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Highlights 

 High tumour entropy predicts deep myometrial invasion and cervical stroma invasion. 

 High tumour kurtosis predicts reduced recurrence- and progression-free survival. 

 Texture analysis may enhance the role of standard diagnostic imaging methods. 

 

Abstract 

 

BACKGROUND 

To enable more individualised treatment of endometrial cancer, improved methods for 

preoperative tumour characterization are warranted. Texture analysis is a method for 

quantification of heterogeneity in images, increasingly reported as a promising diagnostic tool 

in oncological imaging, but largely unexplored in endometrial cancer 

 

AIM 

To explore whether tumour texture features from preoperative computed tomography (CT) are 

related to known prognostic histopathological features and to outcome in endometrial cancer 

patients. 

 

MATERIALS AND METHODS 

Preoperative pelvic contrast-enhanced CT was performed in 155 patients with histologically 

confirmed endometrial cancer. Tumour ROIs were manually drawn on the section displaying 

the largest cross-sectional tumour area, using dedicated texture analysis software. Using the 

filtration-histogram technique, the following texture features were calculated: mean, standard 

deviation, entropy, mean of positive pixels (MPP), skewness, and kurtosis. These imaging 

markers were evaluated as predictors of histopathological high-risk features and recurrence- 

and progression-free survival using multivariable logistic regression and Cox regression 

analysis, including models adjusting for high-risk status based on preoperative biopsy, 

magnetic resonance imaging (MRI) findings, and age. 

 

RESULTS 

High tumour entropy independently predicted deep myometrial invasion (odds ratio [OR] 

3.7, p=0.008) and cervical stroma invasion (OR 3.9, p=0.02). High value of MPP (MPP5 

>24.2) independently predicted high-risk histological subtype (OR 3.7, p=0.01). Furthermore, 

high tumour kurtosis tended to independently predict reduced recurrence- and progression-

free survival (HR 1.1, p=0.06). 

 

CONCLUSION 

CT texture analysis yields promising imaging markers in endometrial cancer and may 

supplement other imaging techniques in providing a more refined preoperative risk 

assessment that may ultimately enable better tailored treatment strategies.  
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Introduction 

Intratumour heterogeneity at the genetic or histological level is reportedly a driver of 

carcinogenesis, neoplastic progression and therapeutic resistance (1-4). In the diagnostic 

workup of most cancer types, imaging is an important cornerstone, providing non-invasive, 

high resolution, whole-tumour visualisation. In recent years, assessment of tumour image 

heterogeneity has provided important insights into tumour phenotype, and several risk 

stratification tools based on radiomics have been proposed (5). 

Endometrial cancer is the most common gynaecological malignancy in developed 

countries, and the incidence is reported to be increasing (6). The current staging system, revised 

by the International Federation of Gynecology and Obstetrics (FIGO) in 2009 (7) is surgical, 

which implies that prognostication is largely based on results from primary surgical staging, 

thus after the surgical treatment. Hysterectomy with bilateral salpingo-oophorectomy comprises 

the standard primary surgical treatment. Pelvic and/or para-aortic lymphadenectomy is 

additionally performed in selected patients according to guidelines varying between 

institutions. The depth of myometrial and cervical tumour invasion, as well as the histological 

type and grade, are established markers associated with presence of lymph node metastases, 

post-treatment recurrence and patient survival (8). If these parameters could be accurately 

predicted preoperatively, a shift towards preoperative decision-making would be facilitated. In 

general, to enable more individualised surgical treatment and to avoid surgical overtreatment, 

improved methods for preoperative risk stratification are warranted. 

