for 
the test data used in this analysis. A similar comparison of 
the resulting SH energy use profiles with verification 
against SH measurements should be conducted in further 
work in order to further evaluate this method.  
Acknowledgment 
The authors gratefully acknowledge the support from the 
Research Council of Norway and several partners through 
the "Research Centre on Zero Emission Neighbourhoods in 
Smart Cities (FME ZEN)", grant nr. 257660, and the 
project " Energy for domestic hot water in the Norwegian 
low emission society (VarmtVann 2030) ", grant nr. 
267635. 
References 
Abrahamsen, A. S., & Bergh, M. (2011). Energibruk i 

bygninger for tjenesteytende virksomhet. 2008.  
Bacher, P., de Saint-Aubain, P. A., Christiansen, L. E., & 

Madsen, H. (2016). Non-parametric method for 
separating domestic hot water heating spikes and 
space heating. Energy and Buildings, 130, 107-112.  

Bagge, H., Johansson, D., & Lindstrii, L. (2015). 
BRUKARRELATERAD 
ENERGIANVÄNDNING Mätning och analys av 

BuildSim-Nordic 2020

- 250 -



hushållsel och tappvarmvatten. LÅGAN - För 
Energieffektiva Byggnader.  

Burzynski, R., Crane, M., Yao, R., & Becerra, V. (2012). 
Space heating and hot water demand analysis of 
dwellings connected to district heating scheme in 
UK. Journal of Central South University, 19(6), 
1629-1638.  

Cai, H., Ziras, C., You, S., Li, R., Honore, K., & Bindner, H. 
W. (2018). Demand side management in urban 
district heating networks. Applied Energy, 230, 
506-518.  

Csoknyai, T., Legardeur, J., Akle, A. A., & Horvath, M. 
(2019). Analysis of energy consumption profiles in 
residential buildings and impact assessment of a 
serious game on occupants’ behavior. Energy and 
Buildings, 196, 1-20.  

ElDek. (2020). Data obtain from personal communication 
with Hanne Sæle [or Project Leader, or Contact 
Person] in April 2020. 
https://www.sintef.no/en/projects/eldek-electricity-
demand-knowledge/, accessed on 07/05/2020.  

European Commission, Directive (EU) 2018/844 of the 
European Parliament and of the Council, Available 
from: https://eur-
lex.europa.eu/legalcontent/EN/TXT/?uri=uriserv%
3AOJ.L_.2018.156.01.0075.01.ENG (Accessed 
October 16, 2019).  

Fischer, D., Wolf, T., Scherer, J., & Wille-Haussmann, B. 
(2016). A stochastic bottom-up model for space 
heating and domestic hot water load profiles for 
German households. Energy and Buildings, 124, 
120-128.  

Gerin, O., Bleys, B., & De Cuyper, K. (2014). Seasonal 
variation of hot and cold water consumption in 
apartment buildings. Paper presented at the 
CIBW062 Symposium 2014.  

The government’s standard assessment procedure for energy 
rating of dwellings. (2019). In Building Research 
Establishment, Watford, UK (pp. 180): BRE 
Garston, Watford. 

Lindberg, K. B., Bakker, S. J., & Sartori, I. (2019). 
Modelling electric and heat load profiles of non-
residential buildings for use in long-term aggregate 
load forecasts. Utilities Policy 58, 58, 62-88.  

Marszal, A. J., Zhang, C., Pomianowski, M. Z., Heiselberg, 
P. K., Gram-Hanssen, K., & Hansen, A. R. (2019). 
Simple methodology to estimate the mean hourly 
and the daily profiles of domestic hot water 
demand from hourly total heating readings. Energy 
and Buildings, 184, 53-64.  

Pedersen, L. (2007a). Doctoral Thesis. Load Modelling of 
Buildings in Mixed Energy Distribution Systems.  
of  

Energy and Process Engineering. Trondheim: NTNU,  
Pedersen, L. (2007b). Load Modelling of Buildings in Mixed 

Energy Distribution Systems. (PhD Thesis).  
Riachi, Y., Rangod, N., & Guillemot, B. (2014). A numerical 

model for determining hourly heating and DHW 

loads in district heating systems. Paper presented at 
the The 14th International Symposium on District 
Heating and Cooling. 

Sørensen, A. L., Lindberg, K. B., Walnum, H. T., Sartori, I. 
Aakenes, U. R.  & Andresen, I. (2019). Heat 
Analysis for Energy Management in 
Neighbourhoods: Case Study of a Large Housing 
Cooperative in Norway. IOP Conference Series: 
Materials Science and Engineering, 609, pp. 1-7.  

Tereshchenko, T., Ivanko, D., Nord, N., & Sartori, I. (2019). 
Analysis of energy signatures and planning of 
heating and domestic hot water energy use in 
buildings in Norway. E3S Web of Conferences, 
111(06009), p. 1-8.  

Unander, F., Ettestøl, I., Ting, M., & Schipper, L. (2004). 
Residential energy use: an international perspective 
on long-term trends in Denmark, Norway and 
Sweden. Energy policy, 32(12), 1395-1404.  

Walnum, H., Sørensen, Å. L., Ludvigsen, B., & Ivanko, D. 
(2019). Energy consumption for domestic hot water 
use in Norwegian hotels and nursing homes. IOP 
Conference Series: Materials Science and 
Engineering, 609. doi:10.1088/1757-
899X/609/5/052020 

 

Appendix 

 The hybrid SM-ES method at 18 degrees was applied to 198 
buildings from different building categories with 
measurements of HtTot. This table shows the resulting typical 
profile for DHW energy use in different building categories. 
n= the number of buildings in the test data within the building 
category. 

 

Hour 

Apartment 
n = 58 

Hotel 
n = 20 

Nurs. 
home 
n = 31 

Office 
n = 49 

School 
n = 40 

WD WE WD WE WD WE WD WE WD WE 
0 4.10 3.93 4.85 5.42 2.92 3.09 1.26 1.35 1.49 1.57 
1 3.12 3.38 3.40 3.98 2.81 2.92 1.20 1.27 1.42 1.48 
2 2.47 2.96 2.58 2.95 2.62 2.78 1.19 1.30 1.31 1.50 
3 2.02 2.74 2.19 2.57 2.77 2.79 1.11 1.00 1.23 1.44 
4 1.83 2.28 2.33 2.56 3.06 3.01 1.17 1.11 1.13 1.29 
5 1.75 2.03 2.70 2.48 3.40 3.19 1.15 1.10 1.22 1.32 
6 2.08 2.02 4.17 3.47 3.82 3.55 1.57 1.29 1.39 1.52 
7 3.31 2.48 6.76 5.23 4.40 3.88 1.64 1.31 1.41 1.57 
8 4.42 3.10 8.58 8.36 5.17 4.63 1.97 1.46 1.84 1.67 
9 4.79 4.09 8.81 10.59 6.39 5.32 2.20 1.49 2.52 1.74 

10 5.14 5.26 6.79 9.12 6.62 5.30 2.37 1.55 2.83 1.88 
11 5.05 5.68 5.99 7.35 6.56 5.33 2.56 1.75 3.01 1.93 
12 5.12 5.80 5.48 6.43 6.35 5.38 2.67 1.74 3.22 1.97 
13 4.98 5.77 5.07 5.57 6.19 5.35 2.67 1.82 3.30 2.09 
14 4.85 5.64 4.76 5.20 6.17 5.36 2.62 1.84 3.28 2.07 
15 4.80 5.29 4.63 4.88 5.79 5.13 2.56 1.77 3.34 2.19 
16 4.94 5.16 4.64 4.82 5.24 4.87 2.36 1.76 2.94 2.06 
17 5.28 5.24 4.70 4.72 5.13 4.83 2.15 1.79 2.63 2.09 
18 5.50 5.40 5.19 5.26 4.82 4.73 2.00 1.78 2.44 2.08 
19 5.44 5.35 5.62 5.44 4.69 4.62 1.94 1.64 2.25 1.99 
20 5.38 5.24 5.64 5.71 4.57 4.51 1.79 1.65 2.07 1.98 
21 5.18 4.80 6.07 5.91 4.21 4.00 1.68 1.49 1.89 1.89 
22 4.94 4.37 6.68 6.16 3.72 3.63 1.56 1.34 1.68 1.68 
23 4.43 4.09 6.78 5.90 3.23 3.10 1.32 1.24 1.53 1.54 
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a b s t r a c t

To achieve more efficient energy use in buildings, space heating (SH) and domestic hot water (DHW) heat
use should be analysed separately. Unfortunately, in many buildings, the heat meters measure the total
heat use only, typically not divided into SH and DHW. This article presented a method for splitting the
total heat use into the SH and the DHW. The splitting follows the assumption that the outdoor tem-
perature is the main parameter explaining the hourly SH heat use, while the hourly DHW heat use is not
influenced by this parameter. In the article, the modelled SH heat use was extracted from the total heat
use based on the energy signature curve and the singular spectrum analysis. Thereafter, from the re-
siduals between the modelled SH heat use and the total heat use, the DHW heat use was identified. The
application of the method for the hotel in Norway showed that restored values represented the trends of
the measured SH and DHW heat use well. The coefficient of determination (R2) for the modelled SH heat
use was 0.97, and 0.76 for DHW. The methodology is useful for obtaining valuable information for
monitoring and improving the energy performance of SH and DHW systems.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For the European Union (EU) power system, energy savings in
buildings is a vital topic. This topic is important from both an
economic and environmental perspective [1]. The amount of en-
ergy use in buildings is currently reaching 40% of the total energy
use [2]. For this reason, achieving a highly energy-efficient building
stock is one of the main targets of the current energy policies in EU
[2]. Out of all the technical systems in buildings in the EU, space
heating (SH) and domestic hot water (DHW) are often the most
significant consumers of energy. According to Ref. [3], SH and DHW
heat use together accounts for more than 20% of the total EU energy
utilisation. SH consumes approximately 85% of the heat demand in
the EU. The remaining 15% is related to DHW use [3]. Thus,
increasing energy efficiency in SH and DHW systems is essential for
attaining the EU energy targets [4].

The European Directive 2018/844 [5] claims that analysis of the
energy performance for buildings should be conducted based on

calculated ormeasured energy use. The estimations shall reflect the
typical energy use for SH, DHW, and other technical systems in a
building [5]. This approach to analysis is important for the devel-
opment of energy-saving solutions in all technical components of
the building. The proper implementation of this approach requires
that energy meters are installed for the main energy-consuming
systems in the buildings. As a part of the smart meter promotion
strategy, at least 80% of the EU electricity meters should be replaced
by smart meters until 2020 [6]. Smart heat meters, on the other
hand, are usually not available in buildings [7]. However, a signif-
icant share of buildings uses only one heat meter for the total heat
use. In such systems, this single meter cannot measure the SH and
DHW heat use separately. SH and DHW systems have different
regimes of work and influencing factors on their performance.
Accordingly, the analysis of heat use in these two systems should be
performed independently [8]. Separate statistical data for the DHW
and the SH heat use are essential for improving a number of issues,
such as SH and DHW systems sizing, designing of energy man-
agement and control systems, as well as improving the existing
standards, the prediction models and the energy use profiles. Thus,
the separation of the total heat demand into the components
associated with the SH and DHW heat use is an important task.
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2. Literature review

Several research groups investigate the problem of extracting
the SH and the DWH heat use from the total heat use measure-
ments [9,10]. However, since the problem is not trivial, and the
researchers set different requirements for the results, there is no
uniquemethodology for performing such data analysis. Some of the
existing solutions are discussed in the text below.

A method for separating the total heat demand in the building
into SH and DHW heat use is presented in Ref. [9]. In this research,
10-min resolution data from a single-family house in Denmark is
used. The method assumes that the DHW heat use generates short-
lived spikes in the time series. Opposite, the SH heat use changes
slowly during the day due to climate and user behaviour. For this
reason, the authors in Ref. [9] propose to estimate the SH heat use
by a non-parametric kernel smoother. All the values significantly
above the kernel smoother are considered as the DHW heat use
spikes. Currently, this method is not yet verified by the SH and the
DHW heat use data which are measured separately. Therefore, it is
challenging to estimate its accuracy and reliability.

Splitting weekly heat use from 1 m into DHW and SH is
considered in Ref. [10]. The authors in Ref. [10] assume that the
period when the outdoor temperature is higher than the base
temperature [11] is only the DHW heat use period. In this way, they
found DHW heat use for several warm weeks during the year. Af-
terwards, the same authors proposed to use the DHW monthly
variation factors to extrapolate the DHW heat use from warm
months to other months of the year [10]. For dwellings in the
United Kingdom, these factors are given in “The government’s
standard assessment procedure for energy rating of dwellings”
[12]. Further, the research work in Ref. [13] considers the related
problem in Belgium. Based on actual measurements in dwellings,
the monthly variation factors for DHW heat use are calculated [13].
For other types of buildings, except dwellings, these factors are not
presented in the literature. In some buildings, SH heat use can be
observed even in the warm months. Therefore, for an individual
building, application of monthly variation factors for DHW heat use
can lead to inaccurate results.

The research work in Ref. [14] shows a method that estimates
the hourly space heating and the daily DHW heat use profile. The
mentioned study uses the hourly values of the total heat demand in
the building. The method includes the following steps: 1) the daily
total heat use profile for an average summer day is calculated; 2)
the non-DHW use is calculated as a minimum of total heat use
profile for an average summer day or average for hours from
0:00e04:00 o’clock; 3) the DHW profiles are calculated by
deducting the non-DHW heat use from the value of the heat use at

each hour of the day. This study in Ref. [14] shows that the method
gives satisfactory results when the DHW use during summer is at
least at the same level as the space heating. The method does not
consider the DHW heat use in other periods, except for the warm
season.

Some approaches propose the alternative way of the SH and
DHW heat use identification. They rely on the application of
buildings simulation tools [15]. For example, a methodology which
uses occupant focused approach and time-of-use survey (TUS) is
considered in Ref. [16]. To develop activity-specific profiles for oc-
cupancy and domestic equipment use, the Markov Chain Monte
Carlo techniques is applied for TUS activity data. The authors as-
sume that the heat demand is dependent on the household size,
type of the day, and the season. The DHWheat use profiles combine
the probability distributions for particular TUS activities with
average daily DHW heat demand.

Several stochastic multi-energy simulation models are devel-
oped for the UK residential building stock [17e19]. Among the
models presented in these articles, the CREST Heat and Power
(CHAP)model is of particular interest. CHAPmodel uses a four-state
occupancy model and existing activity profiles for DHWmodelling.
At the same time, the SH model applies a two-node RC approach to
determine the required heat input to maintain a specific setpoint
temperature. The model shows good results for energy system
analyses of UK residential buildings in general. However, it pro-
duces less accurate results for a single building with specific
configurations.

The DHW heat use profiles are integrated within a set of
building performance simulation archetype models. Such simula-
tion also provides the possibility of estimating SH heat use. The
research in Ref. [20] describes an approach where volumetric flow
rates and water temperatures are measured to characterise the
DHW use in 20 buildings of different sizes. The authors execute
several stochastic simulations for the measured data to get repre-
sentative DHWuse profiles. They propose to use these profiles as an
input to simulation tools [20]. A number of building simulation
tools could be also used for estimation of the SH and the DHW heat
in the building. Among the popular tools for building simulation are
IDA ICE, EnergyPlus, and TRNSYS [21]. However, usually, these tools
require the development of a complex model for all the compo-
nents in a building. Usually, such a model is suitable only for a
particular building. In addition, practice shows that such models
are less accurate than the analysis based on actual measurements
[22].

The application of a test rig for testing heating equipment in the
thermo-technical laboratory is discussed in Ref. [23]. In this labo-
ratory, for different heating conditions, the heat demand profiles

Nomenclature

f ðxÞ piecewise regression model for the ESC
x independent variable in a piecewise regression,

which is the outdoor temperature for the considered
case (�C)

bi ith coefficient of the piecewise model
ε residual error
ESH ESC model of space heating heat use
EDHW ESC model of domestic hot water heat use
ETH measured total heat use (kW)
ELoss heat losses in the DHW system (kW)
ETH time series of the total hourly heat use in the building
N number of the elements in the data sample

L window length
X Hankel matrix
Xi i-th elementary matrix of X
si i-th singular value of the matrix X
Ui left singular vectors of the matrix X
Vi right singular vectors of the matrix X
d intrinsic dimensionality of the time series trajectory

space
~en elementary time series components
~ei ith elementary time series component
P

~ek sum of the components selected from ~ei
E0SH SSA model of space heating heat use
E0DHW SSA model of domestic hot water heat use
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for SH and DHW heat use is emulated.
Some authors propose to use the models and profiles of the SH

and DHW heat use created based on statistical data from the
buildings stock databases [24,25]. For instance, the Neural Net-
works model of the SH and DHW heat use in typical Canadian
households is considered in Ref. [24]. The model uses data from the
1993 Survey of Household Energy Use (SHEU) database, which
represents information from the Canadian housing stock. Similar
models may serve as a basis for the separation of the SH and DHW
heat use in typical buildings. However, their development requires
the availability of the appropriate database. Moreover, the accuracy
of the splitting for individual buildings will be questionable.

Linear regressionmodels may be used to predict heat demand in
buildings, e.g. as done in Ref. [26]. Pedersen in Ref. [27] and
Sørensen et al. in Ref. [28] use linear regression models to separate
DHW from total heat delivery. In Ref. [28], a linear regressionmodel
for total heat delivery is developed, taking the outdoor tempera-
ture, hour of the day, weekdays and holidays into account. When
estimating DHW, the outdoor temperature is set to the approxi-
mate break-point temperature of the model, resulting in a DHW
daily load profile with hourly mean values [28].

The separated SH and DHW heat use profiles are also modelled
in Ref. [25]. The modelling approach is the coupling of the behav-
ioural, stochastic, and energy balance models. The synthetic load
profile captures the typical hourly, daily, and annual characteristics
of the DHW heat use. The SHmodel is a combination of a simplified
physical method with a behavioural model for standardised
buildings. The approach requires knowledge about the activity
categories, such as occupant’s presence at home, sleeping, hygiene,
and cooking activities. Such modelling approach may give good
results, but the data required for new studies on a bigger scale
(hotels, nursing homes etc.) requires much effort and usually not
feasible.

SH and DHWhourly energy loads in buildings are also studied in
Ref. [29]. The authors estimate the hourly DHWheat use depending
on the water volume use, the building activity, and type of DHW
system. Meanwhile, hourly SH loads are modelled, taking into ac-
count the outdoor temperatures, the building setpoint tempera-
tures, the night setbacks, and weekends.

The literature review shows that the problem of dividing the
total heat use into the parts related to the SH and DHW is not solved
yet, especially for larger buildings with limited knowledge about
the users. Most of the existing methods are simplified and focused
only on restoring average daily profiles for a considered year. Some
of the above-mentionedmethods allow us to obtain general models
of SH and DHW heat use for particular buildings category, but not
for an individual building [24]. The other methods solve the
considered problem only for several warm months based on the
assumption that SH is not working in the summertime [14]. The
number of methods requires extensive knowledge about users
behaviour, physical properties of the building and parameters of
the systems, which limits their application [25]. Moreover, the
major part of the existing articles analyses heat use in apartment
buildings. For non-residential buildings, including hotels, the
problem is less studied.

In this article, we present a method for splitting hourly mea-
surements of the total heat use into the SH and the DHW heat use.
The first step of the method was to develop SH heat use model
based on the total heat use data. This step relied on the energy
signature curve (ESC) and singular spectrum analysis (SSA). The
DHWheat use model was extracted from the residuals between the
SH heat use model and the total heat use. The methodology was
tested on one-year hourly measurements in a hotel, located in
Eastern Norway. The investigation was performed in such a way
that the results of the total heat use splitting could be compared

with the measured SH and DHW heat use, which were measured
separately at the hotel. The methodology is useful for obtaining
valuable information about DHW and SH heat use in the building
where only one heat meter is available. The models obtained by the
total heat use splitting for DHW and SH heat use can be used for
improving the energy performance in the building and energy
efficiency.

The paper has six sections. Section 3 introduces the methodol-
ogy for splitting the total heat use into the SH and the DHW heat
use. Section 4 represents the description of the hotel, where the
methodology was tested. In Section 5, the main results of the
methodology application are discussed. The values resulting from
the splitting are compared with the measured SH and DHW use.
Finally, the most important conclusions of the investigation are
presented in Section 6.

3. Method

The methodology consists of two subsections. Section 3.1
dedicated to the application of the ESC to extract the models of
the SH and the DHW heat use from the total heat use in the
building. Section 3.2 proposes the method which is based on the
SSA for the decomposition of the SH and the DHW heat use in
Section 3.1.

3.1. Energy signature curve for the SH and the DHW heat use
analysis

The method proposed in this article uses the assumption that
the SH and the DHW have different factors affecting them. It is well
known that the main influencing factor on the SH heat use is the
outdoor temperature [30,31]. In addition, for the DHW use, a sea-
sonal variation is found related to the outdoor temperature [13].
However, on an hourly basis, the research in Ref. [32] has shown
that the correlation between the DHW use and the outdoor tem-
perature is insignificant. Thus, the regression model between the
total heat use in buildings and the outdoor temperature is caused
by the SH only. Meanwhile, the DHW heat use can be found in the
residuals of this model.

The ESC shows the relationship between the heat use in an
observed building and the outdoor temperature [27,33]. The ESC is
a powerful instrument for the heat use analysis in buildings [34].
Fig. 1 shows an example of the ESC.

For a building with a heating season and no cooling taking into
consideration, the ESC often consists of two parts. These parts are
divided by the change point temperature (CPT), see Fig.1. The CPT is
a critical outdoor temperature that sets the boundary between the
start and the end of the heating season. After the CPT, the SH use in

Fig. 1. An example of the energy signature curve.
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the building is limited. The part of the curve before the CPT shows
the SH season. Usually, in this period, the SH heat use is signifi-
cantly higher than the DHW heat use. The function after the CPT
shows the warm season when SH is not required. During this time,
the main share of heat use is related to the DHW system. Never-
theless, depending on the system type, a small amount of heat use
associated with the operation of the SH system may occur.

For some buildings, the last day of the heating season or the CPT
are known. If the CPT is known, the ESC can be built by using the
least square method for two parts of the model, See Fig. 1. Other-
wise, the CPT can be identified by using the piecewise regression
method. This method allowed us to find the CPT and construct
separate models for the two parts of the ESC as shown in Equation
(1):

f ðxÞ¼
�

b0 þ b1ðx� CPTÞ þ ε If x< CPT
b0 þ b2ðx� CPTÞ þ ε If x > CPT

(1)

where f ðxÞ is a model for the ESC, x is the outdoor temperature, b0,
b1, b2 are the coefficients of the piecewise model, and ε is the re-
sidual error.

Our investigation showed that the ESC model explains well the
behaviour of the SH heat use. However, since the total heat use also
includes DHW, the model was shifted relative to SH heat use by a
certain constant value. In this article, we call this value the shifting
coefficient. The shifting coefficient can be revealed from the
behaviour of the SH system in the warm season, when the outdoor
temperature is above the CPT. During the warm season, there were
hours when the SH heat use in the building was equal to zero. The
research [11] showed that the minimum value of the ESC coincides
with these hours. The study in two other buildings except for the
hotel also shows a similar result [32]. Thus, in this study, the co-
efficient of shifting was accepted to be equal to the minimum value
of the total heat use ESC. Extracting this coefficient from the ESC
allows us to obtain the SH heat use model. Finally, the following
equation was suggested for the SH heat use model:

ESH ¼ f ðxÞ �minðf ðxÞÞ (2)

The values of the total heat use, which lies above the modelled
SH heat use give information about the trend of DHW heat use [9].
Therefore, initially, it was assumed that the positive residuals, ob-
tained as the difference between the total heat use and the
modelled SH heat use, represented the DHW heat use. When the
negative values appeared in the residuals, the DHW heat use was
supposed to be equal to zero. In a DHW system with continuous
circulation, the DHW system operates continuously to deliver hot
water. Accordingly, the system losses should be added to the DHW
heat use obtained from the residuals. These losses can be found as
an average value of the heat use at the night time, as proposed in
Ref. [14]. Then the model of the DHW heat use can be identified by
the following:

EDHW ¼

�

ETH � ESH þ ELoss If ETH > ESH
ELoss If ETH � ESH

(3)

where ETHis the measured total heat use and ELoss presents the heat
losses in the DHW system.

Finally, the SH heat usewas balanced according to the DHWheat
use model. SH heat use model was recalculated as a difference
between the measured total heat use and DHW heat use obtained
by Equation (3). In addition, it was introduced a condition that both
DHW and SH heat use should be positive. In a case, if one of the
parameters (DHW or SH heat use) becomes negative, the negative
value was compensated from the remaining parameter. For
example, if for a certain point, the modelled DHW heat use was

negative, it was compensated from SH heat use, and vice versa. In
such a way, all values of restored DHW and SH heat use were
positive, and their sum was balanced to be equal to the total heat
use.

The flowchart of the above-introduced algorithm for splitting
SH and DHW heat use based on the ESC is shown in Fig. 2.

The proposed method might give a reasonable estimation for
the trend of SH heat use. However, ESC is based on linear functions.
For this reason, it cannot capture particular spikes and rapid fluc-
tuations of the SH heat use. The residuals of the ESC model also
contained some noise from the SH. This noise reduced the accuracy
of the DHW model. To capture the spikes in the SH heat use in a
better way and to improve both the SH and the DHW heat use
models, we suggested performing additional analysis. Particularly,
after the application of Equation (2), a time series decomposition
was applied. For this purpose, the SSAwas used. This step is further
explained in Section 3.2.

3.2. Application of singular spectrum analysis for identifying the SH
and DHW heat use

SSA is a useful method for time series analysis and data mining
[35]. This method allowed us to decompose the time series of the
total heat use into a sum of components, ~ei. The components may
give an interpretation of the time series structure. There are several
software tools in Python [36] and R [37] for the SSA. The two groups
of the components, related to the SH and the DHW heat use, could
be found. Summation of the components within each groupmade it
possible to restore the SH and the DHWheat use from the total heat
use.

In this article, the time series ETH ¼ ðE1; E2;…; ENÞ of the total
hourly heat use in the building was analysed.Where Ei is the hourly
heat use, and N is the number of the elements in the data sample.
For one-year hourly data sample, N was equal to 8760.

The algorithm of SSA is well developed and presented in many
articles and books [38,39]. For example, the book [38] gives detailed
explanations of the SSA technique, as well as examples of its
application. The main steps of the SSA algorithm were shown in
Appendix A.

In order to separate the SH and the DHW heat use by the SSA

Fig. 2. Flowchart of the algorithm for splitting the total heat use into the SH and the
DHW heat use by using the ESC.
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method, twomain problemswere solved. The first problemwas the
selection of an appropriate window length L for the SSA decom-
position, see Appendix A. The SSA does not have strict recom-
mendations for the selection of the optimal window length.
Therefore, quite often, the trial and error method is applied. The
second problem was identifying the groups of the components
related to the SH and DHW. These two problems were attempted to
be solved based on the SH heat use model obtained by the ESC
method, as described in Section 3.1, see Equation (2). The SSA was
iteratively applied for different windows length L (2, 3,…N= 2). On
each iteration for Li the SSA components were calculated. Of all the
components, only the components associated with the SH heat use
were identified. These components were selected in such a way
that their additive sum has a maximum correlation with the SH
heat use model, see Equation (2):

corr
�

ESH ;
X

~ek

�

/max (4)

where
P

~ek is the sum of the components selected from ~ei.
From the considered window lengths, the one that gives the

maximumvalue for Equation (3) was selected. For the best window
length, the new SH heat use model as a sum of the components was
identified. This SSA model was also shifted in a similar way as in
Equation (2):

E0SH ¼
X

~ek �min
�

X

~ek

�

(5)

Using the E0SH and ETH , the new model for the DHW heat use
ðE0DHW ) was identified by Equation (3). Finally, the values for both
the restored SH heat use and the DHW heat use were balanced in
such a way that both of them became positive, and their sum was
equal to the total heat use. The balancing was performed in a
similar way to Chapter 3.1. First, the SH heat use model was
adjusted as a difference between the measured total heat use and
the DHW heat use, E0DHW . After, all negative values of the DHW heat
use and the SH heat usewere compensated. Hence, if DHWheat use
had negative values, they were compensated from the SH heat use,
and vice versa.

The flowchart of the algorithm for splitting the SH and DHW
heat use based on SSA is shown in Fig. 3.

The investigation in this article showed that the application of
the SSA allowed us to capture the spikes of SH heat use better than
when using the ESC alone and to improve both the SH and DHW
heat models. In more detail, the application and comparison of both
methods are shown in Section 5.

4. Building description

The one-year hourly SH and DHW heat use data were measured
at a hotel located in Oslo, Norway. The hotel was built in 2000, with
a total heated area of 10 571m2. It has 260 guest rooms, lobby, gym,
and a conference room. The guest rooms are designed for families
and solo travellers. The sizes of the rooms start from 23 m2. All the
private rooms have individual bathrooms with toilet facilities and a
shower. Breakfast and supper are served in the hotel. According to
hotel management, employees use hot water for cleaning, and
guests use hot water for personal hygiene. In general, the consid-
ered hotel well represents the characteristics and regimes of typical
hotels in Scandinavia.

The hotel uses district heating for both SH and DHW heat use. In
the DHW system, the hot water circulates permanently to ensure
fast delivery of hot water at the tapping points. Two energy meters
measure the actual SH and DHW heat use separately. The sum of

their readings characterises the measured total heat use in the
building. The SH meter is less accurate than the DHW meter. DHW
meter is collecting data with 1 kWh-steps, while the steps of SH
metering is 10 kWh. The measured SH and DHW heat use include
system heat losses. The measurements were carried out from April
1, 2018 to April 1, 2019. However, in January 2019 some data about
SH and DHW heat use were missed in the data storage system.

The investigation was performed in such a way that the results

Fig. 3. Flowchart of the algorithm for splitting the total heat use into the SH and the
DHW heat use by using the SSA.

Fig. 4. ESC of the hourly total heat use in the hotel.
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of the total heat use splitting could be compared and verified based
on the actual measurements from two separate meters for DHW
and SH. For this reason, the total heat use in the article represented
the sum of the DHW and the SH heat use obtained from two heat
meters installed at the hotel. To analyse the influence of the out-
door temperature on the heat use in the hotel, weather data from
the closest weather station, Blindern in Oslo, were used [40].

5. Results

The section is separated into subsections that consider the steps
of the methodology, see Section 3. Section 5.1 shows the analysis of
the heat use by the ESC method. The results of the total heat use
splitting into the SH and the DHW heat use based on the SSA
method is discussed in Section 5.2. The profiles and validation of
the modelled SH and DHW heat use are shown in Section 5.3.

5.1. Analysis of the SH and the DHW heat use based on the energy
signature curve

One-year measured hourly data of the total heat use in the hotel
and the outdoor temperature were used as input for the modelling
and splitting of DHW and SH heat use. Based on this information,
the ESC was developed, as shown in Fig. 4. ESC of the hourly total
heat use in the hotel Fig. 4. The piecewise regression method was
used to find the CPT.

From Fig. 4, we can see that the CPT was approximately 16 �C.
Theoretically, there is no need for SH above the CPT. Therefore,
above this outdoor temperature, heat use in the building was
assumed to be fully dedicated to DHW. This condition makes CPT
easily recognised by visual analysis and the regression methods. In
the considered hotel, the SH heat use was different from the typical
theoretical assumption. In order to explain this fact, the measured
SH and DHW heat use after the CPT are presented in Fig. 5.

Fig. 5 shows the daily profiles of SH and DHW heat use in the
warmest month of the year. As we can see from Fig. 5 that all the
time in the warm months, even after the CPT, a certain amount of
heat was consumed by SH. The SH heat use in the warm season
might be explained by the fact that the control valve of the heat
exchanger connecting the SH system to the district heating was
wrongly sized or had faults. This meant that even this control valve
was completely closed, it passed some amount of the water flow
and gave SH use even above the outdoor temperature of 16 �C. This
heat amount was not usefully used in the building, yet it was just
heat loss circulating in the system [41].

The actual measurements showed that during the observed
year, the SH contributed to 75% of the total heat use and 25% was
related to DHW. Above the CPT, SH is responsible only for 7% of the
heat use, while 93% was associated with DHW. For most buildings,
the CPT is an approximate value. The value of the CPT indicated
when SH was significantly reduced due to the warm weather, but
not completely diminished. Since, to some extent, the CPT was an
uncertain parameter, the only approximate value of the CPT could
be found.

In general, the ESC might explain the trend of the measured SH
heat use in the hotel as shown in Fig. 6. However, since the total
heat use also included DHW heat use, the ESC of the total heat use
was shifted according to the coefficient in Equation (2) to obtain the
model of the SH heat use. This shifting coefficient corresponded to
the minimum value in the ESC model. In our case, the ESC was
shifted by 35 kW. Accordingly, the model of the SH heat use was
obtained.

The DHW heat use was investigated within the residuals of the
SH heat model. The circulation heat losses in the DHW systemwere
estimated to 15 kW, based on the minimum heat use at the night

time during the summer, according to Ref. [14]. After, by using
Equation (3), the model of the DHW heat use was obtained. Finally,
all the values of the modelled SH and DHW use were adjusted in
such a way that their sum was equal to the total heat use in the
hotel.

Figs. 7 and 8 show the results of splitting total heat use into SH
and DHW for February, one of the coldest month in Norway. Fig. 7
shows that the ESC model well explained the trend of the SH heat
use in the hotel. For the yearly data sample, the coefficient of
determination (R2) between the model and the measured SH heat
use was 0.93, and Root Mean Square Error (RMSE) equals to 23. At
the same time, the DHWheat use model (see Fig. 8) was affected by

Fig. 5. Daily profiles of the measured SH and DHW heat use in July (heat use after the
CPT).

Fig. 6. Model of the SH heat use based on the ESC of the total heat use.

Fig. 7. Restored SH heat use based on the ESC.
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the SH noise in the residuals. For this reason, the R2 for the DHW
heat use model was less accurate and equal to 0.57, and RMSE was
20.3. Therefore, the SSA method was used to further improve these
models.

5.2. Using the singular spectrum analysis for the decomposition of
the SH and DHW heat use in the hotel

The SSA decomposition for the time series of the total hourly
heat use was carried out in order to split the SH and DHW heat use.
The Python implementation of the SSA from Ref. [36] was used to
perform the SSA decomposition. The SSAwas iteratively applied for
different windows length. For each step of the iteration, the com-
ponents which corresponded to the SH were selected in such a way
that their additive sum had the maximum correlation with the SH
heat use modelled by the ESC (according to Equation (4)). The
investigation showed that the same criterion could be applied to
select the best window length for SSA modelling. Namely, the SSA
models for windows lengths with a higher correlation between the
SH heat use modelled by the ESC and the SSA demonstrated the
higher accuracy of the SSA DHW heat use model. For this reason,
the window length that allows us to receive the highest correlation
between SH heat use obtained by the ESC and SSA can be consid-
ered as the best for the SSA modelling.

The SSA calculations for large window lengths require high
computational power. Therefore, it was impossible to check all the
windows lengths from 2 to N=2. Although some models were not
considered due to computational limitations, the different win-
dows lengths were examined. Based on the proposed criteria in
Equation (4), the window length was chosen to 600 and the com-
ponents related to SH were obtained. From all these components,
the first component represented the trend for the SH heat use in the
hotel. The other components explained the spikes and fluctuations
of the SH heat use. The sum of the SSA components related to SH
was shifted according to Equation (5).

