
 

Abstract-- A method for online adaptation of electric 
parameters of a rotating machine is proposed herein.  The 
concept adopts the recursive prediction error method 
(RPEM) for parameter adaptation, that exploits the 
prediction-error gradient functions (𝚿𝚿T).  With the aim of 
setting a general framework for the cause, the method is 
systematically demonstrated for online identification of 
permanent magnet flux linkage (𝛹𝛹m) and stator-winding 
resistance (Rs) of an interior permanent magnet synchronous 
machine (IPMSM). Additionally, an experiment to estimate 
Rs at the start-up is presented.   The gain-matrix is identified 
using the stochastic gradient algorithm (SGA). Simulation 
results validate the rapid convergence performance, 
adaptability and tuning flexibility of the proposed method. 

Index Terms— Hessian, parameter sensitivity, gain 
scheduling, stochastic gradient, variable speed drives 

I.  INTRODUCTION 
More and more mission-critical engineering 

applications as such as aerospace, offshore oil and gas and 
seabed mineral mining are embracing electric machinery 
over the traditional mechanical, hydraulic or pneumatic 
counterparts. IPMSM is a popular candidate in such high-
power applications owing to its superior efficiency and 
torque-density. 

The  operating conditions are often harsh in such 
industrial drives where the ambient temperature can be 
sometimes several folds of the room temperature, which 
can affect the temperature-sensitive motor parameters, i.e. 
Rs and 𝛹𝛹m. The motor parameters, on the other hand, 
influence the control of the electric drive. Moreover, 
mechanical sensor-less control systems have been state-of-
the-art in the applications that demand high robustness, in 
which it is common to employ field excitation (FE) -based 
methods to estimate the rotor position, particularly beyond 
zero and very-low speeds. Such FE methods are also 
heavily dependent on the machine parameters, therefore, 
unaccounted changes of the machine parameters in the 
control system can result in erroneous position estimation, 
consequently, poor torque and speed -control . Despite 
winding inductances, particularly in the (fictitious) 
quadrature axis (Lq), influence the rotor-position 
estimation, it is reasonable to adapt Lq with the aid of a 
current or flux based function or a simpler offline 
experiment [1]. Therefore, when high performance, 
mission critical applications are concerned, Rs and 𝛹𝛹m 
should be adapted online. Several online parameter 
estimation techniques have been reviewed in [2] and [3] in 
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which MRAS [1], [4],  Kalman Filter [5] and recursive 
least square (RLS) [6], [7] -based methods appear to be the 
common approaches. In looking at the parameter-error-
sensitivity, convergence, implementation complexity and 
computational burden, each of these methods have their 
own pros and cons. 

This paper presents an online parameter estimator 
(OPE) as in Fig. 1, which is highly sensitive to parametric 
mismatches between the estimation and physical 
quantities. This sensitivity is capitalized by the parameter 
adaptation algorithm (PAA) to recursively estimate 𝛹𝛹m 
and Rs of IPMSM. The PAA is premised on the RPEM 
explained and applied in [8] and [9] respectively. In order 
to search the parameters in the defined parameter-space, a 
sub-algorithm known as stochastic gradient algorithm 
(SGA) is applied. The SGA exploits the sensitivity of the 
prediction-errors against the varying parameters in its 
cause. This sensitivity is termed as prediction-error 
gradient (PEG)  and denoted by 𝚿𝚿T as in [8]. The concept 
is developed systematically by following the step-by-step 
approach in [8] which enables to identify gains for the 
parameter adaptations analytically. Despite the method is 
demonstrated for an IPMSM drive, its general framework 
is applicable for any type of electric drive. 

II.  MOTOR & ESTIMATION MODELS 

A.  IPMSM Mathematical Model 
The mathematical model of the electrical part of the 

machine is in the rotor co-ordinates, when given in the per-
unit (pu) system:  
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Fig. 1. Proposed online parameter estimation method block diagram 
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Here, ωn is the nominal rotational frequency. ϑ is the 
electrical angle of the mechanical position p*ϑmech , where 
p is the number of pole pairs. Electrical speed is denoted 
by n. The superscript and subscript denote the reference 
frame and the location of the quantity (s-stator, r-rotor, m-
magnet) respectively.  

