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1. Introduction

In [11,12], Carlson introduced cohomological support varieties for modules over group 
algebras of finite groups, using the maximal ideal spectrum of the group cohomology ring. 
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These varieties behave well with respect to the typical operations such as directs sums 
and syzygies. Moreover, they encode important homological information. For example, 
the dimension of the support variety of a module equals the complexity of the module. 
In particular, the variety of a module is trivial if and only if the module is projective.

Shortly after these cohomological support varieties were introduced, it was shown in 
[1] that the variety of a tensor product of modules equals the intersection of the varieties 
of the modules. This property is commonly referred to as the tensor product property. 
As shown in [14], it holds also for modules over finite dimensional cocommutative Hopf 
algebras; for such algebras, there is a theory of support varieties generalizing that for 
groups. In fact, one can define support varieties over any finite dimensional Hopf algebra, 
cocommutative or not, using the Hopf algebra cohomology ring. However, it is not known 
if this cohomology ring is finitely generated in general. What is known is that the tensor 
product property may or may not hold for non-cocommutative Hopf algebras having 
finitely generated cohomology rings. Namely, as shown in [6,18,19], there are examples 
of such algebras where the tensor product property holds, and examples where it does 
not.

Why do we care about the tensor product property? There are several reasons. Not 
only does it look good; it indicates that the homological behavior of a tensor product is 
closely related to each of the factors. When the property does not hold, some peculiar 
things can happen; examples in [6] show that the tensor product of two modules in one 
order can be projective, but non-projective in the other order. Another reason why the 
tensor product property is of interest is that in many cases, it is connected with the 
classification of thick subcategories. It is an ingredient in Balmer’s classification of thick 
tensor ideals of tensor triangulated categories (cf. [2]), and a necessary consequence of 
Benson, Iyengar and Krause’s stratification approach in [4,5], as shown in [4, Theorem 
7.3]. In general, one is often in a situation where some triangulated tensor category (where 
the tensor product is not necessarily symmetric) acts on a triangulated category, and 
where the latter comes with a theory of support varieties relative to some cohomology 
ring; this is studied in detail in [10]. If the appropriate tensor product property holds, 
then it is sometimes the case that the thick subcategories are actually tensor ideals.

In [13,20,21], a theory of support varieties for arbitrary finite dimensional algebras 
was developed, using Hochschild cohomology rings. For such an algebra A, there is in 
general no natural tensor product between one-sided modules, as is the case for Hopf 
algebras. However, one can tensor any left A-module with a bimodule, and obtain a new 
left A-module. It has therefore been asked whether some version of the tensor product 
property holds in this setting. In other words, given a bimodule B and a left A-module 
M , is there an equality

V(B ⊗A M) = V(B) ∩ V(M)

of support varieties? This does not immediately make sense: how should we define the 
support variety of a bimodule? If we just use the same definition as for one-sided modules, 
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then the support variety of any bimodule which is one-sided projective is trivial. In this 
case, the variety of the tensor product A ⊗A M would be V(M), whereas V(A) ∩ V(M)
would always be trivial. However, as we explain at the end of Section 2, there are actually 
several possible meaningful ways of defining a support variety theory for bimodules, using 
Hochschild cohomology. On the other hand, we show that the tensor product property 
can never hold in general, regardless of which bimodule version of support variety theory 
we use. In fact, we show in Theorem 2.2 that when A is a quantum complete intersection 
of a certain type, then there exists a left A-module M and a bimodule B for which

V(B ⊗A M) � V(M)

One consequence of the failure of such an inclusion is that in the stable module category 
and the bounded derived category of A-modules, there are thick subcategories that are 
not tensor ideals.

2. Support varieties and tensor products

Let us first recall the basics on the theory of support varieties for finite dimensional 
algebras, using Hochschild cohomology. We only give a very brief overview; for details, 
we refer the reader to [13,20,21].