The residuals of the SSA SH heat usemodel were used to develop
the new DHW use model. The calculations were done according to
Equation (3). Finally, the values for both the SH heat use and the
DHW heat use were balanced in such a way that both of them
become positive and their sum was equal to the total heat use.
Figs. 9 and 10 show the results of splitting total heat use into SH and
DHW based on SSA for February.

As we can see from Figs. 9 and 10, the models for both the SH
and the DHW were improved compared to ESC model. For the
yearly data sample, the R2 for the SSA SH heat use model was 0.97,
and RMSE was 15.1. While for the DHW heat use R2 was 0.76, and
RMSE 14.7. To recap, see the comment related to RMSE and R2
values for the ESC approach. The RMSE and R2 criteria, as well as

Figs. 9 and 10 show that the SSA allowed us to better capture the
spikes of the SH and DHW heat use.

5.3. Identifying profiles and validation of the modelled SH and
DHW heat use

The restored DHW and SH heat use can be used for identifying
the heat use profiles. Heat use profiles are a powerful instrument
for estimating the DHW and SH heat use in the buildings. The
profiles allow us to determine the hours of peak energy loads and
other energy load characteristics of the building. In this article, the
restored by SSA profiles for DHW and SH were compared and
verified with profiles obtained from measured DHW and SH heat
use.

Using the restored data from the model values for the SH and
DHW heat use, the average monthly and daily load profiles were
constructed. Figs. 11 and 12 compare the hourly and monthly
profiles, respectively, with the measured heat use in the hotel.

Fig. 11 shows that the proposed method allows restoring well
the average daily load profiles for the SH and the DHW heat use.
The profiles obtained from the SSA model well captured the timing
of the peak heat use during an average day. The profiles showed
that themorning peak of the DHWuse in the hotel occurs from7:00
to 9:00 o’clock and the evening peak from 21:00 to 23:00 o’clock.
Comparing to the DHW, the profile of the SH heat use was more
uniform. However, it also showed a small increase in heat use in the
morning and night-time.

The average monthly profile for the restored SH heat use was
representative, compared to the measured SH heat use, see Fig. 12.
a. This profile captured well the seasonal variation of the SH heat
use. According to Fig. 12. a, the months with the coldest outdoor
temperature (November, December, January, February and March)

Fig. 8. Restored DHW heat use based on the ESC. Fig. 9. Restored SH heat use based on the SSA.

Fig. 10. Restored DHW heat use based on the SSA.
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has the highest SH use. At the same time, in the warm season (May,
June, July, August and September) the SH heat use was small. The
DHWheat use profile, see Fig.12. b had particular inaccuracy for the
months in the warm season. In these months, significant spikes of
DHWheat use occurred, most likely related to an increased number
of guests in the hotel in the warm season [32]. In addition, due to
the SH heat use that occurred after the CPT in the hotel, it was
difficult to capture precisely the DHW heat use from the ESC model
for certain months. To recap, please see Fig. 5 and the comments
related to the possible faults causing SH heat use in the warm
period.

The proposed method allowed us to split the SH and DHW heat
use from the total heat use. Despite the fact that the obtained values
of the SH and DHW heat use have particular inaccuracy, their
application may be still useful. Both models for the SH and the
DHWwell represented the general trends of SH and DHW use. This
is essential information for solving many energy saving issues in
the hotels heating systems.

6. Conclusions

Statistical analysis and modelling are reliable tools for
improving the energy performance of buildings and releasing the
energy savings potential. In order to reach better results in this area,
it is necessary to carry out data-driven analysis of energy use of the
main technical systems in buildings, where SH and DHW systems
often are the largest energy consumers. Despite this fact, quite
often energy meters in buildings measure the total heat use only,
not divided into the SH and the DHWheat use. However, the SH and
the DHW have different regimes of work and influencing factors,
and it is important to analyse the heat use in these two systems
separately. Thus, the separation of the total heat use data into

components associated with the SH and the DHW heat use become
an essential task. The literature review shows that the problem of
dividing the total heat use into the parts related to the SH and DHW
for individual buildings is not solved yet.

In this article, the method for splitting the total heat use into the
SH and the DHW heat use was proposed. For splitting, we used the
assumption that hourly SH heat use is highly correlated with the
outdoor temperature. At the same time, the DHW is not affected by
this parameter on hourly basis. Using this assumption, the model of
the SH heat use was extracted from the total heat use in the
building. For this purpose, the method based on the ESC and the
SSA was applied. Finally, the DHW use was found within the re-
siduals of the SH heat use model.

The method was tested on the data for the heat use in the hotel
in Norway. The hotel has two separate heat meters for the SH and
DHW. Thus, it was possible to perform the comparison of the
measured SH and DHW heat use with the results of the splitting.
The analysis showed that the SH heat use model had the coefficient
of determination R2 equal to 0.97, while for the DHW heat use R2
was equal to 0.76. In addition, the proposed method allowed us to
restorewell the daily load profiles for the SH and the DHWheat use.
However, themonthly profiles for the DHWwere less accurate than
for the monthly SH profiles. The results of the analysis in the hotel
showed that the obtained models for the SH and the DHW repre-
sented well the general trends of the heat use. The proposed
method allows us to gain valuable information about the DHWand
the SH heat use in buildings where only one heat meter is available.
The models and profiles for DHW and SH heat use, obtained from
total heat use splitting, may be used as an instrument for improving
energy efficiency in buildings.

The investigation in this study has several limitations. First of all,
the proposed approach was dedicated to the case when 1 m

Fig. 11. Restored hourly SH and DHW heat use profiles: a) SH heat use and b) DHW heat use.

Fig. 12. Restored average monthly SH and DHW heat use profiles: a) SH heat use and b) DHW heat use.
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measured the total SH and DHW heat use. However, in some
buildings, 1 m could be used not only for SH and DHWheat use, but
also may include other heat needs. The further consideration for
these conditions should be done. The restored DHW heat use was
obtained based on the SH heat use model. This means that the
DHW heat use model included also particular inaccuracy of the SH
heat usemodel. Therefore, the restored DHWheat usemight be less
accurate than for the SH heat use, especially for several warm
months. For this reason, the ways to modify the approach and
improve the model for DHW heat use should be investigated in our
future work. Furthermore, the research was done for the regular
hotel located in Eastern Norway. SH and DHW heat use in other
types of buildings (schools, apartments, offices etc) have their own
specific features that may be used to improve the results of split-
ting. In addition, passive houses were out of the scope of this
research. Passive houses consume less heat for SH compering to the
regular one, which will influence the shape of the energy signature
curve. Therefore, the study for other locations and types of build-
ings should be performed.
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Appendix A

The main steps of the SSA algorithm are as following [38]:

1) Calculating the trajectory matrix for the time series

According to the SSA method, the one-dimensional time series
ETH should be transformed into a sequence of multi-dimensional
vectors lagged with the window length L. The window length is a
value that should be selected from 2 to N=2. In such a way, the
series X1;X2;…;XK with vectors ðEi; Eiþ1;…; EiþL�1Þ will be ob-
tained. Where K ¼ N� Lþ 1, for i ¼ 1; :::;N� L. These vectors will
form the following trajectory matrix:

X¼

E1
E2
«

EL

E2
E3
«

ELþ1

E3
E4
«

ELþ2

…

…

«
1

EK
EKþ1
«

EN

(A1)

The matrix X is called a Hankel matrix. The anti-diagonal ele-
ments of this matrix are equal.

2) Decomposition of the trajectory matrix

The singular-value decomposition (SVD) of the trajectorymatrix
can be written as:

X¼
X

d

i¼1

Xi ¼
X

d

i¼1

siUiV
T
i (A2)

where Xi is the i-th elementary matrix of X, si is the i-th singular
value of the matrix X, the vectors Ui are the left singular vectors of
the matrix X, vectors Vi are the right singular vectors of the matrix
X, d is the intrinsic dimensionality of the time series trajectory
space (typically d ¼ L)

3) Selection of eigen-vectors

At this step of the SSA, the splitting the elementary matrices Xi

into separate groups and summing the matrices within these
groups was performed. The grouping procedure partitions the set
of indicesf1…dg into m disjoint subsets fI1; I2;…; Img. These cal-
culations led us to the following decomposition:

X¼XI1 þ…þ XIm (A3)

Selecting the subsets fI1; I2;…; Img is called eigentriple
grouping. The choice of several leading eigentriples corresponds to
the approximation of the time series in optimality property of the
SVD. In this article, the simplified conditions when m ¼ d, Ij ¼ fjg,

j ¼ 1;…; d, and XIj ¼ siUiV
T
i were used. In this case, the corre-

sponding grouping is called elementary.

4) Reconstruction of the one-dimensional series

Based on XIj, a diagonal averaging was performed to form the

elementary time series components ~ei. In this way, the initial time
series ETH ¼ ðE1; E2;…; ENÞ was decomposed into a sum of recon-
structed components:

~en ¼
X

d

1

~ei (A4)
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Abstract. Domestic hot water (DHW) systems are significant consumers of energy in buildings. This article is 

dedicated to hourly and daily DHW energy use modeling, with the aim of achieving energy savings in buildings. 

The methods investigated in the article were tested using statistical data obtained from a hotel located in Oslo, 

Norway. For better modeling, the influence of various factors on DHW energy use in the hotel was studied. For 

this purpose, the wrapper approach was used. The analysis indicates that the most important variable that should 

be used in the model is number of guests. There are also other factors that can be taken in account, even though 

they do not have such strong influence. Traditionally, only daily data about number of guests are available in the 

hotels. These data do not allow us to develop accurate hourly model of DHW energy. The article therefore proposes 

a method which, based on introduction of artificial variables, improve accuracy of the hourly DHW model. Eight 

models are compered, based on criteria of their adequacy. The Support vector machine model shows the best 

results for daily modeling and the Partial least squares (PLS) regression for hourly modeling. 

1.  Introduction 
Buildings are responsible for approximately one third of the energy use in the world [1]. Thus, efficient 

use of energy in buildings is a topical issue from both an environmental and economic point of view. A 

domestic hot water (DHW) system is an essential part of most buildings, and contribute to 25-35% of 

the total energy use [2]. Many studies claim that a large potential for future energy savings in buildings 

lies in improving operation and design of DHW systems [3]. Mathematical modeling of energy use is a 

powerful tool for achieving energy saving in buildings. Prediction, data recovery, monitoring of energy 

use and other important tasks could be solved via accurate and physically valid mathematical modeling.  

Recently, much attention was paid to the modeling of energy needs required for heating [4]. 

Meanwhile, the issue of DHW energy use modeling and prediction has not been studied well enough 

[3]. The majority of publications in this area are dedicated to the modeling of DHW volumetric 

consumption in building rather than energy use. These two parameters are strongly positively correlated. 

The knowledge obtained from the studies about DHW volumetric consumption modeling is valuable for 

development of advanced models of DHW energy use. Therefore, articles considered in this introduction 

are dedicated to both prediction of DHW volumetric consumption and energy use in buildings.  

For instance, according to [5], DHW energy loads are modeled as a function of draw-off 

temperatures. For three different systems, the models based on application of neural networks (NNs) are 

calculated. The results show that the models trained on their associated systems produce errors less than 

11%. However, when obtained models were used with new systems, they had significant errors. 

A bottom-up approach for DHW energy use prediction is proposed in [6]. The developed prediction 

model calculates the quantity of hot water and timing of each end-use for the next day from historical 

data and summarizes these as prediction data. 

The necessity of development of daily DHW use models, which do not require strong computation 

time and information about the residents in the buildings, is stressed in [7]. The authors proposed 
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application of Auto Regressive Moving Average method for solving this issue. The developed model 

takes into account the periodicity of one week, the water use of the previous days and random 

fluctuations. The results are tested on one-year data of DHW use in eight residential homes in France.  

DHW use in flats based on the number of rooms and area of the flat are described in [8]. This study 

is conducted in 626 apartments in Wroclaw, Poland. To build a model, the bootstrap technique is used. 

Based on the obtained statistical data, a database is created, consisting of randomly simulated buildings 

with randomly selected flats in different configurations. After this, the regression model is developed, 

explaining the relationship between DHW use, number of rooms and floor area. 

In [9] proposed to consider the DHW use as stochastic variables. The statistical data for the research 

has been collected from 65 apartments in Budapest, Hungary. The model presents the relationship 

between DHW use and number of apartments, sorted duration curve of DHW consumption, as well as 

minimum, average and maximum daily values of DHW consumption in the buildings. 

The necessity of accurate hot water use forecasting for future development of demand-side 

management in residential dwellings is stressed in [10]. Various forecasting models, such as exponential 

smoothing, seasonal autoregressive integrated moving average, seasonal decomposition by Loess model 

and a combination of them, were tested on data obtained from 120 houses in UK.  

16 equations for prediction of average hot water use in different times of the day are proposed in 

[11]. The authors consider weekdays and weekends separately. Each day is divided into periods by 

combining hours with similar DHW use by time of day, type of day and season. It is also proposed to 

take additional variables into account in the model, to adjust the predicted hot water use: if the household 

has a dishwasher, clothes washer, only seniors as occupants, or if the residents pay for hot water or not. 

Most of the above mentioned studies are focused on residential buildings, because this type of 

building is taking a big share in national building stocks. The characteristics, regimes of work, and 

available data in the hotels are significantly different from residential buildings [3]. Therefore, 

considered methods cannot be directly applied for DHW energy use prediction in hotels. A better 

methods of DHW energy use prediction in hotels should be developed. 

The aim of this article was to model hourly and daily DHW energy use that may be used for achieving 

energy savings in hotels. The analysis in this article is based on two years hourly data of DHW energy 

use collected in a hotel located in Oslo, Norway. The focus was on the statement that obtained model of 

DHW energy use should be accurate, reliable and take into account particular characteristic of the 

buildings. In order to meet these requirements, the factors that have significant influence on DHW 

energy use in the hotel were investigated. To improve the accuracy of an hourly model, the procedure 

of preprocessing daily data for number of guests and extracting information of their influence on DHW 

energy use on hourly basis was proposed. After that, various methods for daily and hourly DHW energy 

use modeling were compared. The comparison was carried out according to the following criteria: the 

coefficient of determination (R2), the average absolute error (MAE) and the mean square error (MSE). 

The most accurate models of DHW energy use were identified. 

2.  Description of the hotel and available statistical data  
The characteristics of the analyzed hotel are typical for Scandinavian conditions, and it well reflect the 

trends of DHW energy use in similar types of buildings. The hotel, located in Oslo, Norway, was built 

in 1938, and reconstructed in 2007. The total area of the building is 4 939 m2. The building consists of 

eight floors with 164 guest rooms. All the guest rooms have bathrooms with toilet facilities and shower. 

Guests usually arrive between 3 p.m. and midnight and check out before noon. According to the hotel 

management, employees use hot water for cleaning, and guests use hot water for personal hygiene.  

In the DHW system, the hot water is circulated to ensure fast delivery at each tap. The hotel uses 

electric water heaters for DHW production. Data on energy use for DHW production was collected 

during several years from a energy meter mouted by the hotel owner. The meters measure electricity 

delivered to the DHW tanks, which mean that both DHW needs and heat losses in the DHW system are 

included in the presented DHW energy use. The data about energy for other needs are also known. The 

daily data about arriving guests and booked rooms in the hotel are available from the hotel reservation 

system. In addition, in order to investigate the influence of weather conditions on DHW energy use in 

the hotel, data from the meteorological station in Oslo (Blindern) were used. 
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3.  Methods 
We started with the task of choosing the variables which should be taken into the DHW energy model. 

To determine the proper subset of variables, and taking into consideration characteristics of each 

modeling method, a wrapper approach of optimal variables selection was used [12]. According to this 

approach, an iteration algorithm was applied. First, all the variables were sorted by the absolute value 

of the correlation criteria between a variable and DHW energy use. Then, in each iteration step, one 

additional variable from the sorted list of variables was added to the model. For each step, parameters 

and accuracy criteria of the model were recalculated. Thus, parameters that do not improve the accuracy 

of the model significantly can be determined and eliminated. Despite the higher computational time 

comparing to correlation matrix analysis, the application of wrapper algorithms is a powerful instrument 

for assessing the impact of different combinations of variables on DHW energy use and development of 

accurate prediction models.  

3.1 Preprocessing daily data for guest presence 

It is known from previous studies that the main factor affecting DHW energy use in a hotel is the number 

of guests presence [3]. Most hotels have a reservation system, which register number of visitors that 

check in at the set time, usually after 12 a.m. Thus, the hotel reservation system tells us the number of 

guests booked into the hotel. However, whether the visitors are actually in the hotel at any given time 

or not remains unknown. 

The peak of DHW energy use in the hotel occurs before 12 a.m. The actual time when visitors are 

arriving and leaving can vary. Some people can arrive before the set time of check in, and some of them 

can stay a bit longer in the building after the check-out time. Therefore, the model should take into 

account both number of guests registered in the reservation system on a given day (Gst) and one day 

before (GstLag1). 

The use of daily data of the number of guests in the hotel cannot significantly improve the accuracy 

of the hourly model of DHW energy use. Therefore, we propose to introduce an additional artificial 

variable Gstart . We introduce this variable to increase accuracy of hourly DHW model. Eq. (1) was used 

to identify the numerical value of Gstart for each separate hour: 𝐺𝐺𝐺𝐺𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐺𝐺𝐺𝐺𝑡𝑡 ∙ 𝐶𝐶𝑔𝑔𝑔𝑔𝑖𝑖 + 𝐺𝐺𝐺𝐺𝑡𝑡𝐿𝐿𝑎𝑎𝐿𝐿1 ∙ 𝐶𝐶𝑔𝑔𝑔𝑔𝐿𝐿𝑎𝑎𝐿𝐿1.𝑖𝑖 (1) 

where 𝐶𝐶𝑔𝑔𝑔𝑔𝑖𝑖 and 𝐶𝐶𝑔𝑔𝑔𝑔𝐿𝐿𝑎𝑎𝐿𝐿1.𝑖𝑖 were the coefficients of guests DHW use intensity for i-hour based on the 

number of people booked into the hotel on the given day and one day before. 

It was suggested to calculate the coefficients of guests DHW use intensity for i-hour by solving the 

following optimization problem: 

max (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(�𝐶𝐶𝑔𝑔𝑔𝑔𝑖𝑖=1 ∙ �𝐺𝐺𝐺𝐺𝑡𝑡������⃗ � + 𝐶𝐶𝑔𝑔𝑔𝑔𝐿𝐿𝑎𝑎𝐿𝐿1.𝑖𝑖=1 ∙ �𝐺𝐺𝐺𝐺𝑡𝑡𝐿𝐿𝑎𝑎𝐿𝐿1���������������⃗ �, … ,𝐶𝐶𝑔𝑔𝑔𝑔𝑖𝑖=24 ∙ �𝐺𝐺𝐺𝐺𝑡𝑡������⃗ �   

+𝐶𝐶𝑔𝑔𝑔𝑔𝐿𝐿𝑎𝑎𝐿𝐿1.𝑖𝑖=24 ∙ �𝐺𝐺𝐺𝐺𝑡𝑡𝐿𝐿𝑎𝑎𝐿𝐿1���������������⃗ � � , �𝐸𝐸�⃗ 𝑖𝑖=1, … ,𝐸𝐸�⃗ 𝑖𝑖=24�) (2) 

where 𝐶𝐶𝑔𝑔𝑔𝑔𝑖𝑖, 𝐶𝐶𝑔𝑔𝑔𝑔𝐿𝐿𝑎𝑎𝐿𝐿1.𝑖𝑖 were the target variables, 𝐸𝐸�⃗ 𝑖𝑖 was the vector of the DHW energy use data in the 

hotel in i-hour, 𝐺𝐺𝐺𝐺𝑡𝑡������⃗ , 𝐺𝐺𝐺𝐺𝑡𝑡𝐿𝐿𝑎𝑎𝐿𝐿1���������������⃗  were vectors of the daily number of guests booked into the hotel on the 

given day and one day before. 

The optimization problem in Eq. (2) gave the values of the coefficients of guests DHW use intensity 

for each hour of the day. These coefficients are maximizing the correlation between Gstart and DHW 

energy use, which makes Gstart-based predictions more accurate. The obtained coefficients for 2015 and 

2016 years are shown in Figure 1. Variation of the coefficients values, Figure 1, in different years was 

not significant. Thus, the values of coefficients from previous years can be used for identification of 

variable Gstart in the prediction model. In this article, the values of coefficients were calculated based 

on the year of 2015, and they were used for predicting the year of 2016. 

3.2 DHW energy use modeling 

The selection of the DHW energy use model and modeling techniques should be done individually for 

each building, taking into consideration its characteristics. In this article, the number of models shown 

in Table 1 was investigated. The detailed explanation of these models can be found in [13, 14]. The best 

model can be selected by comparing different modeling techniques obtained on the same set of data. In 

order to compare models, cross validation was used. 70 % of yearly data in 2015 were used in a training 
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set and 30% in testing of the model. Besides, the models were tested on one-year data from the year 

2016. The comparison of the models is performed based on R2, MAE and MSE criteria of the model 

adequacy. The modeling is performed in Python using the Scikit-learn tool [14].  

 
Figure 1. Coefficients of guests DHW use intensity based on the reservation in the given day (a) and one day 

before (b) in the hotel in 2015-2016 

4.  Results  
The variables Gst and GstLag1, which represent number of guests on a given day, and the day before were 

investigated. The data of energy use for other needs (Eon) and number of booked rooms (Rm) were also 

examined. In addition, the influence of the following meteorological parameters were analised: outdoor 

air temperature (T), relative humidity (Rh), mean wind speed (Ff), atmospheric pressure (Pa). The 

influence of day of the week (DoW) and month (Mth) was also considered. In addition, the artificial 

variable Gstart was introduced in the hourly model.  

Application of the wrapper algorithm for all the considered models, shown in Table 1, showed 

approximately the same results. The main parameters for daily DHW energy use modeling in the hotel 

were Gst and GstLag1, and for the hourly model it was Gstart. Application of these parameters allowed us 

to get quite reliable models of the DHW energy use in the hotel. Rm is highly correlated with number 

of guests and was taken out of the model, because it does not give additional information and quality to 

the model. Generally, Pa, Ff and Mth (in hourly model model) did not increase the accuracy of any 

model and were therefore eliminated.  

DoW, T, Rh, Eon and Mth (in daily model) improved the models, but not much. For example, when 

adding all these parameters to the model, depending on the modeling approach, R2 coefficient increased 

by 5-15%. Thus, if the target of modeling is to build more accurate model, then these parameters can be 

taken into account, as we have done in this article. However, if the simple model is more preferable, 

then only data about number of guests in the hotel can be used.  

When choosing our parameters we also must take into consideration that some data, such as weather 

data, will not be readily available when we are running prediction models. For analysis of historical 

data, knowledge about all the data is available, but for forecasting, meteorological and energy data must 

be forecasted as well, which brings additional uncertainty into the prediction. In this work we had 

accurate values of these data, since the models were tested on previous years.  

To choose the most appropriate prediction model for DHW energy use in the hotel, eight different 

models were used, see Table 1. We tested the models using both the cross validation approach and one 

year ahead prediction. Based on Table 1 for these data sets, the best model for daily modeling was the 

Support vector machine method. The result of the daily modeling based on the cross validation testing 

of the data set is shown in Figure 2. For daily model, R2 equals 0.881 for the Support vector machine 

model based on the cross validation of the data set, and 0.777 for one year ahead data set. For hourly 

model, Ridge regression gave the best results based on the cross validation of the data. However, for 

one year ahead prediction Partial least squares (PLS) regression was more accurate. Since PLS 

regression was more stable, the preference was given to this model. The hourly DHW energy use 

modeling based on PLS regression is shown in Figure 3. 
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Table 1. Comparison of different hourly and daily models of DHW energy use 

Period Daily model Hourly model 

Testing data Cross validation Testing based on the 

next year data 

Cross validation Testing based on the 

next year data 

Type of regression model  R2  MAE MSE R2  MAE MSE R2  MAE MSE R2  MAE MSE 

Support vector machine 0.881 30 2485 0.777 39 3919 0.781 4 66 0.725 5 79 

Partial least squares  0.855 32 3030 0.776 34 3928 0.780 4 66 0.731 5 77 

Ridge 0.855 34 3029 0.777 34 3922 0.794 5 62 0.685 7 90 

Lasso 0.855 33 3030 0.777 34 3923 0.794 5 62 0.704 6 85 

Linear Discriminant Analysis 0.776 40 4683 0.664 48 5903 0.768 4 70 0.670 4 95 

Stochastic Gradient Descent 0.855 32 3030 0.777 34 3923 0.794 5 62 0.686 6 90 

Bayesian Ridge  0.855 33 3030 0.777 34 3919 0.794 5 62 0.685 7 90 

Passive Aggressive  0.840 36 3342 0.735 38 4662 0.720 4 84 0.712 5 83 

 
Figure 2. Daily modeling of DHW energy based on Support vector machine method 

 

Figure 3. Hourly modeling of DHW energy based on PLS method 

The investigated methods of the hourly and daily models could find application for the prediction of 

DHW energy in similar types of buildings. In addition, these models are useful for DHW energy use 

modelling in hotels in Norway under the similar conditions.  

5.  Conclusion 
Prediction of the DHW energy use in buildings is a complex task, due to previously lower focus on the 

DHW energy use and high requirement for relevant, but not easily available data. This article focused 

on modelling DHW for a typical hotel located in Norway. The wrapper approach shows its high 

efficiency for determining variables affecting DHW energy use in the hotel. The analysis indicated that 

the main variables that influence the DHW energy use were numbers of guests registered in the 

reservation system during the given day and the day before. However, the daily values of the guest 

numbers did not allow us to develop an accurate hourly model for the DHW energy use. Therefore, 

introduction of the additional artificial variables, which explain the hourly intensity of the guests DHW 
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use was proposed. The method of identifying these variables based on solving optimization problem 

was shown in the article. Selection of the best DHW energy use model requires comparison of different 

models based on the criteria of models adequacy. Appropriate comparison of the models for the hotel 

showed that the best daily model was based on the support vector machine method, and the hourly model 

obtained by using the PLS regression.  
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a b s t r a c t

Domestic hot water heat use prediction modelling is an important instrument for increasing energy effi-
ciency in many buildings. This article addressed hourly domestic hot water heat use prediction, using a
Norwegian hotel as a case study. Since the information available for buildings may vary, two widespread
situations with different input variables were studied. For the first situation, the prediction is based only
on data obtained from historical measured domestic hot water heat use. For the second situation, addi-
tional variables that affect domestic hot water heat use were applied. These variables were determined
using the Wrapper approach. The Wrapper approach showed that factors related to the guests presence
have the most significant influence on the domestic hot water heat use in the hotel. Nevertheless, daily
data about the number of guests booked at the hotel did not appear to be informative enough for precise
hourly modelling. Therefore, to improve the accuracy of the prediction, it was proposed to use an artificial
variable. This artificial variable explained the hourly intensity of the guests domestic hot water use. In
order to select the best model for the domestic hot water heat use prediction, ten advanced time series
and machine learning techniques were tested based on the criteria of models adequacy. For both consid-
ered situations, the Prophet model showed the best results with R2 equal to 0.76 for the first situation,
and 0.83 the second situation.
� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Buildings are one of the largest categories of energy consumers
in the European Union (EU) [1]. Buildings are currently responsible
for approximately 36% of global energy use [2]. Therefore, increas-
ing energy efficiency in buildings is an essential step for reducing
fossil fuel use and improving the environmental situation.

Nowadays, most building constructions have complex technical
systems, to realize a comfortable living condition for people.
Among these systems, the domestic hot water (DHW) system is
an integrated component of every building. DHW systems are sig-
nificant consumers of energy. According to [3], 15% of the total
heat demand in the EU is associated with DHW use. In regular
buildings, DHW systems typically consume 25–35% of the total
energy use [4]. However, in highly insulated constructions, the
share of DHW heat use is increasing and may exceed the space
heating [5]. Therefore, substantial opportunities for energy savings
in buildings can be achieved by improving the performance of
DHW systems [6]. The investigation [7] shows that DHW account

for almost 26% of total energy use in the hotel, and therefore it
should be prioritized in energy-saving measures.

Data-driven analysis and predictive modelling are powerful
instruments for increasing the efficiency of heat use in DHW sys-
tems. Improving the design and operation of DHW systems
requires both validated forecasting models, heat use profiles, effec-
tive utilization of monitoring and control systems. In order to solve
all these issues, accurate predictive models of DHW heat use
should be developed.

The introduction of modern technical energy solutions in DHW
systems is essential for energy efficiency in buildings [8]. The
proper implementation of these solutions requires the application
of data analysis for DHW heat use. For example, the conceptual
designs for DHW heating systems in a hotel with the application
of wastewater technologies are considered in [9]. The research
shows that the DHW system control is prioritized to operate with
the wastewater technologies and heat pumps. This control can be
performed based on DHW predictive models. Using a solar-
assisted DHW water heating systems in hotels becomes popular
all over the world [10]. The prediction of DHW heat use is neces-
sary for the optimal operation of these systems [11]. Different
types of DHW heating systems are investigated in [12]. This study
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summarises that DHW energy use can be reduced through using
combined systems based on traditional and renewable energy
solutions. However, due to unstable behaviour of renewable
energy sources, development of accurate profile and prediction of
DHW heat use becoming crucial for successful operation of com-
bined DHW heating systems.

In recent years, increasing attention is paid to the investigation
for the modelling of space heating heat use and the development of
Energy Signature Diagrams [13]. On the contrary, the DHW heat
use predictive modelling has not been studied sufficiently [6]. It
is important to stress that the majority of existing publications
are focused mainly on the modelling of DHW volumetric use rather
than heat use. These two parameters have a strong positive corre-
lation. Besides, the factors that affect the DHW volumetric use have
a similar effect on the DHW heat use. Since not so many publica-
tions are dedicated to DHW heat use prediction, both previous
experience of the predictive modelling for DHW volumetric and
heat use are considered in this introduction.

Traditionally, predictive modelling includes the following main
steps: identifying influencing variables, selecting the method for
prediction, and determining the parameters of the model.

1.1. Identifying influencing variables

Identifying influencing variables with significant impact on the
DHW heat use in the building is an initial step for prediction. There
is a number of scientific papers analyzing the influence of different
factors on DHW volumetric and heat use, as shown in Table 1.

Most of the articles represented in Table 1 assume that the
number of occupants, seasons, day of the week and time of the
day have a significant influence on the DHW heat use. The informa-
tion about activities, such as occupant’s presence, sleeping, hygiene
and cooking, as well as a time when appliances are in use (sinks,
showers, baths, clothes washer, and dishwasher) gives a better
understanding of the DHW heat use [19]. It should be noticed that
the factors influencing DHW heat use can vary from one building
type to another, and also depending on the location of the building.
For example, in the investigation [15], it is concluded that the
influence of seasons, outdoor temperature, and rainy days on
DHW in the dwellings is negligible. However, in the articles [23],
the seasons and outdoor temperature are considered as essential
variables and taken into account. Therefore, it is necessary to eval-
uate the influence of variables on the DHW heat use for each build-
ing type in Norway based on reliable statistical methods.

1.2. Selecting the method for prediction and determining parameters

In accordance with selected influencing factors, the model of
DHW energy use should be built. Machine learning and deep learn-
ing techniques show high accuracy for solving prediction and data
analysis problems in DHW systems [27]. The review of prediction
techniques that different researchers use for solving this issue is
represented below.

The application of artificial neural networks (ANNs) for DHW
modelling in Canadian households is considered in [31]. The
DHW heat use as ANNs model of draw-off temperatures is pre-
sented in [26]. The model is tested in three residential DHW sys-
tems. The archived ANNs model accuracy is more than 89% for
the trained data. However, the use of the ANN model for new data
obtained from other systems shows significant inaccuracy.

Creation of easy to use forecasting model of DHW use is consid-
ered in [32]. Autoregressive moving average (ARMA) model as a
solution to this problem is proposed. The ARMA model takes into
consideration the periodicity of the week, the water use of the days
before and random fluctuations of DHW use. The model based on
data from eight apartments in France is examined [32].

The linear regression models were used for DHW energy use
identification in apartment blocks in Norway [33].

A bottom-up model that estimates the day ahead DHW use for
end-users is investigated in [34]. The type of facilities and timing of
DHW use is applied as an input in the model. The prediction for the
next day of the total DHW use in the system is calculated as a sum
of end-users DHW use.

The survey of DHW use in 626 apartments in Poland is carried
out in [16]. The authors create a database of DHW use for residen-
tial buildings with different parameters. The configuration of
apartments in these buildings is randomly selected by using the
bootstrap method. Based on the database, the regression model
is constructed. This model considers DHW use as a function of
the number of rooms and the floor area.

The stochastic analysis of DHW use for 65 apartments is per-
formed in Hungary [35]. As an input for the stochastic model, the
authors use the number of apartments in the building, the duration
curve, daily average, minimum and maximum values of DHW use.

The issue of DHW use forecasting for demand-side management
in residential buildings in the UK is reviewed in [36]. Various time

Table 1
Investigations of variables that have a significant impact on DHW volumetric use and
heat use.

Influencing variables Authors

Number of occupants, day of the
week

Ferrantelli, Ahmed, Pylsy and
Kurnitski [14]

Day of the week de Santiago, Rodriguez-Villalón and
Sicre [15]

Number of rooms, area Chmielewska, Szulgowska-Zgrzywa
and Danielewicz [16]

The magnitude of the drains, the start
times of DHW use, the time
between two successive drains

Beeker, Malisani and Petit [17]]

Occupancy in the hotel and
regulation of the system

Todorovic, Tomic, Bojanic, Bajatovic
and Andelkovic [9]

Hotel star rating, DHW system type,
occupancy

Priyadarsini, Xuchao and Eang [18]

Activities, number of DHW tap starts,
time of tapping, the duration of
tapping

Fischer, Wolf, Scherer and Wille-
Haussmann [19]

Flow rates, cold and supply
temperatures

Verhaert, Bleys, Binnemans and
Janssen [20]

Type of the tap (conventional mixer
tap or low flow electronic tap)

Fidar, Memon and Butler [21]

Activities, appliances Good, Zhang, Navarro-Espinosa and
Mancarella [22]

Outdoor temperature, season,
number of tenants, type of
building (apartment or detached),
the location, the household area,
month, density of water, specific
heat of water, reference
temperatures, cold inlet
temperature

Gutierrez-Escolar, Castillo-Martinez,
Gomez-Pulido, Gutierrez-Martinez
and Stapic [23]

Socioeconomic characteristics,
activities, appliances, and type of
apparatuses that use water

Fan, Liu, Wang, Geissen, Ritsema and
Tong [24]

Occupant behaviour, appliances,
demographic conditions, and
occupancy rate

Swan, Ugursal and Beausoleil-
Morrison [25]

Draw-off temperatures Barteczko-Hibbert, Gillott and
Kendall [26]

Activities Widen, Lundh, Vassileva, Dahlquist,
Ellegard and Wackelgard [27]

Appliances, flow rates and times of
DHW use

Hendron and Burch [28]

The day of the week, time of the day,
season, appliances, age of
occupants (seniors or not), pay or
does not pay for hot water

Lutz, Liu, McMahon, Dunham, Shown
and McCure [29]

Family size, season, day of the week,
time of the day

Papakostas, Papageorgiou and
Sotiropoulos [30]
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series forecasting techniques, such as exponential smoothing, sea-
sonal autoregressive integrated moving average, seasonal decom-
position by Loess model and a combination of them, were tested
on data from 120 dwellings.

A model for DHW use prediction that consists of 16 equations is
proposed in [29]. These equations take in account season, day of
the week, and hours with similar DHW use. To improve the model,
the authors propose to consider additional factors to adjust the
predicted hot water use. These factors include the availability of
dishwashers, cloth washers, age of occupants, and if the residents
should pay for hot water or not.

