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Abstract—Brain circuits exhibit very complex dynamics, where
individual neurons fire action potentials determining coordinated
activity patterns. During behavior, a multitude of brain areas
are engaged in planning and execution. A particular focus has
been recently put on fronto-parietal circuits, which have well-
established roles in coordinating complex movements, and which
were recently shown to encode whole-body posture. Individual
cells in these areas can exhibit striking behavioral tuning, but it is
less well known how the collective firing of the neurons correlates
with behavior. Here, our objective was to find a way to highlight
ensemble firing patterns correlated with behavioral events. To
accomplish this, we introduce a machine learning approach
for revealing such associations between high-dimensional multi-
neuronal firing patterns and behavioral events in freely running
rats. We introduce data representations that can extract firing
patterns evolving on multiple timescales, and propose an ordered
mapping using Kohonen maps to reveal the stereotypically
appearing patterns on different timescales in a way that considers
the structure of the data space. Furthermore, we apply machine
learning on the raw and Kohonen-mapped data and study how
and why these approaches can reveal complementary information
about the relation between firing patterns and behavior. We
conclude that fronto-parietal firing patterns exhibit specific
expression in relation to behavior. Depending on the type of
data representation, machine learning can reveal patterns with
different complexity and evolving on various timescales.

Index Terms—Machine Learning, Posterior-Parietal Cortex,
Medial Agranular Cortex, Neural Ensembles, Behavior, Clus-
tering, Kohonen Mapping

1These authors contributed equally.

I. INTRODUCTION

Complex behavior in mammals is supported by an intricate
network of neural circuits, spanning multiple cortical and
subcortical regions [1]. A large body of research has been per-
formed in rodents, where the role of the hippocampus [2] and
enthorhinal cortex [3] in navigation has been well established.
Less well understood are other, "higher-order" areas, that have
been suggested to play an active role in planning and action
execution, such as the posterior parietal cortex (PPC) [4] and
the medial agranular cortex (AGm), also called frontal motor
cortex (M2) [5]. It has been recently demonstrated that neurons
in these areas exhibit highly selective firing in relation to the
posture of the head, back, and neck of freely moving animals
[6].
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While the firing properties of individual neurons in PPC and
AGm during behavior begin to be deciphered, their collective
firing statistics and coordination across circuits remains to
be explored. In general, the behavior of multi-neuronal high-
dimensional firing patterns, also called neural ensembles,
cannot be inferred from the low dimensional behavior of their
individual, composing neurons [7], [8]. This phenomenon is
called emergence, i.e. the behavior of the whole goes beyond
that of individual composing elements [9]–[11]. Here, we
argue that specialized methods must be developed to cope with
multi-neuronal firing pattern statistics, capable of handling
high-dimensional data and able to identify systematic relations
between firing patterns and behavioral events.
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We have previously developed a framework for the visual-
ization and quantification of neural ensemble firing relying
on convolution with exponentially-decaying kernels (causal
low-pass filtering) and ordered mapping / clustering using 3D
Kohonen maps [12], [13]. Here, we extend this framework
with a machine learning approach, whereby we attempt to
determine the best strategy to explore how multi-neuronal
firing ensembles in PPC and AGm are related to the behavior
of the animal. We develop a machine learning strategy and
explore how convolution and clustering affect the ability of a
classifier to predict relevant behavioral events.

II. MATERIALS AND METHODS

A. Recording of electrophysiology data

Extracellular multi-electrode electrophysiology data was
recorded at the Kavli Institute for Systems Neuroscience,
Tondheim, Norway. Neural activity was recorded from a single
Long-Evans rat (3–5 months old, 400–600 g) using a dual
chronic implant with silicon probes (NeuroNexus Inc., MI,
USA; custom design based on A8x1-tet-2mm-200-121). The
two probes were inserted into PPC (-3.8 to -4.25 mm AP,
center shank 2.7 mm ML) and AGm (center shank +0.5 mm
AP, 0.7 mm ML), and each consisted of 8 tetrodes (four 160
µm2 iridium recording sites) disposed on eight, 2 mm long
shanks. The H32-to-HS36 custom head stage was connected
via unity-gain AC-coupled amplifiers to a Digital Lynx 4SX
recording station (Neuralynx Inc. Montana, USA) sampling
signals at 32 kSamples/s. The headstage was suspended using
elastic string to compensate for the weight of the headstage and
cable, enabling animals to effectively explore the recording
arena. All experiments were performed in accordance with the
Norwegian Animal Welfare Act and the European Convention
for the Protection of Vertebrate Animals used for Experimental
and Other Scientific Purposes.