Let k be a field and A a finite dimensional k-algebra with radical r. All modules 
considered will be finitely generated left modules, and we denote the category of such 
A-modules by modA. A bimodule over A is the same thing as a left module over the 
enveloping algebra Ae = A ⊗k Aop, and the Hochschild cohomology ring of A is the 
graded ring

HH∗(A) =
∞⊕

n=0
ExtnAe(A,A)

with the Yoneda product. This ring is graded-commutative, and so its even part HH2∗(A)
is commutative in the ordinary sense. Now let M and N be A-modules, and consider the 
graded vector space

Ext∗A(M,N) =
∞⊕

n=0
ExtnA(M,N)

The Yoneda product makes this into a graded left module over Ext∗A(N, N), and a graded 
right module over Ext∗A(M, M). Since for every L ∈ modA the tensor product − ⊗A L

induces a homomorphism

ϕL : HH∗(A) → Ext∗A(L,L)
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of graded rings, we see that Ext∗A(M, N) becomes a module over HH∗(A) in two ways: 
via the ring homomorphisms ϕN and ϕM . However, the scalar multiplication via these 
two ring homomorphisms coincide up to a sign.

Now suppose that H is a graded subalgebra of HH2∗(A). Then for every pair (M, N)
of A-modules, we can define the support variety VH(M, N) using the maximal ideal 
spectrum of H:

VH(M,N) = {m ∈ MaxSpecH | AnnH (Ext∗A(M,N)) ⊆ m}

There are equalities

VH(M,M) = VH(M,A/r) = VH(A/r,M)

and we define this to be the support variety VH(M) of the single module M . These 
support varieties share many of the properties enjoyed by the cohomological support va-
rieties for modules over group rings, in particular when H is noetherian and Ext∗A(M, N)
is a finitely generated H-module for all M, N ∈ modA. If this is the case, we say that 
the algebra A satisfies Fg with respect to H. Note that by [21, Proposition 5.7], the (even 
part of the) Hochschild cohomology ring is universal with this property, in the following 
sense: the algebra A satisfies Fg with respect to some H ⊆ HH∗(A) if and only if HH∗(A)
is noetherian and Ext∗A(A/r, A/r) is a finitely generated HH∗(A)-module.

The finite dimensional algebras we shall study are of a very special form, namely 
quantum complete intersections. These are quantum commutative analogues of truncated 
polynomial rings. Let us therefore fix some notation that we shall use throughout.

Setup. (1) Fix an algebraically closed field k, together with two integers c ≥ 2 and a ≥ 2.
(2) Define an integer ā by

ā =
{

a if char k = 0
a/ gcd(a, char k) if char k > 0

and fix a primitive āth root of unity q ∈ k.
(3) Denote by Ac

q the quantum complete intersection

k〈x1, . . . , xc〉/ (xa
1 , . . . , x

a
c , {xixj − qxjxi}i<j)

This is a local selfinjective algebra of dimension ac, and by [8, Theorem 5.5] it satisfies
Fg with respect to HH2∗(Ac

q). In [3], it was shown that one can actually define rank vari-
eties over this algebra, and that these varieties behave very much like the rank varieties 
for group algebras. It was then shown in [7] that these rank varieties are isomorphic 
to the support varieties one obtains by using a suitable polynomial subalgebra of the 
Hochschild cohomology ring. We now point out some facts about this algebra and its 
support varieties.
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Fact 2.1. (1) By [8, Theorem 5.3], the Ext-algebra Ext∗Ac
q
(k, k) of the simple module k

admits a presentation

k〈z1, . . . , zc, y1, . . . , yc〉/a

where a is the ideal generated by the relations
⎛
⎜⎜⎜⎜⎜⎝

zizj − zjzi for all i, j
ziyj − yjzi for all i, j
yiyj + qyjyi for all i > j

y2
i for all i if a > 2
y2
i − zi for all i if a = 2

⎞
⎟⎟⎟⎟⎟⎠

Here, the homological degree of each yi is one, whereas that of each zi is two. In particular, 
the zi generate a polynomial subalgebra k[z1, . . . , zc] over which Ext∗Ac

q
(k, k) is finitely 

generated as a module.
(2) As explained in [7, Section 2], it follows from [17, Corollary 3.5] that the image of 

the ring homomorphism

ϕk : HH2∗(Ac
q) → Ext∗Ac

q
(k, k)

is the whole polynomial subalgebra k[z1, . . . , zc]. Consequently, there exists a polynomial 
subalgebra k[η1, . . . , ηc] of HH2∗(Ac

q) with the following properties: each ηi is a homo-
geneous element in HH2∗(Ac

q) of degree two with ϕk(ηi) = zi, and Ac
q satisfies Fg with 

respect to k[η1, . . . , ηc].

