
 

Abstract-- In this paper, a method is proposed to improve 
the performance of a mechanical transducer-less control of 
an interior permanent magnet synchronous machine 
(IPMSM) with use of a dedicated online parameter 
estimator (OPE). The active flux observer is employed for 
position estimation, along with the proposed OPE which 
displays high sensitivity to parameter-discrepancies, that its 
parameter adaptation algorithm (PAA) takes advantage of. 
The temperature-sensitive parameters are adapted in 
different speed ranges by scheduling the adaptation-gains 
for optimal performance. The simulation results show that 
the proposed method improves the torque and speed control 
of the drive across the torque-speed plane particularly in the 
presence of varying parameters. 

Index Terms— Adaptive control, prediction error, 
sensor-less, soft sensor, variable speed drive 

I.  INTRODUCTION 
More and more mission-critical applications as such as 

aerospace, ship propulsion and seabed mining are opting 
IPMSM, due to its high efficiency and torque density. 
The dependability of the motor drive system has been a 
matter of concern in such applications, to ensure the high-
performance and productivity. 

Rotor-position sensor-less control methods for IPMSM 
become prominent in enhancing the overall reliability of 
the electric drive. The state-of-the-art for sensorless 
control is a hybrid solution which applies high frequency 
signal injection (HFSI) -dominant estimation at zero and 
low speeds and fundamental excitation (FE) -dominant 
estimation in remaining speeds to extract the best use of 
each method. Depending on the frequency of the injected 
signal, HFSI methods, however, can degrade the motor 
performance, hence it is beneficial to extend the 
application of FE based approach as close as possible to 
zero speed. The challenge is then the performance of the 
observer becomes increasingly sensitive to certain motor 
parameters. 

Among the motor parameters, stator-winding 
resistance (Rs), permanent magnet flux linkage (𝛹𝛹m) and 
quadrature-axis inductance (Lq) influence the most on 
sensorless control. Magnetic saturation is what can impair 
Lq, which implies its load dependency. Therefore, it is 
fair to identify Lq on the premise of a stator current or 
flux based mathematical function [1]  based on a simpler 
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offline experiment. Contrastingly, Rs and 𝛹𝛹m are 
temperature dependent. Despite the temperature 
variations are rather slow due to the thermal capacity, 
they can be unforeseen in certain ambiences as such as 
deep-sea. This necessitates a scheme for online Rs and 
𝛹𝛹m estimation to ensure high performance sensorless 
control. Numerous position-observer structures inherently 
minimize parameter-sensitivities to attain reasonable 
position estimation in the low speed region. In [2], [3] the 
voltage model (ℳu) augmented with a drift compensation 
scheme is employed whereas in [4], [5], the model 
reference adaptive system (MRAS) is applied, and 
extended EMF is introduced in [6] for position 
estimation. Online parametric adaptation, on the other 
hand, is proven to enhance position estimation 
particularly at low speeds [7] when coupled with above 
position-observation schemes. MRAS methods can be 
extended as in [1], [8] for Rs and 𝛹𝛹m  adaptation. Kalman 
Filter [9], [10] and recursive least square (RLS) [11], [12] 
based methods are alternative approaches. In [13], RLS 
method combined with HFSI method is employed. 

In this paper, the active-flux observer in [5] is 
attempted to be augmented by a devoted online parameter 
estimator (OPE) presented in  [14] for recursive 
identification of 𝛹𝛹m and Rs. The OPE’s high sensitivity to 
parametric discrepancies is exploited in the chosen 
parameter adaptation algorithm (PAA) that adopts 
recursive prediction error method [15], [16]. Simulation 
results show that the proposed method improves the 
torque and speed control and the stability of the IPMSM-
drive across the torque-speed plane. 

II.  SENSORLESS DRIVE SYSTEM 

A.  IPMSM Mathematical Model 
The voltage model, ℳu and current model, ℳi of the 

electrical machine is in stator co-ordinates, when given in 
the per-unit (pu) system:  
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Here, ωn is the nominal rotational frequency. The 
superscript and subscript denote the reference frame and 
the location of the quantity (s-stator, r-rotor, m-magnet) 
respectively.  When the currents are chosen as the state 
variables, (1) becomes as follows in the rotor coordinates:  
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Here ϑ is the electrical angle of the mechanical position 
p*ϑmech , where p is the number of pole pairs. Electrical 
speed is denoted by n. The rotor-oriented inductance 
matrix becomes: 
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B.  Position Estimation Model 
     The position estimation adopts the MRAS based 
observer [5] in which a mathematical manipulation 
introduced in [17] is applied to remove the inherent 
inductance-saliency in the IPMSM model in order to 
simplify the arithmetic. Accordingly, a quantity called 
‘active flux’ is defined as follows; 