 Magnetic resonance imaging (MRI) is widely used for preoperative pelvic assessment 

of endometrial cancer (9-11). Additionally, most patients undergo an abdominal and thoracic 

computed tomography (CT) scan as part of the routine preoperative diagnostic workup. Some 

institutions also include 18-fluoro-deoxy-glucose (FDG)-positron-emission tomography (PET) 

in preoperative assessments, due to its high diagnostic value in detecting lymph node metastases 
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(12). Texture analysis, a method for quantification of heterogeneity in images which is 

applicable to both MRI, PET and CT, is increasingly employed in clinical research. As a post-

processing tool, image texture analysis does not increase scan time or patient-related side effects 

e.g. radiation dose, and thus represents an intriguing adjunct to conventional imaging. Image 

texture features have been proposed as imaging markers yielding more accurate diagnosis, 

improved preoperative risk stratification and better assessment of treatment response in several 

cancer types, e.g. in the brain (13), lung (14), breast (15) and prostate (16). Recent publications 

also report texture analysis of MRI (17, 18) and PET (19) as promising tools for preoperative 

risk stratification in endometrial cancer. No prior study has evaluated the possible value of CT 

texture analysis (CTTA) in endometrial cancer. 

This study aimed to explore whether the staging parameters pathological deep (≥50%) 

myometrial invasion (pDMI), cervical stroma invasion (pCSI) and lymph node metastases 

(pLNM), high-risk histological subtype and clinical outcome in endometrial cancer patients, 

are reflected in CTTA features. 

 

Materials and Methods 

 

Study setting 

This study was conducted with written informed consent from all patients and approval 

by the regional ethics committee. From April 2009 to November 2013 preoperative pelvic 

contrast-enhanced CT (ceCT) was performed in 155 women with endometrial cancer 

histologically verified at subsequent surgical staging. The CT scans were performed at different 

local hospitals. All patients were treated at the same university hospital, which is a European 

Society of Gynaecological Oncology accredited center. The last follow-up was in January 2017 
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and median follow-up time for the group of patients without recurrence or progression was 50 

months (range 0-85). 

 

Histological diagnosis 

Mean interval between the CT examination and surgical staging was 7 (range 1-102) 

days. The preoperative biopsy was graded as either low-risk (endometrioid grade 1-2) or high-

risk (endometrioid grade 3 or non-endometrioid) endometrial cancer. From preoperative 

endocervical curettage, an assessment of cervical tumour involvement was also performed. 

All patients were surgicopathologically staged according to the 2009 FIGO staging 

system (7). Hysterectomy specimens were sectioned along the longitudinal plane of the uterus, 

and myometrial invasion and cervical stroma invasion were estimated grossly and confirmed 

microscopically according to standard criteria (20). In this paper we use the notation pDMI, 

pCSI and pLNM to indicate surgicopathological staging results, as opposed to imaging findings 

(e.g. iDMI indicating presence of ≥50% myometrial invasion on MRI). 

 

Imaging protocol 

CT was performed on different scanners at different local hospitals in Western Norway. 

Imaging data have been retrospectively collected, and thus, were not acquired using a 

standardised protocol. However, all patients underwent ceCT in a routine clinical setting as part 

of the diagnostic workup of endometrial cancer. Only portovenous contrast phase images 

acquired with diagnostic CT radiation dose and reconstructed with a soft tissue algorithm were 

considered eligible for the study. All patients had CT images reconstructed in axial, coronal and 

sagittal plane, aligned to the body axis (not to the long axis of the uterus). Section thickness 

was consistently 3 mm, in-plane resolution ranged from 0.65 × 0.65 mm2 to 1.06 × 1.06 mm2. 
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Image analysis 

A previously published study on MRI texture analysis (18) included 180 endometrial 

cancer patients. This MRI study was prospective with a standardised scan protcol based on 

guidelines from the European Society of Urogenital Imaging (ESUR) (10). In 169 of these 

180 patients, a pelvic ceCT was available. One radiologist (SYH) with 6 years of experience 

with pelvic CT and MR imaging, blinded for clinical and histological data, assessed the 

eligibility of the images for CTTA. Of the 169 patients with a ceCT, 14 were excluded due to 

poorly defined tumours, considered ineligible for reliable tumour texture analysis. Thus, 155 

patients were included for CTTA. Aiming at selecting the image series best approximating a 

true cross-sectional tumour plane, axial or coronal (depending on the degree of ante-

/retroflection of the uterus) ceCT images were exported to the commercially available 

research software TexRAD (TexRAD Ltd, part of Feedback Plc). Then, the image slice 

displaying the largest cross-sectional tumour area was selected for texture analysis. In cases 

with several candidate slices, the radiologist subjectively selected one single slice based on 

the criteria large tumour area, good image quality and high tumour-background contrast. 