We now prove our main result. It shows that there exists an Ac
q-module M and a 

bimodule B for which the support variety of the tensor product B⊗Ac
q
M is not contained 

in the support variety of M .

Theorem 2.2. Let k[η1, . . . , ηc] be a polynomial subalgebra of HH2∗(Ac
q) as in Fact 2.1. 

Then for every graded subalgebra H of HH∗(Ac
q) with

k[η1, . . . , ηc] ⊆ H ⊆ HH2∗(Ac
q)

the following hold:
(1) the algebra H is noetherian, and Ac

q satisfies Fg with respect to H;
(2) there exists an Ac

q-module M and a bimodule B with VH(B ⊗Ac
q
M) � VH(M).

Proof. Let us simplify notation a bit and write A for our algebra Ac
q. Since it satisfies

Fg with respect to k[η1, . . . , ηc], it follows from [13, Proposition 2.4] that the Hochschild 
cohomology ring HH∗(A) is finitely generated as a module over k[η1, . . . , ηc]. Note that 
the assumption in [13, Proposition 2.4] is that Fg holds with respect to a graded subal-
gebra of HH∗(A) whose degree zero part coincides with HH0(A), which is the center of 
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A. This is not the case for the polynomial subalgebra k[η1, . . . , ηc], since the center of A
is not of dimension one. However, this assumption is not needed in the result.

Since HH∗(A) is finitely generated as a module over the noetherian ring k[η1, . . . , ηc], 
the same is true for H, since this is a k[η1, . . . , ηc]-submodule of HH∗(A). Then H
is noetherian as a ring, since it contains k[η1, . . . , ηc] as a subring. Moreover, since 
Ext∗A(k, k) is finitely generated over k[η1, . . . , ηc], it must also be finitely generated over 
the bigger algebra H. This proves (1).

To prove (2), we first show that we may without loss of generality assume that H =
k[η1, . . . , ηc]. To do this, consider the ring homomorphism

ϕk : HH∗(A) → Ext∗A(k, k)

By Fact 2.1, the image of HH2∗(A) is the polynomial subalgebra k[z1, . . . , zc] of 
Ext∗A(k, k), and this is also the image of k[η1, . . . , ηc]; after all, that is how we con-
structed k[η1, . . . , ηc] in the first place. Therefore, since k[η1, . . . , ηc] ⊆ H ⊆ HH2∗(A), 
we see that the image of k[η1, . . . , ηc] is the same as that of H, namely k[z1, . . . , zc]. Now 
take any A-module X, and consider its support variety VH(X), which by definition is 
the set

{m ∈ MaxSpecH | AnnH (Ext∗A(X,X)) ⊆ m}

By [20, Theorem 3.2], there is an equality

VH(X) = {m ∈ MaxSpecH | AnnH (Ext∗A(X, k)) ⊆ m}

and so by [9, Proposition 3.6] the variety VH(X) is isomorphic to the set of maximal 
ideals of k[z1, . . . , zc] containing the annihilator of Ext∗A(X, k). Here we view Ext∗A(X, k)
as a left module over Ext∗A(k, k), and in this way it becomes a module over the subalgebra 
k[z1, . . . , zc]. The isomorphism respects inclusions of varieties, and this proves the claim.

In light of the above, we now take H = k[η1, . . . , ηc]. Since k is algebraically closed, 
we may identify the maximal ideal spectrum of H with the affine space kc. For a point 
λ = (λ1, . . . , λc) in kc, we denote the corresponding maximal ideal (η1 − λ1, . . . , ηc − λc)
in H by mλ, and when λ is nonzero we denote the corresponding line