,
ˆ ˆˆ ˆ ˆ ( )   =  - s s s s s s s

n s q qs s s scompT s u
u r i u dt x i x iψ ω ψ= ⋅ − + ⋅ − ⋅ ⋅∫       (4) 

Here, ψsT is the active flux component, which is 
nothing but the torque-producing flux component. In this 
active flux observer structure shown in the Fig. 1, the ℳi 
and ℳu model are employed as the reference and 
adaptive models respectively. Thus, the reference model 
is given as follows: 



,
ˆ  

rr rr
s ss i m

iψ ψ= ⋅ +x                                                            (5) 

The adaptive model is given as follows: 

,
ˆ ˆ( )s s s s

n ss s comps u
u r i u dtψ ω= ⋅ − ⋅ + ⋅∫                                    (6) 

From which, the error, εs,o is calculated and attempted to 
eliminate with the aid of a proportional-integral (PI) 
compensator.  

, , ,
ˆ ˆs s

s o s i s u
ε ψ ψ= −                                                              (7) 

The εs,o is influenced by the integrator offset, 
parametric discrepancies, measurement errors, the dead-
times in the PWM-inverter device switching and other 
nonlinearities in the system which are required to be 
compensated, at least for low speeds [17]. This MRAS-
observer resembles the classical voltage-current model 
(ℳui) in which it is typical to apply the ℳi and ℳu as the 
reference and adaptive models respectively to extract the 
prominent benefits in each model in exclusive speed 
regions. ℳu becomes more and more Rs -sensitive when 
speed is lowered down to zero, opposing to the ℳi which 
shows a stable parameter-sensitivity in the lower speed 
regions [18]. It is shown in [19] how a carefully 

 
Fig. 1. Observer detailed block diagram 

chosen P-compensator (PI in our case) can improve the 
flux vector estimate. Accordingly, at lower speeds, the 
voltage-model flux vector follows the estimation from 
current model and at higher speeds, that of the (drift 
compensated) voltage-model itself. It is essential to 
correct the flux estimate from the ℳu in the best possible 
way as, it is seen from (4), this is the very quantity that is 
manipulated to obtain the active-flux, from which we 
yield the position and speed estimations as given in (8). 
The ripple in speed estimation is subsequently treated 
with a low-pass filter (LPF) before feeding to the OPE 
and the control system. 
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Here, Tsamp is the sampling time of the digital control 
system and k Tsamp is discrete-time in which k is the 
sample number. The value k-1 denote one sample time 
delayed quantities [5]. As you may have noticed from (5) 
and (6), the ℳu is in the stator-coordinates, but the ℳi is 
in the rotor-coordinates. To perform the recursive 
adaptation in the ℳu, the quantities in the ℳi should be 
transformed from stator coordinates to rotor-coordinates 
and then back to the stator coordinates. The estimated 
position is fed back to the reference model for this 
reason. 

C.  Parameter Adaptation Model 
In the proposed sensorless control method, the 

observer is augmented by a dedicated online parameter 
estimator (OPE) as illustrated in the Fig. 2. Despite the 
active flux observer offers satisfactory position 
estimation in a wide speed range [5], [17], when the 𝛹𝛹m 
and Rs are varying, the observer alone struggles to 
compensate for the discrepancies. The dedicated OPE is 
introduced with the motivation of relieving the observer 
from its parameter-correction tasks and possibly, to 
improve the position estimation and sensorless control in 
general. 

The OPE proposed in [14] is used in here which 
contains an open-loop predictor that predicts the stator 
current using the full-order model,  ℳuϑ given in (9). The 
predicted quantities are then compared with the measured 

 
Fig. 2. Position observer complimented with an online parameter 

estimation block diagram 
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quantities in order to generate the prediction error, εs. 
Unlike in an observer, this error is not fed back to the 
predictor for immediate error-correction, thus εs becomes 
more sensitive to the potential parametric discrepancies 
in the predictor with reference to the respective physical 
quantities. This sensitivity is exploited by the parameter 
adaptation algorithm (PAA). 
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The estimated parameters matrix, , consists only the 
parameters that are adapted recursively in this scope. 