The Long-Short Term Memory (LSTM) neural networks were
used for DHW heat use prediction in [11]. The performance of sim-
ple LSTM neural network, Attention-based LSTM neural network
(ALSTM) and Attention-based LSTM using decomposed data
(ALSTM-D) are compared. The authors claims that the Long-Short
Term Memory (LSTM) neural network shows the best results for
DHW heat use prediction in the case of solar-assisted DHW
systems.

As we can see, the largest part of the above-mentioned studies
performed investigations for residential buildings. Practice shows
that for residential buildings, information about the DHW heat
use is more opened and accessible [6]. Despite this fact, the share
of DHW heat use in non-residential buildings is also significant
and cannot be neglected [37]. Among non-residential buildings,
hotels [38] are those with the most energy-consuming categories
[39]. In hotels, the specific DHW heat use, the regimes of work,
and available information about factors affecting DHW heat use
are substantially different from the residential buildings [6].
Accordingly, the approaches proposed in the above-mentioned
studies cannot be directly applied for the DHW heat use modelling
in hotels. Therefore, more reliable prediction models of DHW heat
use for non-residential buildings, including hotels, should be
created.

1.3. Contribution and organization of the paper

The purpose of this article is to develop an accurate and reliable
hourly DHW heat use prediction model for hotels, using a hotel in
Norway as a case. In order to make the results of the investigations
applicable to other buildings, two alternative situations with avail-
able inputs for prediction were considered.

Situation 1 assumed that information about influencing vari-
ables for the DHW heat use was not available. Only historical data
about DHW heat use weres known. For these conditions, the article
investigated the various methods to handle the prediction based
on the time series of the DHW heat use only. In general, Situation
1 is less common for hotels. Usually, measurement systems in
hotels collect data about building energy performance. In addition,
useful information about guest presence can be obtained from the
hotel booking system. However, for certain non-residential build-
ings, these variables are unknown. The results of the investigation
and developed models for Situation 1 may be useful and applicable
to such buildings.

In Situation 2, the research focused on identifying factors affect-
ing DHW heat use and developing a prediction model based on
these variables. The influencing variables on DHW heat use is iden-
tified based on the wrapped approach. In order to improve the
accuracy of the prediction, the article proposes procedure for pre-
processing data of daily guests presence and extracting informa-
tion of their influence on DHW heat use on an hourly basis.
Finally, advanced time series and machine learning techniques
were tested, to find the best prediction model among them.

The paper is organized as the following. Section 2 describes the
main characteristics of the hotel for which the prediction of DHW
heat use was made. Section 3 introduces the methodology for

DHW heat use prediction in the following situations: for Situation
1, only retrospective Time Series of DHW heat use is known. For
Situation 2, also other parameters that could influence DHW heat
use were available. In Section 3, the methodology was applied for
the DHW heat use prediction in a hotel located in Oslo, Norway.
Among considered modelling techniques, the model that gives
the most accurate and robust prediction for Situation 1 and Situa-
tion 2 was identified.

2. Description of the hotel

The investigations in this article were performed based on data
obtained from an urban hotel, located on the west side of Oslo,
Norway. The characteristics of the hotel are typical for Scandina-
vian conditions. The building was built in 1938. There has been
several renovation projects, where the most recent was in 2007.
The total area of the building is 4 939 m2. The building has eight
floors with 164 guest rooms. All the guest rooms are equipped with
bathrooms that have toilet facilities, washbasin, and a shower. The
check-in time for the guests is between 15:00o’clock and midnight,
and check out before 12:00o’clock.

The considered hotel well represents the general tendency of
the DHW heat use in similar building types. According to hotel
management, employees use hot water for cleaning and guests
use hot water for personal hygiene. In the DHW system, the hot
water is circulated to ensure fast delivery at each tap. The hotel
uses electric water heaters for DHW production. Data on heat
use for DHW production was collected within several years from
a stationary energy meter in the hotel. The meter measures elec-
tricity delivered to the DHW tanks, which means that both DHW
needs and heat losses in the DHW system are included in the pre-
sented DHW heat use. The data about electrical use for other needs
in the hotel are also measured. The hotel booking system allows us
to obtain daily information about the number of arriving guests
and booked rooms in the hotel. The influence of weather condi-
tions on hourly DHW heat use was investigated, too. For this pur-
pose, data obtained from the nearest meteorological station
located in Oslo were used [40].

3. Methods

This chapter consists of two subsections that are dedicated to
modelling in Situation 1 and Situation 2. Subsection 3.1 investi-
gates the hourly prediction based on the historical time series of
DHW heat use. Subsection 3.2 considers the issue of identifying
variables that affect DHW heat use, followed by making prediction
when using these variables. For this purpose, time series and
machine learning techniques were used. In addition, in Subsection
3.2, a method which introduced the artificial variable reflecting the
hourly intensity of the guests DHW use and improved the accuracy
of the hourly DHW models was proposed.

3.1. Prediction based on the historical time series of DHW heat use

For certain types of buildings, information about users presence
and other explanatory variables are unknown. In these conditions,
only DHW heat use data from previous periods of time can be used
for prediction. Practice shows that the DHW heat use may vary at
different hours of the day, day of the week, and months. For this
reason, the preference was given to methods that allowed us to
make a prediction based on the historical time series of DHW heat
use and additionally take in account the day, week, and month
when the DHW heat use occurred. Among different methods such
as classical methods for time series analyses, Exponential Smooth-
ing (ES) and Autoregressive Integrated Moving Average (ARIMA),
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and modern methods of machine learning, Neural Network (ANN),
Prophet and XGBoost, were considered.

The ES method uses recurrence relations between the current
and the previous values of the parameter. According to ES, predic-
tions are calculated by applying weighted averages where the
weights are exponentially decreasing as observations come further
from the past [41]. In detail, the ES method is presented in [41].
According to [41], exponential smoothing uses the following equa-
tion for prediction:

ÊTþ1jt ¼ a � ET þ 1� að Þ � ÊTjt�1 ð1Þ

where ÊTþ1jt is the predicted value and ÊTjt�1 is the prediction for
the previous moment of the time. ET is the most recent observa-
tion. a is the smoothing parameter, accepted from 0 to 1.

The ARIMA method predicts the next step in the sequence as a
linear function of the differenced observations and residual errors
at previous time steps [42]. This method combines autoregressive
(AR), Moving Average (MA) and the integrated (I) parts in one
model. An integrated part of the model performs a differentiation
pre-processing step of modelling that removes the non-
stationarity of the time series. AR and MA are the core of predic-
tion. The algorithm and theoretical bases of ARIMAmodelling tech-
nique are well explained in [42].

The Prophet is a package for time series prediction developed by
Facebook [43]. Prophet uses additive regression model EðtÞ that
includes the following components:

E tð Þ ¼ g tð Þ þ s tð Þ þ h tð Þ ð2Þ

where gðtÞ is a trend for non-periodic changes that may be
obtained by a simple Piecewise Linear Model. s tð Þ is a seasonal (pe-
riodical) component of the model obtained based on Fourier series.
h tð Þ is a component of the model that takes into account the effects
of holidays and other untypical days with irregular schedules of
DHW heat use.

XGBoost is a machine learning prediction technique based on
gradient boosting decision tree method [44]. XGBoost sequentially
sums the prediction of multiple weak learners, such as regression
trees models, in order to ensemble a robust prediction model
[45]. By adding additional regression trees models in such a way,
the errors made by the initial model are reduced. The regression
trees models are added until further improvements of the initial
model can no longer be obtained. The gradient boosting is related
to a gradient descent algorithm that is used in XGBoost to mini-
mize the loss when adding new models [46]. Mathematically, gra-
dient boosting can be represented by the following equation [46]:

bEi ¼
XK

k¼1

f kðXiÞ; f k 2 F ð3Þ

where bEi is predicted DHW heat use. Xi are influencing vari-
ables. K is the number of functions (regression trees) in the func-
tion spaceF.

In XGBoost the parameters of the functions can be found auto-
matically by solving the following optimization function [46]:

obj hð Þ ¼
Xn

i

lðbEi; EiÞ þ
XK

k¼1

Xðf kÞ ð4Þ

where l is a differentiable loss function. X is the regularizing
function that introduces penalties for the complexity of the model.
A more extensive introduction to XGBoost modelling technique
and its mathematical apparatus are given in [47].

Artificial Neural Network (ANN) is a powerful modelling tech-
nique that mimics the behaviour of the brain with its homoge-
neous elements - neurons. For prediction, classification and
solving of other tasks, ANN uses the number of simple nonlinear

functional blocks that are called neurons. Multiple neurons are
organized into layers [48], where the actual processing of data is
performed via a system of weighted connections [47]. The ANN
represents the group of mathematical models of high complexity.
This method demonstrates good results for nonlinear relationships
among between variables. In this article, the ANN model with the
two-layer feed-forward network [49] was used for DHW heat use
prediction.

In order to estimate the accuracy of DHW heat use models,
cross-validation was used. Hourly data of DHW heat use in 2015
were used in a training set, and data from 2016 were applied to
test the models. The prediction for all the above-mentioned meth-
ods, except ANN, was performed in Python, using Statsmodels,
XGBoost, and Prophet packages [50]. For Neural Networks mod-
elling, the Neural Network Toolbox in Matlab software was utilized
[49]. The comparison of the models was performed based on the
Coefficient of Determination (R2), Mean Absolute Error (MAE),
and Mean Squared Error (MSE) criteria of the model adequacy [50].

3.2. Prediction based on the variables that have a significant influence

on the DHW heat use

Compared to Subsection 3.1, Subsection 3.2 considers more
favourable conditions for DHW heat use prediction. In these condi-
tions, in addition to DHW heat use data from previous periods of
time, information about the guest’s presence and other explana-
tory variables are known. The procedure for DHW heat use predic-
tion in this subsection includes three main steps: data
preprocessing, identifying variables that affect DHW heat use,
and selection of the best model for hourly prediction of DHW
use. The preprocessing step included removing outliers and unreal-
istic data. Finally, as a part of preprocessing, a method for introduc-
ing an artificial variable, which reflects the influence of hourly
guest presence on DHW heat use, was proposed. This method, in
detail, is explained in Section 3.2.1. The set of variables that affect
the DHW heat use was selected according to the Wrapper
approach. This approach is explained in Section 3.2.2. After, the
selected set of influencing variables was used as an input for mod-
elling. The accuracy of various machine learning methods for the
DHW heat use prediction was carried out. The general information
about the considered methods is presented in Section 3.2.3.

3.2.1. Preprocessing the daily data of the guest presence

It is well known that occupancy has a significant effect on the
DHW heat use in buildings [6]. Among all influencing factors, the
number of guests being present in a hotel is typically the key factor
that affects DHW heat use the most.

Traditionally, a hotel booking system stores information about
the number of guests who were booked into the hotel for each par-
ticular day. For a given date, both the number of guests booked in
one day before (GstLag1) as well as on the date itself (Gst) are influ-
encing the DHW heat use. In general, Gst shows the number of
guests who are staying in the hotel after 15.00o’clock, and GstLag1
reflects information about people who are leaving before
12:00o’clock. Nevertheless, despite the official check-in/out time,
in practice, the actual time when guests are arriving and leaving
can vary. Sometimes guests arrive before the set time of check-
in, and it happens that some guests can stay longer in the building
after the check-out time.

The daily profiles in the hotel showed that the highest DHW
heat use occurs before 12:00o’clock. Consequently, the influence
of GstLag1 on daily DHW heat use can be more significant than
Gst. For this reason, it is crucial to take both factors Gst and GstLag1
into account in the model.

The investigation showed that using Gst and GstLag1 allows us to
perform a quite accurate daily prediction of DHW heat use. How-
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ever, if we consider hourly analysis of the DHW heat use, Gst and
GstLag1 do not give sufficient information about hourly occupancy
in the hotel. These parameters do not show whether the guests
are present in the hotel at certain hours or not. For this reason,
the considered factors cannot substantially enhance the accuracy
of the hourly model of the DHW heat use. To increase the accuracy
of the hourly model, we propose to introduce an additional artifi-
cial variable (Gstart) that reflects the hourly influence of the guests
presence on DHW heat use. The following equation proposed to
use to determine the numerical value of the Gstart for each separate
hour:

Gstart ¼ Gst � Cgpi þ GstLag1 � CgpLag1:i ð5Þ

where Cgpi and CgpLag1:i are the coefficients for the guest DHW
use intensity for ith-hour, which were identified based on the num-
ber of people booked into the hotel on the given day Gst and one
day before GstLag1.

In order to identify the coefficients of the guest DHW use inten-
sity for ith-hour the following optimization problem was solved:

maxðcorrð
Cgpi¼1 � Gst
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where Cgpi and CgpLag1:i are the target variables. E
!

i is the vector

of the DHW energy use data in the hotel in ith-hour, Gst
�!

, GstLag1
����!

are
vectors of the daily number of guests booked into the hotel on the
given day and one day before.

By solving the optimization problem in Equation (6), the values
of the coefficients of the guest DHW use intensity for each hour of
the day can be obtained. These Cgpi and CgpLag1:i coefficients are
maximizing the correlation between Gstart and the DHW heat
use. Application of the coefficients makes Gstart based predictions
more accurate. For the considered hotel, the values of Cgpi and
CgpLag1:i were calculated for several years. The obtained coefficients
for 2015 and 2016 years are shown in Fig. 6. and Fig. 7. in Sec-
tion 4.2. The investigation indicated that the changes in the values
of the Cgpi and CgpLag1:i, see Fig. 6. and Fig. 7., in different years,
were not substantial. Thus, their values from previous years may
be used for the identification of the variable Gstart and prediction
for the next year. In this article, the numerical values of the coeffi-
cients were calculated based on the year of 2015, and they were
used for predicting the DHW heat use in 2016. Besides, to conduct
a thorough investigation, both cases for modelling with application
of the artificial variable Gstart, and without it, were considered.

3.2.2. Wrapper approach for selecting the influencing variables on the

DHW heat use

Choosing the proper set of influencing variables is a crucial step
for the DHW heat use prediction. The use of irrelevant and redun-
dant input variables in the model leads to an increase in computa-
tional demand, an inadequate interpretation of the model, and
generally makes prediction more complicated and less accurate.
Traditionally, three different approaches may be used for feature
selection: Filtering, Wrapper, and Embedded method [51].

In this article, the Wrapper method was used for optimal vari-
ables selection. This method is one of the most precise methods,
because it detects possible interactions between variables and
takes into account the specific characteristics of the prediction
algorithm [51]. According to the Wrapper method, first, all the
variables were sorted by the absolute value of the correlation cri-
teria between a variable and the DHW energy use. Afterwards, an

iteration algorithm was applied. In each iteration step, one addi-
tional variable from the sorted list of variables was added to the
model. For each step, parameters and accuracy criteria of the
model were recalculated. The obtained criteria of model accuracy
on a current step were compared with criteria on a previous step.
Thus, parameters that do not improve the accuracy of the model
were determined and eliminated from the model, and a set of vari-
ables that makes predictions more precise was selected. Despite
the higher computational time compared to commonly used anal-
ysis based on the correlation matrix (Filtering method), the appli-
cation of the Wrapper method is a more potent instrument for
assessing the impact of different combinations of variables on
the DHW heat use and selecting their proper set for accurate pre-
diction [51].

3.2.3. Prediction techniques for modelling DHW heat use based on

influencing factors

The prediction techniques for the considered case are presented
in Table 3, see Section 4.2. The advanced time series techniques
have the ability to take into account explanatory variables. For this
reason, some models in Subsection 3.1 were also used for predic-
tion in current conditions. In addition to the models in Subsection
3.1, the availability of data on influencing factors allowed us to
apply more diverse prediction techniques.

Group Method of Data Handling (GMDH) is a computer-based
method for calculating complex multivariable models. GMDH
stands on self-organization theory of mathematical models. The
method recursively combines selective submodels (base function)
to obtain a more accurate predictive model. On each step of the
modelling, the number of submodels included in the main model
is gradually growing. In this way, the accuracy and complexity of
the model are increasing. The GMDH allows us to find a model
structure with optimal complexity based on the minimum value
of an external criterion [52]. As base functions in GMDH can be
used various models: linear, polynomials, exponential, etc.

Partial Least Squares Regression (PLSR) is a powerful instrument
for prediction in conditions when a large number of independent
variables is used in the model. PLSR works well with highly colli-
near variables, too. This method performs the decomposition of
the initial data into a subspace of latent variables (scores and load-
ings). Latent variables are representing the main features of co-
variance among the dependent and the independent variables
[53]. PLSR calculates the linear regression model via the projection
of the predicted variables and the observable variables to a sub-
space of the latent variables [53].

Support Vector Regression (SVR) is based on the computation of
a linear regression function in high dimensional feature space [54],
where the input data are mapped via a nonlinear function. SVR is
minimizing the generalized error bound [55]. The generalization
error bound includes the training error and a regularization term
that controls the complexity of the hypothesis space [55]. The com-
prehensive overview of this method is given in [56].

Ridge and LASSO methods are used to deal with overfitting and
variables that may be affected by multicollinearity [57]. Both these
methods are based on principals of regularization, i.e. introduction
penalties to the coefficients of features. Ridge Regression is penal-
izing the square of the magnitude of coefficients [58]. LASSO intro-
duces penalties to the absolute value of the magnitude of the
coefficients [58].

In Subsection 3.2, the general principles for the DHW heat use
modelling were applied in the same way as in Subsection 3.1.
The data about DHW heat use and influencing variables from
2015 were used in a training set and data from 2016 were used
for testing. The best model was selected based on R2, MAE, and
MSE criteria of the model adequacy. The prediction for the meth-

D. Ivanko et al. / Energy & Buildings 228 (2020) 110441 5



ods mentioned above, was performed in Python, using Statsmodels
and GmdhPy packages.

4. Results

This section is divided into two subsections, which examines
two situations for modelling with different input data. The hourly
prediction based on information from the historical DHW heat use
is investigated in Section 4.1. A more favourable situation with
using additional influencing variables is shown in Section 4.2.

4.1. Results on hourly DHW heat use based on the historical time series

DHW heat use measurements are widely used for paying utility
bills in non-residential buildings in Norway. As a consequence, his-
torical data about hourly DHW heat use are available for building
owners for many types of non-residential buildings in Norway,
including hotels. Historical data about hourly DHW use provide
us with a valuable basis for DHW heat use modelling.

For more precise prediction, the variation of DHW heat use in
different periods of time should be taken into account. Certain fac-
tors, which explain appropriate variation, can be identified based
on the descriptive statistical analysis of the retrospective time ser-
ies. Box plot is a statistical method, that graphically depicts the
median, first quartile and third quartiles, minimum and maximum,
and outliers for the data. A visual study of the box plots showed
that hourly DHW heat use in the hotel varies depending on the
hour of the day, day of the week, and the month, as shown in
Fig. 1.-Fig. 3. Fig. 1. and Fig. 3 shows hourly heat use in kW, while
Fig. 2. shows average hourly DHW heat use for each day in kW.

It is generally known that changes in the DHW heat use during
the day normally is associated with personal hygiene activities.
The box plot of the hourly DHW heat use in Fig. 1. indicates that
the significant peak of the DHW use could be observed in the
morning from 7:00o’clock to 10:00o’clock. The heat use for DHW
in the evening looks pretty even, with the small spikes from
22:00o’clock to 23:00o’clock. The minimum of the DHW heat use
occurred at night time from 1:00o’clock to 5:00o’clock in the
morning.

Weekly variation of the DHW heat use, See Fig. 2., is usually
related to the preferences of visitors to make trips on different days
of the week. The days of the week in Fig. 2. are displayed from
Monday to Sunday. Fig. 2. shows that heat use for the DHW may
vary depending on the day of the week. For this specific hotel,
the highest average daily DHW heat use in 2015 was observed
on Saturdays and the smallest on Mondays.

The box plot of DHW heat use from January till December 2015
is shown Fig. 3. From Fig. 3. the seasonal changes in DHW heat use

can be noted. The highest monthly heat use took place fromMay to
September. Such a pattern may arise due to an increase in the
number of tourists in the warm season. Another parameter that
affecting the monthly heat use is the variation in cold freshwater
inlet temperature in the DHW system.

The box plots gave us only rough information about the varia-
tion of heat use in different periods of time. However, this method
clearly shows that parameters such as hour, day of the week and
month should be included in the model. Accordingly, in Situation
1, the retrospective time series of DHW heat use and the hour,
day and month were used as inputs for different prediction
techniques.

The classical time series modelling techniques, ES and ARIMA
showed high values of MAE and MSE, and R2 less than 0.6. Due
to the low accuracy of ES and ARIMAmodels, they were not consid-
ered for DHW heat use modelling in further analysis. The NN, Pro-
phet, and XGBoost techniques showed better outcomes. The MAE,
MSE, and R2 criteria for these models are presented in Table. 2.

Among the models considered for Situation 1, see Table 2, the
Prophet had the best accuracy for hourly DHW heat use modelling.
In addition, this model stays robust. The R2 remained equals to
0.76 for both the training and the testing set. The results of hourly
prediction based on the Prophet model are shown in Fig. 4. The
analysis indicates that most of the actual values of DHW heat
use lie within the confidence intervals [59] of the model, as shown
in Fig. 4. The predicted versus actual values are distributed around
the ideal line, as shown in Fig. 5. This means that the Prophet
model developed for Situation 1, can be used for forecasting

Fig. 1. Box plot of hourly DHW heat use in 2015.

Fig. 2. Box plot of the average hourly DHW heat use for different days of the week
in 2015.

Fig. 3. Box plot of hourly DHW heat use for the different month of the year in 2015.

6 D. Ivanko et al. / Energy & Buildings 228 (2020) 110441



DHW heat use in the hotel. However, despite this fact, the model
can be improved. For this purpose, additional variables that affect
the DHW heat use should be taken into account. The results of the
prediction for corresponding conditions (Situation 2) are presented
in Section 4.2.

4.2. Results of hourly DHW heat use based on influencing variables

As a part of the investigation for Situation 2, the feasibility of
using different variables for DHW heat use modelling was tested.
In order to identify the variables that may affect the DHW heat
use, data from the hotel’s measurement and booking systems were
collected, as well as climate data from a weather station located
nearby the building. The following variables were considered as
potential inputs for the DHW heat use prediction modelling: Gst
and GstLag1 � the number of guests on a given day and the day
before, Rm � number of booked rooms in the hotel. Eon � energy
use for other needs in the building, T � outdoor air temperature,
Rh � relative humidity, Ff � mean wind speed, Pa � atmospheric
pressure, H � hour of the week, DoW � day of the week, Mth –
month of the year.

The Gst and GstLag1 are representing only the daily values of the
guests presence. To take into account the daily variation of the

guests presence and improve the prediction, the artificial variable
Gstart was used. Gstart was identified based on Equation (1). The
coefficients of the guests DHW use intensity in Equation (5) were
calculated by solving the optimization problem in Equation (6).
These coefficients for a given day and the day before are shown
in Fig. 6. and Fig. 7. The patterns in Fig. 6. and Fig. 7. coincided with
a shape of the box plot of hourly DHW heat use in Fig. 1, which rep-
resents the hourly habits of DHW use in the hotel. The coefficients
calculated on the basis of the data for 2015 were used to determine
Gstart in 2016. Models with and without application of artificial
variable Gstart were tested to determine the most accurate.

The Wrapper algorithm was applied to categorise the best set of
influencing variables. It was found that the most influencing
parameters for all models are related to the guest presence in the
building. Gst and GstLag1 showed the best result for the models cre-
ated only based on measured data, and Gstart for models where this
artificial variable was applied. These three parameters allowed us
to receive quite reliable models of DHW heat use in the hotel.

Rm, number of booked rooms, is highly correlated with a num-
ber of guests. It does not give additional information and quality to
the models. For this reason, Rm was taken out of consideration.
Application of mean wind speed, Ff, and atmospheric pressure, Pa
in the models, did not increase their accuracy. In this regard, these
parameters also should be excluded frommodelling. When relative
humidity, Rh, was used, only a few models showed insignificant
improvement. Thus, application of Rh is usually not reasonable.T,
outdoor air temperature and Eon, energy use for other needs
improved the models, but not much. For example, when adding
these parameters to certain models, R2 coefficient was increased
by several percents. In some instances, the application of T and
Eon may be useful for modelling. However, it should be mentioned
that when choosing these parameters, we also must take into con-
sideration that some data, such as weather data, will not be readily
available when we are running the prediction. For analysis of the
historical data, knowledge about all the data is available, but for
forecasting, meteorological and energy data must be forecasted
as well, which brings additional uncertainty into the prediction.

Table 2
Prediction modelling based on historical time series of DHW heat use.

Prediction technique Training set Testing set

R2 MAE MSE R2 MAE MSE

Prophet 0.76 3.8 67.7 0.76 4.46 73.27
NN 0.73 4.4 78.6 0.73 4.7 79.13
XGBoost 0.73 3.56 59.67 0.68 4.11 71.14

Fig. 4. Hourly modelling of DHW heat use based on the Prophet method in
Situation 1.

Fig. 5. Predicted by the Prophet method vs. actual values of DHW heat use in
Situation 1.

Fig. 6. Coefficients of the guest DHW use intensity based on the booking in the
given day in the hotel in 2015–2016.
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The parameters hour (H), day of the week (DoW), and month
(Mth) represented changes in the DHW heat use in different peri-
ods of time. In complex and accurate models such as Prophet, NN
and XGBoost, applying these parameters gave us good effects.
However, some models were unable to extract useful information
from H, DoW, and Mth for DHW heat use prediction.

Since the main target of modelling was to build a more accurate
model, all parameters that may improve the accuracy of modelling
were taken into account. Generally, two sets of influencing vari-
ables showed the best outcomes:

a) the set of variables without using the artificial variable Gstart:
Gst, GstLag1, T, Eon, H, DoW, and Mth;

b) the set of variables with using the artificial variable Gstart:
Gstart, T, Eon, H, DoW, and Mth.

In order to select the most accurate DHW heat use prediction
model, nine different prediction techniques, see Table 4, were
tested. For the set of variables that do not include Gstart, the
MAE, MSE and R2 criteria of models adequacy were specified in
Table 3. On the other hand, Table 3 contains the same criteria for
prediction based on Gstart.

It should be noted that unacceptably inaccurate models were
removed from consideration. Therefore, such models are not
included in Table 3. When the set of the variables without Gstart
was used, only Prophet, NN, XGBoost, and GMDH models showed
satisfactory results of prediction. On the contrary, the application
of artificial variable Gstart allowed us to improve the accuracy of
prediction. Therefore, more models met the minimum acceptable
criteria with R2 greater than 0.65. In general, the models in Table 4
showed better outcomes compared to the models in Table 3. How-
ever, for advanced and complex prediction techniques, the effect of
application of Gstart was less visible. These consequences can be
explained by the fact that Prophet, NN, XGBoost, and GMDH mod-
els can better reflect hidden relationships in explanatory variables
than the other models in Table 4. Accordingly, these models may
give us a quite reliable forecast based on both sets of variables,
both with and without the application of Gstart.

Table 3 and Table 4 indicate that Prophet and NN are the best
models for hourly prediction DHW heat use in the hotel. The NN
model showed better performance on the training set, while Pro-
phet on a testing set. For the NN model, R2 calculated on a training
set was 0.89. Nevertheless, for the testing set, this criterion was
reduced to 0.8. Such changes of R2 may indicate a tendency of
the given model to overfitting.

Compering to the NN model, the Prophet model allowed us to
obtain more robust results with minor changes in R2, MAE, and
MSE. For this reason, the Prophet method was selected as the best
model for the DHW heat use prediction in the considered hotel.
The result of the hourly modelling based on the testing data set
is shown in Fig. 8. Fig. 8. and Fig. 9. confirm the adequate perfor-
mance of the model. As shown in Fig. 8., the actual values of
DHW heat use were within the confidence intervals of the Prophet
model. The predicted versus actual values lies close to the ideal
line, as shown in Fig. 9.

The study confirmed that by means of easily accessible data, it
is possible to obtain a fairly accurate model for the DHW heat use
prediction for a hotel. Comparing the results in Situation 2 with a
model that uses only historical DHW heat use data (Situation 1),
the application of additional variables (Situation 2) allowed us to
improve the accuracy of prediction. For example, R2 was increased
from 0.76 to 0.83 in the testing set, if using an artificial variable.
For all considered cases, the Prophet model proved to be an accu-
rate and reliable model that can reflect periodical changes in DHW
heat use. The developed models are useful for the DHW heat use
modelling for other hotels under similar conditions.

5. Conclusions

Predictive modelling is a powerful instrument for increasing the
efficiency of the DHW heat use in buildings. The modelling
involves the following tasks: selecting input variables for predic-
tion, determining the prediction technique, and parameters for
the model. This article highlightes the issue of the DHW heat use
prediction for a hotel located in Norway.

For accurate prediction, it is crucial to select a proper set of
input variables. These variables should include the main factors
that affect the DHW heat use in the building. Yet, the data avail-
ability may vary from one building to another. Therefore, two com-
mon situations with data availability were considered. Situation 1
assumed that only information from the historical DHW heat use
might be used for prediction. Situation 2 demonstrated more
favourable conditions, where also additional variables that affect
DHW heat use were included in the model.

The Wrapper approach showed high efficiency in determining
the variables that should be included in the prediction model. This
approach indicated that the main factor that affected the DHW
heat use in the hotel were number of guests booked in the hotel
on the given day and the day before. Nevertheless, the number of
guests are collected on a daily basis, which makes them less effi-
cient for hourly modelling. Therefore, to improve the accuracy of
the hourly model, the introduction of an additional artificial vari-
able was proposed. This artificial variable reflects the hourly inten-

Fig. 7. Coefficients of the guest DHW use intensity based on the booking one day
before in the hotel in 2015–2016.

Table 3
Prediction modelling without using the artificial variable Gstart.

Prediction technique Training set Testing set

R2 MAE MSE R2 MAE MSE

Prophet 0.8 3.7 56 0.79 4.6 63
NN 0.88 3.18 33.65 0.8 4 59
XGBoost 0.89 2.5 25 0.78 3.8 51
GMDH 0.81 4.35 58.9 0.64 4.7 116.3
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sity of the guests DHW use with a major peak of the heat use in the
morning and a small peak in the evening. The method for identify-
ing this variable was based on an optimization problem, presented
in the article. In addition, several other factors were identified, that
may increase the accuracy of the prediction to a certain extent.

Identifying the DHW heat use model requires a comparison of
various prediction methods. Selection of the best method among
those considered should be based on the criteria of model ade-
quacy. In order to obtain an accurate and reliable DHW heat use
model for a hotel, ten different time series and machine learning
prediction techniques were tested. Among considered methods,
the Prophet model showed the best accuracy and robustness for
the DHW heat use prediction in the case study. In Situation 1,
the R2 criterion for testing set obtained via the Prophet model
was 0.76. However, with the introduction of additional explanatory
variables in the model (Situation 2), the R2 criterion was increased
to 0.83. The outcomes of the hourly DHW heat use predictive mod-
elling for the hotel could also find application in similar building
types.
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D
omestic hot water (DHW) systems make a 
substantial contribution to the energy balance 
in hotels in Norway [1]. They are responsible for 

approximately 20–35% of the total energy use in these 
buildings [2]. Michopoulos, Ziogou [3] estimate that 

CO2 emissions for hot-water use in the hotels remains 
quite high, 2.87–3.2 kg-CO2/(person⋅night). Hot water 
usage is the second largest energy consumer in hotels 
after heating [4]. Recent studies emphasise that a large 
potential for increasing energy efficiency in buildings 

Analysis of DHW energy 
use profiles for energy 

simulations in a hotel located 
in Norway

Domestic hot water (DHW) system is significant energy consumer in hotels. For this reason, 

energy modeling and simulations in hotels should provide an accurate and representative 

assessment of the energy performance of domestic hot water systems. The majority of 

dynamic simulation tools use DHW energy use profiles as the basic for estimating DHW 

energy needs. In this article, energy simulations in EnergyPlus software for a large hotel 

were carried out. All inputs in the EnergyPlus simulation model were adjusted according 

to Norwegian national regulations. Application of different DHW energy use profiles in the 

simulation model was explored. The profiles given in the national and international standards 

were compared with profiles obtained from measurements in the hotel located in Oslo, 

Norway. Simulations in EnergyPlus showed that application of profiles from measured data 

have higher accuracy then simulations based on standards. The results of the study may 

give indication for sizing and planning of DHW systems.
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can be achieved by improving operation and design of 
DHW systems [4]. One of the aims of the simulation 
approach of DHW system performance is to estimate 
and predict the DHW volume and the energy use for hot 
water production in existing building, or in building at 
the design phase. This information is essential for sizing 
and optimising of DHW system and its components [5].

The DHW profiles are the basis for simulation of 
DHW systems performance in buildings, as well as 
useful instrument for understanding the process of 
DHW energy use in the buildings [6]. The profiles of 
DHW energy use show how the energy for DHW is 
used most of the time.

Building simulation tools may require diverse input 
data for DHW energy use simulation. In many simula-
tion tools, average yearly DHW energy use profiles per 
m² of building area are applied as input for modelling. 
Other tools require three types of input data: average 
DHW use in l/(person⋅day), occupant number, and 
DHW usage profile. In addition, the default values for 
DHW supply temperature and cold-water tempera-
ture are considered for energy estimation. The so-called 
bottom-up approach requires a detailed information 
of occupant presence, profiles of occupant activities, 
available domestic appliance, corresponding technical 
details, etc. [7]. The methods based on detailed infor-
mation about DHW use activities and DHW system, 
usually require extensive input data, which increases the 
complexity of obtaining this information and process 
of energy use estimation.

A comparative analysis of five different software calculation 
tools based on technical standards for predicting monthly 
and daily DHW consumption profiles in residential build-
ings are investigated in [5]. The deviation in results from 
measured data are −30% to +40%. Better estimations are 
obtained with methods based on standards specific to the 
country where measurements were done.

A better understanding of DHW energy use profiles and 
their application in simulation tools is a crucial factor in 
achieving energy savings in hotel buildings. Therefore, 
in this article DHW profiles based on measured energy 
use in the hotel in Oslo, Norway, were developed. The 
data comprises five years of hourly measurements of 
energy use for DHW. The obtained profiles, as well as 
profiles from national and international standards for 
heat demand calculation, were applied in simulation 
model of a representative hotel. The model was devel-
oped in EnergyPlus [8]. The possible benefits from 
using more accurate energy profiles were explained.

Methods

For modelling of the hotel, EnergyPlus model from 
the Department of Energy (DOE) Large Hotel model 
[9] was used. The model was adjusted according to 
Norwegian regulations and requirements.

For the analysis of DHW energy use in the hotel, it was 
considered few different scenarios:

1) DHW energy use was derived from profiles 
obtained based on measurements in the real hotel, 
located in Oslo.

2) DHW energy use was derived from profiles in 
ISO 18523-1 [10].

3) DHW energy use were derived profiles obtained 
from the technical specification SN/TS 3031:2016 
[11].

The results of simulations based on different DHW 
energy use profiles were compered.

Description of the real hotel building

The parameters of the hotel are typical for Norway. 
The hotel reflects well the trends of DHW energy use 
in similar types of buildings. The building was reno-
vated in 2007. The area of the hotel is 4 939 m². The 
building has eight floors with 164 guest rooms. All the 
guest rooms have bathrooms with toilet facilities and 
shower. According to the hotel management, employees 
use hot water for cleaning, and guests use hot water for 
personal hygiene.

In the DHW system, the hot water is circulated all the 
time to ensure fast delivery at each tap all the time. The 
hotel uses electric water heaters for DHW preparation. 
Data on energy use for DHW were collected during 
several years from an energy meter installed by the hotel 
owner. The meters measure electricity delivered to the 
DHW tanks. This means that both DHW needs and 
heat losses in the DHW system were included in the 
presented DHW energy use.