Median number of pixels in regions of interest (ROIs) was 466 (range 53-7541). 

 

Texture analysis 

In TexRAD the radiologist (SYH) manually drew ROIs on the CT slice displaying the 

largest cross-sectional tumour area, aiming at including all viable tumour tissue (Figure 1). To 

optimise tumour segmentation, MR images (T2-weighted, diffusion weighted and contrast 

enhanced T1-weighted images) were available when drawing ROIs on CT images (Suppl. 

Figure 1AB). The ROIs were processed using a filtration-histogram technique (21), in which 

image elements, i.e. groups of pixels with similar density, of different sizes were enhanced 

corresponding to spatial scale filter (SSF) from 2-6 mm, i.e. fine (2 mm), medium (3-5 mm) 
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and coarse texture (6 mm) (Figure 1). Quantification of texture in tumour ROIs comprised 

mean density, standard deviation (SD), entropy, mean of positive pixels (MPP), skewness and 

kurtosis. The total number of texture variables included in the statistical analyses was 36 

(mean/SD/entropy/skewness/MPP/kurtosis at SSF 0/2/3/4/5/6). A condensed notation is used 

in this manuscript, e.g. Entropy6, indicating tumour ROI entropy in ceCT image at SSF 6. 

The additional time consume for image slice selection and export, tumour delineation and 

texture analysis was approximately 10-15 minutes per patient. 

 

Statistical analysis 

The majority of texture variables did not have normal distribution, thus non-parametric 

tests were chosen. Mann-Whitney U Test was used to evaluate associations between tumour 

texture variables and the pathological outcome variables pDMI, pCSI, pLNM and high-risk 

histological subtype (defined as endometrioid grade 3 or non-endometrioid). The texture 

variables were subsequently ranked according to lowest p-value, and the highest ranked 

variables were selected for receiver operator characteristic (ROC)-curve analyses and 

univariable and multivariable logistic regression. The selected texture variables were analysed 

both as continuous and categorical variables. To generate the categorical variables, cutoff 

values determined by the maximum Youden index (defined as the sum of sensitivity and 

specificity) were used. In the multivariable analyses, we adjusted for age, preoperative biopsy 

risk status and conventional MRI reading results including MRI-measured tumour volume. 

Results from conventional MRI (assessment of tumour size, myometrial (iDMI) and cervical 

invasion (iCSI) and presence of lymph node metastases (iLNM)) were recorded as consensus 

opinion from three radiologists (median values for continuous variables and majority for 

categorical variables) having independently read the same MR images in a prior study (22). 

Spearman’s bivariate correlation test was used to explore correlations. 
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Survival analysis was performed with all texture variables separately in univariable 

Cox regression analysis for predicting recurrence- and progression-free survival (RPFS), i.e. 

time to recurrence (for patients considered to be cured by primary treatment) or progression 

(for patients known to have residual disease after primary treatment). Ranked according to 

lowest p-value, the best predictor was selected to be included in a multivariable analysis also 

including MRI-measured tumour volume, preoperative biopsy risk status and age. For the top 

ranked texture variable, difference in RPFS was assessed by the Mantel-Cox test and Kaplan-

Meier plot, in which consecutive groups (quartiles) with similar survival were merged. 

For the testing of the 36 texture variables, an adjustment for inter-variable correlations 

(Suppl. Table 1) was done and the significance level was set to 0.0025. With this significance 

level for the 36 individual tests, a random allocation (without replacement) of the 36-variate 

texture variables to outcome group had approximately 5% chance of at least one significant 

result. 

In the multivariable analyses a traditional significance level of 0.05 was used. 

The data were analysed using SPSS 24.0 (IBM, Armonk, NY, USA). 

 

Results 

 

Patients 

Median patient age at primary treatment in the study cohort (n=155) was 68 years (range 

41-89). Primary surgical treatment included bilateral salpingo-oophorectomy and hysterectomy 

for 98% (152/155), tumour reduction surgery for 1/155 and curettage only for 2/155. 