D.  Parameter Adaptation Algorithm (PAA) 
The PAA in the method proposed in [14] is premised on 

the recursive prediction error method. The PAA in 
discrete form based on the Forward Euler Method, 
becomes: 
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Here DM is the defined parameter space. The analytical 
expressions for the εs in steady state become: 
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Eq (11) indicates that εs is influenced by ψm-estimate 
error which is coupled with the rotor speed while the rs-
estimate error is coupled with both speed and current.  To 
rapidly identify the gain matrix L for accurate 
identification of in DM, a sub-algorithm known as 
stochastic gradient algorithm (SGA) is applied, which is: 
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Here, the sensitivity of the prediction error against the 
estimated parameter, known as prediction-error gradient, 
PEG denoted by 𝚿𝚿T is exploited. Accordingly, the 
elements in L can be identified: 
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E.  Gain Scheduling 
In looking at the influence on the εs from simultaneous 

parametric errors, [14] explains the necessity and 
sufficiency to adapt rs only in very low speeds whereas to 
perform ψm -adaptation in the rest of the speed region. 
Parametric influence on the position estimation also 
conforms to the same order. In (2), when n becomes 
smaller, the back EMF-term n⸱ψm becomes smaller, thus 
the prominence of rs⸱is -term increases, so does the 
influence of rs in the stator voltage which is key in the 
position estimation. The opposite phenomenon occurs 
when n increases to make ψm significant. Thus, in 
sensorless control based on the FE-methods, it is 
necessary and sufficient to perform rs and ψm -adaptations 
in exclusive zones as shown in the Fig. 3 

 
Fig. 3: Representation of zonal adaptation of Rs and 𝛹𝛹m in the speed-

torque plane 

Consequently, in the proposed sensorless control method, 
the respective adaptation gains become: 
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It is then interesting to examine how an error in one 
parameter influences the other when the drive is in a 
speed zone where the erroneous parameter is not adapted, 
but the other is. 

The influence from the erroneous rs estimate on the 
ψm estimate, in Zone PM in Fig. 3, is first investigated. It 
is inferred in [14], that the L12, which is the gain from the 
respective q-component has negligible influence on the  
ψm adaptation, thus only the d-component is analyzed 
here. Accordingly, from (11) it can be derived the 
unfairly adapted ψm at steady state due to rs estimate-error 
as follows: 

2
ˆ ˆ ˆ ,

ˆ
s

sm m s d q q s s
q

r r i n x i r r r
n x
δ

ψ ψ δ = + ⋅ ⋅ + ⋅ ⋅ = − ⋅
                        (15) 

ψm is typically 50 to 100 times larger than rs in per-
unit. Under this circumstance, it is seen from (15) that, 
only when n is very small, the influence from un-adapted 
rs (or non-zero 𝛿𝛿rs) on the ψm-estimate becomes 
significant. This does not fortunately become an issue as 
per the zonal adaptations as in Fig. 3. Eq. (15) also 
indicates that the ψm-estimate, due to the erroneous rs-
estimate, is load dependent. Thus, for a completely fair 
zonal adaptation, both the speed and torque-based zones 
should be considered. Similarly, the influence from 𝛿𝛿ψm  
on the rs estimate in the Zone Rs, can be analyzed. Unlike 
the previous discussion, here we should consider the 
influence from both εd and εq [14]. 
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As 𝛿𝛿ψ >> 𝛿𝛿rs, rs-estimate can be unfairly impacted by the 
wrong ψm estimate across the speed regions, particularly 
at higher speeds. Thus, it is indispensable to cut-off the rs 
-adaptation beyond a certain limit, nlim,2, as in the Fig. 3 
or else, rs will saturate at rs,max (10). The penalty that the 
correct rs must pay due to the wrong ψm estimate in the 
Zone Rs is however inevitable, except at standstill, under 
this gain-scheduling scheme. 

III.  SIMULATION RESULTS AND DISCUSSION 
A 3-phase IPMSM drive with a 2-level inverter and 

quadratic or static load has been simulated in MATLAB 
Simulink/Simscape toolbox. Asymmetrical modulation 
with 3rd harmonic injection has been used. The switching 
frequency is 3 kHz and the sampling frequency of the  
digital controller is 6 kHz. The dead-time effects in the 
inverter have been compensated in the simulation.  