Description of the simulation model

It is supposed that a reference building simulation model 
represents the average building stock in a Norwegian 
geographical area in terms of building characteristics and 
functionality [8]. The model for the reference hotel was 
selected from the U.S. DOE database. The building in 
EnergyPlus present 7 floors: 6 floors above the ground 
level and 1 basement, see Figure 1. The total building 
area is 11 348 m². Based on the geometry and shape of 
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the real hotel in Oslo, it was estimated that the model 
in Figure 1 would fit well for the analysis. The weather 
data for Oslo, Norway, were used as input in this study.

The modifications were done to conform the model 
to Norwegian national limits on building thermal 
properties, indoor comfort, and annual energy use. 
To initialise, the building parameters and schedules 
for human occupancy were used from the following 
national and international standards: ISO 18532-1, 
EN 15232, and NS 3031:2007 [10-12].

Results

DHW energy use profile based on 

measurements

Statistical data of energy use in the hotel show that 
DHW tap systems have significant impact on energy 
use in buildings. More specifically, in the observed 
hotel, DHW energy use constituted more than 20% 
of total energy use.

Since the simulation model and actual hotel have 
different area, energy use profiles from measurements 
were calculated per m² of building area. As discussed 
above, both DHW needs and self-use in the DHW 
system were included in the presented measurements. 
Self-use includes water leakages in the pipes, circulation 
losses, energy use for maintaining the required tempera-
ture of DHW in the system and other consumer-inde-
pendent losses in the system. Due to these losses, a 
DHW system is constantly using a certain amount of 
heat, even if there are no visitors in a hotel. Reducing 
self-use is an essential task in achieving efficient energy 
use in the buildings. Statistical data for the hotel showed 
that information about self-use could be obtained based 
on profiles of the DHW energy use in public holidays. 
From Figure 2, we can see that hourly average and vari-
ation of DHW energy use during the holidays is very 
small. This phenomenon could be explained by the 
fact that on holidays, the hotel was closed for visitors. 
Consequently, the DHW energy use in the hotel in 
these days mostly caused by self-use in the system.

Accordingly, it was proposed to consider the average profiles 
of DHW energy use during the public holidays as a way to 
assess self-use in DHW system of the hotel. Average profiles 
of energy use on holidays evaluate the share of energy use 
for self-use of DHW system. The identified percentage of 
the energy use for self-use in the hotel constituted 39.15% 
of the average DHW annual energy use.

Comparison of DHW energy use in the standards 

and measurement data in the real hotel

“ISO 18523-1:2016: Energy performance of build-
ings” provides reference domestic hot water usage 
for different types of rooms. Based on ISO 18523 
and EnergyPlus model, DHW energy use profiles for 
the typical hotel were obtained. “SN/TS 3031:2016: 
Energy performance of buildings. Calculation of energy 
needs and energy supply” is a national standard in 
Norway. Calculation of energy needs and energy supply 
gives recommendation on DHW profiles that should 
be used as input for energy demand calculation [11].

In this study, the profiles of the actual DHW energy 
use in the real hotel, see Figure 2, and the profile 
for the same type of building based on the stand-
ards ISO 18523, see Figure 3, and SN/TS 3031, see 
Figure 4, were compared. The analysis indicates the big 
difference between these tree types of profiles.

Compered to profiles in real hotel, Figure 2, the profile 
based on ISO 18523, see Figure 3, significantly overes-
timates the DHW energy use in the hotel. ISO 18523 
shows morning and evening peaks of the DHW energy 
use, which occur from 6 a.m. to 10 a.m. and from 
6 p.m. to 11 p.m. The peak energy use modelled based 
on ISO 18523 are about three times higher than those 
measured in the real hotel. Besides, evening peak of 
DHW energy use in a real hotel is not expressed as 
obvious as in the ISO 18523.

Figure 1. Reference hotel.

Figure 2. Profiles of hourly DHW energy use on 

holidays and all days in the year in the hotel.
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As shown in Figure 4, the DHW energy use from 
1 a.m. to 5 a.m. in the standard SN/TS 3031 is equal 
to zero. This fact means that the standard does not 
take in account the so-called self-use of the system. 
On the contrary, the actual data obtained with the 
help of energy meters usually contain both the system’s 
self-use and DHW energy use by visitors. It should be 
noticed, that self-use of the system is responsible for 
the significant share of energy use in DHW tap systems 
(up to 40% during the year) and therefore cannot be 
neglected.

From the standard SN/TS 3031 profile (see Figure 4), 
we can assume that morning peak of energy use occurs 
from 7 a.m. to 8 p.m., and evening peak from 6 p.m. 
to 7 p.m. The maximum heat demand during the day 
is approximately 8 W/m². Meantime, from the profiles 
of energy use obtained from the statistical data, it was 
possible to notice that morning peak usually occurs from 
7 a.m. to 11 a.m., and a small increase in energy use can 
be observed from 10 p.m. to 11 p.m. The maximum 
energy use during the day was approximately 12 W/
m². The difference in the values of maximum energy 
use in considered profiles was 6 W/m², which was 
30% of the total DHW use. This difference could be 
explained by self-use of DHW system that the standard 
SN/TS 3031 does not take into account. However, it 
could be noticed from Figure 4, the timing of actual 
peaks of energy use also does not match the information 
presented in the standards.

Monthly and annual DHW energy use

The simulation results from EnergyPlus with different 
DHW profiles as inputs were compared with the 
actual energy use in the hotel. Monthly energy use is 
given in Figure 5 and annual energy use is given in 
Figure 6. The simulation results for the DHW energy 
use revealed the drawbacks of the considered standards. 

For example, the difference between the annual DHW 
energy use simulated by profiles obtained from the 
measurements and the real total DHW energy use was 
approximately 10%. Meantime, the national standard, 
SN/TS 3031:2016, underestimated annual DHW 
energy use for 32% and ISO 18523-1:2016 overesti-
mated for 2.3 times.

Simulation results indicated that the DHW energy use 
was responsible for significant share of the total energy 
use of the hotel see Figure 7.

Figure 3. Hourly profile of DHW energy use of the 

hotel obtained based on “ISO 18523-1:2016: Energy 

performance of buildings”.

Figure 4. Hourly profile of DHW energy use according 

to the standard “SN/TS 3031:2016: Energy performance 

of buildings. Calculation of energy needs and energy 

supply”.

Figure 5. Simulated and actual monthly DHW energy 

use in the hotel.
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Comparison with the DHW energy use in the real hotel 
revealed that simulations based on profiles obtained by 
measurements gave better explanation of the DHW 
energy use than the standards. The standard ISO 18523-
1:2016 significantly overestimated the DHW energy 
use in the hotel in Norway. Meantime, for annual and 
monthly simulations of the DHW energy use, the tech-
nical specification SN/TS 3031:2016 demonstrated 
quite reasonable result. However, in addition to using 
the technical specification SN/TS 3031:2016, the 
assumption about self-use in DHW system should be 
included in calculations. Making this assumption for a 
real building can be problematic.

The factors that introduce uncertainty to simulations are 
number and types of DHW use facilities in the hotels. 
The presence of a restaurant, swimming pool, sauna, 
and gym increase DHW energy use at the hotel. The 
profiles given in the standards are usually too simpli-
fied. These profiles were created for certain categories 
of buildings such as hotel, offices, school, etc. However, 
even within one type of buildings, DHW energy use 
can behave differently. For example, studies showed 
that specific DHW use in large and luxury hotels is 
much higher than in a regular one [4]. Therefore, there 
is a need to develop more aggregated profiles, which 
will take into account the main factors that influence 
DHW energy use. It should be emphasized that these 
profiles should be based on accurate and up-date statis-
tical data from real buildings and reliable methods of 
processing available information.

Conclusion

DHW systems play essential role in achieving efficient 
energy use in buildings. For this reason, evaluation 
of DHW energy during simulations should be repre-
sentative and corresponds to real energy use in build-
ings. The DHW profiles are the basis for simulation 
of DHW systems performance. Moreover, analysis of 
DHW energy use profiles is a powerful instrument for 
gaining knowledge about DHW system operation.

In this article, the EnergyPlus model from the 
DOE Large Hotel model was adjusted according to 
Norwegian regulations and requirements. For analysis 
of the DHW energy use in the hotel, it was consid-
ered few different scenarios with various profiles used 
as input. Profiles obtained based on measured DHW 
energy use in the real hotel, profiles derived from 
international standard ISO 18523-1, and the national 
standard SN/TS 3031:2016 were used in this study. 
The comparison of the standards revealed the significant 
difference between hourly DHW energy use obtained 
by measurement and standards. Besides, the timing of 
actual peaks of energy use does not match the informa-
tion presented in the standards. Implementation of the 
EnergyPlus model indicated that simulations based on 
profiles obtained by measurements gave better explana-
tion of the DHW energy use than using the standards. 
Simulations based on ISO 18523-1:2016 overesti-
mated the annual DHW energy use approximately 
two time and peak energy use three times. Meantime, 
the national standard SN/TS 3031:2016 showed better 
result. However, the standard SN/TS 3031:2016 does 

Figure 6. Simulated and real yearly DHW energy use in the hotel.
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not take in account 
self-use of DHW 
system. Therefore, 
information given in 
this standard should 
be supplemented by 
estimation of self-use 
of DHW system in the 
building. At the same 
time, profiles which are 
based on actual meas-
urements, allowed us to 
obtain the most reliable 
results. The difference 
between yearly DHW 
energy use simulated by 
profiles obtained from 
measurements was 
approximately 10%. Figure 7. Percentage of DHW energy use in total energy use of the hotel.
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Energy consumption for domestic hot water use in Norwegian 
hotels and nursing homes  
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Abstract. Domestic Hot Water (DHW) production constitutes a significant proportion of the energy demand of 
modern buildings, and as the building envelope is improved the share increases. This article discusses the results 
from a measurement campaign in Norwegian hotels and nursing homes. The energy demand for DHW and 
distribution heat losses for 3 hotels and 3 nursing homes are shown. The results show that number of bedrooms 
is a better parameter for describing DHW consumption than sqm of heated floor area. There are large variations 
in the measured distribution losses, mainly due to malfunctioning of the hot water circulation system. For 
nursing homes, the measured energy consumption is significantly lower than the normative profiles, which can 
have large impact on the requirements for the design of the building heating system. For hotels, the measured 
energy consumption is in the range of the normative profiles. 
Nomenclature �̇�𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  Delivered energy to the DHW production 

unit (kWh) 
THTHW High temperature hot water outlet temperature. Before 

mixing valve (°C) �̇�𝑄𝐻𝐻𝐻𝐻  Energy in consumed hot water (kWh) �̇�𝑉𝐶𝐶𝐻𝐻  Total cold water flow rate (l/s) �̇�𝑄𝐻𝐻𝐻𝐻𝐶𝐶   Energy loss in circulation (kWh) �̇�𝑉𝐶𝐶𝐻𝐻𝐶𝐶  Cold water flow rate into the DHW production unit (l/s) �̇�𝑄𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝   Total distributed energy (kWh) �̇�𝑉𝐻𝐻𝐻𝐻  Hot water flow rate (incl. hot water circulation flow) (l/s) 

TCW Cold water inlet temperature �̇�𝑉𝐻𝐻𝐻𝐻𝐶𝐶  Hot water circulation flow (l/s) 

THW Hot water outlet temperature. After mixing 
valve (°C) 

cp Heat capacity of water (kJ/kgK) 

THWC Hot water circulation return temperature 
(°C) 

ρ Density of water (kg/m3) 

 

1.  Introduction 
In the last decades, there has been an increasing focus on the energy demand in buildings, and the 
building regulations are moving towards zero energy buildings. The main measures have been on 
improving the building envelope. As the space heating demand in buildings is reduced, the relative 
importance of the energy for domestic hot water (DHW) increases. The energy needed for DHW in the 
developed world constitutes of between 10 and 20% of the total energy demand in residential 
buildings and between 5 and 10% of the total energy demand in commercial buildings [1]. With the 
current Norwegian building regulations, over 50% of the total calculated thermal energy demand is 
used for DHW for several building categories [2]. However, the assumption on DHW demands and 
heat losses are based on old and uncertain values. Previous studies have shown heat losses in the 
DHW circulation lines up to 70% of the total energy demand for DHW in residential buildings and 
even higher in offices and institutions [3]. In modern buildings with highly efficient building 



IAQVEC

IOP Conf. Series: Materials Science and Engineering 609 (2019) 052020

IOP Publishing

doi:10.1088/1757-899X/609/5/052020

2

 
 
 
 
 
 

envelopes, uncontrolled heat losses contribute less to useful heating, and might even increase the 
energy demand for cooling.  

To improve the knowledge on energy consumption for DHW, a measurement campaign has been 
initialised. The campaign comprises twelve buildings, focusing on nursing homes (4), hotels (4) and 
apartment blocks (4), as these building categories have high DHW consumption according to the 
Norwegian standard normative numbers [4]. Measurements are performed to investigate both 
maximum flow rates and energy flows in the system and are set up to measure energy demand for both 
hot water use and heat losses in the system. 

2.  Description of buildings 
6 buildings, 3 hotels (HO) and 3 nursing homes (NH) are included in this study. The main parameters 
describing the buildings are shown in Table 1.  

HO1 and HO2 are built according to similar specifications, and are both typical conference hotels, 
but HO1 does have higher share of non-business guests. HO3 is a more compact hotel, without 
restaurant and conference halls.  

The main difference between the nursing homes, is the room density (# rooms per total area). NH3 
has a much lower room density than the other two buildings. In addition, NH3 has bypassed a large 
part of the circulation system 

Table 1. Main building parameters 

Hotels Area 
[m2] 

# Rooms Heat source Distribution 
heating 

Storage Measurement 
period 

 HO1 21 278 434 District Heating Circulation None April-May 2018 
 HO2 24 500 355 District Heating Circulation 6 x 1000 liter Aug.-Sept 2018 
 HO3 4 934 165 Electric water heaters Circulation 8 x 1000 liter Aug.- Sept.2018 
Nursing Homes 
 NH1 11 618 148 Electric water heaters Circulation 6 x 400 liter Jan-Feb 2018 
 NH2 3 327 52 Electric water heaters Electric heat 

tracing 
3 x 600 liter May-Jun 2018 

 NH3 6 774 50 Local area heating + 
electric water heaters 

Circulation 3 x 400 liter May-Jun 2018 

3.  Measurements 
Flow, temperature and energy measurements were performed on DHW production system in each 
building. At each location, the measurement equipment was installed for a period of approx. 6 weeks. 
Flow rates and temperatures were measured with an interval of 1s, and then averaged to 2 seconds 
before analysis. In the energy analysis in this article, the data are resampled to 1 hour time steps, to 
analyze typical profiles. 

3.1.  Measurement equipment 

An important feature for the measurement equipment was that it had to be non-intrusive to the DHW 
system. Therefore, clamp-on ultrasonic flow meters were used for flow measurement and Type-T 
thermocouples where mounted on the pipe wall.  

The flow meters have a specified accuracy of 1.6% of reading ±0.01 m/s [5], and the Type-T 
thermocouples have an error specified as maximum of 1.0 °C or 0.75% above 0 °C [6].  

3.2.  Installation of measurement equipment 

 

Figure 1. Principle drawing of DHW heating plants with typical measuring points. 
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There are variations in how DHW systems in Norway are designed, both in regard to energy sources, 
but also with respect to system layout. Figure 1 shows a principle drawing of how most heating plants 
are built, with typical measuring points used in the DHW measurements. When possible, all measuring 
points shown, are logged. However, in many cases, the pipe sections between junctions are too short 
or there are other branches that influence the measurements. As a minimum, THW, THWC, TCW,  �̇�𝑉𝐻𝐻𝐻𝐻 
and �̇�𝑉𝐻𝐻𝐻𝐻𝐶𝐶 are measured.  

3.3.  Energy calculations 

Equation (1), (2) and (3) shows the formulas for calculating the energy flows. If �̇�𝑉𝐶𝐶𝐻𝐻 is not available, 
it is calculated with equation (4).  �̇�𝑄𝐻𝐻𝐻𝐻 =

�̇�𝑉𝐶𝐶𝐻𝐻𝜌𝜌 ∗ 𝑐𝑐𝑐𝑐 ∗ (𝑇𝑇𝐻𝐻𝐻𝐻 − 𝑇𝑇𝐶𝐶𝐻𝐻) (1) 

�̇�𝑄𝐻𝐻𝐻𝐻𝐶𝐶 = �̇�𝑉𝐻𝐻𝐻𝐻𝐶𝐶𝜌𝜌 ∗ 𝑐𝑐𝑐𝑐 ∗ (𝑇𝑇𝐻𝐻𝐻𝐻 − 𝑇𝑇𝐻𝐻𝐻𝐻𝐶𝐶) (2) �̇�𝑄𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝 = �̇�𝑄𝐻𝐻𝐻𝐻 + �̇�𝑄𝐻𝐻𝐻𝐻𝐶𝐶  (3) �̇�𝑉𝐶𝐶𝐻𝐻 = �̇�𝑉𝐻𝐻𝐻𝐻 − 𝑉𝑉𝐻𝐻𝐻𝐻𝐶𝐶 (4) 

4.  Results and discussion 
For comparison of the daily energy consumption profiles, the energy in consumed hot water (�̇�𝑄𝐻𝐻𝐻𝐻) is 
used. For comparison of the distribution efficiencies between the buildings, the average daily energy 
consumption is calculated, assuming that the measurement period is representative for the whole year. 

In the following, the hotels and nursing homes are studied separately, and they are then both 
compared to the normative consumption profile in the Norwegian technical standard SN/TS 3031 [4]. 

4.1.  Hotels 

Figure 2 shows the daily mean energy profile for hotels per heated floor area, per room, and per 
overnight guest. All the three hotels have a similar DHW profile, with a large energy peak in the 
morning. The results indicate that number of rooms or number of guests are better parameters for 
describing the consumption than the floor area, which is commonly used in normative numbers, as the 
curves are better aligned and the relative difference is smaller.  HO2 deviates somewhat from HO1 
and HO3 in energy consumption per guest. A possible explanation can be that, since HO2 is a 
conference hotel situated in the suburbs of Oslo, there are daytime visitors that are not counted as 
overnight guests. These guest do not shower, but they do increase the activity at the kitchen. However, 
it is difficult to see that this should explain the whole difference. 

 
Table 2. Average daily energy consumption and distribution energy losses for hotels 

 HO1 HO2 HO3 

  
kWh 
/day 

Share 
of total 

Wh  
/m2 

Wh 
/room 

kWh 
/day 

Share 
of total 

Wh  
/m2 

Wh 
/room 

kWh 
/day 

Share 
of total 

Wh 
/m2 

Wh 
/room �̇�𝑄𝐻𝐻𝐻𝐻 1581 75 % 74 3642 1142 85 % 47 3216 432 81 % 88 2617 �̇�𝑄𝐻𝐻𝐻𝐻𝐶𝐶 527 25 % 25 1215 194 15 % 8 547 102 19 % 21 618 �̇�𝑄𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝  2108 100 % 99 4856 1336 100 % 55 3763 534 100 % 108 3235 

Table 2 shows the daily average energy consumption for consumed DHW and the distribution 
losses (in the circulation system). When comparing the circulation losses, it is important to note that in 
HO1 it was discovered that the circulation system was highly unbalanced. A large part of the 
circulation system did not have sufficient flow to maintain the temperature. This will result in lower 
distribution losses, but parts of the hotel will have long waiting time for hot water. Based on the 
knowledge from HO1 one can question if the circulation system at the other hotels are working 
properly.  This especially applies to HO2, which has very low specific losses (Wh/m2) 
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Figure 2. Daily mean energy consumption with hourly resolution for hotels per area, number of 
rooms and guests 

4.2.  Nursing Homes  

Figure 3 shows the daily mean energy profile for nursing homes per heated floor area and per guest 
room. The shape of profiles show that the nursing homes have similar routines when it comes to DHW 
use, linked to morning routines and scheduled meals.  

Again, one can see that the profiles per room deviates less than per square meter. For the energy 
consumption per room, NH1 stands out with a higher consumption. However, the measurements at 
NH1 were performed during winter, and the measurements at NH2 and NH3 during summer. Gerin et 
al. [7] showed how the consumption of hot water varies with season, mainly driven by the variation in 
cold water inlet temperature. During winter extra energy is needed to heat the cold water with lower 
inlet temperature. We measured an average difference in cold water inlet temperature of about 6 °C 
between NH1, and NH2 and NH3. This can explain 70% of the difference in daily energy 
consumption between NH1 and NH2.  
 

Table 3. Average daily energy consumption and distribution energy losses for nursing homes 

 NH1 NH2 NH3 

  
kWh 
/day 

Share 
of 
total 

Wh  
/m2 

Wh 
/room 

kWh 
/day 

Share 
of 
total 

Wh  
/m2 

Wh 
/room 

kWh 
/day 

Share 
of 
total 

Wh 
/m2 

Wh 
/room �̇�𝑄𝐻𝐻𝐻𝐻 420 61 % 36 2836 111 63 % 33 2087 91 89 % 13 1823 �̇�𝑄𝐻𝐻𝐻𝐻𝐶𝐶  272 39 % 23 1838 65* 37 %* 20* 1235* 12 11 % 2 234 �̇�𝑄𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝  692 100 % 60 4674 176 100 % 53 3322 103 100 % 15 2057 

* Energy consumed by electric heat tracing.  
Table 3 shows the daily average energy consumption for consumed DHW and the distribution 

losses (in the circulation system or electric heat tracing). NH3 stands out with very low circulation 
losses. This turned out to be due to a large part of the circulation system being bypassed and that most 
of the circulation water returnes back to the hot water production unit. The measured temperature drop 
in the circulation loop was 0.5-1.0 °C. What is interesting, is the relatively high energy consumption of 
the heat tracing system in NH2. With reduced piping length (no circulation pipe), it would be expected 
that the energy consumption would be lower. In addition, local temperature measurements in the 
distribution show that the heat tracers are not able to sustain the hot water temperature above 45 °C 
during periods with low consumption. This indicates that the heat tracing system is very dependent on 
correct installation, to make sure that the energy is transferred into the DHW and not the surroundings.  
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Figure 3. Daily mean energy consumption with hourly resolution for nursing homes per area and per 
bedrooms 

4.3.  Comparison with national normative profiles 

Figure 4 shows a comparison between the measurement data and the Norwegian normative profiles. 
The normative profiles are used for verification of the building energy performance against the 
national regulation on technical requirements for construction works [8]. The normative profiles are 
defined by kWh per sqm of heated floor area. For the hotels, the daily energy consumption is similar, 
but the daily profile deviates significantly. The normative profile includes an afternoon peak, that is 
not seen in the measurements, but the measured morning peak is higher. For the nursing homes, the 
normative profiles are the same as for the hotels, while the measurements in the three buildings show 
significantly lower consumption. The normative profiles are not meant for dimensioning of hot water 
systems in buildings, but for calculation according to the building regulations. However, the building 
regulations have requirements to the design of the energy supply system (no fossil fuels and central 
distribution system). These requirements do only apply for 60% of the yearly heating energy demand 
(space heating, ventilation heating and DHW). Therefore, the applied values for DHW can have a 
large influence on the requirements to both the DHW production system and the heating system. 

   

Figure 4. Comparison between the measurements and the Norwegian normative profiles [4]. 

4.4.  Measures for reduced energy losses 

In general, the measured relative distribution losses are smaller than expected based on previous 
studies [3,9]. However, there are several indications that this is at least partly due to malfunctions in 
the circulation system. The most obvious measure for reduced energy losses is to increase the 
insulation of the system. When designing new buildings and DHW systems it is important to consider 
the location of tapping points and the optimal path for distribution lines. Electric heat tracing can also 
be an efficient option [3], especially in Norway where DHW is often produced with direct electric 
heating, but it requires high quality installation to operate efficiently.  
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5.  Conclusion 
Measurements on energy consumption for DHW production have been performed in three hotels and 
three nursing homes. The results show that sqm of heated floor area, which is often used, is a poor 
parameter for describing specific energy consumption. The measurements show large differences in 
the distribution energy losses, and in several cases, these are lower than expected. The measurements 
indicate that more than 50% of the measured circulation systems are not working as intended.  
Compared to the normative values used for calculations against the technical building regulations, the 
measurements from nursing homes deviated significantly on both daily and hourly basis, and this can 
have significant impact on the design of the building energy system. The conformity of the measured 
profiles and consumption may indicate that they are representative for the building categories. All the 
three have significantly lower consumption than the norm. However, three buildings in each category 
are not enough to give a statistically valid basis for defining new standard values, so more 
measurements are necessary. 
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a b s t r a c t 

Representative profiles for domestic hot water (DHW) heat use are the main instruments for improve- 

ment in operation and design of DHW systems in buildings. To improve the existing method for DHW 

heat use profiles development and analysis, investigations in the three nursing homes in Norway were 

conducted. Statistical methods to assess the similarities of the profiles by days of the week and seasons 

were proposed. The analysis allowed us to identify two seasons of DHW heat use: the warm season from 

June to October, and the cold season including the rest of the year. In addition, it was investigated that 

the DHW heat use in the working days was significantly different from the weekends. According to these 

results, unified profiles for the months and days of the week with similar characteristics of the DHW heat 

use were developed. After, the method for statistical grouping of the DHW hourly heat use was applied 

to recognize the timing of the peak, average, and low heat use. Finally, the profiles for the DHW heat use 

obtained for the nursing homes were compared with profiles in the national and international standards. 

The drawbacks of the standards were identified. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Nowadays, energy efficiency and decarbonisation are the key 

driving forces in the development of European Union (EU) energy 

industry. Among all sectors, buildings sector is one of the most 

energy-intensive. The Energy Performance of Buildings Directive 

(EPBD) estimates the share of energy use in building as 40% from 

the total energy use in the EU [1] . Considering the huge potential 

of energy saving in buildings, European Commission (EC) develop 

a set of long-term and short-term goals for increasing energy ef- 

ficiency in buildings [2] . For example, by 2020 all new buildings 

should be constructed in accordance with zero emission standards, 

and at least 3% of the total floor area of governmental buildings 

should be renovated [1] . The energy infrastructure in buildings that 

were built 30–40 years ago needs to be replaced by more energy 

efficient [3] . According to Energy roadmap 2050 [3] , the goal to re- 

duce CO 2 emission to 80–95%, when compared to 1990 level, by 

2050 scenarios is set [3] . To achieve this goal, all technical systems 

in buildings must be designed and operated in such a way as to 

ensure efficient energy use. 

∗ Corresponding author. Phone number: ( + 47) 48670338 

E-mail address: dmytro.ivanko@ntnu.no (D. Ivanko). 

Until recently, in many European countries, including Norway, a 

lot of effort has been put on the investigation of the performance 

of the space heating systems [4] . Meanwhile, the DHW heat use 

was considered as a small part of the energy needs required for 

heating. Therefore, DHW heat use has obtained little focus, espe- 

cially in countries with cold climate [5] . However, with introduc- 

tion of passive house technologies and improvement of building 

envelope, the space heating heat use in buildings is constantly de- 

creasing. At the same time, reduction of DHW heat use remains in- 

significant [6] . For example, the experience from design of low en- 

ergy buildings in Denmark is shared in [7] . In this study, to achieve 

low heat use, passive building strategies with highly insulated, re- 

source efficient, and airtight solution are used, without focusing on 

DHW use. The authors in [7] conclude that detailed design values 

for the passive building show that energy demand for the DHW 

use is almost twice bigger than space heating. The analysis of en- 

ergy use in four apartment buildings in Finland with various con- 

struction years is performed in [8] . In this study, to assess DHW 

heat use, the profiles obtained from measured DHW demand in 

apartment buildings are used as input in IDA-ICE simulation soft- 

ware. Simulation shows that in the modern buildings, the domes- 

tic hot water is the most significant component in heat use. In two 

buildings constructed before 2002, the DHW heat use contributes 

24% and 30% to the total energy use in the buildings. However, in 

https://doi.org/10.1016/j.enbuild.2020.110070 

0378-7788/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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two well-insulated buildings, the DHW systems is responsible for 

52% and 63% of the total energy use. As we can see, the share of 

the DHW energy use tends to increase from approximately 20% in 

regular buildings [5] to above 50% in passive houses and well in- 

sulated buildings [9] . Consequently, heat use for DHW systems is 

becoming the critical component for energy saving, especially in 

passive houses and nearly zero energy buildings (NZEB) [10] . 

Nowadays, heat losses from the hot water tanks and the cir- 

culation systems in houses, schools, and other institutions remain 

high [11] . As a result, further energy saving measures in buildings 

should shift the focus from improving space heating to improve 

DHW systems. To realize potential of energy savings in DHW sys- 

tems, the research and innovations in the field of DHW energy per- 

formance becoming increasingly relevant and valuable [9] . 

It should be noted that the operation of the DHW systems 

is associated with sanitary and health safety issues. These issues 

for different types of buildings is discussed in [12] . Appearance 

of Legionella bacterium in DHW systems is a serious problem. 

Legionella bacterium can lead to different forms of pneumonia 

and even death. The conditions for Legionella spreading are water 

temperatures from 25 °C to 42 °C, nutrients, and stagnating water. 

Therefore, many countries, including Norway, develop regulations 

to minimize the risk of Legionella disease appearance. For exam- 

ple, despite of energy ineffectiveness, to prevent risks of the bac- 

teria growth, the DHW systems in Norway store and distribute hot 

water at temperatures above 60 °C. Among all buildings, special at- 

tention is paid to the nursing homes, because the elderly, who usu- 

ally have respiratory problems and weakened immune system, are 

heavily affected by this bacterium. The safety of energy effective 

solutions is the key factor in DHW systems. 

The share of DHW heat use is varying from country to country 

and one type of building to another [5] . For example, specific DHW 

heat use in households in different EU countries are significantly 

varying as shown in [13] . Comprehensive comparison of DHW en- 

ergy use in residential buildings in Denmark, Norway, and Swe- 

den is performed in nineties [14] . Even though that study is some- 

what outdated, it describes well the general trends in the DHW 

use in these countries. Sweden, Norway, and Denmark share a sim- 

ilar living standard, comparable patterns of household formation, 

and a similar climate. Nevertheless, the DHW heat use in Den- 

mark is significantly below those in Sweden and Norway. In ad- 

dition, the authors conclude that national average, electricity use 

per capita for the DHW heating in Norway has almost not changed 

for 15 year, and remains high when compared with other countries 

within The Organization for Economic Cooperation and Develop- 

ment (OECD). The authors explain this phenomenon by difference 

in occupants’ behaviour and the insulation of DHW systems in 

different countries. More resent research confirms this statement 

[15] and it shows that the average individual DHW use reaches 40 

L/person/day in Norway, while in Denmark, the average value is at 

20 L/person/day [15] . 

For the sake of simplification, many methods propose to con- 

sider the DHW use as a constant value for calculations [16] . Practi- 

cal experience shows that the commonly used standards are based 

on assumptions for the DHW heat use in the buildings, but these 

standards do not correspond to the real use [17] . For example, sim- 

plified, but meantime common way of DHW system performance 

simulations is shown in [18] . Further, DHW system performance 

are simulated based on daily water need as a constant value of 90 

l/day per bedroom and with 25 K temperature difference between 

supply and return in [18] . Such simplifications could lead to over- 

sizing of the components for DHW systems and additional financial 

and energy losses [19] . 

DHW heat use profiles are the primary instrument for estimat- 

ing the DHW heat use in the buildings [5] . Analysis of DHW heat 

use profiles shows the changes in heat use in different time inter- 

vals [20] . The profiles of DHW heat use allow us to determine the 

hours of peak energy loads and other energy load characteristics of 

the building. 

Performance of DHW systems is a complex and multidisci- 

plinary issue. It includes economic, sanitary, behavioral, and tech- 

nical areas. DHW heat use profiles is a useful for identifying en- 

ergy efficient solutions within all these areas. For example, the 

economic analysis of DHW pricing is performed in [21] . The study 

shows that the DHW use positively correlated with income and re- 

acts to the changes in water prices. Introduction of new energy or 

heat tariffs is a way of reducing the DHW use is buildings. How- 

ever, in order to implement advanced and flexible energy or heat 

tariffs, the in-depth knowledge about profiles of DHW use is re- 

quired. Technical solutions dealing with sanitary problems are con- 

sidered in [22] . Some of these solutions require knowledge of the 

profiles and timing when DHW water is used. Different types of 

DHW heating systems are investigated in [23] . This study sum- 

marises that DHW energy use can be reduced through using com- 

bined systems based on traditional and renewable energy solu- 

tions. However, due to unstable behaviour of renewable energy 

sources, development of accurate profile and prediction of DHW 

heat use becoming crucial for successful operation of combined 

DHW heating systems. Most of building simulation software tools 

such as IDA ICE, EnergyPlus, TRNSYS, TRANSOL, etc. require DHW 

profiles as the basis for simulation of DHW systems performance in 

buildings [5] . For example, it is noted that the variations between 

the simulated and the real heat use for DHW are caused by inap- 

propriate profiles [24] . Consequently, the authors in [24] claim that 

input data for DHW volume flow rates used in the standards rep- 

resent perhaps one of the more critical points in simulation mod- 

els. Therefore, actual knowledge of DHW usage profiles can capture 

the real heat use in buildings, making it possible to size systems 

properly. Effective demand-side management, energy conservation 

measures, improvement of legislation and standards require accu- 

rate DHW profiles for different types of buildings [25] . As we can 

see, scientific and practical work confirms the need to use profiles 

of the DHW heat use to solve important issues in the DHW sys- 

tems. 

The issue of DHW heat use analyses in buildings based on pro- 

files is investigated by researchers in Norway and abroad [5] . How- 

ever, due to differences in particular characteristic of each build- 

ings, quality of available data, and calculation requirements, there 

is no unique method of performing appropriate analysis. The num- 

ber of scientific works is dedicated to the issue of DHW energy 

profiles development and analysis. For example, hourly DHW pro- 

files for five groups of buildings with 1, 3, 10, 31, and 50 residents 

are developed based on data from Finnish apartments in [26] . Fur- 

ther, the profiles for each group with the closest to mean profile 

and have a similar shape, are selected among measured candidates 

as representative. The volumetric flow rates, cold and supply tem- 

peratures are measured to characterise the DHW use in 20 build- 

ings of different sizes in [27] . Based on the obtained data, the au- 

thors executed several stochastic simulations to get a representa- 

tive DHW use profiles for end users [27] . Number of methods for 

DHW profiles development are based on operating schedules for 

the primary DHW energy users (showers, baths, sinks, dishwasher, 

and clothes washer) and occupant activities. As an illustration, the 

Building America House Simulation Protocols document provides 

guidance for such analysis in new and existing apartment build- 

ings [28] . Lombardi in [29] shows that domestic water use can be 

presented as the result of probabilistic use of domestic appliances, 

each one with its particular characteristics. The research of Good 

and Zhang in [30] share the experience of calculation for DHW 

heat use profiles based on occupant activities. The DHW modelling 

approach by the coupling of behavioural activities, energy balance 

models, and stochastic modelling is presented in [31] . Time-use 
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data of activities in households in Sweden are used for generating 

DHW profiles in [32] . For DHW energy analysis, the occupant be- 

haviour, appliance ownership, demographic conditions, and occu- 

pancy rate are considered in neural network model in [33] . Most 

of the reviewed research work are dedicated to the apartments 

and households, meaning that required parameters were easier to 

obtain. However, in non-residential buildings obtaining in-depth 

knowledge about occupant activities and equipment operation be- 

come time consuming and expensive task [5] . The available input 

data limits the practical application of these methods. 