B.  Online Parameter Estimation Model 
The online parameter estimation (OPE) model in Fig. 1 

has an open-loop structure where εs (prediction error) is 
not fed back to the predictor for immediate error-
correction. Thus, this model becomes highly sensitive to 
parameter estimation mismatches with reference to actual 
physical quantities. This is the very intention behind the 
selection of such an open-loop model in this cause, 
because these sensitivities will be profoundly exploited in 
the proposed PAA. Full-order model (ℳuϑ), is used in this 
paper with stator currents chosen as state variables. The 
rotor-oriented model is chosen for current prediction in the 
predictor. 
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Here, from the estimated parameter matrix, 𝜃𝜃�, 𝑥𝑥�𝑑𝑑 , 𝑥𝑥�𝑞𝑞  are 
omitted to curtail the discussion only to scope of interest. 
As shown in (2), position and speed become inputs in the 
model, thus, they must be either measured or estimated. In 
this paper, a position sensor is assumed. In [10], this OPE 
is extended to sensorless control of IPMSM.  

ℳuϑ is a second order system and the eigenvalues of 
this model are speed dependent. The system matrix A of 
the system can be expressed as: 
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The eigenvalues become:  
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III.  PARAMETER SENSITIVITY OF THE CONTROL STRATEGY 
Maximum-torque-per-ampere (MTPA) -control 

strategy is considered in this work. Accordingly, the 
optimal d- and q-current references are calculated by the 
help of the 3rd order expression given in [11]. It is 
interesting to firstly identify the sensitivity of the torque to 
incorrect model parameters under this control strategy. It 
turns out that the effect of misestimated rs does not affect 
the torque control unless due to voltage limitation of the 
inverter during the field weakening range. The incorrect 
value of ψm , however, has an  inevitable influence in the 
torque control in the complete torque-speed plane.  As in 
Fig. 2 where a 10% under-estimated ψm has been  

 
Fig. 2. Torque error due to 10% under-estimated ψm 

considered for current reference computation in the 
controller. 

IV.  CRITERION AND PREDICTION ERROR -FUNCTIONS 
A quadratic criterion with a stator currents-based 
prediction errors are chosen to develop the proposed 
estimation method. The continuous version of the PAA 
then becomes, where Lc is the continuous gain matrix: 
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The values of the prediction errors for 10% under-
estimated ψm is shown in Fig. 3. It is evident that the 𝛿𝛿id (= 
εd) is more consistently sensitive to incorrect ψm than its q-
axis counterpart (𝛿𝛿iq), therefore, it will contribute in ψm 
adaptation across the whole speed range, except at zero 
speed, at which, the prediction error goes to zero. On the 
contrary, the 𝛿𝛿id, 𝛿𝛿iq in Fig. 4. (a) and (b) do not show 
distinct differences despite rs underestimation, therefore, it 
is interesting to investigate their individual contributions 
for online rs adaptation. However, it is immediately 
evident that, unlike in the case of ψm, the 𝛿𝛿id and 𝛿𝛿iq for rs 
are dominant only around zero speed. This hints us that the 
adaptation of ψm and rs can be conveniently decoupled in 
different speed ranges even though εs contains  information 
about deviations of both parameters at nonzero speeds. 
The steady-state prediction errors when both parameters 
contain deviations from their estimated values are given in 
(6) which corroborates the plots in Fig. 3 & 4. It also tells 
that εs is load dependent. 
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Fig. 3. Sensitivity plot of prediction errors w.r.t. ψm (a) d-axis prediction 

error (b) q-axis prediction error 

 
Fig. 4. Sensitivity plot of prediction errors w.r.t. rs (a) d-axis prediction 

error (b) q-axis prediction error 

At standstill, the prediction errors become as in (7). 
Accordingly, depending on the magnitude of id and iq at 
standstill, rs can be identified. This provides also an 
experimental basis for rs identification at the start-up of the 
machine. 