Lymphadenectomy was performed in 85% (131/155), pelvic only in 105 patients, pelvic and 

para-aortic in 26 patients. In patients who underwent lymphadenectomy, the mean number of 

resected nodes was 17 (range 1-54). FIGO stage was IA in 47% (73/155), IB in 27% (42/155), 
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II in 10% (16/155), IIIB in 2% (3/155), IIIC1 in 7% (11/155), IIIC2 in 4% (6/155), IVA in 1% 

(1/155) and IVB in 2% (3/155). Histological subtype was endometrioid in 78% (121/155), clear 

cell in 3% (5/155), serous in 10% (16/155), carcinosarcoma in 6% (9/155) and 

undifferentiated/others in 3% (4/155). Among endometrioid tumours, histological 

differentiation was grade 1 in 43% (52/121), grade 2 in 32% (39/121), grade 3 in 23% (28/121) 

and ungraded in 2% (2/121). Adjuvant therapy was given to 41% (63/155); comprising 

chemotherapy in 54 patients, radiotherapy (external or internal) in 8 patients and hormonal 

treatment in 1 patient. 

 

Prediction of deep myometrial invasion (pDMI) 

Of the 36 texture features assessed, 15 significantly (p<0.0025) predicted pDMI in 

univariable analysis with entropy at filter level 6 (Entropy6) yielding highest significance 

(Suppl. Table 2 and 3). The majority of these features comprised entropy and kurtosis at 

various filter levels, yielding the top 6 significant predictors (Suppl. Table 3). High values for 

Entropy6 independently predicted pDMI with an odds ratio (OR) of 3.7 (95% confidence 

interval 1.4-9.7, p=0.008) when adjusting for high-risk status based on preoperative biopsy 

(endometrioid grade 3 or non-endometrioid), conventional MRI reading suggesting iDMI, 

MRI-measured tumour volume and age (Table 1). The receiver operator characteristic (ROC)-

analysis yielded an area under the Entropy6 ROC-curve (AU-ROC) of 0.71 (p<0.001) (Figure 

2a) for prediction of pDMI. 

 

Prediction of cervical stroma invasion (pCSI) 

For prediction of pCSI in univariable analysis, none of the 36 texture features reached 

the significance level of 0.0025. The top ranked predictor of pCSI, Entropy6 (also the best 

predictor of pDMI), was, however, borderline significant in univariable analysis (p=0.006), 
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whereas in the multivariable analysis (significance level 0.05) high values of Entropy6 

independently predicted pCSI with an odds ratio of 3.9 (1.2-12.4, p=0.02) when adjusting for 

preoperative endocervical curettage indicating cervical tumour invasion, conventional MRI 

reading suggesting iCSI, MRI-measured tumour volume and age (Table 1). The 

corresponding AU-ROC for Entropy6 was 0.67 (p=0.005) (Figure 2b) for prediction of pCSI. 

 

Prediction of lymph node metastases (pLNM) 

None of the 36 texture features were significant predictors of pLNM neither in 

univariable analysis nor in multivariable analysis. The top ranked feature, Kurtosis5, yielded 

an AU-ROC of 0.69 (p=0.01) (Figure 2c) for prediction of pLNM. 

 

Prediction of high-risk histological subtype 

Two of the tested 36 texture features, MPP5 and Entropy4, were significant 

(p<0.0025) predictors of high-risk histological subtype (endometrioid grade 3 and non-

endometrioid tumours) in univariable analysis (Suppl. Table 2 and 3). In the multivariable 

analysis, high values of the top ranked predictor, MPP5, only tended to predict high-risk 

histological subtype (OR 1.01 (1.00-1.03, p=0.10)) when adjusting for high-risk status based 

on preoperative biopsy, MRI-measured tumour volume and age (Table 1). However, when a 

cutoff based on the highest Youden index was applied, MPP5>24.2 independently predicted 

high-risk histological subtype in the same multivariable model (OR 3.7 (1.3-10.1, p=0.01)). 

The corresponding AU-ROC for MPP5 was 0.65 (p=0.002) (Figure 2d) for prediction of high-

risk histological subtype. 