The problem of validation of DHW simulated profiles in non- 

residential buildings is proposed in [34] . For simulation, the au- 

thors use SIMDEUM in [35] , which is based on the design rules 

for appliance performance and dominant variables in buildings. It 

is assumed that the dominant variable for hotels is the number 

of rooms, for offices is the number of employees, and for nurs- 

ing homes is the number of beds [36] . The validation procedure 

consists of two steps. In the first step, the outcome of simulation 

is compared with measured demand values. In the next step, it is 

proposed to check if the assumptions on the standardized building 

based on the design rules are validated with measurements and 

surveys [34] . This study shows that it is challenging to find infor- 

mation of users and appliances in each functional room to equip 

the standardised buildings. However, regular demand pattern for 

dominant functional room can be obtained. 

The problems of comparing the actual DHW energy use pro- 

files with the standards, and their verification, are also not going 

unnoticed. For example, the comparison of the actual DHW pro- 

files in apartments with profile proposed by American Society of 

Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) is 

conducted in [37] . The research shows that the primary difference 

between the actual and the ASHRAE derived data is that the wa- 

ter use is less evenly distributed in the actual data, and there are 

higher peaks and lower troughs and much less use in the early 

morning hours in the actual data. Differences in shapes and pa- 

rameters of the actual DHW heat use profiles for particular types 

of buildings and profiles represented in publications and standards 

are considered in [38] . As a conclusion, in this work, the authors 

recommend to rely on actual profiles obtained from measurement 

systems for the analysis of DHW use in the existing buildings. 

The aim of our paper was to improve the existing approaches 

for the DHW heat use analysis and gain in-depth knowledge about 

it in nursing homes in Norway. Non-residential buildings such 

as nursing home, hospitals, hostels, schools, etc. in Norway and 

other European countries are less studied then residential [5] . The 

knowledge about actual DHW heat use profiles in nursing homes 

in Norwegian is currently incomplete and contain many gaps. The 

study in [39] shows that the specific heat use in the hospitals and 

nursing homes in Norway is approximately 270 kWh/m 2 per year, 

and one of the highest comparing to other types of buildings. Quite 

often, profiles presented in standards for nursing homes cannot 

represent the actual DHW heat use [39] . For this reason, the in- 

vestigation on the DHW heat use in nursing homes in Norway is 

required. Such a study is the basis for the further introduction of 

energy saving in nursing homes in Norway. 

In this article, we presented the methods for developing and 

analysing profiles for DHW heat use. The proposed methods allow 

us to assess the similarities of the profiles by days of the week and 

seasons, and identify the timing of the peak heat use of the DHW 

system. The methods were tested based on one-year hourly mea- 

surements from three nursing homes, located in Eastern Norway. 

The unified profiles for the months and days of the week with sim- 

ilar characteristics of the DHW heat use were identified. For these 

profiles the timing of the peak, average, and low heat use was es- 

timated. The profiles obtained from measurements were compared 

with profiles from the national standard SN/TS 3031:2016 [41] and 

Fig. 1. Method for the analysis of DHW heat use profiles. 

international standard NS-EN 12831-3:2017 [42] . The possible ben- 

efits from using more accurate energy profiles, obtained by mea- 

surements and statistical analysis, are explained in this study. 

The paper was organised as the following. Section 2 introduced 

the method for developing profiles, divided by days of the week 

and seasons with similar characteristics of the DHW heat use. In 

this section, the method for determining the peak, average, and 

low zones of the DHW heat use from the profiles was also pre- 

sented. Section 3 explained the main characteristics of DHW sys- 

tem for the case study - three nursing homes located in eastern 

Norway. In Section 4 , the method was implemented on the real 

data. The obtained profiles for the nursing homes were analysed 

and compared with the profiles of DHW heat use given in the 

standards. The main results of this investigation were presented. 

Finally, the main conclusions of the study were emphasized in 

Section 5 . 

2. Method 

The method for the analysis of DHW profiles included the four 

main steps shown in Fig. 1 . 

The three following subsections covers the methods that were 

used to solve issues in shown Fig. 1 . Section 2.1 described the 

method for comparison of the DHW heat use profiles from dif- 

ferent days of the week and assessing their similarities. In this 

study, we did not assume, beforehand that the profiles can be di- 

vided in a certain way. Student’s t-test and Fisher’s exact test were 

used for solving this issue. By using this method, the data tests 

may be used for samples with standard normal distribution and t- 

distribution. This allowed to us to determine the statistically jus- 

tified days of the week with similar DHW heat use profiles. In 

Section 2.2 , a method for determining the duration and boundaries 

of time zones with peak, minimum, and average heat use during 

the day was showed. In Section 2.3 , a statistical method for iden- 

tifying the number of seasons, as well as the months included in 

each season was described. By using this method, the impact of 

seasonality on DHW heat use was taken into account. 

2.1. Comparing similarity of DHW heat use profiles in different days 

of the week 

To determine the days of the week with similar characteris- 

tics of DHW heat use, a method based on test statistics was pro- 

posed. The similarity of two DHW heat use profiles is checked 

based on the Student’s t-test and Fisher’s exact test. Appropriate 

tests can be used for samples with standard normal distribution 

and t-distribution. 
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By applying the Student’s t-test, it was possible to check if the 

mean values of DHW heat use from two days of the week were 

equal or not. To achieve this, the DHW heat use within each day 

was considered as a statistical sample with 24 elements, which 

represented the number of hours in the day. The t-test statistical 

value was calculated as follows: 

T cal = 
Ē prof1 − Ē prof2 
√ 

S 2 
prof1 

n prof1 
+ 

S 2 
prof2 

n prof2 

(1) 

where Ē prof1 , Ē prof2 were the mean values of the DHW heat use in 

the first and second samples. S prof 1 , S prof 2 were the standard devia- 

tions of the DHW heat use profiles in the first and second samples. 

n prof 1 , n prof 2 were the number of elements in the first and second 

samples. Finally, the equation for the standard deviation for i -th 

day was written as: 

S prof i = 

√ 
∑ (

E prof i. j − Ē prof i 
)2 

n prof i − 1 
(2) 

where i was the number of the sample, j was the number of ele- 

ment in the sample, E profi.j was the DHW heat use in j-th element 

in i -th sample. 

The obtained value for t-criteria, T cal , was compared with the 

critical value, T cr . T cr may be found in literature for different de- 

grees of freedom and significance level k . The comparison may lead 

to three possible situations as the following: 

- If T cal ≤ T cr ( n prof1 + n prof2 − 2 , k = 0 . 05 ) , then the mean values 

of the first and the second samples are similar; 

- If T cal ≥ T cr ( n prof1 + n prof2 − 2 , k = 0 . 01 ) , then the mean values 

of the first and the second samples have a significant differ- 

ence; 

- If T cal ≤ T cr ( n prof1 + n prof2 − 2 , k = 0 . 01 ) and T cal ≥

T cr ( n prof1 + n prof2 − 2 , k = 0 . 05 ) , then the mean values of 

the first and the second samples may be considered as similar. 

However, the final decision should be done based on the 

knowledge of researchers. 

Meanwhile, Fisher’s criterion allowed us to estimate the simi- 

larity of two samples by variances: 

f cal = 
max 

(

S 2 
prof 1 , S 

2 
prof 2 

)

min 
(

S 2 
prof 1 

, S 2 
prof 2 

) (3) 

The comparison obtained by calculations of the Fisher criterion, 

f cal with its critical value, f cr led to the following results: 

- If f cal ≤ f cr ( n prof1 + n prof2 − 2 , k = 0 . 05 ) , then the variances of 

the first and the second samples are similar; 

- If f cal > f cr ( n prof1 + n prof2 − 2 , k = 0 . 05 ) ,then the variances of 

the first and the second samples have significant difference. 

The two profiles are considered to be similar if both Student’s 

t-test and Fisher’s exact test show the same results. If at least one 

of two tests shows that the mean values or variances of profiles 

in the first and the second samples are not similar, it is possible 

to conclude that the profiles are dissimilar and should be analysed 

separately. 

Splitting the DHW profiles by the days of the week should be 

made based on a large dataset, which represents DHW heat use 

during the year. Therefore, in this study, it was proposed to di- 

vide initial statistical data into separate weeks. Within each week, 

all combinations of the daily DHW profiles should be compared 

among themselves by Student’s t-test and Fisher exact test. For in- 

stance, profiles for Monday and Thursday, Monday and Wednesday, 

Saturday and Sunday and so on should be compared. Afterwards, 

for all the combinations of days, the number of the weeks can be 

Table 1 

The form of the matrix of matches. 

Mo. Tu. We. Thu. Fr. Sa. Su. 

Mo. n 1.1 − − − − − −

Tu. n 2.1 n 2.2 − − − −

We. n 3.1 n 3.2 n 3.3 − − − −

Th. n 4.1 n 4.2 n 4.3 n 4.4 − − −

Fr. n 5.1 n 5.2 n 5.3 n 5.4 n 5.5 − −

Sa. n 6.1 n 6.2 n 6.3 n 6.4 n 6.5 n 6.6 −

Su. n 7.1 n 7.2 n 7.3 n 7.7 n 7.5 n 7.6 n 7.7 

identified, when statistical tests show that profiles in considered 

pairs of days are similar. For further analysis, for each combina- 

tions of days of the week, the number of matches of the DHW 

profiles in percentage can be found as: 

n i . j = N i . j · 100 / N total (4) 

The elements in Equation (4) are the following, n i.j is number 

of matches in percentage, when the DHW profiles of i-th and j-th 

days were similar. N i.j was the number of the weeks, when sta- 

tistical tests showed that the i-th and j-th days were similar. N total 

was the total number of the weeks in the statistical data sample of 

DHW heat use. i was the day of the week of the first comparable 

profile (from 1 to 7). j was the day of the week of the second com- 

parable profile (from 1 to 7). For better clarity, the results could be 

presented in the form of matrix of the matches as in Table 1 . 

Based on the matrix of matches, the groups of the days of the 

week with similar profiles of DHW heat use could be identified. 

Namely, the days of the week, which have n i. j ≥ 100 − er ror , have 

similar characteristics of DHW heat use and should be placed in 

one group and analysed together. The value of the error included 

the accuracy of Student’s t-test, Fisher’s exact test, and the per- 

centage of days in the year when the building is not in operation 

in typical regimes such as holidays. 

2.2. Determining the time zones with peak, minimum, and average 

heat load for daily profiles of DHW heat use 

To implement energy management in buildings, it is essential 

to identify the typical duration and boundaries of time zones with 

peak load, minimum, and average heat load during the day. To 

solve this issue, we proposed to perform statistical grouping of the 

hourly heat use of the DHW system based on the method pre- 

sented by Nakhodov in [40] . Initially, this method is used for iden- 

tification of the tariff zones of electricity energy use in the power 

system. In this article, we adapted the method for analysis of DHW 

heat use in buildings. The method allowed us to divide the hours 

of DHW heat use into several groups with statistically different 

mean values within each group. It is based on an iteration pro- 

cedure and analysis of the mean values of DHW heat use by ap- 

plying Student’s t-test. In this case, DHW heat use profile was con- 

sidered as a statistical sample e . The sample contained N = 24 ele- 

ments (hours) with DHW heat use in these hours equal e j (where 

e j was DHW heat use in the j-th hour. j was the number of the 

element in the sample). The flowchart for the algorithm for deter- 

mining the time zones with peak, minimum, and average heat load 

for daily profiles of DHW heat use is shown in Fig. 2 . 

The detailed algorithm of the method for determining the time 

zones was as the following: 

Step 1. Sorting the elements of the sample in the order of their 

increase 

The elements e j in the sample e were sorted in the order of 

their increase. Such an arrangement of elements from smaller val- 

ues of hourly DHW heat use to bigger values allowed us to obtain 
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Fig. 2. Flowchart for the algorithm for determining the time zones with peak, min- 

imum, and average heat load for daily profiles of DHW heat use. 

the sorted sample E with N elements E i (where E i +1 > E i , i is the 

number of element in sample E ). 

Step 2. Identifying the initial groups for the elements that could be 

considered statistically similar 

Based on the sample E , an iterative procedure of generating of 

two statistical subsamples R 1 and R 2 with variable number of ele- 

ments was applied. For each step of iteration, sample R 1 contained 

M elements, while R 2 should have M + 1 elements. The elements in 

samples R 1 and R 2 were taken consistently from the initial sample 

E . With each iteration, the number of elements M in these sub- 

samples increased by one. The value of M varied from 1 to 23. 

For each step of these iterations the value of Student’s t-test for 

two subsamples R 1 and R 2 were calculated by using Equation (1) . 

For instance: iteration 1) R 1 = [ E 1 ] , R 2 = [ E 1 , E 2 ] , M = 1, and 

T cal 1 ; iteration 2) R 1 = [ E 1 , E 2 ] , R 1 = [ E 1 , E 2 , E 3 ] , M = 2, and T cal 2 ;…

iteration 23) R 1 = [ E 1 , E 2 . . . E 23 ] , R 1 = [ E 1 , E 2 . . . E 24 ] , M = 23, and 

T cal 23 ; 

Step 3. Checking the possibility of merging the closest groups ac- 

cording to Student’s t-test 

Based on the iteration procedure of Step 2, the series of t- 

criteria for all the combinations of the subsamples R 1 and R 2 , 

T cal = [ T cal 1 , T cal2 . . . T M ] were found. 

If an ordered sample of hourly DHW heat use was monotonous, 

then the numerical values of elements in this sample increase 

evenly. In that case, the series of t-criteria obtained by iteration 

procedure would also be monotonous. This means that the values 

of t-criteria obtained by Equation (1) would decrease monotoni- 

cally with each next iteration ( T cal1 > T cal2 . . . > T M ). If the ordered 

sample of hourly DHW heat use was uneven, then a monotonic de- 

crease of the calculated values of the t-criteria would be violated 

by periodic abrupt growth ( T cali < T cali +1 ). Thus, the identification 

of points of growth of the calculated values of the t-criteria al- 

lowed us to determine between which hours there is a noticeable 

statistical difference of DHW heat use. This assumption allowed us 

initially to divide hours in the profile of DHW heat use into several 

groups. Each of these groups was the sample of data, where DHW 

heat use data varied monotonously. Created in this way, neighbour- 

ing groups of hourly DHW heat use could be checked in terms of 

the possibility for their further merge. For this purpose, the data 

samples of two neighbouring groups were assessed by Student’s 

t-test (see Equation (1) ). As a result, the calculated value of the t- 

criteria, T cal , could be compared with critical value, T cr . This com- 

parison could lead to the three possible situations: 

- If T cal ≤ T cr ( n group1 + n group2 − 2 , k = 0 . 05 ) , then the mean values 

of the two groups were similar and should be merged; 

- If T cal ≥ T cr ( n group1 + n group2 − 2 , k = 0 . 01 ) , then the mean values 

of the two groups were different and they should be considered 

separately; 

- If T cal ≤ T cr ( n group1 + n group2 − 2 , k = 0 . 01 ) and T cal ≥

T cr ( n group1 + n group2 − 2 , k = 0 . 05 ) , then the mean values of 

the two groups could be considered as similar. However, the 

final decision should be done based on the knowledge of 

researcher. 

After we merged the groups based on explained above condi- 

tions, the new set of groups was created. The calculations of Step 3 

should be repeated from the beginning with the new set of groups 

in the sample. Iterative calculations of Step 3 was continued until 

the t-test showed that no groups can be merged together and that 

the total number of groups could not be reduced. 

Step 1. Based on the groups with the elements, identifying the crit- 

ical borders that separated the DHW heat use profile into zones 

with peak, average, and minimum heat use 

Critical borders that separated the DHW heat use profile into 

zones with peak, average, and minimum heat use can be identified 

by the following: 

E min = Ē group . 1 + T cr . 1 
(

M group . 1 + 1 − 2 , k = 0 . 01 
)

√ 

S 2 group . 1 
M group . 1 

(5) 

E max = Ē group . K −1 

+ T cr . K −1 

(

M group . K −1 + 1 − 2 , k = 0 . 01 
)

√ 

S 2 group . K −1 

M group . K −1 
(6) 

where Ē group. 1 , Ē group.K−1 were the mean values of the DHW heat 

use in the first group and the next to the last group. M group .1 , 

M group.K−1 were the numbers of the elements in the first group 

and the next to the last group. S 2 group. 1 , S 
2 
group.K−1 were the standard 

deviations in the first group and the next to the last group. T cr .1 , 

T cr.K−1 were the critical values of the t-criteria for the first group 

and the next to the last group. The hours in which the DHW heat 

use was below E min should be considered as zone with the mini- 

mum DHW heat use. If the DHW heat use was between E min and 

E max , it could be assumed that in these hours the DHW heat use 

was in a zone of average heat use. The hours with the DHW heat 

use higher than E max lied within the zone of the maximum heat 

use. 

2.3. Determining the seasons of DHW heat use 

The method described in Section 2.2 can be applied in order to 

identify the groups of months with similar characteristics of the 

DHW heat use. In this case, in contrast to the sample of 24 hours 

for each daily profile as considered in Section 2.2 , the initial sam- 

ple contains 12 elements for the monthly DHW heat use during 

the year. The basic principles and procedure of calculations in both 

hourly and monthly analysis was the same. As a result, the num- 

ber of seasons of the DHW heat use in the year and the months 

included in each season could be identified. 

3. Description of buildings 

One year of hourly measured data for the DHW heat use were 

collected from three nursing homes located in the Eastern Norway. 

The characteristics and work regimes of the nursing homes were 

typical for Norwegian conditions and was expected to be repre- 

sentative for DHW heat use in the similar types of buildings. 
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Table 2 shows the main properties of the observed buildings, 

and Fig. 3 shows the principle layout of the DHW plants, including 

the measurement points. The energy meters are marked with EM 

in Fig. 3 . 

For all the buildings, the measured heat use was the total heat 

delivered into the system, i.e. including the heat losses. The two 

buildings, NH1 and NH2 did not have hot water circulation sys- 

tems, but electric heat traces. The power use of the heat tracers 

were not included in the measurements, which means that the 

distribution losses were not accounted. The third building, NH3, 

had a circulation system, but the system was short-circuited close 

to the heating plant, which means that the thermal losses in the 

circulation were minimal. Based on this, it was assumed that the 

measured heat use for the DHW in all the buildings were without 

distribution losses, and thereby compared on equal ground. 

The main differences between the nursing homes was the room 

density (the total area per room), with a range from 64 to 136 

m 2 /room. All nursing homes have private rooms only, all with the 

individual bathrooms, and the nursing homes are normally fully 

occupied. Therefore, the number of rooms was also representative 

for the amount of people living in the buildings. For investigation, 

the weather data obtained from the closest weather station were 

used. 

4. Results and Analysis 

The section is divided in several subsections that consider spe- 

cific steps of the method explained in Section 2 . The analysis of the 

variation of DHW heat use in the nursing homes, as well as the 

indicators that explains its variability, was shown in Section 4.1 . 

Section 4.2 investigates the nursing homes DHW heat use profiles 

aggregated by similar days of the weeks and seasons. The hours of 

peak, average and minimum heat use for these profiles were stud- 

ied. In Section 4.3 , the standards were compared with the profiles 

obtained from the measurements. The drawbacks of the standards 

were highlighted. 

4.1. Initial analysis of DHW heat use in the nursing homes 

Even within the same building type, the characteristics of heat 

use may vary. To compare buildings with different characteristics, 

specific heat use may be used. Specific heat use is actual heat use 

of the building divided by certain physical indicator. This indicator 

explains variability of the DHW heat use in different buildings, and 

makes them comparable with each other. For this purpose in build- 

ings, the specific heat use per number of rooms or area is com- 

monly used. To choose which of these indicators to use in further 

analysis, the box plots of daily heat use were analysed as shown in 

Fig. 4 . 

The results in Fig. 4 show that the relative difference in the av- 

erage daily use is 67 % per area and 41% per room. Since the main 

reason for DHW use at nursing homes are related to hygienic pur- 

poses and nourishment of the residents, it is reasonable to think 

that the number of rooms is better parameter for describing the 

DHW heat use. Accordingly, in the further analysis, attention will 

be paid mainly to the specific energy use per room. Only in the 

parts of the article dedicated to the standards, where it is relevant, 

the heat use per m 2 also will be considered. The DHW heat use 

per room is quite high (see Fig. 4 b)) since rooms in the nursing 

homes have large area from 64 to 136 m 2 /room. 

The nursing homes considered in the article had similar trends 

and regimes of the DHW heat use. The difference in variance in 

their DHW heat use was within 30%. The energy distance test 

[41] showed that distributions of the DHW heat use in nursing 

homes were identical and it provided a foundation for further sta- 

tistical analysis. Therefore, in order to simplify analysis and make 
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Fig. 3. Principle layout of the three DHW plants. 

Fig. 4. Box plot of daily DHW heat use in the nursing homes, where: a) DHW heat use per m 2 , b) DHW heat use per room. 

Fig. 5. Average hourly DHW heat use in three nursing homes. 

the results more representative, the average DHW heat use of the 

three nursing homes was investigated. One-year data of the aver- 

age specific DHW heat use for the three nursing homes are shown 

in Fig. 5 . 

From Fig. 5 it can be noted that the DHW heat use during 

the year were varying, and seasonal influence was clearly present. 

Seasonality of the DHW heat use will be explained in detail in 

Section 4.2 . In addition, some spikes may be noted in the data, 

for example on September 9 th , 2018 at 24:00 o’clock. These spikes 

showed untypical behaviour of the DHW heat use. Untypical spikes 

where taken in account in the analysis of DHW heat use. Another 

point that was taken into account in the analysis was the differ- 

ence in behaviour on holidays compared to ordinary days. Fig. 6 

shows the DHW heat use in the nursing homes in the week with- 

out holidays (from January 1 st to January 13 th ), the week that con- 

tained Christmas holidays (from December 24 th to December 30 th ), 

and days which are official public holidays (from December 25 th to 

26 th December, and January 1 st ). 

As we can see from Fig. 6 , the shapes of the DHW heat use pat- 

terns during the public holidays on December 25 th and 26 th were 

similar to the patterns in the weekends. The DHW heat use dur- 

ing the week that contained Christmas holidays was lower than 

in a regular week. This can be explained by the fact that some 

families took their elder relatives home from the nursing homes 

for Christmas celebrations. Finally, on the last day of holidays el- 

der people were arriving back to the nursing home. Therefore, Jan- 

uary 1 st , the DHW heat use was becoming similar to a regular day. 

Thereby, during the holidays, water use was usually reduced. 

4.2. DHW heat use profiles aggregated by similar days of the weeks 

and seasons 

Fig. 7 shows average daily DHW heat use per room for each 

month and corresponding outdoor temperature. 

From Fig. 7 , strong negative correlation between monthly DHW 

heat use and outdoor temperature may be noted. In nursing 

homes, it is expected that the routines for DHW use are simi- 
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Fig. 6. DHW heat use within the Christmas holidays. 

Fig. 7. Daily DHW heat use and outdoor temperature for different months over the year. 

lar around the year, and the variation on monthly heat use for 

DHW can be described by the variation in cold fresh water inlet 

temperature [42] . Through our investigation of the correlation be- 

tween the monthly heat use and the lagged monthly average out- 

door temperature, the highest coefficient of determination, 0.96, 

was found between the monthly heat use and the average out- 

door temperature of the previous month. This fits well with the 

fact that the cold inlet water temperature has a slow response to 

the outdoor temperature. Further, this effect leads to seasonal vari- 

ation of the DHW heat use in the nursing homes. Therefore, to take 

into account variation of the DHW heat use in the nursing homes 

over a year, the seasonality was investigated. The number of sea- 

sons during the year and the months associated with each season 

were identified based on the average daily DHW heat use for nurs- 

ing homes in different months, applying the method described in 

Section 2.3 . Using Student’s t-test, the months of the year were di- 

vided into two groups with substantially different mean values of 

the heat use within each group. The results of the seasonality iden- 

tification are shown in Fig. 8 . The groups represent the cold and 

warm seasons. The cold season included the following months: 

January, February, March, April, May, November, and December. 

Meanwhile, June, July, August, September, and October were as- 

signed to the warm season. Finally, for these seasons were devel- 

oped separate profiles of DHW use. 

As explained in the method, Section 2.1 , at the next step of 

the investigation, the days of the week were assessed for simi- 

larity. The DHW heat use data from nursing homes were divided 

into separate weeks. In total, there were 52 full weeks within the 

Fig. 8. Cold and warm seasons of DHW heat use in nursing homes. 

year. According to the method in Section 2.1 , within each week, 

all combinations of daily DHW profiles were systematically com- 

pared among themselves by Student’s t-test and Fisher exact test. 

The matrix of matching of daily profiles is shown in Table 3 . 

In order to find the critical value that shows when the profiles 

in different days of the week could be considered as statistically 

similar, the three following factors were taken in account: the ac- 

curacy of Student’s t-test, the accuracy of Fisher’s exact test, and 

percentage of days in the year when the buildings operation was 

not typical, including holidays. The accuracy of Student’s t-test and 
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Fig. 9. Profiles of DHW heat use in the nursing homes divided by day of week and seasons. 

Table 3 

Matrix of matching daily DHW heat use profiles in nursing homes. 

Mo. Tu. We. Thu. Fr. Sa. Su. 

Mo. 100 − − − − − −

Tu. 93 100 − − − − −

We. 97 97 100 − − − −

Th. 87 97 93 100 − − −

Fr. 95 97 97 97 100 − −

Sa. 32 59 32 55 51 100 −

Sun. 30 71 48 71 61 97 100 

Fisher’s exact test were accepted equal to 5%. In addition, taking 

into account the number of the days with untypical DHW heat 

use, the values of the acceptable error (see Section 2.1 ) was es- 

timated as 14%. Therefore, the days of the week in nursing homes 

that have statistically similar profiles in more than 86% of the con- 

sidered weeks were identified, see Table 3 . Based on this conclu- 

sion, the following groups of the days were identified: 

- The first group: 1) Monday, Tuesday, Wednesday, Thursday and 

Friday, 

- The second group: 2) Saturday and Sunday. 

Detailed DHW heat use profiles organized by similar days of 

the weeks and seasons are shown in Fig. 9 . For these profiles, 

the time zones were identified based on average daily DHW heat 

use by the method explained in Section 2.2 . Fig. 9 demonstrated 

the time zones with a peak heat load (heat use above Emax, see 

Equation 6 ), minimum (heat use below Emin, see Equation 5 ) and 

average (heat use in the range between Emin and Emax) heat load 

of DHW. The borders between time zones in Fig. 9 are shown in 

the form of the horizontal lines. 

The identification of the time intervals when minimum, av- 

erage, and peak heat use occurred during the day was one of 

the key information from the analysis of the DHW heat use pro- 

files. Thereby, the application of the method presented in the 

Section 2.2 allowed us to determine the following borders of time 

zones: 

1) The peak heat use of the DHW heat use occurred when the 

heat use was higher than: 0.19 kWh/room for Monday-Friday 

in the cold season, 0.168 kWh/room for Saturday-Sunday in the 

cold season, 0.147 kWh/room for Monday-Friday in the hot sea- 

son, and 0.137 kWh/room for Saturday-Sunday hot season; 

2) The minimum heat use of the DHW heat use occurred when 

the heat use was less than: 0.0 6 6 kWh/room for Monday-Friday 
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in the cold season, 0.065 kWh/room for Saturday-Sunday in the 

cold season, 0.053 kWh/room for Monday-Friday in the hot sea- 

son, and 0.052 kWh/room for Saturday-Sunday in the hot sea- 

son; 

3) The average heat use of the DHW heat use occurred when 

it was between: 0.0 6 6 kWh/room and 0.19 kWh/room for 

Monday-Friday in the cold season, between 0.065 kWh/room 

and 0.168 kWh/room for Saturday-Sunday in the cold season, 

between 0.053 kWh/room and 0.147 kWh/room for Monday- 

Friday in the hot season, and between 0.052 kWh/room and 

0.137 kWh/room for Saturday-Sunday in the hot season. 

From Fig. 9 it can be observed that the hourly values of the 

DHW heat use, as well as its peak, were much higher from Mon- 

day to Friday compering to Saturday and Sunday. In general, DHW 

heat use during the cold season was higher than in the warm sea- 

son. Moreover, in the different seasons, there are some shifts in in- 

tensity of the DHW heat use between the hours. From Monday to 

Friday in the cold season, the peak of the DHW heat use occurred 

from 9:00 to 15:00 o’clock, with the maximum heat use from 9:00 

to 11:00 o’clock. Opposite, the evening peak in the cold season was 

not clear and cannot be observed easily. Sunday and Saturday in 

the cold season, the maximum of the DHW heat use was much 

lower and may be noticed at 11:00 o’clock. Furthermore, the low 

peak heat use appeared at 20:00 o’clock. Meanwhile, in the work- 

ing days in the warm season, the peak of DHW heat use occurred 

from 9:00 to 14:00 o’clock, with the maximum heat use at 10:00 

o’clock and the values that are close to the maximum at 9:00 and 

11:00 o’clock. In addition, two small peaks could be observed at 

17:0 0 and 20:0 0 o’clock in the warm season. In the weekends in 

the warm season, the peak was from 9:00 to 12:00 o’clock, and 

at 14:00 and 20:00 o’clock. The minimum of the DHW in all the 

profiles was at night, usually from 2:00 until 5:00 o’clock. 

Changes of the DHW heat use intensity and the occurrence of 

the peak values of the heat use in different profiles in Fig. 9 could 

be explained by different work regimes in the nursing homes at 

the weekends and the working days, as well as at different seasons. 

In general, our study showed that dividing the DHW heat use pro- 

files by seasons and days of the week was reasonable. The profiles 

obtained in this way were more informative and allow us retrieve 

additional information about DHW heat use in buildings. 

4.3. Comparison of the standard profiles for DHW heat use with the 

profiles obtained based on measurement data 

In this section, two standards were compared with the profiles 

obtained from the measurements and analysis in Section 4.2 in the 

nursing homes. The Norwegian standard, “SN/TS 3031:2016: En- 

ergy performance of buildings. Calculation of energy needs and en- 

ergy supply” [43] is a national standard for calculations of build- 

ings energy need and heat losses. Among different information, 

this standard gives recommendation on DHW heat use profiles per 

m 2 in nursing homes that should be used as an input for energy 

demand calculation [43] . The standard “NS-EN 12831-3:2017: En- 

ergy performance of buildings” [44] is European standard, which 

is recommended for application in Norway. NS-EN 12831-3 pro- 

vides reference profiles of DHW heat use per person in nursing 

home. As mentioned earlier, in Norway, each room in the nursing 

homes is occupied by only one person. Thus, heat use per room 

is approximately equal to heat use per person. The profiles in the 

both standards show DHW tap heat use without losses in the stor- 

age tank and the system. Meanwhile, typically the measurements 

in the nursing homes include losses in the storage tanks. For this 

reason, to remove the losses from the profiles obtained by mea- 

surements, the method proposed in [45] was used in this study. 

This method is based on the assumption that the hourly DHW 

heat use with minimum values represents system losses [43] . Con- 

sequently, extracting the minimum DHW heat use during these 

hours from measured data gives us approximate value of the DHW 

heat use without system and tank losses. Accordingly, using pro- 

files in Fig. 9 , the hour with the minimum DHW heat use was 

identified. After that, the DHW heat use profiles were recalculated 

according to the method in [45] . The DHW system losses obtained 

by this method were approximately 20% of the total DHW heat use. 

For the comparison, both profiles obtained by the measurements 

with adjustments according to the losses, and the profiles from the 

standards SN/TS 3031 and NS-EN 12831-3 are presented in Fig. 10 . 

In addition, for a better understanding of the DHW heat use in the 

nursing homes, the box plots of hourly DHW heat use per m 2 and 

per room are presented in the Fig. 11 . 

Fig. 10 indicates on the big difference between the DHW heat 

use profiles obtained from the measurements and both standards. 

The comparison with actual profiles showed the following draw- 

backs of the standards: 1) standards are not taking into account 

seasonality and influence of the day of the week on DHW heat use, 

2) standards significantly overestimate average daily DHW heat use 

2) for certain hours the profiles in the standards overestimate or 

underestimate DHW heat use, 3) standards can not properly reflect 

hours with peak and minimum DHW heat use. 

The profile in the standard SN/TS 3031, see Fig. 10 . a), overes- 

timated the daily DHW heat use in the nursing homes approxi- 

mately 3.5 times. Even if we compare it with the maximum heat 

use in the nursing homes, shown in the box plot, see Fig. 11 . a), the 

DHW heat use in the standard SN/TS 3031 was still much higher. 

Despite this fact, the standard making the assumption that there 

is no DHW heat use from 1:00 to 5:00 o’clock. The actual profiles, 

see Fig. 10 , showed a small amount of DHW heat use even at night 

time. 

Information about magnitude and timing of the peak heat use 

in the buildings is crucial for solving a number of issues in en- 

ergy planning. However, from Fig. 10 . a) we can see that SN/TS 

3031 is not representing this information in a proper way. From 

the standard profile, we could assume that the morning peak of 

heat use occurred from 7:00 to 8:00 o’clock, and the similar peak 

could be observed from 18:00 to 19:00 o’clock. Meanwhile, in the 

profile based on actual measurements, the maximum DHW heat 

use was from 9:00 to 11:00 o’clock, and the evening peak was not 

clearly visible. The peak value in the standard is 3.7 times higher 

than in the measured profile. These differences between the pro- 

files were significant and they show the drawbacks of the stan- 

dard SN/TS 3031. It should be noted that a sample of three nursing 

homes is probably not enough to be sure that the measurements 

are representative for the national average. However, this sample 

represented well the DHW heat use in nursing homes in the cen- 

tral part of Eastern Norway. 

The standard, NS-EN 12831-3, overestimated the daily DHW 

heat use by 1.65 times, see Fig. 10 . b). Unlike SN/TS 3031, the stan- 

dard NS-EN 12831-3 shows DHW heat use at night time, which 

makes it more realistic. The values in the NS-EN 12831-3 stan- 

dard are closer to the maximum than the average hourly values 

of the DHW heat use in the nursing homes presented in Fig. 11 . 

b). From Fig. 10 . b) it may be noted that the timing of the actual 

peaks of the DHW heat use did not match perfectly the informa- 

tion in the standard NS-EN 12831-3. The morning peak of heat use 

in the standard is shown from 7:00 to 8:00 o’clock. It is shifted 

by two hours compared with the actual one, see Fig. 10 . b). The 

value of the maximum DHW heat use in the standard is 2.7 times 

higher than in the profile based on measurement. The behaviour 

of DHW in the evening time was similar to the measured profile. 

Despite the fact that NS-EN 12831-3 is the international standard, 

it explains the DHW nursing home heat use much better than the 

Norwegian national standard SN/TS 3031. 
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Fig. 10. Hourly profiles of DHW heat use according to the standards and measurements in the nursing homes, where a) standard SN/TS 3031 b) NS-EN 12831-3. 

Fig. 11. Hourly profile of DHW heat use obtained by measurements, where: a) DHW heat use per m 2 , b) DHW heat use per room. 

There could be several reasons for the inaccuracy of the pro- 

files in the standards. First, the majority of the standards are based 

on information and data obtained decades ago [17] . The introduc- 

tion of new types of DHW appliances, changes in routines and 

behaviours in the nursing homes are also likely changing the as- 

sumed values from the standards. Consequently, standards cannot 

correctly display the current state of the DHW heat use in build- 

ings, because the standards are developed to give limits and guide- 

lines and cannot determine the real use. The other reason is that 

the profiles given in the standards are usually too simplified to en- 

able their easier implementation by practitioners. These profiles 

were created for certain categories of buildings: nursing homes, 

school, hotel, offices, etc. However, even within one category of the 

buildings, the DHW heat use can behave differently. The location of 

the building in different parts of the country with specific temper- 

ature conditions is also factor that could lead to uncertainty. 