V.  PREDICTION-ERROR GRADIENTS ANALYSIS 

A.  For PM Flux Linkage Estimate 
When ψm is estimated, the dynamic model of the PEGs, 

i.e.  ΨT becomes, in component form: 
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This model has the same eigenvalues as the model ℳuϑ, 
therefore it can be assumed stable. The dynamics of the 
PEGs are given by d- and q-axis time constants, Td, Tq and 
n which is also the input or excitation for this dynamic 
system. The steady state solutions of these equations are:
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The gradient of the d-axis prediction error becomes -1/xd 
in most of the speed range and is independent of torque. 
The q-axis component becomes quite small due to rs -
dependency. Both functions become zero at standstill. 
These functions are plotted in the torque-speed plane in 
Fig. 5. From these plots it can be inferred that the d-
component of the prediction error should be used for 
estimation of ψm.  When implementing the model in a  

 
Fig. 5. Gradients of prediction errors w.r.t. ψm for (a) d-axis gradient (b) 

q-axis gradient 

 
Fig. 6. Gradients of prediction errors w.r.t. rs for (a) d-axis gradient (b) 

q-axis gradient 

digital controller, the method of discretization must be 
considered as well. Usually the Forward Euler Method is 
numerically accurate enough. It is then important to 
investigate the stability of the discrete model for both ℳuϑ 
and ΨT . This can be done by investigating the locations of 
the poles in the λ*h-plane, where h =  Tsamp. 

B.  For Stator Resistance Estimate 
When rs is estimated, the dynamic model becomes, in 
component form: 
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The steady state solution is plotted in Fig. 6 and becomes: 
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Before concluding this section, it is worth highlighting 
that the plots of gradient functions irrespective of the 
parameter, hold the identical shape of their respective 
prediction error sensitivity plots. 

VI.  GAIN MATRICES COMPUTATION 
The parameter adaptation algorithm in discrete form 

based on the Forward Euler Method, which becomes: 
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where Dℳ is in the stable region of the model Dℳ ⸦ Ds. 
This means that all model parameters and sampling time 
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Tsamp must be chosen such that the discrete model is stable. 
The parameter space for the model is limited to: 
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A.  Stochastic Gradient Algorithm 
General stochastic gradient algorithm (SGA), as per 

[8], can be expressed as: 
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Here, r[k] is the scalar version of the Hessian matrix used 
in this algorithm and the trace (tr) of a matrix is the sum of 
the diagonal elements. The gain-sequence γ could be time 
dependent, but a constant value γ0 is usually chosen. This 
memory coefficient γ0 of the algorithm should be chosen 
such that the parameter is “almost constant” within the 
time period T0 = Tsamp/ γ0 [3]. The initial value of r[k] in 
the 1st order filter in (13) help boost the gain L during start-
up. It is also possible to choose a different γ[k] in the filter 
for r[k] and the gain L. The PEG ΨT and the trace of Ψ ΨT 
can be expressed as: 
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The generalized SGA makes use of the dynamic model 
of the PEGs [8] as well as a common scalar value r[k], 
which is the filtering of the trace of  Ψ ΨT. However, when 
IPMSM is concerned, it is interesting to investigate both 
steady and dynamic states of PEGs in the SGA. By 
inspection of (8) and (10), both these 2nd order systems 
share the eigenvalues of ℳuϑ given in (4). This means that 
similar oscillations can occur in the PEGs and thus the gain 
matrix L during transient operations. Furthermore, (8) tells 
that the dynamic model of the PEGs w.r.t. ψm is excited by 
the speed only. While the speed usually has a low 
derivative due to the inertia of the system, it is sensible to 
use the steady state (std) solution of the PEGs over their 
dynamic (dyn) counterparts in  computing the respective 
gains, L11 and L12.  On the other hand, the model for the 
PEGs w.r.t. rs are excited by the currents (at and around 
zero speed) as in (10). These currents can change very 
rapidly, such that the dynamic PEGs should be applied to 
obtain some sort of a filtering effect when calculating L21 
and L22. Close inspection of (10) will tell that, at standstill, 
these PEGs are decoupled and with filter time-constants Td 
and Tq. Thus, it is logical to select the dynamic PEGs when 
rs adaptation is concerned. However, it is interesting to 
observe how steady state PEGs will contribute in r[k] 
calculation. 