{(γλ1, . . . , γλc) | γ ∈ k}

in kc by �λ. Moreover, we denote the element 
∑c

i=1 λixi in A by uλ, and by F (λ) the 
point (λa

1 , . . . , λ
a
c ) in kc. By [7, Proposition 3.5], the support variety VH(Auλ) of the 

cyclic A-module Auλ equals �F (λ), that is, there is an equality

VH (Auλ) =
{
mγF (λ) | γ ∈ k

}
= {(η1 − γλa

1 , . . . , ηc − γλa
c ) | γ ∈ k}

Note that F (λ) = 0 if and only if λ = 0.
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Now take any point μ = (μ1, . . . , μc) in kc with μi 
= 0 for all i, and consider the 
automorphism ψμ : A → A given by xi �→ μixi. What happens to the cyclic A-module 
Auλ when we twist it by this automorphism? In general, for an A-module X and an 
automorphism ψ of A, the twisted module ψX is the same as X as a vector space, but 
for w ∈ A and x ∈ X the scalar multiplication is w · x = ψ(w)x. Now denote the point 
(μ−1

1 λ1, . . . , μ−1
c λc) in kc by μ−1λ, and consider the map

Auμ−1λ → ψμ
(Auλ)

wuμ−1λ �→ ψμ(w)uλ

Note that since uμ−1λ = ψ−1
μ (uλ), this map is obtained by simply applying ψμ to the 

elements in Auμ−1λ. It is k-linear, and for every element v ∈ A and wuμ−1λ ∈ Auμ−1λ

there are equalities

ψμ

(
v · (wuμ−1λ)

)
= ψμ

(
vwuμ−1λ

)
= ψμ(u)ψμ(w)uλ

= u · (ψμ(w)uλ)

Thus the map is an A-homomorphism. Similarly, the inverse automorphism ψ−1
μ induces 

an A-homomorphism in the other direction, hence Auμ−1λ and ψμ
(Auλ) are isomorphic 

A-modules. Using [7, Proposition 3.5] again, we now see that VH

(
ψμ

(Auλ)
)

equals the 
line �F (μ−1λ).

Twisting an A-module X by an automorphism ψ is the same as tensoring with the 
bimodule ψA1, i.e. ψX � ψA1⊗AX. Therefore, with λ and μ as above, the support variety 
VH

(
ψμ

A1 ⊗A Auλ

)
is the line �F (μ−1λ). On the other hand, the support variety VH(Auλ)

is the line �F (λ), which generically differs from �F (μ−1λ). For example, with λ = (1, . . . , 1), 
any μ whose components are not all the same when raised to the ath power will do. 
Consequently, for this λ and such a μ, we see that VH

(
ψμ

A1 ⊗A Auλ

)
� VH(Auλ). �

As a consequence of the theorem, there cannot exist a bimodule version of the tensor 
product property for support varieties over the algebra Ac

q.

Corollary 2.3. Let H, M and B be as in Theorem 2.2, and suppose that Vb
H is some 

support variety theory on the category of Ac
q-bimodules, defined in terms of the maximal 

ideal spectrum of H. Then VH(B ⊗Ac
q
M) 
= Vb

H(B) ∩ VH(M).

For a finite dimensional algebra A, there are actually several possible ways of defining 
support varieties for bimodules. Namely, take any commutative graded subalgebra H of 
HH∗(A). For a bimodule B, we can view Ext∗Ae(B, A) as a left module over HH∗(A), and 
in this way it becomes an H-module. We can then define

Vb
H(B) = {m ∈ MaxSpecH | AnnH (Ext∗Ae(B,A)) ⊆ m}
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Similarly, we can use the fact that Ext∗Ae(A, B) is a right module over HH∗(A) and 
obtain another support variety. These types of one-sided support varieties were studied 
in [9], where it was shown that they satisfy many of the properties one expects for a 
meaningful theory of support.

Now suppose that we take a bimodule B which is projective as a left A-module. Then 
if we take any exact sequence η of bimodules, the sequence η⊗A B remains exact. Thus 
we obtain a ring homomorphism

HH∗(A) → Ext∗Ae(B,B)

η �→ η ⊗A B

of graded rings, and we can define

Vb
H(B) = {m ∈ MaxSpecH | AnnH (Ext∗Ae(B,B)) ⊆ m}

Similarly, if B is projective as a right A-module, we obtain a version by tensoring with 
B on the left. Consequently, for bimodules which are projective as both left and right 
A-modules, there are totally at least four ways of defining support varieties using H, and 
there is in general no reason to expect them to be equivalent.