The above mentioned standard profiles are commonly used for 

calculation of the building performance against national regula- 

tions. If the standard profiles deviates significantly from the reality, 

it may lead to unwanted effects. For example in Norway, there is 

a demand that above 60% of the energy demand for heating and 

DHW should be covered by a centralized system without fossil fu- 

els. In cases with highly insulated buildings, the standard DHW 

heat demand may represent above 60% of the total heating de- 

mand. If the real DHW use is much lower than the standard calcu- 

lation, the standard requirements on the system design will have 

unwanted effects on choosing energy supply systems and sizing 

the energy infrastructure. 

Therefore, this study showed that dividing the DHW heat use 

profiles by season and days of the week is reasonable. These pro- 

files should be based on accurate and up-to-date statistical data 

from real buildings and reliable methods of processing available 

information. The potential for energy saving, can be achieved by 

better DHW system sizing, introducing of demand-side manage- 

ment, and other energy saving measures. Representative profiles 

will form a basis for the proper implementation of energy saving 

measures and increasing the efficiency of DHW heat use in nursing 

homes. 

5. Conclusions 

DHW system is a significant consumer of energy in buildings. 

With the introduction of highly insulated building structures and 

technologies of passive houses, the share of the DHW heat use in 

the total energy balance of the buildings is continuously increasing. 

Accordingly, reducing the DHW heat use in buildings becoming a 

more important target. 



12 D. Ivanko, H.T. Walnum and N. Nord / Energy & Buildings 222 (2020) 110070 

The review of the literature showed that there is a gap in 

knowledge about actual DHW heat use in buildings. Specific heat 

use in the nursing homes is one of the highest comparing to other 

types of buildings. Therefore, analysis of the DHW heat use in 

nursing homes is particularly relevant for Norway. To increase en- 

ergy efficiency in the DHW systems in Norway, an extensive anal- 

ysis should be carried in various types of buildings. One of the 

most critical problems of such analysis is the development of up- 

to-day profiles of the DHW heat use. These profiles should accu- 

rately reflect DHW heaty use in the buildings and fill gaps in exist- 

ing standards. In this article, the relevant problem was investigated 

for nursing homes located in the Eastern Norway. 

Analysis of the measurements in three nursing homes showed 

a strong negative correlation between the monthly DHW heat use 

and the outdoor temperature. Consequently, seasonality is an es- 

sential factor that should be taken into account for DHW heat use 

profiles for nursing homes. The other significant factor identified 

in the article was the day of the week. For the DHW heat use 

analysis, the statistical approach that allowed us to develop uni- 

fied profiles divided by months and days of the week with simi- 

lar behaviour of DHW heat use was suggested. Based on this ap- 

proach the months of the year for the nursing homes were divided 

into two groups: the cold season (January, February, March, April, 

November, December) and the warm seasons (June, July, August, 

September, October). Comparison of the profiles in different days 

of the week showed that weekends and working days should be 

considered separately. Furthermore, a method for determining the 

time zones with the peak, the minimum, and the average heat use 

in the daily profile of the DHW heat use was applied. 

For the nursing homes, the profiles obtained by seasons showed 

that the DHW heat use in the cold season was higher than in the 

warm season. Besides, nursing homes used less heat for DHW in 

the weekends than in the working days. The maximum DHW heat 

use in nursing homes usually occurred from 9:00 o’clock to 11:00 

o’clock, and minimum from 2:00 to 5:00 o’clock. 

Finally, the DHW heat use profiles obtained from the measure- 

ments in the nursing homes were compared with profiles from 

national standard SN/TS 3031:2016 and international standard NS- 

EN 12831-3:2017. The comparison showed that the European stan- 

dard, NS-EN 12831-3, overestimated the daily DHW heat use by 

1.65 times, and the Norwegian standard, SN/TS 3031, overestimated 

it by 3.5 times. The magnitude and timing of the peak heat use 

in the buildings was also different from the standards. The Euro- 

pean standard explains much better the actual DHW heat use in 

the nursing homes than the Norwegian standard. For practical ap- 

plication and relevant decisions related to building energy supply 

systems, preference should be given to profiles obtained on the ba- 

sis of statistical data collected in real buildings. 

The study in this work was limited to only three nursing homes. 

For this reason, in the future work, the analysis in larger amount 

of nursing homes and other types of buildings will be performed. 

For a larger amount of buildings, the application of different clus- 

tering methods for the analysis of DHW heat use will be tested. In 

addition, the question of predicting the DHW heat usage profiles 

will be considered in further studies. 
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Abstract. The aim of this research is to improve the existing approaches of domestic hot 

water (DHW) energy use analysis in buildings. A comprehensive statistical analysis of hourly 

DHW energy use for a hotel in Oslo, Norway, was performed. To recognize the trend of DHW 

energy use over several years, Centered Moving Average method was applied. To increase 

the accuracy of DHW energy use analysis, it was proposed to identify the months and days 

of the week with similar characteristics of DHW energy use and build unified profiles for 

them. For this purpose, the approaches based on the student's t-tests and Fisher's test was 

proposed. The analysis allowed us to detect two seasons of DHW energy use. In addition, it 

was revealed that behavior of DHW energy use on Mondays significantly different from other 

working days. To recognize the timing of peak and average and low DHW energy use, 

method of statistical grouping of the hourly energy use was utilized. The typical profiles of 

DHW energy in the hotel were obtained. The profiles proposed in the present article more 

reliably reflect the regimes of DHW energy use in the hotel and take into account factors that 

have influence on DHW use. 

1 INTRODUCTION 

According to the European Commission, buildings are 
responsible for approximately 40% of energy use and 
36% of CO2 emissions in the EU [1]. Energy efficiency 
saves money for buildings owners, reduces reliance on oil 
and gas and help protect the environment [2]. Through the 
Energy Performance of Buildings Directive (EPBD) an 
ambitious goal is set − to achieve very high energy 
performance in buildings, nearly zero-energy buildings, 
by 2020-2035 [3]. In order to achieve this goal, heating, 
cooling, and ventilation systems in buildings should be 
designed and operated to attain low energy use [4]. 

Traditionally, in countries with cold climate, energy 
used to heat domestic hot water (DHW) is much smaller 
than the energy use required for heating the building. For 
this reason, during the last decades, DHW energy use has 
had little focus in Norway and other countries [5]. 
Nowadays, with the introduction of energy efficient 
building technologies, the situation is changing. In energy 
efficient buildings, the energy use for heating is 
significantly reduced [6]. In meantime, the DHW energy 
use remains on the same level. Therefore, for future 
prospects in achieving energy efficiency in buildings − 
reducing DHW energy use is an important task. 
Additionally, global warming potential (GWP) and 
primary energy demand (PED) for a range of DHW 
systems has high carbon footprint [6].  

The share of DHW tap system in the total energy use 
is approximately 25-35% [7] and varying from country to 
country and one type of building to another [5]. For 
instance, the average individual DHW use in Norway 

reaches 40 L/person/day [8], while in Denmark the 
average is at 20 L/person/day. 

The study of Bøhm [7] shows that the efficiency of 
domestic hot water systems should be improved. Heat 
losses from the hot water tank and the circulation system 
in single-family houses, semi-detached houses, blocks of 
flats, schools and institutions are found to be very high, 
and equals approximately to 65% of DHW energy use.  

For the sake of simplification, many methodologies 
propose to consider DHW energy use as a constant value 
[9]. Practical experience shows that the commonly used 
standards are based on assumptions of DHW energy use 
in the buildings, which do not correspond to the real state 
of the art [10]. These assumptions and simplifications 
could lead to oversizing of the components of DHW 
systems and additional financial and energy losses [11].  

DHW energy use profiles are the primary instrument 
for understanding the process of DHW energy use in the 
buildings [12]. Analysis of DHW energy use profiles 
shows the changes in energy use in different time intervals 
[13]. The profiles of DHW energy use allow us to 
determine the hours of peak energy loads and other energy 
load characteristics of a building. The DHW profiles is the 
basis for achieving energy saving and better building 
operation, as well as the best strategies for designing 
DHW systems in new buildings. Traditionally, the 
analysis of DHW energy use is performed based on so-
called “typical” profile. This type of profile is viewed as 
a profile that shows how the energy for DHW is used most 
of the time. The identification of the time intervals when 
peak energy use occurs during the day is one of the key 
information available by analysis of the “typical” profiles. 
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Increasing the efficiency of DHW systems in 
buildings requires the implementation of effective 
demand-side management and energy conservation 
measures [14], as well as improvement of legislation and 
standards. Practical realization of smart management and 
energy saving measures in this field should be based on: 
1) reliable knowledge about actual profiles [15] of DHW 
energy use in different types of buildings, 2) parameters 
that have a significant impact on DHW energy use, and 3) 
further analysis and processing of this information by 
statistical approaches. However, the knowledge about 
DHW energy use in Norwegian buildings currently 
remains at a relatively low level. 

Statistical analysis is an effective tool for gaining in-
depth knowledge about DHW energy use and other 
parameters of buildings performance [16]. The primary 
issues, which should be solved for deeper understanding 
of DHW energy use by means of statistical approaches, 
are: 1) collection and pre-processing of data, 2) analysis 
of DHW energy use profiles, 3) identifying variables that 
have a significant impact on DHW energy use 4) 
modelling of DHW energy use.  

Scientific works on DHW energy use patterns mostly 
focus on, residential buildings. Non-residential buildings 
(hospitals, hostels, schools etc.) are less studied [5]. 
Nevertheless, Michopoulos, Ziogou [17] estimated that 
CO2 emissions for hot-water use in the hotels remains 
quite high (2.87-3.2 kg-CO2/(person-night)) and the 
problem of DHW energy use analysis in non-resident 
buildings are meaningful. A better understanding of the 
features of DHW energy use is a key factor in achieving 
energy savings in buildings.  

The issue of DHW energy use analysis in buildings 
based on profiles is investigated by researchers in Norway 
and abroad [5]. However, due to differences in particular 
characteristic of each buildings, quality of available data, 
and calculation requirement, there is no a unique 
methodology of performing appropriate analysis.  

Most of the present researches assume that the number 
of occupants, seasons, the day of the week and time of the 
day have significant influence on DHW energy use. 
Traditionally, the data are divided into weekdays and 
weekends, while other options of separating data by other 
days of the week are usually not considered. 

It should be noticed that due to cultural tractions, 
technical and weather conditions the factors having 
influence on DHW energy use can vary from country to 
country, from building to building and from family to 
family.  

In this article we present methods of profiles 
development and time series analysis of DHW energy use 
data from a hotel in Oslo, Norway. The data comprises 
five years of hourly measurements of energy use for DHW 
production. The aim of this research is to improve the 
existing approaches of DHW energy use analysis in 
buildings. The research is part of the research project 
"Energy for domestic hot water in the Norwegian low 
emission society". The possible benefits from using more 
accurate energy profiles are explained.  

 

2 METHODOLOGY  

To detect the tendency of the changes in DHW energy 
use over several years, the Centered Moving Average 
method was used [18]. 

The common practice in DHW energy analysis, is to 
split of the profiles into different seasons, as well as into 
working and non-working days. As experience shows, the 
division of profiles into working days and non-working 
days is not always justified. In this study, we are not 
assuming, beforehand, that the profiles can be split in 
certain ways. Instead, we are comparing the DHW energy 
use profiles from different days of the week and assessing 
the similarities. The method uses student's t-test and 
Fisher's exact test. The tests can be used for samples with 
standard normal distribution and t-distribution. It allows 
us to determine the days of the week for with similar 
DHW energy use profile. The method is described in 
detail in Section 2.1. 

In Section 2.2, a method for determining the duration 
and boundaries of time zones with peak, minimum, and 
average energy use during the day is described. 

Seasonality has a significant impact on DHW energy 
use. However, which months should be included in each 
season and how many seasons should be taken into 
account when analyzing DHW energy use is not a 
completely solved task. In Section 2.3. a statistical 
method for identifying the number of seasons, as well as 
the months included in each season was described. 

2.1 Comparing similarity of DHW energy use 
profiles in different days of the week 

To determine the days of the week with similar 
characteristics of DHW energy use, a method based on 
test statistics was proposed. The similarity of two DHW 
energy use profiles is checked based on the student's t-test 
and Fisher's exact test. Appropriate tests can be used for 
samples with standard normal distribution and t-
distribution.  

By applying the t-test, it is possible to check if the 
mean values of DHW energy from two days of the week 
are equal or not. To achieve this, the DHW energy use 
within each day is considered as a statistical sample with 
24 elements, which represents the number of hours in the 
day. The t-test statistical value can be calculated as 
follows: 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 =

�𝐸𝐸�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 − 𝐸𝐸�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2��𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝12𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 +
𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝22𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 

(1) 

where 𝐸𝐸�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1, 𝐸𝐸�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 are mean values of DHW energy use 
in the first and second samples; 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 , 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 are 
standard deviations of DHW energy use profiles in the 
first and second samples; 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1, 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2–the number of 
elements in the first and second samples. The formula for 
standard deviation for i-th day is: 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �∑(𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑗𝑗 − 𝐸𝐸�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)2𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 1

 (2) 
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where 𝑖𝑖 is the number of the sample, 𝑗𝑗 is the number of 
element in the sample,𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑗𝑗 is DHW energy use in j-th 
element in i-th sample. 

The obtained value of t-criteria (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐) is compared 
with the critical value (𝑇𝑇𝑐𝑐𝑝𝑝). 𝑇𝑇𝑐𝑐𝑝𝑝  can be found in reference 
literature for different sizes of samples and 𝑘𝑘 degrees of 
freedom. The comparison can lead to three possible 
situations: 
− If 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑇𝑇𝑐𝑐𝑝𝑝(𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 + 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 − 2, 𝑘𝑘 = 0.05) – the 
mean values of the first and second samples are similar; 
− If 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 ≥ 𝑇𝑇𝑐𝑐𝑝𝑝(𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 + 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 − 2, 𝑘𝑘 = 0.01) − the 
mean values of the first and second samples have a 
significant difference; 
− If 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑇𝑇𝑐𝑐𝑝𝑝(𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 + 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 − 2, 𝑘𝑘 = 0.01) and 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 ≥ 𝑇𝑇𝑐𝑐𝑝𝑝(𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 + 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 − 2, 𝑘𝑘 = 0.05) − the mean 
values of the first and second samples can be considered 
as similar, however the final decision should be done 
based on the knowledge of researcher. 

Meanwhile, Fisher’s criterion allows us to estimate the 
similarity of two samples by variances: 

fcal =
max�Sprof12 ,  Sprof22 �
min�Sprof12 ,  Sprof22 � (3) 

The comparison of obtained by calculations Fisher 
criterion, 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐  with its critical value, 𝑓𝑓𝑐𝑐𝑝𝑝 leads to the follow 
results: 
− If 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑓𝑓𝑐𝑐𝑝𝑝(𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 + 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 − 2, 𝑘𝑘 = 0.05)− the 
variances of the first and second samples are similar; 
− If 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 > 𝑓𝑓𝑐𝑐𝑝𝑝(𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 + 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 − 2, 𝑘𝑘 = 0.05) − the 
variances of the first and second samples have significant 
difference. 

The two profiles are considered to be similar if both 
student's t-test and Fisher's exact test show the same 
result. If at least one of two tests shows that the mean 
values or variances of profiles in first and second samples 
are not similar, we conclude that the profiles are dissimilar 
and should be analyzed separately.  

Splitting DHW profiles by the days of the week should 
be made based on the large dataset, which represent DHW 
energy use during the year. Therefore, it was proposed to 
divide initial statistical data into separate weeks. Within 
each week, all combinations of daily DHW profiles 
should be compared among themselves by student's t-test 
and Fisher exact test. For instance, profiles for Monday 
and Thursday, Monday and Wednesday, Saturday and 
Sunday and so on should be compared. Afterwards, for all 
the combinations of days, the number of the week can be 
identified, when statistical tests show that profiles in 
considered pairs of days are similar. For further analysis, 
for each combinations of days the number of matches of 
DHW profiles in percentage can be found as: 

ni.j = Ni.j ∙ 100/Ntotal (4) 
where 𝑛𝑛𝑝𝑝.𝑗𝑗 is number of matches in percentage, when 
DHW profiles on i-th and j-th days are similar, 𝑁𝑁𝑝𝑝.𝑗𝑗 is 
number of weeks, when statistical tests shows that the i-th 
and j-th days are similar, 𝑁𝑁𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑐𝑐 is total number of weeks 
in statistical data sample of DHW energy use, 𝑖𝑖 is the day 
of the week of the first comparable profile (from 1 to 7), 𝑗𝑗 
is the day of the week of the second comparable profile 
(from 1 to 7). 

For better clarity, the results can be presented in the 
form of matrix of the matches as in Table 1. 

Table 1. The form of the matrix of matches 

 Mo. Tu. We. Thu. Fr. Sa. Su. 
Mo. 𝑛𝑛1.1 𝑛𝑛1.2 𝑛𝑛1.3 𝑛𝑛1.4 𝑛𝑛1.5 𝑛𝑛1.6 𝑛𝑛1.7 
Tu. 𝑛𝑛2.1 𝑛𝑛2.2 𝑛𝑛2.3 𝑛𝑛2.4 𝑛𝑛2.5 𝑛𝑛2.6 𝑛𝑛2.7 
We. 𝑛𝑛3.1 𝑛𝑛3.2 𝑛𝑛3.3 𝑛𝑛3.4 𝑛𝑛3.5 𝑛𝑛3.6 𝑛𝑛3.7 
Th. 𝑛𝑛4.1 𝑛𝑛4.2 𝑛𝑛4.3 𝑛𝑛4.4 𝑛𝑛4.5 𝑛𝑛4.6 𝑛𝑛4.7 
Fr. 𝑛𝑛5.1 𝑛𝑛5.2 𝑛𝑛5.3 𝑛𝑛5.4 𝑛𝑛5.5 𝑛𝑛5.6 𝑛𝑛5.7 
Sa. 𝑛𝑛6.1 𝑛𝑛6.2 𝑛𝑛6.3 𝑛𝑛6.4 𝑛𝑛6.5 𝑛𝑛6.6 𝑛𝑛6.7 
Su. 𝑛𝑛7.1 𝑛𝑛7.2 𝑛𝑛7.3 𝑛𝑛7.7 𝑛𝑛7.5 𝑛𝑛7.6 𝑛𝑛7.7 

Based on the matrix of matches the groups of the days 
of the week with similar profiles of DHW energy use 
could be identified. Namely, the days of the week, which 
have 𝑛𝑛𝑝𝑝.𝑗𝑗 ≥ 100 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, have similar characteristics of 
DHW energy use and should be placed in one group and 
analyzed together.  

The value of 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 takes into account such factors as 
the accuracy of student's t-test (5%), Fisher's exact test 
(5%), and the percentage of days in the year when the 
building is not in operation such as holidays.  

2.2 Determining the time zones with peak, 
minimum and average energy use in daily 
profile of DHW energy use. 

It is known that DHW energy use changes during the 
day. In order to implement energy management in 
buildings, it is important to identify the typical duration 
and boundaries of time zones with peak load, minimum, 
and average energy use during the day.  

To solve this issue, we are proposing to perform 
statistical grouping of the hourly capacity and consumer 
groups of the power system [19]. Initially this method has 
been used for identification of the tariff zones of electrical 
energy use in the power system. In this article, we have 
adapted the method for analysis of DHW energy use in 
buildings. 

The method allows us to divide the hours of DHW 
energy use into several groups with statistically different 
mean values within each group. It is based on an iteration 
procedure and analysis of mean values of DHW energy 
use by applying student's t-test. In this case, DHW energy 
use profile was considered as a statistical sample 𝑒𝑒. The 
sample contains N=24 elements (hours) with DHW 
energy use in these hours equal 𝑒𝑒𝑗𝑗 (where 𝑒𝑒𝑗𝑗 is DHW 
energy use in j-th hour, 𝑗𝑗 is the number of the element in 
the sample, N is number of elements in statistical sample 
e). The method includes the following steps: 

1)  The elements 𝑒𝑒𝑗𝑗 in the sample 𝑒𝑒 are sorted in the 
order of their increase. Such an arrangement of elements 
from smaller values of hourly DHW energy use to bigger 
values allows us to obtain the sorted sample 𝐸𝐸 with N 
elements 𝐸𝐸𝑝𝑝 (where 𝐸𝐸𝑝𝑝+1 > 𝐸𝐸𝑝𝑝, 𝑖𝑖 is the number of element 
in sample 𝐸𝐸). 
2) Based on the sample 𝐸𝐸, an iterative procedure of 
generating of two statistical subsamples 𝑅𝑅1 and 𝑅𝑅2 with 
variable number of elements is applied. On each step of 
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iteration, sample 𝑅𝑅1 contain M elements, while 𝑅𝑅2 should 
have M+1 elements. The elements in samples 𝑅𝑅1 and 𝑅𝑅2 
were taken consistently from the initial sample 𝐸𝐸. With 
each iteration, the number of elements M in these 
subsamples increases by one. The value of M varies from 
1 to 23. 

On each step of these iterations the value of student’s 
t-test for two subsamples 𝑅𝑅1 and 𝑅𝑅2 are calculated using 
Equation (1). 

For instance: 
iteration 1) 𝑅𝑅1 = [𝐸𝐸1], 𝑅𝑅2 = [𝐸𝐸1,𝐸𝐸2], M=1, and 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐1; 
iteration 2) 𝑅𝑅1 = [𝐸𝐸1,𝐸𝐸2], 𝑅𝑅1 = [𝐸𝐸1,𝐸𝐸2,𝐸𝐸3], M=2, and 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐2; 
……….. 
iteration 23) 𝑅𝑅1 = [𝐸𝐸1,𝐸𝐸2 …𝐸𝐸23], 𝑅𝑅1 =

[𝐸𝐸1,𝐸𝐸2 …𝐸𝐸24], M=23, and 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐23; 
3) Based on the iteration procedure of the step 2, the 
series of t-criteria for all combinations of subsamples 𝑅𝑅1 
and 𝑅𝑅2, 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 =[𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐1,𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐2 …𝑇𝑇𝑀𝑀] are found. 

If an ordered sample of hourly DHW energy use is 
monotonous, then the numerical values of elements in this 
sample increase evenly. In this case, the series of t-criteria 
obtained by iteration procedure will also be monotonous. 
This means that values of t-criteria obtained by Equation 
(1) will decrease monotonically with each next iteration 
(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐1 > 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐2 … > 𝑇𝑇𝑀𝑀). 

If the ordered sample of hourly DHW energy use is 
uneven, then a monotonic decrease of the calculated 
values of t-criteria would be violated by periodic abrupt 
growth (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝 < 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝+1).  

Thus, the identification of points of growth of the 
calculated values of t-criteria allows us to determine 
between which hours there is a noticeable statistical 
difference of DHW energy use. This assumption allows 
us to initially divide hours in the profile of DHW energy 
use into several groups. Each of these groups is the sample 
of data, where DHW energy use data varies 
monotonously.  

Created in this way, neighboring groups of hourly 
DHW energy use can be checked in terms of the 
possibility for their further merge. For this purpose, the 
data samples of two neighboring groups are assessed by 
student's t-test (Equation (1)). As a result, the obtained by 
calculations value of t-criteria (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐) can be compared 
with critical value (𝑇𝑇𝑐𝑐𝑝𝑝). This comparison can lead to three 
possible situations: 
− If 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑇𝑇𝑐𝑐𝑝𝑝(𝑛𝑛𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝1 + 𝑛𝑛𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝2 − 2, 𝑘𝑘 = 0.05) – 
the mean values of two groups are similar and should be 
merged; 
− If 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 ≥ 𝑇𝑇𝑐𝑐𝑝𝑝(𝑛𝑛𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝1 + 𝑛𝑛𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝2 − 2, 𝑘𝑘 = 0.01) − 
the mean values of two groups are different and they 
should be considered separately; 
− If 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑇𝑇𝑐𝑐𝑝𝑝(𝑛𝑛𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝1 + 𝑛𝑛𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝2 − 2, 𝑘𝑘 = 0.01) 
and 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 ≥ 𝑇𝑇𝑐𝑐𝑝𝑝(𝑛𝑛𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝1 + 𝑛𝑛𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝2 − 2, 𝑘𝑘 = 0.05) − the 
mean values of two groups can be considered as similar, 
however the final decision should be done based on the 
knowledge of researcher.  

Step 3 is continued until the t-test shows that no 
groups can be merged together and that the total number 
of groups cannot be reduced. 

4) Critical borders that separate DHW energy use 
profile into zones with peak, average and minimum 
energy use can be identified by the next formulas: 

Emin = E�group.1 + 

+Tcr.1(Mgroup.1 + 1− 2, 0.01)� Sgroup.12
Mgroup.1 

(5) 

 
Emax = E�group.K−1 + 

+Tcr.K−1(Mgroup.K−1 + 1 − 2, 0.01)� Sgroup.K−12
Mgroup.K−1 

(6) 

where 𝐸𝐸�𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝.1, 𝐸𝐸�𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝.𝐾𝐾−1 are mean values of DHW 
energy use in the first group and next to the last group; 𝑀𝑀𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝.1, 𝑀𝑀𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝.𝐾𝐾−1 are number of elements in the first 

group and next to the last group; 𝑆𝑆𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝.12 , 𝑆𝑆𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝.𝐾𝐾−12  are 
standard deviations in the first group and next to the last 
group; 𝑇𝑇𝑐𝑐𝑝𝑝.1, 𝑇𝑇𝑐𝑐𝑝𝑝.𝐾𝐾−1 are critical values of t criteria for the 
the first group and next to the last group. The hours in 
which DHW energy use is below 𝐸𝐸𝑚𝑚𝑝𝑝𝑚𝑚  should be 
considered as zone with the minimum DHW energy use. 
If DHW energy use is between 𝐸𝐸𝑚𝑚𝑝𝑝𝑚𝑚  and 𝐸𝐸𝑚𝑚𝑐𝑐𝑚𝑚 it can be 
assumed that in these hours DHW energy use is in a zone 
of average energy use. The hours with DHW energy use 
bigger then 𝐸𝐸𝑚𝑚𝑐𝑐𝑚𝑚 lie within zone of maximum energy use. 

2.3 Determining the seasons of DHW energy 
use 

The method described in Section 2.2 can be applied in 
order to identify the groups of months with similar 
characteristics of DHW energy use. In this case, in 
contrast to the sample of 24 hours in daily profile, which 
was considered in Section 2.2, the initial sample contains 
12 elements of monthly DHW energy use during the year. 
The basic principles and procedure of calculations in both 
hourly and monthly analysis is the same. As a result, the 
number of seasons of DHW energy use in the year and the 
months included in each season can be identified. 

3 HOTEL DESCRIPTION 

The characteristics of the hotel are typical for 
Scandinavian conditions and well aim to reflect the trends 
of DHW tap energy use in the similar types of buildings. 

The hotel, located in Oslo, Norway, was built in 1938, 
and reconstructed in 2007. The total area of the building 
is 4 939 m2, and consist of eight floors with 164 guest 
rooms. All guest have bathrooms with toilet facilities and 
shower. The rooms are cleaned daily. The maximum daily 
number of guests during the summer 2016 was 312 
persons. Guests arrive between 15 p.m. to 12 midnight, 
and they check out before 12 noon. According to the hotel 
management, employees use hot water for cleaning the 
hotel, and guests use hot water for personal hygiene.  

The hotel uses electricity to heat the water. The hot 
water is circulated to ensure fast delivery at taps. The 
circulation pump runs on fixed speed. In order to collect 
data of energy use in the building, electricity meters are 
installed, which allowed us to obtain hourly data of DHW 
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energy use in the period 2013-2017. The meters measure 
electricity delivered to the DHW tanks, which mean that 
both DHW needs and heat losses in the DHW system is 
included in the presented DHW energy use. In addition, 
data about number of visitors were available from the 
hotel reservation system. 

4 RESULTS 

The results given in this section represent the practical 
application of proposed in the article methods and 
improvements, which were achieved. This section divided 
in several subsections that consider specific steps of 
investigation. 

4.1 The analysis of the trend of DHW energy use 
in the hotel 

Statistical data of energy use in the hotel substantiate 
that DHW tap systems have significant impact on energy 
use in the buildings.  More specifically, in the hotel, DHW 
energy use constituted 19.5% of total energy use in 2016 
and 23% in 2017. 

The annual trends in DHW energy use was analyzed 
by calculating the Centered Moving Average. The trend 
of DHW energy use in the hotel (Fig. 1) shows permanent 
growth in energy use from year to year. For instance, in 
2017 DHW energy use increased by 11.6% compared to 
2016.  

 

Fig. 1. Trend of DHW energy use in the hotel 

A constant annual growth in energy use in the building 
may indicate a change in energy efficiency in DHW 
system, but could also reflect an increasing number of 
guests, changes in behavioral or administrative patterns 
related to the use of the building, or temperature changes. 

DHW energy use per visitor for summer an early 
autumn in 2016 and 2017 years is shown in Fig. 2. June 
through September are the months with the highest energy 
use. The average energy use per visitor increased by 
15.5% in 2017 compared with 2016. From Fig. 3 we can 
see that average monthly temperatures did not change 
significantly between 2016 and 2017. This indicates that 
the increase in DHW energy use caused by changes in the 
behavior of visitors or a decrease in the efficiency of the 
DHW system, rather than changes in the outdoor 
temperature. 

 

Fig. 2. DHW energy use per visitor in the warm season in 2016 
and 2017 

 

Fig. 3. Average monthly outdoor temperature in the warm 
season in 2016 and 2017 

4.2 DHW energy use profiles aggregated by 
similar days of the weeks and seasons 

The change of DHW energy between the months of 
June to September, within each year, is small, as shown in  

Fig. 2. However, over a year the DHW energy use 
varies a lot more (Fig. 1). Therefore, it was necessary to 
identify the number of seasons of DHW energy use in the 
year, the months included in each season, and finally, 
develop separate profiles of DHW for each of these 
seasons.  

In literature sources, it is suggested to consider 
separate DHW energy use profiles for working days and 
non-working days. However, this approach is simplified 
and may not give accurate results. Fig. 4 shows DHW 
energy use in representative week of 2016. From Fig. 4 
we can see that DHW energy use on Mondays differs from 
that of the other working days. Taking the weekday into 
account allows us to obtain more accurate profiles of 
DHW energy use. 
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Fig. 4. DHW energy use during representative week of 
2016  

Seasons were identified in the average monthly DHW 
energy use data for last three years, using the method 
described in Section 2.3. Based on the t-criteria, the 
months of the year were divided into two groups with 
substantially different mean values of energy use within 
each group (Fig. 5). The groups represent the cold and 
warm seasons. The warm season includes the months 
May, June, July, August, September and October. 
January, February, March, April, November and 
December can be assigned to the cold season.  

 

Fig. 5. Profiles of DHW energy use in the hotel divided by 
month and seasons 

At the second step of the investigation, the days of the 
week were assessed for similarity. The available DHW 
use data was divided into separate weeks, in total 52 full 
weeks in the year. Within each week, all combinations of 
daily DHW profiles were systematically compared among 
themselves by student's t-test and Fisher exact test. The 
matrix of matching of daily profiles are shown in (Table 
2).  

In order to take in account the accuracy of student's t-
test, Fisher's exact test, and the percentage of days in the 
year when the building is not in operation such as 
holidays, the value of error is accepted to be equal to 14%. 
Therefore, the days of the week that have statistically 
similar profiles in more than 86% of considered weeks 
(Table 2) were identified. Based on this information next 
groups of the days were identified: 1) Monday, 2) 
Tuesday, Wednesday, Thursday, Friday, 3) Saturday, 
Sunday. 

Table 2 Matrix of matching daily DHW energy use profiles 

 Mo. Tu. We. Thu. Fr. Sa. Su. 
Mo. 100 42 30 30 34 22 20 
Tu. 42 100 86 84 80 64 64 
We. 30 86 100 92 86 78 70 
Th. 30 84 92 100 90 84 68 
Fr. 34 80 86 90 100 76 74 
Sa. 22 64 78 84 76 100 92 
Sun. 20 64 70 68 74 92 100 

Detailed DHW energy use profiles aggregated by 
similar days of the weeks and seasons are shown in Fig. 
6. The profiles demonstrate the time zones with a peak 
(Emax), minimum (Emin) and average (Eaverage) energy 
use of DHW. These time zones were identified based on 
average daily DHW energy use by the method explained 
in section 2.2. The application of the method allowed us 
to determine the following borders of time zones: 

1) if DHW energy use is more than 29 kWh per hour, 
it corresponds to peak energy use;  

2) if DHW energy use is less than 21 kWh per hour, it 
corresponds to minimum energy use;  

3) if DHW energy use is between 21 kWh and 29.37 
kWh per hour, it corresponds to average energy use. 

The borders between time zones on Fig. 6 shown in 
the form of a straight lines.  

Fig. 6 shows that profiles of DHW energy use in cold 
seasons and hot seasons are different by the shapes and 
maximum values of energy use. It can be seen from Fig. 
6 that DHW energy use in the hot season is higher than in 
the cold season. This phenomenon can be explained by an 
increase in the number of guests in a summer period.  

The analysis of profiles in Fig. 6 show than DHW 
energy use on Mondays is much smaller than in other 
days.  For instance, the maximum energy use on Monday 
in a cold season was 40 kWh and 55 kWh in a hot season, 
meantime in other days it was equals 60 kWh and 70 kWh 
accordingly. A smaller number of visitors of the hotel on 
Mondays compared to other days of the week can explain 
these results. 

The maximum energy use on working days usually 
occurs from 7 a.m. to 9 a.m. From 9 a.m. to 12 p.m. energy 
use tends to decrease, although it still remains quite high 
and corresponds to the pick energy use. The small spikes 
of energy use can also be observed in the hot season in the 
evening time from 21 p.m. to 23.00. Meantime, in a cold 
season, there is no peaks in energy use in the evening. 
Minimum energy use can be observed in midday and at 
night.  

Peak energy use in weekends is shifted by one hour 
ahead compared to working days. The maximum energy 
use in weekends occurs from 9 a.m. to 11 a.m. 

In general, the study shows that dividing DHW energy 
use profiles by season and days of the week is reasonable. 
The profiles obtained in this way are more informative 
and allow us retrieve additional information about DHW 
energy use in buildings. 
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Fig. 6. Profiles of DHW energy use in the hotel divided by month and seasons

 

5 CONCLUSIONS 

An important step in achieving energy efficiency in 
buildings is reducing the needs in DHW tap energy use. 
To solve this task we need reliable knowledge of DHW 
energy use in existing buildings. Analysis of DHW energy 

use profiles in different types of buildings is a powerful 
instrument for gaining appropriate knowledge. 

The analysis described in this work show that the 
season of the year and the day of the week may influence 
DHW energy use.  Therefore, in order to increase the 
accuracy of DHW energy use profiles, it is proposed to 
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build unified profiles for months and days of the week 
with similar characteristics of DHW energy use. 

A method, which identify the number of seasons of 
DHW energy use in the building and the months included 
in each season, is suggested. Based on student’s t-criteria, 
the months of the year, for the hotel in this study, were 
divided into two groups: the cold season (January, 
February, March, April, November, December) and warm 
seasons (May, June, July, August, September, October).  

Furthermore, a method for determining the time zones 
with peak, minimum and average energy use in daily 
profile of DHW energy use was applied. 

For the analyzed hotel, the analysis of aggregated 
seasons and days of week, showed that DHW energy use 
in the hot season is higher than in the cold season. DHW 
energy use on Mondays is smaller than in other days. The 
maximum energy use in a working days occurs from 7 
a.m. to 9 a.m., and from 9 a.m. to 12 p.m. remains high 
with a tendency to decrease. The results obtained in the 
article expand knowledge about methods of DHW energy 
use analysis in buildings. 