The next step is to determine which PEGs to be 
employed in the trace in r[k] calculation and whether the 
trace should be filtered or not. Between the choice of 
filtered versus unfiltered r[k], the first becomes an obvious 
choice as to make the outcome free from oscillations 
which would have otherwise been superimposed on 
parameter-estimation trajectory. The filtered r[k]-variants 
in (16) become the promising alternatives, of which the 
effects are seen in section VII.  The dynamics of the 
filtered value of r[k] expressions in (16) are plotted in Fig. 
7. It must be noted that rn[k] and rψm[k] are plotted for 
acceleration-cases from standstill, while the remaining are 
for cases at standstill. It is seen that rψm[k] is maintained at 
a very low value opposing to rrs1,2[k]. PEGs in rn[k] is the 
sum of these two extreme cases, thus it initially takes off, 
but as speed increases, the effect of rs -PEGs becomes 
insignificant. 
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Therefore, rn[k] eventually converges with rψm[k].  
Since r[k] is in the denominator in the L-computation 
formula in (14), relatively smaller r[k] values are expected 
to amplify L, thus rate of convergence. From this 
perspective, it can be predicted that rψm[k] will offer faster 
rate of convergence than rn[k] when ψm adaptation is 
concerned. It is also evident that between rrs1[k] and rrs2[k], 
the earlier follows a lower trajectory in the beginning, 
which is favorable as per the algorithm. Due to this reason 
and the advantages of dynamic rs-PEGs discussed earlier, 
it is fair to disregard steady state PEGs for rs and rrs2[k] in 
the subsequent discussions.  On a side note, the unfiltered 
values of r[k] are equal to the steady state values of the 
traces in Fig. 7.  

Consequently, the three versions of these algorithms for 
L-computation are of special interest: 

• Filtered rn[k] and corresponding dynamic ΨT 
• Filtered rψm[k] and corresponding steady state ΨT 
• Filtered rrs1[k] and corresponding dynamic ΨT 

 
Fig. 7. r[k] function behavior when constructed with different trace 

combinations corresponding to (16) 
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If only ψm is incorrect, for the steady state -ΨT and 
unfiltered  rψm[k], one obtains: 
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This corresponds to the gain chosen by only interpreting 
the steady-state prediction error in (6). It is important to 
limit the gain L11 at low speeds to avoid amplification of 
the noise in the current measurements. 

VII.  SIMULATION RESULTS & DISCUSSION 
A 3-phase IPMSM drive with a 2-level inverter and 

different loads has been simulated in MATLAB 
Simulink/Simscape toolbox. A constant load at zero speed 
has been used for rs online-estimation and a quadratic load 
for the case of ψm.  Asymmetrical modulation with 3rd 
harmonic injection has been used. The switching 
frequency is 3 kHz and the sampling frequency of the 
controller is 6 kHz. In these simulations, the PAA is started 
immediately at start-up of the drive. TABLE I contains the 
simulation data. 

TABLE I.  SIMULATION DATA 

 Symbol Value Unit 

Nominal voltage UN 690 V 

Nominal current IN 478 A 
Nominal 
frequency fN 50 Hz 

Pole pairs p 1 - 
Motor parameter 
vector [

m
ψ

d
x

q
x

s
r ]T [0.66 0.4 1 0.009] T pu 

Initial estimated 
parameter vector [ ˆ

m
ψ ˆ

d
x ˆ

q
x

ŝ
r ]T [0.59 0.4 1 0.008] T pu 

 

A.  Online Adaptation of PM Flux Linkage 
It has been earlier revealed that εd was the component 

most sensitive to ψm . Based on that, when only ψm is 
adapted beyond the low speed range, a simpler algorithm 
can be derived. With this aim, simulations were performed 
with different L-combinations. It is obvious that, among 
the r[k] expressions in (16), the choices are limited to the 
first two expressions as per SGA. Fig. 8 presents the 
results. Due to the reasons explained in connection to Fig. 
7, relatively large rn[k] impedes the ψm adaptation briefly. 
This aspect is further consolidated when, despite L21 and 
L22 are disabled, the convergence speed remains nearly the 
same, as long as the same r[k] is employed across 

 
Fig. 8. Online PM flux linkage estimation with different gains and 

Hessian 

all gain-combinations. Alternatively, when rψm[k] is used, 
ψm adaptation becomes rapid to reinforce the arguments in 
connection to Fig. 7. Despite the rate of convergence is 
adjustable by tuning the γ0, and a convergence within a few 
seconds is sufficient in this context. This investigation has 
revealed that it is the use of L11 only and rψm[k] that offers 
the fastest natural convergence for ψm in terms of 
stochastic gradient algorithm. 