B. Behavioral setup design and data segmentation

The rat performed a dynamical foraging task in an open
field arena (2 × 2 × 0.8 m) that had 32 conical wells in its
floor, such that these wells could be filled with chocolate oat
milk. The rat was trained to first seek a reward at the "home"
well location (fixed at the beginning of the experiment). After
consuming the reward there, a random "target" well was
filled, usually prompting a more elaborate search. Upon the
consumption of the target well, the home well reward would
become available again. This cycle was repeated multiple
times during a 20 min recording session, allowing for the
expression of both a more “naive” exploration for the target
wells and an “informed” navigation to the home well.

Relying on a video recorded by a camera placed on the
rat’s headstage, the moments when the rat arrived and departed
from home and target wells were identified. These moments
were then used as alignment triggers for subsequent data
analysis, and included four types of events: start home (SH
- the animal arrived to the home well), end home (EH - the
animal left the home well), start target (ST - the animal arrived
to the target well), end target (ET - the animal left the target

well). During analysis, data was segmented by cutting pieces
encompassing 8 seconds before and 8 seconds after these four
events. Each such 16 seconds data segment was called a "trial".

C. Spike extraction and generation of activity vectors (AV)

Spike extraction from the multi-channel recording was per-
formed using a thresholding operation. The signal was first
high-pass filtered (IIR Butterworth order 3, cutoff 300 Hz),
in order to remove the low frequencies, and a threshold of 3
standard deviations was chosen. Whenever the signal exceeded
this threshold, we considered that a spike was present. De-
tected spikes were aligned to their peak value and a waveform
of 20 samples (0.6 ms) before and 37 samples (1.2 ms) after
the peak value was extracted from the signal for each spike.
Features of these waveforms were then clustered using K-
means clustering based on features including spike amplitude,
spike width, the waveform itself, and the first three PCA
components. The resulting clusters were manually merged
according to waveform shapes obtaining a set of final clusters
corresponding to the isolated single units. The timestamps for
spikes were then extracted, sorted according to the identity of
the firing cell (single unit), and aligned to a sampling rate of
1,000 samples/s (i.e., expressed in milliseconds).

For each single unit we then computed its activity trace
using a technique pioneered by Gerstein and Aertsen [14],
convolving its spike train with an exponential decay kernel:

ai(t) =

{
ai(t− 1) + 1, if neuron i fired at time t
ai(t− 1) · e−1/τ , otherwise

(1)

where, τ is a time constant, set to 4 different levels (20, 50,
100, and 200 ms).

The time constant, τ , regulates the "timescale" of the
analysis and can be viewed as a synaptic integration time
constant [13]. After convolution, a real-valued signal was
obtained for each identified single unit. As described in our
previous work [12], [13], the next step was to construct activity
vectors (AV) for each time point along the experiment by
sampling across activity traces of all units (17 from PPC and
20 from AGm). We obtained AVs with a dimensionality equal
to the total number of cells identified across the two areas
(37), representing the integrated coordinated co-firing of the
observed population of neurons. For small time constants (τ
≤ 30 ms) these AVs reflect synchrony patterns [13], while
for large time constants (τ ≥ 50 ms) they reflect firing-rate
covariations [15].