Acknowledgement 

This article has been written within the research 
project "Energy for domestic hot water in the Norwegian 
low emission society". The authors gratefully 
acknowledge the support from the Research Council of 
Norway (ENERGIX-programme), SINTEF Building and 
Infrastructure, Department of Energy and Process 
Engineering at NTNU, Drammen Eiendom, 
Omsorgsbygg, Boligbygg, OBOS, Olav Thon Gruppen, 
Armaturjonsson, Høiax, Geberit, Uponor and FM 
Mattsson. 

 

References 

[1] European Commission wB, 
https://ec.europa.eu/energy/en/topics/energy-
efficiency/buildings. 
[2] European Commission wEE, 
https://ec.europa.eu/energy/en/topics/energy-efficiency. 
[3] Max Jamieson OB, Yann Verstraeten, Joanne Arbon. 
EPBD Compliance Study - Final Report. Publications 
Office of the European Union. 2015:138. 
[4] Abel E, Nilsson P-E, Ekberg L, Fahlén P, Jagemar L, 
Clark R, et al. Achieving the desired indoor climate-
energy efficiency aspects of system design: 
Studentlitteratur, 2003. 
[5] Fuentes E, Arce L, Salom J. A review of domestic hot 
water consumption profiles for application in systems and 
buildings energy performance analysis. Renewable and 
Sustainable Energy Reviews. 2018;81:1530-47. 
[6] Sartori I, Hestnes AG. Energy use in the life cycle of 
conventional and low-energy buildings: A review article. 
Energy and buildings. 2007;39(3):249-57. 
[7] Bøhm B. Production and distribution of domestic hot 
water in selected Danish apartment buildings and 
institutions. Analysis of consumption, energy efficiency 
and the significance for energy design requirements of 

buildings. Energy conversion and management. 
2013;67:152-9. 
[8] Ahmed K, Pylsy P, Kurnitski J. Monthly domestic hot 
water profiles for energy calculation in Finnish apartment 
buildings. Energy and Buildings. 2015;97:77-85. 
[9] Levermore G, Chong W. Performance lines and 
energy signatures: review and analysis. Building Services 
Engineering Research and Technology. 1989;10(3):105-
14. 
[10] Koiv T-A, Mikola A, Toode A. DHW design flow 
rates and consumption profiles in educational, office 
buildings and shopping centres. Smart Grid and 
Renewable Energy. 2013;4(03):287. 
[11] Tindall J, Pendle J. Are we significantly oversizing 
domestic water systems? 2015. 
[12] Yao R, Steemers K. A method of formulating energy 
load profile for domestic buildings in the UK. Energy and 
buildings. 2005;37(6):663-71. 
[13] Kouveletsou M, Sakkas N, Garvin S, Batic M, 
Reccardo D, Sterling R. Simulating energy use and energy 
pricing in buildings: The case of electricity. Energy and 
Buildings. 2012;54:96-104. 
[14] Djuric N, Novakovic V. Identifying important 
variables of energy use in low energy office building by 
using multivariate analysis. Energy and Buildings. 
2012;45:91-8. 
[15] Ma Z, Yan R, Nord N. A variation focused cluster 
analysis strategy to identify typical daily heating load 
profiles of higher education buildings. Energy. 
2017;134:90-102. 
[16] Lomet A, Suard F, Chèze D. Statistical Modeling for 
Real Domestic Hot Water Consumption Forecasting. 
Energy Procedia. 2015;70:379-87. 
[17] Michopoulos A, Ziogou I, Kerimis M, Zachariadis T. 
A study on hot-water production of hotels in Cyprus: 
Energy and environmental considerations. Energy and 
Buildings. 2017;150:1-12. 
[18] Hamilton JD. Time series analysis: Princeton 
university press Princeton, NJ, 1994. 
[19] V.F. Nakhodov AIZ, Mohammad Al Sharari, D.O. 
Medintseva. Analysis of duration and border of existing 
tariff zones. Power engineering: economics, technology, 
ecology. 2016;2:97. 

 

   
 

 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110409)

201

E3S 111

CLIMA 9

4015 15

8



 

 

 

Paper X  D. Ivanko, N Nord, A.L. Sorensen, H.T. Walnum, Analysis of monthly and 

daily profiles of DHW use in apartment blocks in Norway. Nordic Symposium 

on Building Physics in Tallinn, Estonia, NSB 2020 E3S Web of Conferences, 

Volume 172, 2020, 12002  

 





 

*
 Corresponding author: dmytro.ivanko@ntnu.no 

Analysis of monthly and daily profiles of DHW use in apartment 
blocks in Norway 

Dmytro Ivanko1*, Harald Taxt Walnum2, Åse Lekang Sørensen2 and Natasa Nord1 

1Norwegian University of Science and Technology, Norway 
2SINTEF Community, Norway 

Abstract. Profiles of domestic hot water (DHW) use give valuable information for achieving energy saving 

in buildings. In this article, analysis of monthly and hourly profiles in apartment blocks in Norway was 

performed. The aim was firstly to identify influencing factors on DHW use and afterwards to define typical 

DHW use profiles. Due to availability, two different data samples were used for monthly and hourly analysis. 

Monthly data from 49 apartments showed that approximately 30% of DHW was used in kitchens and the rest 

70% in bathrooms. The influence of apartment sizes on DHW use was tested based on monthly profiles. 

Monthly profiles for three categories of apartments with 33 m2, 51-52 m2, and 68-72 m2 floor area were 

developed. Cluster analysis allowed us to identify profiles for three groups of apartments with a typical 

number of residents. In addition, for comparison purpose, DHW hourly profiles in two social housings and 

two housing cooperatives were investigated. These profiles indicated that there was a difference in when 

DHW was used in these two types of buildings, with a higher daytime DHW use in social housing. Finally, 

the measured DHW heat use profiles are compared with the profile in the national standard.  

1 Introduction  

Nowadays, domestic hot water (DHW) systems are an 

essential part of residential buildings. They ensure a high 

level of hygiene and living conditions. DHW systems 

contribute to approximately 20% of the total energy use 

in buildings [1]. The projections of energy demand for 

residential buildings shows that DHW heat use tends to 

increase in the nearest future [2].  

Primarily, the share of DHW energy use in Norway is 

growing due to the introduction of passive house solutions 

and technologies. Currently, these solutions reduce the 

energy need for heating. However, they do not affect 

DHW heat use. In this regard, DHW systems still have 

great potential for energy savings. Therefore, improving 

the operation and design of DHW systems is a topical 

issue for attaining more efficient and sustainable energy 

use in buildings.   

Profiles of DHW and heat use are effective 

instruments for analysis and improvement of DHW 

systems performance. Monthly and hourly profiles are 

commonly used for design, modelling, simulations and 

management of DHW systems.  

Many authors emphasise the importance of using 

accurate and reliable profiles for various purposes [1]. 

Application of proper DHW energy use profiles is an 

essential condition for accurate prediction of energy 

demand in buildings. The investigation [3] shows that 

application of profiles obtained from standards is not 
sufficient for accurate DHW heat use modelling in 

buildings. 

 

The research toward the development of 

representative DHW use profiles is conducted in many 

countries.  
The influence of DHW profiles on simulations for 

DHW and space heating solar combi-system in residential 

building is investigated in [4]. The simulations show 

potential for energy savings in the DHW system by 

applying more realistic DHW use profiles. 
Profiles suitable for analysis of solar DHW systems in 

Canada is presented in [5]. To take variation in user’s 
behaviour into account, the authors propose to use profiles 

divided by apartments with predominantly morning use, 

predominantly evening use, and use dispersed throughout 

the day. The simulations reveal that various DHW use 

profiles could lead to significant differences in the 
prediction of DHW system operation. 

In Sweden, DHW use in 1,300 apartments within six 

years is measured [6]. These measurements are used as 

input for simulations. The simulations demonstrate the 

influence of the apartment’s sizes and locations on the 

heat use. In addition, the authors found a strong 

correlation between the number of residents and DHW 

use. However, even within apartments with the same 

number of residents, a significant variation of DHW use 

is observed.  

Analyses of one-year DHW measurements from 86 

apartments with 191 occupants in Finland is performed in 

[7]. Representative DHW profiles for resident groups with 

1, 3, 10, 31 and 50 occupants are developed. The authors 
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assume that the actual profiles closest to the mean profile 

for each group and with similar shape are representative. 

Weekdays and weekends load profiles for DHW heat 

use in Norwegian buildings, which use a heat supply from 

district heating, is investigated in [8]. For calculations, the 

authors use hourly measurements obtained by regular heat 

meters. The analysis of the profiles indicates that the 

DHW system efficiency should be improved through 

better pipe insulation.  

In residential buildings, DHW is mainly used for 

showering and hygienic purposes, cooking, cleaning, 

dishwashing and laundry. Therefore, most of the existing 

publications report two main peaks of DHW use that 

occur in the morning and evening. These peaks indicate 

the typical time of food preparation and showering 

practices [9]. 

A number of articles propose to develop DHW 

profiles for apartments based on occupant activities and 

operating schedules for appliances (showers, baths, sinks, 

dishwashers etc.). Occupancy related parameters 

significantly affect the final energy demand in residential 
buildings. With the increase in the number of occupants, 

the relative share of DHW heat use in the total energy use 

for the apartment is also increasing. Mostly due to the 

increased DHW use, the number of occupants have a 

substantial impact on the heat used in residential buildings 

[3]. The DHW use is modelled by considering the 

probabilistic use of appliances in apartments in [10]. A 

DHW modelling approach that is coupling information 

about behavioural activities, energy balance models and 

stochastic modelling is presented in [11]. An Artificial 

Neural Network model for DHW energy use analysis is 

proposed in [12]. In this model, the occupant behaviour, 

appliance ownership, demographic conditions and 

occupancy rate are the main inputs.  

Development of representative DHW profiles should 

be based on information gained from up-to-date data of 

DHW use in existing buildings. Due to the challenges in 

collecting and accessing statistical data about hot water 

and heat used in apartment blocks, the DHW use in these 

types of buildings in Norway is not fully investigated yet. 

Meanwhile, factors influencing DHW use (i.e. technical 

solutions, traditions, behaviour, weather condition etc.) 

are varying from country to country. For this reason, the 

profiles developed for other counties cannot be directly 

applied in Norway. 

Investigation of both hourly and monthly data gives a 

deeper understanding of the process of DHW use in 

apartments. Traditionally, utility bills for heat and water 

use in residential buildings are paid monthly. Due to this 

fact, monthly data about DHW use could be accessed up 

to the apartment level. A study of monthly profiles for 

different apartments provides useful information on the 

structure of DHW use in buildings, seasonal variations, 

expected volumes of hot water use, and variables that 

have influence on DHW use. At the same time, hourly 

profiles are very important for system design, energy 

management and peak shaving. Therefore, this article 

aims to present an analysis of both monthly and hourly 

DHW use profiles in different types of apartments in 

Norway. For this purpose, two data samples were 

examined. Due to data availability, these data samples 

were obtained from different sources, however for similar 

apartment buildings.  

First data sample contained data of monthly DHW use 

in 49 apartments in Norway. The available data had 

separate information about DHW use in both kitchens and 

bathrooms. This data sample was used for: identifying the 

share of DHW use in kitchens and bathrooms, 

investigating the seasonal variation of DHW use, 

analysing the influence of apartment’s sizes on DHW use 
and developing monthly profiles of DHW use, taking the 

typical number of residents in apartments into account.  

The second data sample contains 2-second DHW and 

heat use measurements in four apartment blocks. Two of 

these buildings belong to social housing and the other two 

to a housing cooperative with privately owned 

apartments. The measured data was applied to develop 

hourly profiles of DHW use for social housing and 

housing cooperative. Besides, the DHW heat use profiles 

for these types of buildings were further compared with 

the national standard. The main differences in these 

profiles were specified.  

2 Description of apartment buildings 

Data in 49 apartments that were used for the monthly 

analysis of DHW use were obtained from a company that 

specialised on measurements and billing of energy use in 

buildings in Norway. The considered apartments have the 

following sizes: 16 apart. - 33 m2, 5 apart. - 51 m2, 20 

apart. - 52 m2, 4 apart. -  68 m2, 4 apart. - 73 m2. For each 

of them, one-year data with DHW use in kitchens and 

bathrooms were collected in 2016-2017. The data were in 

liters of tapped hot water.  

In addition, within the research project "Energy for 

domestic hot water in the Norwegian low emission 

society" 2-second measurements were performed in four 

apartment blocks. Table 2 shows the main properties of 

the observed buildings. Apartment blocks AB1 and AB2 

are both social housing, while AB3 is part of a large 

housing cooperative with several blocks. AB4 consists of 

4 smaller blocks. The average apartment size in AB1 and 

AB2 is significantly smaller than in AB3 and AB4. For all 

the buildings, the measurements were performed at the 

heating plant, giving the aggregated heat use of each 

block. Fig. 1 shows a principle drawing of the heating 

plant and measurements. In Fig. 1, the symbols for the 

temperature and water flow show the measurement 

places. In our analysis, heat losses from the circulation 

system were removed from the use data. 

Table 1. Main properties of measured apartment blocks 

ID 
Area 

(m2) 

Number 

of 

flats 

Heat 

source 

Period 

of data collection 

AB1 4400 96 
Electric water heaters 

and heat pump 
Oct. - Nov. 2018 

AB2 2700 56 Electric water heaters Oct. - Nov. 2018 

AB3 3752 56 
Electric water heaters 

and heat pump  
Jan. – Mar. 2019 

AB4 5100 86 
Electric water heaters 

and heat pump 
Mar.-Aug. 2019 
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Fig. 1. Principle drawing of DHW heating plants with typical 

measuring points 

3 Method 

In this article, the analysis was primarily based on an 

investigation of monthly and hourly DHW use in 

apartment blocks. The entire approach in this study 

consisted of two parts: 1) identifying influencing factors 

of the total DHW use in apartments and analisys of 

monthly DHW use profiles 2) defining hourly profiles of 

the DHW use. Due to the availability of data and 

measurements, a different group of apartments were used 

for each of the above-mentioned analysis parts. 

To identify influencing factors of the total DHW use 

in apartments, the DHW use data in 49 apartments were 

used to calculate the share of DHW used in bathrooms and 

kitchens for each month. In order to examine the influence 

of apartment size on DHW use, the monthly profiles for 

specific DHW use in three types of apartments with 33 

m2, 51-52 m2, and 68-72 m2 living areas were developed. 

Even though the sizes of apartments give essential 

information about DHW use, they do not take into account 

the number of people who lives there. In order to cover 

this drawback, hierarchical cluster analysis based on the 

K-means method was applied. By using this method, the 

groups of apartments with similar monthly DHW use 

were found. The applied clustering method is well known 

and presented in detail in [13]. The clustering was 

performed in Scikit-learn machine learning library for the 

Python programming language [14]. The number of 

residents in each obtained cluster was estimated based on 

the reference DHW use in apartment blocks per person in 

European standard “NS-EN 12831-3:2017: Energy 

performance of buildings” [15] and recommendations in 

[16]. In such a way, apartments with three different levels 

of occupancy were identified. Further, seasonal variations 

of DHW use were studied, taking into account apartment 

sizes and estimated number of people.  

To define hourly profiles of the DHW use, the 2-

second measurements in four apartment blocks were used. 

These apartments are used by social housing and housing 

cooperatives. The variation of DHW in different days of 

the week was studied through weekly profiles. Finally, the 

heat used for DHW in these building was compared with 

the Norwegian standard, “SN/TS 3031:2016: Energy 
performance of buildings. Calculation of energy needs 

and energy supply” [17], and the main differences were 

specified.  

 

4 Results and discussion 

This section is divided into two subsections. Section 4.1 

investigates monthly DHW use in apartments of different 

sizes. Section 4.2 is dedicated to the analysis of hourly 

DHW use in social housing and housing cooperative.  

4.1. Analysis of monthly DHW use in apartments   

The average daily specific DHW use for different 

months for 49 apartments in Norway is shown in Fig. 2. 

The results were divided in DHW use in kitchens and 

bathrooms. The data showed that approximately 70% of 

hot water in these apartments was consumed in the 

bathrooms and 30% in the kitchens.  

 

 
 

Fig. 2. Average monthly DHW use in 49 apartments 

Monthly profiles in Fig. 2 display some seasonal 

variation of DHW use, with lower consumption from 

April to July, and higher in the remaining months. The 

decrease in DHW use in the spring/summer months may 

be related to the vacation time in Norway. Traditionally, 

the majority of Norwegian workers prefer to have 

vacations in July. In addition, April, May and June contain 

several holidays. 

A more detailed investigation of monthly DHW use in 

the apartments showed that in some individual 

apartments, the DHW use decreased during the period of 

vacations, see June and July, while in others it increased, 

see Fig. 3. The two apartments in Fig. 3 with similar sizes 

were considered. The DHW use in Apartment 2 was 

higher than in Apartment 1, which can be explained by the 

different number of people living there.  

This research indicated that a certain group of the 

apartment users left their apartments and travel during the 

holidays. Thus, these users reduced the DHW use in 

buildings, see Fig. 3, Apartment 1. Opposite, some people 

were at home during vacation time, which has the 

opposite effect on DHW use, see Fig. 3, Apartment 2). For 

this reason, the DHW use in summer months in the 

residential buildings in Norway were relatively uncertain 

and depended on how people intended to spend their 

vacations.  
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Fig. 3. Comparison of monthly DHW use of two apartments 

with 52 m2 floor area 

 

In order to estimate the influence of apartment sizes 

on the DHW use, the box plots [13] of average DHW use 

for apartments with 33 m2 (Fig. 4), 51-52 m2 (Fig. 5), and 

68-72 m2 (Fig. 6) floor areas were developed. Box plot is 

widely used method in descriptive statistics. It shows in a 

compact form, the median, first quartile and third 

quartiles, minimum and maximum, and outliers. 

Apartments with 33 m2 area show the highest average 

DHW use equal to 2.76 liters per m2 per day, while the 

average in the 51-52 m2 apartments is 1.78 liters per m2, 

and the average in the 68-73 m2 apartments is 2.5 liters 

per m2, see Fig. 7. 

 

 
Fig. 4. Box plot of monthly DHW use in 33 m2 apartment 

 
Fig. 5. Box plot of monthly DHW use in 51-52 m2 apartments 

 
Fig. 6. Box plot of monthly DHW use in 68-73 m2 apartments 

 
Fig. 7. Box plot of average monthly DHW use for different 

apartment sizes 

The number of inhabitants was the main factor 

affecting the DHW use in apartments. However, 

information about this parameter was usually not 

disclosed. Therefore, it was proposed to find groups of 

apartments that have similar levels of DHW use based on 

cluster analysis. The assumption was that each of these 

clusters should represent DHW use in a group of 

apartments with a similar amount of people. 

The clustering method showed three main clusters of 

the DHW use, see Fig. 8. Cluster 1 and Cluster 2 mainly 

contained apartments with 33 m2 and 51-52 m2, see Fig. 

9. Fig. 9 shows that Cluster 3 included all types of 

apartments. Average DHW use in apartments within 

Cluster 1 was equal to 31 liters per day, while Cluster 2 – 

76 liters per day and Cluster 3 – 167 liters per day. 

 

 
Fig. 8. Average DHW use within clusters of apartments 
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Fig. 9. Number of apartments of different sizes for each cluster 

According to the European standard NS-EN 12831-

3:2017: Energy performance of buildings [15], the 

average daily individual DHW use for residential 

buildings equals approximately 30 liters per person per 

day. This parameter is higher for Norway and reaches 40 

liters per person as shown in [16]. By using this value to 

estimate the number of residents in the apartments, 

Cluster 1 might consist of apartments with only one 

resident, Cluster 2 apartments with two residents, and 

Cluster 3 families with three or more residents. However, 

this estimation did not take into account individual 

variation in DHW use, as observed in [6].  

From Fig. 8, it may be noted that for all the clusters, 

DHW use in the cold season was higher than in the 

warm season. DHW use in the apartments within Cluster 

3 was more uneven and showed bigger variations in 

DHW use. For Cluster 3, the highest DHW use was 

observed in November and March. There is observed 

significant drops in DHW use in months, which include 

long holidays and typical vocational time. To be able to 

draw further conclusions, it would be valuable to analyse 

DHW use in a higher number of apartments in a similar 

way, compared with holiday periods. This would 

increase the knowledge regarding seasonal variations in 

hot water use. 

4.2 Analysis of hourly DHW use in apartment 
blocks 

To recall, due to data availability, to identify hourly 

profiles of the DHW use, the other apartment buildings 

were used. However, building type and DHW heat use in 

these buildings were similar. In Fig. 10-13, the hourly 

DHW use for the four apartment blocks is represented as 

box plots. As was mentioned above, AB1 and AB2 are 

social housing buildings. These types of buildings are 

owned and managed by the state to provide affordable 

housing for people who need it. AB3 and AB4 are a 

housing cooperative, where residents normally own their 

apartment, representing a regular type of ownership in 

Norway. Fig. 10-13 display certain differences in DHW 

use profiles for social housing and the housing 

cooperatives. 

In the housing cooperatives, the DHW use is mainly 

used from 7:00 to 22 o’clock. The increased DHW use 

occurs in the morning from 8:00 o’clock and lasted until 

11:00 o’clock, see Fig. 12 and 13. From 13:00 o’clock to 
16:00 o’clock, the reduction of DHW use could be 

observed. Evening peak occurred from 18:00 o’clock until 

21.00 o’clock. The minimum DHW use arose at night 

time from 1:00 o’clock to 6:00 o’clock.  
 

 
Fig. 10. Box plot of hourly DHW use in AB1 (social housing) 

 
Fig. 11. Box plot of hourly DHW use in AB2 (social housing) 

 
Fig. 12. Box plot of hourly DHW use in AB3 (housing 

cooperative) 

 
Fig. 13. Box plot of hourly DHW use in AB4 (housing 

cooperative) 

The DHW use profiles for social housing are more 

even through the day and with a morning peak, about one 

hour later than in the housing cooperative. Evening peak 

in social housing took place before 20:00 o’clock. Unlike 

a housing cooperative, social housing profiles had 

increased DHW use in the daytime, from 13:00  to 16:00 
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o’clock. An explanation of this might be that a larger share 

of the residents in social housing was staying home during 

the day-time. 
Both social housing and housing cooperative showed 

a weekly variation of DHW use, see Fig. 14. From Fig. 

14, it is clear that the DHW use at the weekends in 

apartment blocks is higher than during the working days. 

 

Fig. 14. Weekly average DHW for apartments in social 

housing and housing cooperative 

The profiles of the DHW heat use for social housing 

and housing cooperative is shown in Fig. 15. The 

reference profile presented in the Norwegian technical 

specification, SN/TS 3031:2016: Energy performance of 

buildings. Calculation of energy needs and energy supply 

are shown in Fig. 16 [17]. The shape of the average hourly 

DHW heat use corresponds to the DHW use profiles in 

Fig. 10-13. A comparison of the measured DHW heat use 

profiles with the SN/TS 3031:2016 standard showed a 

significant difference between them. Especially, this 

difference was noticeable for social housing.  

The standard SN/TS 3031:2016 assumes that the 

DHW heat use from 1:00 o’clock until 6:00 o’clock 
equals to zero. In considered apartment blocks, a certain 

amount of heat use was measured even during the night. 

In addition, the standard profile significantly 

underestimated DHW heat use during the day time, 

especially for the social housing.  

It should be mentioned that the standard SN/TS 

3031:2016 shows precisely the morning and the evening 

hours with the highest DHW heat use for a housing 

cooperative. In addition, the peak values of DHW heat use 

presented in the standard quite well corresponds with the 

measured values. Thus, we could conclude that standard 

SN/TS 3031:2016 gives useful information about the peak 

values of DHW heat use. However, the timing of heat use 

in the standard does not explain DHW heat use in actual 

apartment blocks. This reference profile is especially 

inaccurate for social housing.  

 

 
Fig. 15. Average hourly DHW heat use for social housing and 

housing cooperative 

 
Fig. 16. Hourly profiles of DHW heat use according to the 

standards SN/TS 3031 

3 Conclusions 

Improving the performance of DHW systems is a critical 

issue for achieving further energy savings in buildings. 

Using accurate and representative profiles is essential for 

the design, modelling, simulations and improving the 

operation of DHW systems. In this article, both monthly 

and daily profiles for apartment blocks in Norway were 

investigated.  

Examination of monthly profiles for 49 apartments 

revealed that kitchens contributed to approximately 30% 

of the DHW use in Norwegian apartments and the 

remaining 70% were used in bathrooms. The analysis of 

monthly data from three types of apartments with 33 m2, 

51-52 m2, and 68-72 m2 living area indicated that the 

highest specific DHW occurred in 33 m2 apartments.  

Well known, that the main influencing factor on DHW 

use is the number of people who live in apartments. 

Despite this fact, quite often, this information is not 

available. Apartment sizes did not allow us to estimate the 

number of inheritance in a particular apartment. For this 

reason, hierarchical cluster analysis based on the K-mean 

method was used to identify three clusters of apartments 

with different levels of DHW use. It was assumed that 

these clusters represented the apartments with one 

resident, two residents and families with three or more 

residents. Obtained in such a way, profiles within each 

cluster were studied on seasonality.  

At the next step of our research, the hourly profiles of 

DHW and heat use for social housing and housing 

cooperative apartment blocks were examined. The 

profiles showed differences in the timing of DHW use in 

these types of buildings. Compared to the housing 
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cooperatives, the social housing buildings had an 

increased DHW use during the daytime and not a 

pronounced evening peak.  

The profiles of the DHW heat use for social housing 

and housing cooperative were compared with the 

reference profile presented in the national technical 

specification SN/TS 3031:2016 [17]. SN/TS 3031:2016 

provides valuable information about the peak values of 

DHW heat use. However, compared to the four apartment 

buildings analysed, the reference profile is not accurate 

enough and should be considered modified. In addition, it 

may be relevant to take into account the difference 

between social and regular housing. 
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Abstract 

The COVID-19 pandemic at the beginning of 2020 has significantly affected the energy 

demand in Norway. In order to avoid unnecessary energy use and ensure the proper functioning of 

buildings, it becomes essential to have a better understanding and planning of heating use for 

different building types under possible pandemic conditions. Despite this fact, the literature review 

showed a lack of awareness about heating system performance in buildings during the COVID-

lockdown. This article addressed the problems of heat use profiles analyses and scenario 

development for schools, kindergartens, and university campuses in Norway. The comparison of 

heat use profiles in these educational institutions during both the previous year and the COVID-

lockdown showed that the operation of the heating system remained on the same level, although 

the occupancy was largely reduced. Moreover, the month after the reopening of the buildings was 

characterized by a remarkable increase in heat use, regardless of the warmer weather conditions. 

For heat use planning in educational institutions, the following scenarios were developed: 

Scenario 1 − operation according to a normal year setting; Scenario 2 − reducing the heating to the 

level of the night heat use; and Scenario 3 − using settings that were applied during the lockdown. 

The results showed that the application of Scenario 2 might allow us to reduce daily heat use up to 

261 Wh/m2. 

Manuscript File [For Revision, Please upload clean version of
Revised manuscript]

Click here to view linked References

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



2 

 

Keywords: heat use in educational buildings, COVID-19 pandemic, heat use profiles, 

energy efficiency, scenario-based analysis, data analysis 

 

1. Introduction 

COVID-19 is a potentially fatal coronavirus disease that may cause severe problems with 

the human respiratory system [1]. Since the beginning of 2020, this disease has begun to spread 

rapidly around the world [2]. In March 2020, the World Health Organization (WHO) declared that 

COVID-19 outbreak is a global pandemic. Social distancing and personal hygiene are proved to be 

the primary measures that may help to prevent the spread of COVID-19 [3]. Therefore, in order to 

avoid people gatherings and crowds, most countries have imposed a partial or full lockdown of 

educational institutions and commercial and industrial companies. Many people were compelled 

to stay at home and work remotely. Such drastic changes in the behavior of energy users have a 

significant impact on energy demand and lead to substantial problems in the energy sector. Some 

crucial problems and challenges for energy systems are discussed in the publications below. 

Several authors investigate the problems related to changes in energy loads of the energy 

system during the COVID-19 pandemic. The weekly electricity loads in the Brazilian power 

system and its subsystems (Northeast, North, South, and Southeast-Midwest) are compared in the 

periods before and after the isolation [4]. Statistically, significant decreases are observed in the 

levels of electricity use. The average daily electricity loads in 26 cantons in Switzerland are 

analyzed in [5]. In these cantons, the reduction of energy use was varying and reached a decline up 

to -16.5 % of the energy use compared to the previous year. The analysis of the hourly electricity 

loads amidst the pandemic in Ontario, Canada, is performed in [6]. The electricity loads show a 

noticeable curve flattening during the pandemic, especially during the peak hours of from 7:00 till 

11:00 o’clock in the morning and from 17:00 till 19:00 o’clock in the evening. The effect of 

restrictions on energy demand in the EU countries is investigated in [7]. The EU countries have 

individually approached the restrictions associated with the COVID pandemic. The analysis of 

energy use showed that countries that imposed stricter restrictions experienced a higher reduction 

in energy demand. 
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A regression model is used to forecast the peak electric load in the Kuwaiti power grid 

according to climatic data [8]. The influence of the pandemic on the power grid in the Kuwaiti 

power grid is investigated by comparing the actual demand during 2020 with the predicted 

demand for the same year in normal conditions. The full lockdown resulted in 17.6% drop in 

energy use compared to the 2020 prediction. A comprehensive review of the electricity use in 

Italy, Japan, USA, and Brazil shows that the pandemic leads to uncertainty in the electricity 

demand and causes problems for the system operators [9]. To conclude, changes in the energy 

demand profiles during the COVID period creates difficulties for accurate load forecasting.  

The investigation of power system operation in [10] states that during the COVID-

lockdown, the total electricity demand in many countries reduced by around 10 – 30%. A set of 

recommendations should be introduced to overcome the current crisis and achieve a sustainable 

operation of the power systems. Governmental policies and actions considering the discounts for 

electricity bills in commercial and residential buildings in G20 countries were investigated in [11]. 

The authors argue that in addition to the applied discounts, it is necessary to provide energy users 

with guidance on energy conservation for the pandemic outbreak and especially lockdown. 

The impact of corona lockdown on energy systems and pricing in Italy is evaluated in [12]. 

The energy generation systems in this country faced problems related to the regulation capabilities 

and flexibility. Combined heat and power plants were compelled to work close to the minimum. A 

nearly doubled increase in the ancillary market costs for system operations during the last week of 

March 2020 was observed in Italy [12]. The global renewable energy sector was also affected by 

pandemic restrictions and experienced additional difficulties and risks related to the operation of 

existing installations, as well as the implementation of new projects [13]. The additional expenses 

during the COVID-19 pandemic are related to the need for the energy systems to achieve load 

balancing, frequency control, and to reserve margins formation. 

The negative influence of COVID-19 pandemic on the energy sector can be mitigated by 

ensuring the energy efficient functioning of end-users, better energy planning, quick adaptation to 

new conditions and introduction of proper operation measures. The deployment of demand-side 

management for the residential, commercial, and industrial energy users is essential to ensure a 

smooth operation of the power system in the pandemic period [9, 10]. Energy use profiles provide 

us with valuable insights to analyze changes in energy use and take actions to respond to these 
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changes. Moreover, the regimes of work of residential energy consumers are different from non-

residential consumers, and therefore pandemic affected them differently.  Thus, the ability to 

isolate residential from non-residential electricity profiles during COVID-19 is considered as an 

essential aspect for planning and operation of the electricity systems. For this reason, it is 

necessary to understand the changes in energy use profiles related to COVID-19 that occurred in 

each category of energy users.  

The comparison of the energy use profiles before and after the COVID-19 pandemic was 

performed publications [14-18]. The main results of these studies are presented below. 

In a study [15], data obtained from energy management systems (HEMS) in 632 

apartments in New York were used to investigate the dynamics of energy use patterns during the 

COVID pandemic. The research is based on the comparison of the energy use profiles in the same 

months between the normal time and the COVID lockdown [15]. The authors found that the 

morning peak of energy use was shifted later, and the previous energy decrease during daytimes 

became non-existent. Moreover, most of the residents are experiencing much higher electricity use 

than before [15].  

During the COVID-19 pandemic, the energy demand in the industrial and commercial 

sectors showed a significant decrease, while in the residential buildings, an increase in energy use 

was observed [16]. For example, energy use in residential buildings in the USA rose by 6-8% [16]. 

Similar to the article [16], research is performed for Southeast Asia [17]. The investigation in [17] 

finds that the lockdown measures reduced the energy needs in the industrial sector and increased 

the energy demand in the residential sector. In addition, the daily energy demand in these Asian 

countries has been found close to the Sunday electric load curve. 

The electricity load profiles for residential, commercial, and industrial consumers are 

respectively shown under three cases: 1) business-as-usual case without a lockdown; 2) the case of 

a partial lockdown; 3) the case of a total lockdown in [18]. The research in the mentioned study is 

performed based on data from 259 electrical energy users located in the Lagos metropolis, Africa. 

Compared to the business-as-usual case, no change in the percentage of electricity demand by 

sectors under a partial lockdown case was detected. However, under the total lockdown, the 

authors discover a sharp increase of electricity demand in the residential sector, a 6% decrease in 

the industrial sector, and almost no changes in the commercial sector [18]. 
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Data from 3.8 million electricity users in Illinois, USA, was examined in [14]. This study 

shows that the onset of COVID-19 shifted weekday load profiles for residential buildings was 

similar to weekend profiles from previous years.  

The literature review [14-18] shows that efficient energy use in buildings becomes a 

crucial problem during the COVID-19 pandemic. The study [19] is dedicated to the prior cases of 

pandemic diseases and challenges that they brought to society. It shows the results similar to 

publications [14-18] and emphasize that the COVID measures will lead to more attention to 

sustainable and energy efficient solutions in buildings design and operation. The post-COVID 

recovery agenda is developed by the International Renewable Energy Agency (IRENA) [20]. This 

report states that in the post-COVID period buildings are expected to receive the most significant 

share of energy efficiency investment [20].  

Mostly, the articles [14-18] demonstrate that currently the existing publications are focused 

on the residential buildings, while research on non-residential buildings is lacking. For the 

educational institutions, office buildings, and other commercial buildings that experienced 

lockdown, it is usually assumed that the demand profiles for weekdays during the pandemic are 

similar to weekends of the reference week in 2019 [7]. However, the data-based evidence for 

energy use profiles in these types of buildings is missing.  

In order to achieve efficient energy use in buildings during the COVID-19 outbreak and 

the post-pandemic period, it is necessary to understand and forecast the changes in energy use in 

the main technical systems of buildings. Out of all the technical systems in buildings in the EU, 

space heating (SH) and domestic hot water (DHW) are often the most significant consumers of 

energy. According to [21], before the pandemic, SH and DHW heat use together has accounted for 

more than 20% of the total EU energy demand annually. The heat use profiles in normal 

conditions are well established and presented in [22]. However, the building heat use has been 

significantly affected by the pandemic. For instance, the energy data from 352 households in a 

Chinese region which had a similar energy composition to the EU before the pandemic, showed a 

60% increase in cooling and heating demand during the lock-down [23]. The current heat use 

profiles for normal conditions are not descriptive in pandemic circumstances. Nevertheless, the 

heat use in buildings during the COVID-19 pandemic is not studied enough, especially for non-
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residential buildings. Currently, there are only a few publications that give some information or 

recommendation for heat use in buildings in pandemic time. 

The American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE) presents guidance [24] for buildings operation in epidemic conditions. This guidance 

does not recommend to completely shut off HVAC systems in a temporarily unoccupied building. 