Maximum-torque-per-ampere (MTPA) -control 
strategy is considered in this paper with the aid of the 3rd  
order approximation for reference current calculations 
given in [20]. With the simulation data in the TABLE I, 
the cases tabulated in the TABLE II have been simulated. 
The instance of the active flux observer-alone is 
considered as the base-case in all scenarios to 
comparatively investigate the performance of the 
proposed sensorless control method. The initial errors in 
the ψm and rs -estimates are -10% and -20% that amount 

TABLE I.  SIMULATION DATA 

 Symbol Value Unit 

Nominal voltage UN 690 V 

Nominal current IN 478 A 

Rated frequency fN 50 Hz 

Pole pairs p 1 - 

Rated torque 𝜏𝜏e,rated 1818.4 Nm 

Nominal speed N 3000 rpm 
Motor parameter 
vector [

m
ψ

d
x

q
x

s
r ]T [0.66 0.4 1 0.009] T pu 

Initial estimated 
parameter vector [ ˆ

m
ψ ˆ

d
x ˆ

q
x

ŝ
r ]T [0.59 0.4 1 0.007] T pu 

TABLE II.  SIMULATION CASES 

 Observer Alone 
(Base-Case) 

Observer + OPE 
(Proposed -Method) 

Case 1 
Different speed regions, 
initial wrong , Quadratic 
load 

Case 1.1 Case 1.2 

Case 2 
Slow zero-crossing, 
dynamic 𝜃𝜃,  Constant load 

Case 2.1 Case 2.2 

Case 3 
Very-low constant speed, 
dynamic 𝜃𝜃,  Constant load 

Case 3.1 Case 3.2 

to the initial estimations as given in the TABLE I. The PI 
gains of the active flux observer kp = ki = 0.05 have been 
identified based on simulation experiments to obtain 
satisfactory closed-loop performance. LPF time-constant 
is set to be 3.5 ms to achieve sufficiently filtered speed 
estimation. The zonal adaptation limits nlim,1 and nlim,2, are 
0.1 and 0.01 pu respectively. 

The state-sequence of the drive is such that, initially, 
the drive enters a start-up method in which the following 
references are fed into the vector controller: iq = 0, id = 
0.5, ϑrotor = 0. Purpose of the start-up method is to 
initialize the observer and to allow rs-adaptation at zero 
speed.  While start-up method is enabled, after 200 ms, 
the speed and position estimations from the observer are 
released to the drive. 300 ms seconds later, the start-up 
method is disabled to enable the MTPA control strategy. 

A.  Case 1: Across different speed-regions 
The rotor accelerates from 0 to 1000 rpm (> 0.3 pu) 

and the torque reaches 1 pu until 4 s. See Fig. 4(a).  In the 
base-case, the wrong initial parameters continue whereas 
in the proposed method, they are corrected within 4 
seconds from the start-up of the drive as seen in the Fig. 
4(b). Due to the persistently wrong parameters, 
particularly due to the underestimated ψm, the estimated 
torque, 𝜏𝜏e,est (yellow curve) is continuously under the 
reference, 𝜏𝜏e,ref (blue), and the actual torque, 𝜏𝜏e,act (red 
curve) is opposingly, over the reference. This is because, 
the initially wrong ψm creates overly compensated 𝜏𝜏e,act. 
This torque-error, δ𝜏𝜏e  is conspicuous in the higher torque 
regions. Contrastingly, in the proposed method (Case 
1.2), as soon as the estimated parameters converge with 
their respective physical quantities, 𝜏𝜏e,est and 𝜏𝜏e,act 
converge with their 𝜏𝜏e,ref. The corresponding δn, δϑ as in 
Fig. 4 (c) tell that, at higher speeds, they are not much 
influenced by the parameters. However, beyond 4 
seconds, when the n starts decreasing, δϑ gradually 
increases in the base-case whereas this is resiliently 
almost zero in the proposed method. Especially at the 
zero-crossing, both δϑ and δn peak in the base-case, 
unlike in the proposed method, where the δϑ is nearly 
indifferent. Fig. 4 (d) shows the ucomp, the correction term 
in the adaptive model, which is persistently considerable 
in the base-case in which the observer-alone attempts to 
compensate for the estimated parameter-discrepancies.  
ucomp in the proposed method, on the other hand, is nearly 
zero, after the initial parameter-correction, thanks to the 
dedicated OPE. 