D. Clustering and generation of Kohonen model vectors (KH)

AVs obtained in the previous step are real-valued vectors
and, therefore, they span a potentially infinite number of
instantiations. In many analyses, it is desirable to identify a
limited number of representative vectors, called firing patterns,
such that one can correlate the expression of these patterns
with various experimental conditions. To this end, a simple
solution is to apply a clustering procedure in high-dimensional
space to obtain a number of representative cluster centers, also
called model vectors [16].
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Figure 1. Machine learning accuracy on different datasets. The title of each subplot defines the integration time constant.

Clustering can be achieved with multiple techniques, like K-
Means [17], but here we opted for a more complex one, based
on the Kohonen (KH) self-organizing map [18]. The advantage
of using the latter is that one can achieve simultaneously clus-
tering and ordered mapping. We have previously introduced
a versatile visualization method for high-dimensional neural
data using 3D Kohonen maps [12].

Here we adopted the same strategy and fed the AVs to
a 3D Kohonen map (10 × 10 × 10), obtaining 1,000 KH
model vectors. We then replaced each activity vector with its
closest model vector, obtaining a dataset with a sequence of
KH vectors spanning the entire duration of the experiment.

E. Machine learning

The machine learning (ML) paradigm involved a multi-layer
perceptron (MLP) [19] trained for 50 epochs to distinguish
between the four triggers present in the data (SH, EH, ST, ET),
corresponding to events when the animal arrives and leaves the
home and target wells. The network’s architecture was fixed
to 18,500 (37 × 500) input units, two hidden layers of 500
and 100 units, and an output layer of 4 units. All layers had an
ELU [20] activation function, except for the output, where we
used a softmax layer. The two hidden layers had a dropout of
50%, to prevent overfitting [21]. We used a cross-entropy loss
function and trained the networks using the Adam algorithm
[22] on batches of 10 samples.

To prepare the data for the ML analysis, the 16 seconds of
data (±8 s) around the four behavioral events was cut into
non-overlapping windows of 500 ms. At a certain offset, we
obtained a window containing 500 AV or KH vectors for each
trial. This window was then flattened and fed to the network
as input. Trials were split the into test (23) and training (51)

sets randomly. The network was then trained and tested and a
performance was obtained for the current offset of the analysis
window. The procedure was repeated 50 times in order to
control for representative and unrepresentative trials, and we
computed the average and standard deviation of classification
performance. As an additional control, we also ran the same
tests with shuffled labels, such that the correlations between
the label and data were destroyed, estimating the chance-
level of the classification. Finally, the window was moved to
the next time offset and the entire procedure was repeated.
Importantly, this setup enables the classifier to learn sequences
of patterns expressed at a certain location in the trial.

F. Comparative analyses of AV and KH

In order to determine differences between the classification
performance on KH and AV representations, we employed two
measures: mean squared error (MSE) and pattern complexity.
The MSE was computed for each time point and trial, between
the AV and the KH representations, and then averaged over
trials. The pattern complexity measure provides information
about how many cells are "active" in a certain activity or
model vector at a certain time point (for details, see [17]).
More specifically, pattern complexity counts the number of
cells whose activation in the pattern exceeds 0.36 (≈1/e). We
evaluated complexity at each time point, and then averaged
this measure over trials. Complexity was computed separately
for the AV and KH representations.

III. RESULTS

We first attempted to determine if coordinated firing of PPC
and AGm populations carries informative signatures about the
behavioral contingencies while the rat was performing the
experimental task. To this end we used a machine learning
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approach, trying to classify, in a time-resolved manner, the
location of the animal with respect to the four behavioral
events (SH, EH, ST, ET) - see Figure 1.

A. Profile differences of ML performance on AV and KH

Classifiers reached a significant performance above chance,
with a specific peak around the behavioral event (trigger),
irrespective of the type of representation, AV or KH (Figure
1). This suggests that the firing patterns expressed across
PPC and AGm were more consistently associated to different
conditions while the animal was close to the triggers. Indeed,
the animal executed different kinds of behaviors in relation to
the different events. While in all trials the animal received a
reward between start and end events (SH - EH, ST - ET),
only prior to SH the animal could anticipate the reward,
because only the location of the home well was known. In
addition, when departing from the home well, the animal
performed a random exploration, searching for the random
location of the target well. Classification results indicate that
these different behaviors are associated to different sequences
of firing patterns across the two areas, with more specificity
close to the behavioral events.