Suppose now that A is a finite dimensional selfinjective algebra satisfying Fg with 
respect to some subalgebra H of its Hochschild cohomology ring. We then ask: what 
are the consequences of having a tensor product formula for bimodules acting on left 
modules? In order to investigate this, assume that

VH(B ⊗A M) = Vb
H(B) ∩ VH(M)

for all B in a tensor closed subcategory X of bimodules and all left A-modules M , where 
VH is the usual support variety theory on left modules and Vb

H is some support variety 
theory for bimodules in X (defined in terms of the same geometric space as VH , namely 
the maximal ideal spectrum of H). Then

Vb
H(B1 ⊗A B2) ∩ VH(M) = VH((B1 ⊗A B2) ⊗A M)

= VH(B1 ⊗A (B2 ⊗A M))

= Vb
H(B1) ∩ VH(B2 ⊗A M)

= Vb
H(B1) ∩ Vb

H(B2) ∩ VH(M)

= Vb
H(B2) ∩ Vb

H(B1) ∩ VH(M)

= VH(B2 ⊗A (B1 ⊗A M))

= VH((B2 ⊗A B1) ⊗A M)

= Vb
H(B2 ⊗A B1) ∩ VH(M)
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for all B1 and B2 in X og all left A-modules M . Then we claim that the equality

Vb
H(B1 ⊗A B2) = Vb

H(B2 ⊗A B1)

holds for all bimodules B1 and B2 in X . To see this, choose M = A/r, where r is 
the radical of A. Then VH(M) is the whole defining maximal ideal spectrum of H, so 
that Vb

H(B1 ⊗A B2) = Vb
H(B2 ⊗A B1). Hence, one consequence is that the bimodule 

support variety Vb
H must be independent of the order of the terms in a tensor product 

of bimodules, and therefore forcing some type of symmetry on the tensor products of 
bimodules in X .

Let η : Ωn
Ae(A) → A represent a homogeneous element in H, where Ωn

Ae(A) is the nth 
syzygy in a minimal projective resolution of A over Ae. Taking the pushout along this 
homomorphism and the minimal projective resolution of A over Ae gives rise to a short 
exact sequence

0 → A → Mη → Ωn−1
Ae (A) → 0

as defined in [13]. The bimodules Mη for homogeneous elements η in H have the following 
property

VH(Mη1 ⊗A · · · ⊗A Mηt
⊗A M) = VH(〈η1, . . . , ηt〉) ∩ VH(M).

If there is a support variety Vb
H of bimodules such that

Vb
H(Mη1 ⊗A · · · ⊗A Mηt

) = V(〈η1, . . . , ηt〉),

then Vb
H must in particular satisfy

Vb
H(Mη1 ⊗A Mη2) = Vb

H(Mη2 ⊗A Mη1).

For example, let Vb
H(B) = VH(B ⊗A A/r) for a bimodule B. Then it follows that

Vb
H(Mη1 ⊗A · · · ⊗A Mηt

) = VH(〈η1, . . . , ηt〉)

for all homogeneous elements ηi in H, and Vb
H satisfies the above symmetry condition. 

Since

Ext∗A (B ⊗A A/r, A/r) � Ext∗Ae (B,HomA(A/r, A/r))

� Ext∗Ae(B,A/r⊗k A/r)

� Ext∗Ae(B,Ae/ radAe)

as H-modules, and A/r ⊗kA/r � Ae/ radAe when A/r is separable over the field k, then 
applying similar arguments as in [20] we obtain that
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Vb
H(B) = V(AnnH Ext∗Ae(B,Ae/ radAe))

= V(AnnH Ext∗Ae(B,B))

= V(AnnH Ext∗Ae(Ae/ radAe, B)).

In other words, adapting the notion from [20],

Vb
H(B) = Vb

H(B,Ae/ radAe) = Vb
H(B,B) = Vb

H(Ae/ radAe, B).

Then it is natural to ask how we can/should choose X . If we are thinking in terms of 
subcategories of the stable category of bimodules, can we choose X to be the tensor 
closed subcategory generated by the bimodules Mη for all homogeneous elements η in 
H? If all Mη’s are in X , we do not know how Mη1 ⊗A Mη2 and Mη2 ⊗A Mη1 are related 
as bimodules in general.