It is, however, interesting to note that, particularly 
w.r.t. ψm, despite the erroneous initial value is 0.594 pu 
(which is used in the base-case across the time span), in 
the proposed method, the initial estimated ψm is 0.474 pu 
which is the ψm,min in (10). This overly low estimated 
value creates a worse-off situation at the start of 
adaptation, resulting in a higher torque error than that of 
the observer-alone method. Consequently, δϑ and ucomp 
are also affected, as marked in the Fig. 4 (c) and (d). 
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  Fig. 4. Simulation results of Case 1 in time (a) Reference, actual and 

estimated torques and actual rotor speed (b) Actual and estimated -
paramters (c) Position and speed -errors (d) Compensated voltage in the 

adaptive model in the observer 

B.  Case 2: Slow zero-crossing 
Here, it takes 15 seconds for the rotor to go from +0.03 

to -0.03 pu to simulate a relatively slower zero-crossing 
as seen in the Fig. 5(a). In addition, while the estimated 
parameters are aligned with them of the motor at the start 
of the time frame of interest, the motor parameters go 
through a step change: rs increases by 5% at 5 s, ψm 
increases by 5% at 18 s. See Fig. 5(b). This scenario 
replicates a situation that an industrial drive can possibly 
undergo when the motor operates for a long time, the 
machine losses among other, can heat the windings and 
the magnets to cause parametric changes. The simulated 
step-change in the parameters of concern is however a 
hypothetical worse scenario in looking at the thermal 
time-constant. As a result of the zonal adaptation, there is 
a gap between the physical parametric change and the 
start of adaptation, as marked in the Fig. 5(b). In contrast, 
in the base-case, the model parameters do not adapt 
according to their respective physical parameters. Despite 
it is inevitable that δϑ rises when crossing the zero-speed  

 

 

 
Fig. 5. Simulation results of Case 2 in time (a) Reference, actual and 
estimated torques and actual rotor speed (b) Actual and estimated -

paramters (c) Position error 

under FE-based sensorless control methods, it is evident 
from Fig. 5(c), with the proposed method, δϑ is kept less 
than 50% of that in the base-case, which is a significant 
improvement. When the motor- ψm changes at 18 s, δϑ is 
again impacted. Under the proposed method, this error is 
corrected as soon as the OPE enters respective adaptation 
zone.  

C.  Case 3: At Persistent Very Low Speed 
A persistent, very-low speed operation under the 

constant load (= 0.1*𝜏𝜏e,rated), a case similar to a rising 
electric elevator is simulated. Here, the motor rs changes 
by 5% at 5 s. Fig. 6(a) brings compelling evidence to 
show how the proposed method succeeds in maintaining 
the very-low speed owing to its OPE, while the base-case 
fails as a result of poor 𝜏𝜏e control under the circumstance. 
Due to the absence of rs -adaptation, it is seen in Fig. 6(c) 
how δϑ is gradually increasing and δn is persistently 
erroneous in the base-case opposing to the proposed 
method, where these quantities are remarkably consistent 
and negligible. This case also illustrates the shortcoming 
of the zonal gain-scheduling scheme in the proposed 
method. Due to 5% step increase in ψm at 9.5 s, rs 
estimate gets unfairly compensated that results in an 
undesired higher torque output than the reference to 
disturb the constant rotor speed. 

IV.  CONCLUSION 
The active flux observer-based position estimation in 

combination with an open-loop online parameter 
estimator is proposed herein for sensorless control of 
IPMSM. Under dynamic operational temperature 
conditions, where the temperature-sensitive parameters  

Initial torque-error 

Initial position-error 

Initial higher error 

More than 50%  
reduction in δϑ  

Due to zonal adaptation 
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Fig. 6. Simulation results of Case 3 in time (a) Reference, actual and 
estimated torques and actual rotor speed (b) Actual and estimated -

parameters (c) Position and speed -errors 

are bound to change, the performance improvement of 
the drive becomes evident with the proposed method. The 
advantages of the online parameter estimation are seen 
not only in the low speed regions where rs -compensation 
is required, but also in medium and high -torque and 
speed regions where ψm influence is significant. Despite 
the adopted zonal gain-scheduling scheme serves its 
purpose, an inevitable compromise in rs-estimate is paid 
due to the errors in the ψm-estimate in the very low speed 
region. Methods to circumvent this undesired 
compensation should be further investigated. 
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