Two important effects were revealed by the analysis in Fig-
ure 1. First, the maximum classification performance depended
on the integration time constant τ : performance peaked already
at τ = 100 ms. In addition, at the large τ = 100 and 200 ms
(Figure 1, bottom), no significant difference could be found
between the classification on AV and KH. Furthermore, for
these large integration time constants classification tended to
drop towards chance (uncertainty) as one moved away from
the behavioral events (at offset 0).

A second interesting effect was found for the lower inte-
gration time constants, τ = 20 and 50 ms. For these cases,
the KH representation had a higher performance than the AV
representation in the uncertain regions. Indeed, especially for τ
= 20 ms, the KH representation seemed to contain information
about the following / preceding behavioral event, significantly
above chance (Figure 1, top-left). These results suggest that
the AV and KH representations are not equivalent for lower
τ and that Kohonen mapping seems to pick up patterns that
are more specifically correlated to the behavior of the animal
along the trial.

B. Mean squared error and complexity

To determine the difference between AV and KH rep-
resentations that may have led to the observed difference
in classification performance on the AV and KH sets, we
next computed the time-resolved MSE between AVs and KH
model vectors, time point by time point for each trial and
averaged them across trials (Figure 2, top panel). Similarly, we
computed the average complexity of expressed AVs (Figure 2,
middle panel) and KH model vectors (Figure 2, bottom panel)
in time. All these computations were performed as a function
of τ .

We found that the MSE between the AV and KH repre-
sentations increased in a linear fashion with τ (Figure 2, top

panel). The variance and overall value of the MSE also seemed
to scale with τ . Regarding complexity, this seemed to scale
differently as a function of τ for KH and AV.

By plotting the average complexity of AV and KH represen-
tations over the trials on a scatter plot for each τ (Figure 3), we
gained more insight into the relationship between complexity
and τ . For low values of τ , the AVs had higher complexity than
their corresponding model vectors in the KH representation.
As τ was increased, the cloud shifted in favor of higher KH
complexity. It can also be observed that the complexity of the
two representations was correlated. Indeed, this was expected,
as the KH representation retained a lot of the information
present in the AV representation.

In a final test, we plotted the complexity as a function
of τ and tried to fit this relationship with a second degree
polynomial (Figure 4). Interestingly, complexity had a more
linear dependence on τ for the case of the KH than for the
AV representation. The complexity of the AV representation
saturated for high τ values, while the KH representation
retained higher pattern complexity.

IV. DISCUSSION

We have shown that constructing high-dimensional repre-
sentations of the firing of multiple neurons in fronto-parietal
circuits and application of machine learning enables the detec-
tion of non-trivial associations between the expression of firing
patterns and behavioral events. This is a significant advantage
because, as opposed to experiments targeting sensory areas,
where stimuli are presented in a trial-by-trial fashion, behavior
is much more variable, being determined by the particular
decisions taken by the animal. As a result, defining experi-
mental conditions and cutting the data into segments that are
associated with different behaviors is certainly more difficult.
We argue that machine learning is particularly valuable for
analysis of behavioral experiments because it enables the rapid
exploration of the association between neural activity and
behavioral events.

Here, we extracted high-dimensional activity patterns by
computing activity and model vectors across all identified
neurons (37 single units, 17 from PPC and 20 from AGm),
thus defining patterns that include the simultaneous activity
in PPC and AGm. We found that specific firing patterns tend
to occur in relation to different behavioral events and that, as
one moves away from these events, patterns on fast and slow
timescales seem to exhibit different properties. In particular,
stereotypically occurring fast patterns (on timescales of 50 ms
and less), identified using Kohonen mapping, provide informa-
tion about the following or preceding behavioral events. This
is not the case for patterns evolving on slower timescales, and
cannot be detected by machine learning on fast timescales
when the raw activity vectors are used as a feature.