Let us now return to our quantum complete intersection Ac
q. Corollary 2.3, which is a 

direct consequence of Theorem 2.2, shows that the tensor product property for support 
varieties over this algebra cannot hold in general, now matter how one defines support 
varieties for bimodules. Another consequence of Theorem 2.2 is that not all the thick 
subcategories of the derived category and the stable module category of Ac

q are tensor 
ideals. In order to explain this, let us first briefly describe a general framework where 
one typically is interested in such questions; for details, we refer to [10]. Let C be a 
triangulated tensor category, that is, a triangulated category which is at the same time a 
(possibly non-symmetric) tensor category, and where the two structures are compatible. 
Furthermore, suppose that C acts on a triangulated category D . This means that there 
exists an additive bifunctor

C × D → D

(C,D) �→ C ∗D

which is compatible in a natural way with the structures of both C and D . Finally, 
suppose that H is a commutative graded subalgebra of the graded endomorphism ring 
End∗

C (I) of the unit object I in C , or, more generally, that there exists a ring homo-
morphism H → End∗

C (I). Then for all objects D1, D2 ∈ D , the graded homomorphism 
group Hom∗

D(D1, D2) becomes a left and a right H-module, and left and right scalar mul-
tiplication coincide up to a sign. One can then define the support variety VH(D1, D2)
as usual, in terms of the variety of the annihilator ideal AnnH (Hom∗

D(D1, D2)). For 
a single object D ∈ D , one defines the support variety by VH(D) = VH(D, D). If H
is Noetherian and the graded H-modules Hom∗

D(D1, D2) are finitely generated for all 
objects D1 and D2 in D , then one obtains a meaningful theory of support varieties.

Given any triangulated category, it is of great interest to classify its thick subcate-
gories. The first example of such a classification was the celebrated result of Hopkins-
Neeman, for the category of perfect complexes over a commutative noetherian ring (cf. 
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[15,16]). That particular classification result showed for free that all the thick subcate-
gories are actually thick tensor ideals. Now given C and D as above, one may ask for a 
similar classification of thick subcategories of D , and whether these are all tensor ideals. 
Here, the notion of tensor ideals in D refers to the action of C on D : a thick subcategory 
A ⊆ D is a tensor ideal if C ∗A ∈ A for all C ∈ C and A ∈ A .

Suppose that V is a closed homogeneous subvariety of MaxSpecH, and define a full 
subcategory AV of D by

AV = {D ∈ D | VH(D) ⊆ V }

This is a thick subcategory of D , and there are several classes of examples of triangulated 
categories where all the thick subcategories are of this form. For example, this is the case 
for the category of perfect complexes over a commutative noetherian ring. The crucial 
point now is that whenever VH(C ∗D) ⊆ VH(D) for all objects C ∈ C and D ∈ D , then 
AV is automatically a thick tensor ideal for all V . This indicates the importance of the 
inclusion property

VH(C ∗D) ⊆ VH(D)

for support varieties in the setting of a triangulated tensor category acting on a trian-
gulated category.

Now consider our quantum complete intersection A = Ac
q again. This is a selfinjective 

algebra, and so the stable module category modA is triangulated. The enveloping algebra 
Ae is also selfinjective, and its stable module category modAe, that is, the stable module 
category of A-bimodules, is a triangulated tensor category. It acts on modA by tensor 
products over A, and so we are in a setting where all of the above applies. However, 
let H, M and B be as in Theorem 2.2. Since VH(B ⊗A M) � VH(M), not all thick 
subcategories of modA can be tensor ideals. Namely, take V = VH(M) and define 
AV as above. This is a thick subcategory of modA, but it is not a tensor ideal since 
M ∈ AV but B ⊗A M /∈ AV . Finally, note that the bimodule B we used in the proof 
of Theorem 2.2 is actually projective as a left and as a right A-module. The bounded 
derived category of such bimodules is also a triangulated tensor category, and it acts on 
the bounded derived category Db(modA) of A-modules. Thus also in Db(modA) there 
are thick subcategories that are not tensor ideals.
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