B.  Experimentation of Stator Resistance at Start-up 
To simulate a start-up scenario of an industrial drive, 

the simulation model was run by decoupling the controller 
from MTPA strategy and feeding in following references; 
iq = 0, id = 0.5, ϑrotor = 0. Such setting results in a motor that 
receives magnetizing current in its physical a-winding and 
operates at zero speed, creating zero torque. As it is evident 
from (9), the PEGs of ψm become zero at standstill, thus 
L11 and L12 become zero as well as no contribution in the 
r[k] computation. This means that it is fair to apply rrs1[k] 
in the SGA. Furthermore, since iq is kept zero, PEG of rs 
q-component become zero at zero-speed (10), therefore, 
L22 can be neglected in the PAA. It is effectively the d-
component of rs PEG and its corresponding gain L21 is in 
use in this experiment. Fig. 9 illustrates the performance 
comparisons.  

Despite using the d-component of the rs-PEG alone is 
enough in the respective trace to estimate rs, including both 
L21 and L22 as well as both PEGs for rs in calculating the 
trace makes the algorithm more applicable for other input 
currents as well. This will be clearer in the next section. 

C.  Online Adaptation of Stator Resistance 
In this simulation, we return to the MTPA strategy and 

supplement with a speed controller to maintain zero 
rotational speed while obtaining constant torque to serve a 
constant load. Reference currents: iq = 0.5, id = -0.33. As 
said before, PEGs of ψm do not contribute at zero-speed, 
thus it is logical to apply rrs1[k] in L-computation 
algorithms, and disregard L11 and L12 in the PAA. 
Different permutations of L21 and L22 were investigated 
(see Fig. 10) and it turned out that the best case is when 
both these gains are combined, while both currents 
contribute to the gains and prediction errors as shown in 
(7) and (11).  

D.  Simultaneous Adaptation & Gain Scheduling 
The prediction errors εd and εq contain information 

about both ψm and rs  errors. Refer (4). Assuming, the drive 
starts from standstill, when both parameters are attempted 
to adapt simultaneously, the smaller parameter rs gets

 
Fig. 9. Stator resistance estimation at start-up with different gains and 

Hessian 
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Fig. 10. Contribution from different gains and their combinations in 

online rs estimation 

compensated even due to ψm -parameter error and 
saturated in its upper limit in the parameter space as shown 
in Fig. 11(a). After rs gets wrongly settled, while the rotor-
speed is increasing, the PAA attempts to minimize the 
remaining prediction-errors by adapting ψm. However, this 
challenge can be conveniently circumvented by adapting 
only one parameter at a time by scheduling L in different 
speed regions.  

When FE-based position estimation is concerned, rs 
adaptation becomes necessary at and around zero speed, 
where ε-sensitivity for ψm is weak (see Fig. 3). Therefore, 
it is justifiable to disable rs adaptation beyond very-low 
speeds (n) and perform ψm estimation alone in the 
remaining speed range. With this aim, a scheduling 
mechanism has been introduced in the simulation in which 
at nlim > 0.01 [pu], rs adaptation has been disabled. Besides, 
the SGA-settings are identical to the case previous case of 
not having a scheduler at all (r[k] = rn[k] and 
corresponding ΨT in L-computation). The rs estimation 
shown Fig. 11(b) is more accurate than the case before. 
The gain-scheduling can be optimized by additionally 
disabling the unused traces in r[k] calculation, such that 
when nlim > 0.01 [pu], rn[k] = rψm[k]. Performance of such 
scheme is given in the Fig. 11(c), where ψm converges 
much earlier. 

VIII.  CONCLUSION 
This  paper proposed an effective and flexible method for 

parameter adaptation using prediction-error gradients to 
adapt motor-parameters online. The method was presented 
step-by-step to estimate stator resistance and the PM flux 
linkage in an IPMSM drive in order to establish a general 
framework for online parameter identification of any 
electric drive. The use of prediction-error gradient 
functions is more effective when its steady-state solution 
is used for ψm and dynamic counterpart is used for rs -
adaptations. The stochastic gradient algorithm that is 
applied to compute the gain-matrices offers a range of 
variables to tune the convergence performance. Among 
which, the scalar Hessian function plays a pivotal role. 
Stator resistance was adapted in the zero and very low 
speed range, as required and PM flux linkage was adapted 
in the remaining speed range. To decouple the parameter 
adaptation without compromising the accuracy, an 
optimized gain-scheduling mechanism was proposed. 
Investigation of time dependent and optimized gain-
sequences can be an interesting future research work. 

 
Fig. 11. Parameter convergence with the gain-scheduling mechanism (a) 

no scheduler (b) with scheduler (c) with optimized scheduler 
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