It is unclear why the KH representation remains more
specific across time than the AV representation for small
timescales. There are several potential explanations. For exam-
ple, it could be that model vectors computed using Kohonen
mapping provide a less noisy representation of the data at
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Figure 2. Mean squared error and complexity computed on KH and AV representations of the data.

��� ��� ��� ��� ���

���

���

���

���

���

�
��

��
��

��
���

���
��

��

τ��������

� � 


�

�

�

	




τ��������

�� �� �� ��
��������������������

��

��

��

��

�
��

��
��

��
���

���
��

��

τ���������

�� �	 �
 �� ��
��������������������

��

�	

�


��

��
τ���������

Figure 3. Comparison of pattern complexity in AV versus KH repre-
sentations. The diagonal line represents equal complexity, every point above
corresponds to higher complexity in AV, and every point below corresponds
to higher complexity in KH. The panels are titled with the time constant used
to create the datasets.

small integration time constants, where random, unrelated
spikes, tend to produce a large number of "noise" patterns.
Therefore, applying clustering before the machine learning
step may be increasing signal-to-noise ratio and favor the
detection of specific patterns.

Another potential explanation for the more sustained per-
formance on the KH set has to do with the information fed
to the classifier: sequences of patterns in windows of 500 ms
duration. On fast timescales, these sequences are particularly
sensitive to unrelated spikes, fired by neurons whose activity
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Figure 4. Pattern complexity in the AV and KH representations as a
function of τ . The black line represents a second degree polynomial fit.

is not correlated to a particular behavioral event. Because
Kohonen mapping creates representations that favor frequently
appearing patterns, it is possible that KH vector sequences
are less disturbed by event-unrelated spikes. This however has
important implications, because it suggests that firing patterns
exist, at least across a fraction of neurons in the observed
population, which predict behavioral events that will follow
/ have passed at a temporal distance of seconds. This result
expands previous observations on individual PPC cells, which
have been shown to fire selectively in anticipation to particular
head movements [23].

A potential confirmation for the above scenario comes from
complexity analysis. The latter revealed that on fast timescales
the KH representation produces patterns with less participating
neurons, likely detecting subsets of neurons which fire system-
atically in relation to behavioral events. On the other hand, for
large timescales, this relation reverses, with the KH retaining
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higher complexity patterns than the AV representation.
The relation between pattern complexity and timescale is

more linear and can preserve higher dimensional patterns at
large timescales for the KH than for the AV representation.
This suggests that Kohonen mapping suppresses rarely appear-
ing high-complexity patterns on fast timescales and retains
the more frequently appearing high-complexity patterns on
large timescales. The present results suggest that the Kohonen
mapping representation we have introduced earlier [12], [13]
has the potential of revealing complementary information with
respect to the raw activity vectors, in a timescale dependent
manner. On fast timescales, it is possible that the KH rep-
resentation detects robust subsets of neurons which fire in a
condition-specific manner, suppressing the spikes of neurons
whose activity is noisy and very sparse.

By including the firing of both PPC and AGm neurons in
the high-dimensional vectors, we have quantified how cross-
area coordination is associated to behavioral events. In a
future study, it will be interesting to address how activity in
each area alone is correlated with behavior and to determine
the relationship between patterns in PPC and patterns in
AGm (correlation, delay, etc). These investigations can be
performed by using a machine learning approach similar
to that introduced here. Furthermore, future studies should
also elucidate the manner in which the representations using
Kohonen mapping are different from those that consider just
the raw signal traces. Because Kohonen maps perform an
ordered mapping, the resulting model vectors represent a high-
dimensional alphabet that may reflect some intricate structure
within the high-dimensional neural data space.

V. CONCLUSIONS

The application of machine learning techniques to data
recorded in complex neuroscience experiments is a fruitful
avenue. We have shown that it allows important inferences
about how neural populations are engaged during behavior.
While the number of potential applications in the analysis
of neuroscience data is huge, we would like to argue that
conclusions drawn from application of machine learning tools
to such data need to be formulated carefully as they may
depend on the particular way data has been preprocessed and
on how the features were defined and computed.
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