It proposes to use the special “Unoccupied Mode” that maintains the building within a reasonable 

range of temperature and humidity conditions, while reducing energy use during the shutdown. 

For example, the number of operating boilers should be reduced to the minimum needed. 

However, to avoid further problems with the system operation, the boilers and DHW circulation 

systems should operate at least once per week for a minimum of 1 hour in a normal regime. 

In [25], several conditions of energy use in a typical household in Serbia are considered: 

S1 – Reference case, S2 – Mild protection measures, S3 – Semi-quarantine measures, S4 – 

Complete quarantine. The numerical modelling for the household is performed in EnergyPlus. As 

an input for the simulation model, the occupancy profiles in the building for the considered 

scenarios were used. The simulations show that an increased presence of inhabitants in their 

households during the corona pandemic has led to an increase in heating use. In normal conditions 

before declaring the state of emergency, the energy use for heating in March was 3 414 kWh. 

However, in conditions of mild protection measures, semi-quarantine measures and complete 

quarantine, it could be increased to 4 509 kWh, 4 487 kWh and 4 465 kWh, respectively. In total, 

heating energy demand reached up to 62% of the total demand [25]. 

Our study aimed to improve the existing knowledge about heat use in buildings in Norway 

during the period of the COVID-19 pandemic. The literature review showed a lack of awareness 

about the changes in heat use in non-residential buildings. Among non-residential buildings, the 

performance of educational institutions was highly affected by the pandemic. Therefore, this 

research was focused on the analysis of heat use in educational institutions: schools, kindergartens, 

and universities. First, our study compared profiles in buildings during the COVID-lockdown and 

the post-lockdown period with the profiles obtained before the pandemic. The second part of the 

study was devoted to the development of scenarios for heat use in buildings in conditions of the 

pandemic lockdown. The following scenarios were considered: 1) Scenario 1 − Modelling based 

on behavior in a normal year (i.e. the previous year), 2) Scenario 2 − Modelling based on heat use 
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in night hours, 3) Scenario 3 − Modelling based on the current settings that were used in the 

buildings during COVID-lockdown. The proposed scenarios represented the different settings for 

the heating systems and gave important information for further efficient utilization of heating 

systems in buildings. Such a study creates the basis for achieving energy saving in the educational 

building in Norway. 

The paper was structured as the following. Section 2 introduces the methods for the 

scenarios-based modelling of heat use during the COVID-19 pandemic. Section 3 explains the 

main characteristics of the buildings that were used for the analysis in our study. In Section 4, the 

methodology was implemented on the real data, and the main results of this investigation were 

presented. The profiles of heat use in periods before the pandemic, during the COVID-lockdown, 

and the post-lockdown were compared. The adequacy of heating systems settings in buildings 

during lockdown was checked. The scenarios for heat use in Norwegian educational buildings 

were proposed. Finally, the limitations and conclusions of the study were highlighted in sections 5 

and 6. 

 

2. Methods 

This chapter consists of three subsections. The subsections represent the methods for 

developing scenarios of heat use in buildings during the pandemic. Subsection 2.1 considers 

Scenario 1 when the settings of the heating system did not change and remain the same as for the 

normal year. Subsection 2.2 shows Scenario 2, where the heating system was set to the night heat 

demand of the normal year. Subsection 2.3 shows Scenario 3 when the settings that were applied 

during the lockdown in March-April 2020 were used for the entire year heat use prediction. 

 

2.1. Scenario 1 - Modelling heat use for based on behavior in a normal year 

When the building is operating in a regular regime, not affected by unexpected changes in 

occupancy, the outdoor temperature may be treated as the main factor that explains the variation of 

heat use in buildings [26]. The model that expresses the relationship between the heat use in an 

observed building and the outdoor temperature is called the Energy Signature Curve (ESC) [27]. 
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The ESC is widely used for energy planning in buildings [28]. Usually, the ESC contains two sub-

models divided by the change point temperature (CPT). The CPT is a critical temperature that sets 

the boundary between the start and the end of the heating season. Piecewise regression is a method 

that can be used to build the ESC model. By piecewise regression method, the two separate sub-

models for ESC are identified by using the following: 

𝑓(𝑥) = { 𝛽0 + 𝛽1(𝑥 − 𝐶𝑃𝑇) + 𝜀          If 𝑥 <  CPT𝛽0 + 𝛽2(𝑥 − 𝐶𝑃𝑇) + 𝜀          If 𝑥 >  CPT                                   (1) 

where 𝑓(𝑥) is a model for the ESC, 𝑥 is the outdoor temperature, 𝛽0, 𝛽1, 𝛽2 are the coefficients of 

the piecewise model, and ε is the residual error. 

It is well known that heat use in buildings also varies depending on days of the week and 

hours of the day [22]. Due to the diverse schedules of work, in working days at hours when the 

main activities are held, the heat use in educational buildings is much higher comparing to the rest 

of the time. For this reason, in order to plan the heat use in a regular regime, we developed the 

separate ESC models for each hour of the weekdays and weekends. In such a way, based on the 

data obtained for 2019, we developed the 48 ESC models that explained how the heat use in a 

building would behave if the settings of these considered buildings remain the same as before 

COVID-19 pandemic.  

In order to formulate heat use in Scenario 1, the outdoor temperature data for the typical 

cold and warm meteorological years (TMY) were applied as an input to the ESC models. The 

temperature data for the typical meteorological years for different locations may be found at the 

website of the European Commission information system [29]. The temperature data is produced 

by choosing each month with the most "typical" conditions out of the last 10 years [29]. By this 

means, using the typical cold and warm temperatures allowed us to obtain expected boundaries of 

heat use for each hour of the typical year in Scenario 1 (i.e. for normal conditions when no 

changes were made in the operation of the building heating system). 

 

2.2. Scenario 2 − Modelling based on hours of night heat use 

Compared to Scenario 1, Scenario 2 considered better operation settings for the heating 

system during the lockdown. In this scenario, it is assumed that during the lockdown, the 
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buildings’ heat use should be kept at the level of night heat use under the normal pre-pandemic 

conditions. In the educational institutions, the lowest heat use can be usually observed at the night 

time from 1:00 o’clock to 5:00 o’clock in working days, when there are no people in buildings and 

the heating system is working with the minimum energy load required to maintain the lowest 

acceptable temperatures. 

In order to express the possible reduction of heat use in the buildings, the ESC model 

based only on nighttime heat use was developed. After that, in a similar way to Scenario 1, the 

ESC model was applied to the outdoor temperature data for the typical cold and warm 

meteorological years. In such a way, possible boundaries of the heat use for each hour of the 

typical year in Scenario 2 were obtained (i.e. for conditions when the heating system was 

operating at the night level). 

 

2.3. Scenario 3 − Modelling based on current settings that were used in the buildings 

during COVID-lockdown 

Scenario 3 was intended to explain how building heat use would behave if the settings that 

were actually applied to the heating system during the COVID-lockdown in Norway would be 

continuously used to the typical year. Scenario 3 was developed based on the average monthly 

heat use that was observed before and during the COVID-19 pandemic. The flowchart of the 

algorithm applied to Scenario 3 is shown in Fig. 1. 
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Fig. 1. Flowchart for the algorithm for determining the heat use in Scenario 3 

The detailed algorithm for determining boundaries of the heat use under Scenario 3 was as 

the following: 

Step 1. Identify the model that reflects the relationship between the monthly heat use and 

the outdoor temperature in normal conditions 

It is well known that monthly heat demand in buildings varies throughout the year due to 

changes in the outdoor temperature [28]. The average monthly heat use and the outdoor 

temperature are linearly dependent as stated in [30]. In order to explain these relationships, a linear 

regression model was developed based on data from 2019.  

Step 2. Based on the identified model in Step 1, calculate expected monthly heat use for the 

typical cold and warm years 

At this stage, the average monthly outdoor temperatures for typical years were used as the 

input to the regression model (see Step 1). Thus, the values of the expected monthly heat use for a 

typical cold and warm years were obtained. 
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Step 3. Calculate the monthly variation factors for the typical years 

In accordance with the expected monthly heat use for a typical year, the monthly variation 

factors for the heat use was calculated as: 𝐾𝑖 = 𝐸𝑡.𝑖/�̅�𝑡                                                     (2) 

where 𝐾𝑖 is the monthly variation factors for i-th month, 𝐸𝑡.𝑖 is the expected heat use for i-th 

month of the typical year, �̅�𝑡 is the average monthly heat use for the typical yearly.  

Step 4. Identifying the average monthly heat use for the COVID-lockdown months 

Relying on data in 2020, the actual monthly heat use when the COVID-19 lockdown 

occurred were identified. The analysis showed that the difference between the monthly outdoor 

temperatures in March 2020 and the typical warm year was only 0.4 K. On the contrary, in the 

outdoor temperature in 2020 April was closer to the cold year with the temperature difference of 1 

K. For this reason, it was assumed that heat use in March for a typical warm year was equal to 

heat use in March 2020, and heat use in April for a typical cold year was equal to heat use in April 

2020. 

Step 5. Extrapolating the heat use for the rest of the year based on the monthly variation 

factors 

By using the monthly variation factors, the average monthly heat use when the COVID-19 

lockdown occurred were extrapolated for the typical cold and warm years. In such a way, we 

obtained boundaries of the average monthly heat use in Scenario 3 (i.e. for conditions when the 

heating system was expected to operate under settings that were used in the buildings during 

COVID-lockdown). 

 

3. Description of the observed educational buildings 

The investigations in this article were performed based on data obtained from educational 

institutions located in Trondheim, Norway. University buildings are presented by the Geology and 

Mineral Resources Engineering building at the campus of Norwegian University of Science and 
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Technology (NTNU). This building was built in 1953 and it underwent several renovations 

afterwards. It has an area of 3 516 m2. A more detailed description of the buildings properties and 

energy use at the entire NTNU campus are given in [31]. The heat use data for this building were 

collected from the energy management system of NTNU. The information of the heat use in eight 

kindergartens and 12 schools were obtained from the energy monitoring platform of the 

Trondheim municipality. Among these schools, nine schools are for junior pupils, two schools are 

secondary schools, and one is the mixed school. The area of kindergartens are within 779 - 2 086 

m2, and the area of the schools are within 3 206-8 449 m2. All the buildings in the analysis are 

using district heating system (DH) as the main heating supply carrier. In order to compare 

buildings of different characteristics, the average heat use per heating area (per m2) was used as a 

physical indicator. 

The influence of weather conditions on heat use was considered in the investigation. For 

this purpose, data obtained from the nearest meteorological station located in Trondheim were 

used [32]. 

 

4. Results 

This section is divided into two subsections. The analyses of heat use profiles before and 

during the COVID-19 restrictions is given in Section 4.1. The several scenarios for heat use in the 

educational institutions are shown in Section 4.2. 

 

4.1. Analysis of heat use profiles in educational institutions before and during the 

COVID-lockdown 

Norway is among the countries that had imposed strict restrictions when the COVID-19 

pandemic began to spread in early 2020. One of these restrictions was the temporary lockdown of 

educational institutions. Following the recommendations of the government, schools and 

kindergartens were closed from March 13th  to April 23rd 2020. The universities in Norway also 

stopped their regular operation starting from March 13th. Unlike schools and kindergartens, classes 

at the university buildings were resumed only from August 2020. However, a significant share of 

employees returned to physical presence on campuses in May 2020. Accordingly, this chapter is 
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focused on comparing heat use in March, April, and May 2019 and 2020. In addition, in our 

investigation, March and April included only days when the lockdown was imposed.  

Energy use profiles are a powerful instrument that allow us to display the changes in heat 

use at different time intervals. In our work, the profiles were used for the analysis of heat use 

variability before and during the COVID-19 pandemic. Although the outdoor temperature 

influence heat use [28], it was decided to compare the real profiles rather than the temperature 

adjusted values in this work. This enables us to focus on real data without making any biased 

suggestions. The temperature adjustment of heat use was introduced in the scenario analysis (See 

Chapter 4.2). Nevertheless, in the analysis of the profile, the outdoor temperatures in 2019 and 

2020 were considered. It was considered that the average outdoor temperature in March 2019 was 

0⁰ C, and in March 2020 it was 1.7⁰ C. In April 2019, the outdoor temperature was 7.2⁰ C, and in 

April 2020 it was 3.9⁰ C. Whereas in May 2019 it was 7.9⁰ C, and in May 2020 it was 6.4⁰ C. As 

it may be noted, April and May in 2020 had slightly colder temperatures than in 2019, while 

March a bit warmer. 

Since weekdays and weekends have different patterns of heat use, their profiles were 

considered separately. The average daily heat use profiles for kindergartens, schools, and 

university campus of 2019 and 2020 are compared in Fig. 2 - Fig. 4, respectively. In Fig. 2 - Fig. 

4, WD denotes working day and WE denotes weekend, and the dashed lines stand for 2019 and 

the solid lines for 2020. Typically, on weekdays, the main heating load follows the opening hours 

of the educational institutions. The heat use generally increased from 7:00 to 16:00 o’clock with 

the peak of the heat use at 9:00 o’clock, and a significant heat reduction persists from 20:00 to 

6:00 o’clock next morning. From Fig. 2 - Fig. 4, it may be observed that the shape of the heat use 

profiles before and during the pandemic in educational institutions remained almost the same. The 

profiles show that for kindergartens, this working schedule did not change during the COVID-

lockdown in 2020. For schools, there was a slight change of the peak load that was shifted 

backwards by an hour in March and April 2020 and forward by an hour in May 2020. For the 

university campus, the peak heat was moved backwards by an hour in April and two in May, while 
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much lower heat demand during the off-work time in March 2020 was noticed.

 

a)       b) 

Fig. 2. Heat use profiles for kindergartens, where: a) profiles for weekdays, b) profiles for 

weekends 

 

           a)                 b) 

Fig. 3. Heat use profiles for schools, where: a) profiles for weekdays, b) profiles for 

weekends 
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       a)        b) 

Fig. 4. Heat use profiles for the university campus, where: a) profiles for weekdays, b) 

profiles for weekends 

In Norway, teaching activities are not carried out in educational institutions on weekends. 

Thus, the heat load on weekends was much lower than on weekdays and is more in line with the 

heat load on weekdays at night. In Fig. 2 - Fig. 4, it may be noted that еhe minimum heat use on 

weekends was from 12:00 to 20:00 o’clock. It is likely that during this period, the heating system 

was operating at the minimum load, and the indoor temperature in the building was maintained 

mainly by thermal inertia. 

Fig. 2 a)- Fig. 4 a) show that during the weekdays in March 2020 heat use was reduced 

compared to the same period of 2019. However, unlike the assumptions made in [7], the profiles 

in the working days 2020 were not identical to the weekends. One of the reasons for this could be 

that some institutions may have operated during the COVID-lockdown. In order to support parents 

who are working in the critical positions such as medical systems, transportation, police stations, 

and others, kindergartens and junior schools (See Appendix Fig. A1) remained open during the 

pandemic. On the other hand, our analysis also showed that some buildings were using energy 

inefficiently and did not reduce heat use, regardless of the transition to distance learning. For 

example, the profiles for the secondary schools (See Appendix Fig. A2) showed that they did not 

decrease heat load in the buildings. 
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Despite the lockdown, in April 2020, the heat use was slightly higher than in April 2019. 

This fact can be explained by several reasons. Firstly, from April 18th to 22nd 2019, there were 

public holidays in Norway, and most educational buildings were closed in these days. The second 

reason is that April 2019 was warmer than April 2020, which led to less energy use in 2019. The 

third reason is preparation for buildings reopening at the end of April 2020. For example, it 

required cleaning and disinfection work, and testing of the heating system performance, which 

resulted in increased heat use.  

After buildings reopening in May 2020, we can observe an increased heat use comparing 

to May 2019. This phenomenon may be associated with an increase in DHW use for regular 

disinfection of buildings and personal hygiene. 

For many buildings, the profiles showed that the operation of heating systems during 

lockdowns should be changed to be more efficient. In order to achieve this goal, it is therefore 

necessary to develop recommendations and scenarios for operation of heating systems in various 

conditions. 

 

4.2.  Analysis scenarios of heat use in educational institutions 

This chapter explores three scenarios for the operation of the heating system in educational 

institutions during the pandemic. All the scenarios were developed by employing real statistical 

data obtained from schools, kindergartens and university campus. 

Scenario 1 investigated the heating system operation in the same regime as before the 

pandemic. This scenario was developed based on the method presented in Section 2.1. The ESC 

models for every hour on weekdays and weekends were developed with the data for 2019. Thus, 

the heat use for each building type was represented by 48 ESC models. For all these ESC models, 

the CPT of 14 ⁰ C showed the best approximation.  

An example of the ESC models for the heat use at the 13-th hour in kindergartens is shown 

in Fig. 5. For a more detailed analysis, the actual heat use in 2019 and during the lockdown in 

2020 was also plotted in Fig. 5. As it may be seen from Fig. 5, the heat use during the COVID-

lockdown lies close to the pre-pandemic data and models. This fact proves that the operation of 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



17 

 

heating systems in kindergartens remained practically unchanged during the lockdown in 2020. 

For other educational institutions, the ESC models demonstrated similar results.  

It should be noted that at certain hours on weekdays, the line after CPT had a slight 

positive slope (See Fig. 5 a)). From a theoretical point of view, with an increase in outdoor 

temperature, heat use should decrease. This positive slope can be explained by the use of the 

cooling system during the hot days. 

 

                                         a)        b) 

Fig. 5. ESC models for 13-th hour for kindergartens, where: a) ESC for weekdays, b) ESC 

for weekends 

 

Table 1 shows that the application of 48 ESCs allowed us to obtain quite accurate models 

for normal conditions of the heat use. For kindergartens and schools, the R2 was around 0.94, 

while for the university campus R2 was 0.83, meaning that all met the requirement of ASHRAE 

guidelines for achieving a satisfying regression model. In order to develop Scenario 1, the outdoor 

temperatures for the typical cold and warm meteorological years were applied as the input to the 

48 ESC models. In such a way, the possible boundaries of the heat use in buildings for Scenario 1 

were identified.  

The boundaries of the heat use in Scenario 1 for the schools, kindergartens, and university 

campus are shown in Fig. 8 - Fig. 10. The potential of energy savings can be assessed by 
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comparing Scenario 1 with the other scenarios that represent more efficient settings of the heating 

systems. 

 

Table 1. Accuracy of the model based on 48 ESC for Scenario 1 

Building type CPT (⁰ C)  R2 MAE MSE 

Kindergarten with DH  14 0.94 1.04 4.38 

Schools 14 0.94 1.68 11.15 

University campus 14 0.83 2.28 20.03 

 

Scenario 2 assumed that during the lockdown, the heat use in the buildings should be kept 

at the level of night setting under normal conditions. The heating system operation under such 

conditions may be explained by the ESC model determined based on the heat use in 2019 at the 

nighttime. An example of the ESC model for the kindergartens is shown in Fig. 6. This model 

represents periods when the heating system was operating at the minimum load due to the low 

occupancy in the buildings. 

 

Fig. 6. ESC for kindergartens for night settings of heat use 
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The accuracy criteria for the ESC models in Scenario 2 are given in Table 2. They 

indicated that the models explained the heat use reasonably well. For instance, for the 

kindergartens R2 = 0.93, for the schools R2 = 0.88, and for the university building R2 = 0.78. The 

typical cold and warm temperatures were applied to the ESC models in order to identify possible 

boundaries of heat use in Scenario 2. The heat use over the entire year for this scenario is 

presented in Fig. 8 - Fig. 10. Comparing to Scenario 1, Scenario 2 presented a reasonable 

approach to reduce heat use during the lockdown when buildings are not occupied. 

Table 2. Accuracy of the ESC models based on night heat use for Scenario 2 

Building type CPT (⁰ C) R2 MAE MSE 

Kindergartens 14 0.933 0.83 1.99 

Schools 14 0.883 0.66 1.29 

University campus 14 0.78 2.28 16.27 

 

Scenario 3 demonstrated the average monthly values of the heat use in conditions when the 

heating system was operated under the settings that were really applied during the COVID-

lockdown in March-April 2020. Similar to the previous scenarios, Scenario 3 was adjusted with 

the typical cold and warm years. For the development of Scenario 3, the monthly heat use model 

for 2019 was determined. The study revealed that the relationship between the average monthly 

heat use in educational buildings and the outdoor temperature could be described by a linear 

regression model, as shown in Fig. 7. Table 3 shows the validation criteria for the monthly heat 

use models. The R2 criteria in Table 3 were from 0.94 to 0.98. These values indicated that models 

were accurate enough to be used for the investigation. 
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Fig. 7. Monthly model of heat use for kindergartens 

 

Table 3. Accuracy of the monthly heat use model for Scenario 3 

Building type R2 MAE MSE 

Kindergartens 0.98 0.87 0.87 

Schools 0.97 0.56 0.58 

University building 0.94 1.85 5.85 

 

The average monthly outdoor temperatures for typical cold and warm years were used as 

the input to the model for Scenario 3. In such a way, the expected monthly heat use for typical 

years was determined. After employing Equation 2, the monthly variation factors of heat use were 

identified. The variation factors for the typical cold and warm years are presented in Table 4 - 5.  

Table 4. Monthly variation factors for a typical warm year 

Building type 
Month 

1 2 3 4 5 6 7 8 9 10 11 12 

Kindergartens 2.1 1.63 1.42 0.9 0.66 0.6 0.35 0.29 0.41 1.14 0.98 1.48 

Schools 2.22 1.7 1.48 0.9 0.62 0.56 0.28 0.21 0.34 1.16 0.98 1.54 

University  

building 
2.35 1.78 1.53 0.88 0.59 0.51 0.2 0.13 0.27 1.17 0.98 1.59 
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Table 5. Monthly variation factors for a typical cold year 

Building type 
Month 

1 2 3 4 5 6 7 8 9 10 11 12 

Kindergartens 1.83 2.02 1.84 1.14 0.64 0.27 0.23 0.3 0.41 0.82 1.20 1.27 

Schools 1.93 2.14 1.94 1.16 0.6 0.18 0.14 0.21 0.34 0.79 1.22 1.29 

University  

building 
2.03 2.27 2.04 1.18 0.55 0.1 0.06 0.13 0.27 0.78 1.24 1.33 

 

The monthly variations factors present the seasonality of the heat use. They showed that 

the highest heat use in the educational buildings occurred in January, March, and December. The 

lowest heat use was observed in the summertime, when space heating system was not used, and 

DHW use reduced due to summer holidays. For a typical cold year, the difference between the 

heating season and the summer months was more significant than for a typical warm year. This 

phenomenon may be explained by the fact that the heat use was significantly affected by the 

outdoor temperature and the DHW use due to the colder inlet water temperature. Therefore, the 

warmer outdoor temperatures caused lower heat use in buildings and vice versa. 

The boundaries of the heat use under Scenario 3 for schools, kindergartens, and the 

university building are presented in Fig. 8 - Fig. 10. Scenario 3 indicated also months that have the 

highest variation of the heat use between the typical cold and warm year. Among these months 

January, October, and December were the most noticeable ones, which may be seen with the large 

shadowed squares in Fig. 8 - Fig. 10. 

Scenario 3 was created using the monthly average values, and therefore, it was not as 

accurate as Scenarios 1 and 2 with the hourly values. This issue is discussed in Section 5. 

However, when considering the average monthly values, Scenario 3 would require higher heat use 

than Scenario 2, because it did not follow the advantageous energy-saving setting of the heating 

system.  
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Fig. 8. Three scenarios for the heat use in kindergartens 

 

Fig. 9. Three scenarios for the heat use in schools 
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Fig. 10. Three scenarios for the heat use in the university building 

 

The above analyses showed that the application of the night setting for the whole day, see 

Scenario 2, might reduce the daily heat use up to 54% compared to the settings when the heating 

system was working in the normal conditions, see Scenario 1. For kindergartens, it might be 

reduced up to 261Wh/m2, for schools − 236 Wh/m2, and for university building −248 Wh/m2. This 

fact indicates that there is a significant unrealized potential for energy conservation during 

lockdown. By applying the proper setting of the heating system during a pandemic is expected to 

reduce energy use and save money. 

 

5. Discussion and limitations of the study 

The COVID-lockdown in the educational institutions in Norway lasted for about two 

months. In this regard, the amount of the data collected over this period was limited for a 

comprehensive analysis. The comparison of the heat use profiles in this work was performed only 

for March, April, and May. The analysis of the annual data would be more useful and provide a 

better understanding of changes in the heat use. Due to the lack of data, it is challenging to 

forecast the heat use for the entire year. Furthermore, due to restrictions that were gradually 

imposed, the patterns of the heat use may be changed several times during and after the lockdown. 
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For this reason, this work focused on developing different heat use scenarios during a pandemic. 

These scenarios were adjusted to the outdoor temperatures of the typical cold and warm 

meteorological years. Typical temperatures are an approximation for the last 10-years and 

therefore may differ from the actual temperatures in subsequent years. Accordingly, they can be 

used only for estimation of possible boundaries of heat use in buildings rather than accurate 

forecasting. Scenarios 1 and 2 were developed based on actual heat use for the entire 2019. No 

noteworthy assumptions were made in these scenarios. Contrarily, Scenario 3 was based on 

monthly heat use in March and April 2020 that was extrapolated for the typical cold and warm 

years. Such extrapolation was based on several assumptions. First, it was expected that monthly 

variation factors identified based on the data from 2019 would be applicable for the pandemic 

conditions. Despite the consistency of this assumption, it is impossible to confirm it with the 

available data. The second assumption used the fact that the monthly outdoor temperatures in 

March and April 2020 were close to temperatures for the same month in the typical years. 

However, even due to minor differences in the temperatures, the particulate inaccuracy of 

Scenario 3 might occur. For this reason, if the additional data could be collected, further work 

shall be performed for improving Scenario 3. In addition, better scenarios may be identified. 

The analyzed buildings in this study are using DH as the main heating supply method and 

electricity for electric appliances. Meanwhile, there are also many Norwegian buildings having 

electricity as the main energy supply method, including electric heating without submeters. It 

would be interesting to investigate the energy changes of these buildings during the lockdown or 

other circumstances in further research.   

 

6. Conclusions 

The COVID-19 pandemic poses significant challenges to the energy sectors both in 

Norway and many other countries. These challenges are primarily related to fluctuations in energy 

use of buildings caused by restrictions that aim to stop spreading of the infection. The operation of 

educational institutions was significantly affected by lockdown in March-April 2020 and other 

restrictions. Understanding the changes in energy use triggered by the pandemic is essential for 

further energy planning, avoiding excessive energy use, and ensuring the proper operation of 

buildings. Among all technical systems in buildings, the heating system is the biggest energy user 
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in Norway. Despite this fact, the literature review showed that the operation of heating systems 

and the heat use in educational buildings during and after the COVID-lockdown is not 

investigated enough yet. This article highlights the issue of the analysis of the heat use profiles and 

scenario development for schools, kindergartens, and university buildings in Norway.  

Many publications assume that during the lockdown, the operation of educational 

institutions would follow the weekend patterns. However, our research rejected this hypothesis. 

The investigation found that the shape of the heat use profiles on weekdays before and during the 

pandemic remains almost unchanged and differs significantly from the weekend profiles. The 

profiles revealed that in March 2020, the heat use was lower than in the same period of 2019. In 

April 2020, the heat use was slightly higher than in April 2019. Differences between the profiles 

in March and April were mainly influenced by changes in the outdoor temperature, instead of 

changes in the heating system settings. Therefore, it can be stated that during COVID-lockdown, 

the energy system in many buildings was operated inefficiently. After the educational buildings 

were reopened in May 2020, the profiles showed an increase of the heat use. Such an increase 

might be explained by introducing strict requirements for regular buildings’ disinfection and 

personal hygiene. 

The short-term lockdown in Mach-April 2020 did not allow us to collect enough statistical 

data about the heat use. The available data were not adequate for accurate prediction of the heat 

use. For this reason, instead of performing model prediction, this article suggested scenario-based 

modelling for possible settings of the heating system. The following scenarios were developed for 

educational institutions: 1) Scenario 1 − Modelling based on the settings for a normal year, 2) 

Scenario 2 − Modelling in accordance with night settings of heat use, 3) Scenario 3 − Modelling 

based on settings that were used during the lockdown. All the scenarios were adjusted with the 

outdoor temperatures of the typical cold and warm years. The ESC method showed high accuracy 

in modelling Scenarios 1 and 2. Scenario 3 was developed by monthly variation factors of the heat 

use. These factors were used in order to project the seasonal variations of the heat use in the 

COVID-lockdown conditions. The proposed scenario can be used for planning the heat use and 

estimating the potential energy savings. For example, the analysis showed that application of night 

setting, Scenario 2 might allow us to reduce daily heat use up to 54% compared to the normal 

settings, Scenario 1. For kindergartens, it might be reduced up to 261 Wh/m2, for schools − 236 
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Wh/m2, and for university building − 248 Wh/m2. The methods and outcomes of the study may be 

applied to similar types of buildings when temporary lower attendance or shutdown will appear. 
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Appendix A 

 

                                              a)                b) 

Fig. A1. Heat use profiles for junior schools, where: a) profiles for weekdays, b) profiles 

for weekends 
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a)      b) 

Fig. A2. Heat use profiles for secondary schools, where: a) profiles for weekdays, b) 

profiles for weekends 

 

References: 

[1] H.A. Rothan, S.N. Byrareddy, The epidemiology and pathogenesis of coronavirus disease 

(COVID-19) outbreak, Journal of autoimmunity,  (2020) 102433. 

[2] COVID-19 coronavirus pandemic, Coronavirus Cases, Worldometer. Available from: 

https://www.worldometers.info/coronavirus/ (Accessed October 25, 2020). in. 

[3] C. Sun, Z. Zhai, The efficacy of social distance and ventilation effectiveness in preventing 

COVID-19 transmission, Sustainable cities and society, 62  (2020) 102390. 

[4] M. Carvalho, D.B. de Delgado, K.M. de Lima, M. de Cancela, C.A. dos Siqueira, D.L.B. de 

Souza, Effects of the COVID‐19 pandemic on the Brazilian electricity consumption patterns, 

International Journal of Energy Research,  (2020) e5877. 

[5] B. Janzen, D. Radulescu, Electricity Use as a Real Time Indicator of the Economic Burden of 

the COVID-19-Related Lockdown: Evidence from Switzerland,  (2020). 

[6] A. Abu-Rayash, I. Dincer, Analysis of the electricity demand trends amidst the COVID-19 

coronavirus pandemic, Energy Research & Social Science, 68  (2020) 101682. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



28 

 

[7] A. Bahmanyar, A. Estebsari, D. Ernst, The impact of different COVID-19 containment 

measures on electricity consumption in Europe, Energy Research & Social Science, 68  (2020) 

101683. 

[8] H.M. Alhajeri, A. Almutairi, A. Alenezi, F. Alshammari, Energy demand in the state of 

Kuwait during the covid-19 pandemic: technical, economic, and environmental perspectives, 

Energies, 13 (17) (2020) 4370. 

[9] H. Zhong, Z. Tan, Y. He, L. Xie, C. Kang, Implications of COVID-19 for the electricity 

industry: A comprehensive review, CSEE Journal of Power and Energy Systems, 6 (3) (2020) 

489-495. 

[10] R.M. Elavarasan, G. Shafiullah, K. Raju, V. Mudgal, M.T. Arif, T. Jamal, S. Subramanian, 

V.S. Balaguru, K. Reddy, U. Subramaniam, COVID-19: Impact analysis and recommendations 

for power sector operation, Applied energy, 279  (2020) 115739. 

[11] S.S. Qarnain, S. Muthuvel, S. Bathrinath, Review on government action plans to reduce 

energy consumption in buildings amid COVID-19 pandemic outbreak, Materials Today: 

Proceedings,  (2020). 

[12] E. Ghiani, M. Galici, M. Mureddu, F. Pilo, Impact on Electricity Consumption and Market 

Pricing of Energy and Ancillary Services during Pandemic of COVID-19 in Italy, Energies, 13 

(13) (2020) 3357. 

[13] H. Eroglu, Effects of Covid-19 outbreak on environment and renewable energy sector, 

Environment, Development and Sustainability,  (2020) 1-9. 

[14] C. Burleyson, A.D. Smith, J.S. Rice, N. Voisin, A. Rahman, Changes in Electricity Load 

Profiles Under COVID-19: Implications of “The New Normal” for Electricity Demand,  (2020). 

[15] C. Chen, G.Z. de Rubens, X. Xu, J. Li, Coronavirus comes home? Energy use, home energy 

management, and the social-psychological factors of COVID-19, Energy research & social 

science, 68  (2020) 101688. 

[16] S. Saadat, D. Rawtani, C.M. Hussain, Environmental perspective of COVID-19, Science of 

The Total Environment,  (2020) 138870. 

[17] T. Lowder, N. Lee, J. Leisch, COVID-19 and the Power Sector in Southeast Asia: Impacts 

and Opportunities, in, National Renewable Energy Lab.(NREL), Golden, CO (United States), 

2020. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



29 

 

[18] N. Edomah, G. Ndulue, Energy transition in a lockdown: An analysis of the impact of 

COVID-19 on changes in electricity demand in Lagos Nigeria, Global Transitions, 2  (2020) 127-

137. 

[19] M.D. Pinheiro, N.C. Luis, COVID-19 Could Leverage a Sustainable Built Environment, 

Sustainability, 12 (14) (2020) 5863. 

[20] R. Ferroukhi, D. Gielen, E. Press, An agenda for resilience, development and equality. The 

Post-COVID recovery, in, The  International  Renewable  Energy  Agency  (IRENA), 2020. 

[21] S. Pezzutto, S. Croce, S. Zambotti, L. Kranzl, A. Novelli, P. Zambelli, Assessment of the 

Space Heating and Domestic Hot Water Market in Europe - Open Data and Results, Energies, 12 

(9) (2019) 1760. 

[22] S. Werner, District heating and cooling,  (2013). 

[23] A. Cheshmehzangi, COVID-19 and household energy implications: what are the main 

impacts on energy use?, Heliyon, 6 (10) (2020) e05202. 

[24] ASHRAE, Epidemic task force building readiness, Available from: 

https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-building-

readiness.pdf  (Accessed October 22, 2020), in. 

[25] D. Cvetkovic, A. Nesovic, I. Terzic, Impact of people's behavior on the energy sustainability 

of the residential sector in emergency situations caused by COVID-19, Energy and Buildings, 

(110532) (2020). 

[26] J.F. Nicol, M.A. Humphreys, Adaptive thermal comfort and sustainable thermal standards 

for buildings, Energy and buildings, 34 (6) (2002) 563-572. 

[27] T. Csoknyai, J. Legardeur, A.A. Akle, M. Horvath, Analysis of energy consumption profiles 

in residential buildings and impact assessment of a serious game on occupants’ behavior, Energy 

and Buildings, 196  (2019) 1-20. 

[28] T. Tereshchenko, D. Ivanko, N. Nord, I. Sartori, Analysis of energy signatures and planning 

of heating and domestic hot water energy use in buildings in Norway, E3S Web of Conferences, 

111 (06009) (2019) p. 1-8. 

[29] Photovoltaic geographical information system. Typical year weather data. Available from: 

https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#TMY (Accessed October 28, 2020), in. 

[30] R. Hitchin, Monthly utilisation factors for building energy calculations, Building Services 

Engineering Research and Technology, 38 (3) (2017) 318-326. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



30 

 

[31] J. Guan, N. Nord, S. Chen, Energy planning of university campus building complex: Energy 

usage and coincidental analysis of individual buildings with a case study, Energy and Buildings, 

124  (2016) 99-111. 

[32] Climate data from Norwegian Meteorological Institute. Available from: http://eklima.met.no 

(Accessed January 13, 2020). in. 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 


	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page