 

Survival analysis 
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Three out of 36 texture features significantly (p<0.0025) predicted recurrence- and 

progression-free survival (RPFS) in univariable Cox regression analysis. These comprised 

kurtosis at filter level 5, 4 and 3, respectively (Suppl. Table 3). High values of the top ranked 

prognostic texture feature, Kurtosis5 (also the best predictor of pLNM), predicted reduced 

survival with a hazard ratio of 1.2 (1.1-1.2, p<0.001) in univariable analysis (Table 2). When 

adjusted for high-risk status based on preoperative biopsy, MRI-measured tumour volume and 

age, however, the significance was only borderline (p=0.06). 

Significantly reduced recurrence- and progression-free survival was observed for 

patients with Kurtosis5 value being above the 75-percentile compared with patients having 

Kurtosis5 value below the 75-percentile (Figure 3, p<0.001). The proportion of patients given 

adjuvant treatment was higher in the poor outcome group: 59% (23/39) received adjuvant 

treatment among patients with Kurtosis5 above the 75-percentile, whereas only 34% (40/116) 

received adjuvant treatment among patients with Kurtosis5 below the 75-percentile. 

 

Discussion 

In this study we have demonstrated that texture features derived from preoperative CT 

are associated with high-risk disease and reduced survival in endometrial cancer. Our findings 

suggest that tumour texture analysis also employed on CT scans may yield clinically relevant 

imaging markers that may aid in the preoperative staging and risk assessment. 

 Surgical staging and subsequent histological assessment have traditionally been the 

primary basis for treatment and prognostication in endometrial cancer, thereby allowing only 

limited risk stratification prior to surgery. In this study we link novel CT features that may be 

derived from routinely employed preoperative scanning, to established risk factors in 

endometrial cancer, and identify tumour texture features that non-invasively and accurately 

may predict high-risk disease preoperatively. Interestingly, in multivariable analyses when 
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adjusting for other relevant routinely obtained preoperative biomarkers, the texture feature 

Entropy6 remains a significant and independent predictor of both pDMI and pCSI. 

Furthermore, in the multivariable survival analysis, the texture feature Kurtosis5 tends to 

predict recurrence- and progression-free survival. 

Among the CT derived texture features in this study we found entropy, kurtosis and to 

some extent MPP to be the most promising markers in endometrial cancer. These findings are 

in concordance with a prior endometrial cancer study applying texture analysis on MRI with a 

similar approach (18). Entropy is a measure of random irregularity and kurtosis is related to 

the peakedness of the pixel distribution curve in ROIs. In general, high entropy and high 

kurtosis in CT images reflect increased histological heterogeneity (23), which in turn is often 

related to irregular tissue architecture induced by tumour-induced angiogenesis, hypoxia and 

necrosis (24). Although texture features at different filter levels in our study are highly 

correlated (Suppl. Table 1), there is a tendency towards medium to coarse filtration being 

more frequently represented among high ranked predictors of high-risk disease (Suppl. Table 

3). This observation may support that the filtering-algorithm in TexRAD in fact enhances the 

biologically relevant information in medical images, as hypothesised (25). 

Inherently, CT has a lower soft tissue contrast than MRI, and in endometrial cancer 

CT has traditionally played a limited role in the assessment of local tumour extent. Although 

not fully comparable, a previous study with overlapping patient cohort employing MR texture 

analysis (MRTA) (18), identified features yielding slightly higher predictive and prognostic 

value than the most significant CTTA features in the present study. The MRTA markers 

yielded higher AUC than CTTA for prediction of pDMI (ADC_Entropy6 0.81 versus 

CT_Entropy6 0.71), pLNM (T1c_Entropy6 0.73 versus CT_ Kurtosis5 0.69) and high-risk 

histological subtype (T1c_MPP4 0.66 versus CT_MPP5 0.65) and higher hazard ratio (1.5 for 

T1c_Kurtosis2 versus 1.1 for CT_Kurtosis5) for predicting recurrence- and progression-free 
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survival. Nevertheless, the current study demonstrates that in spite of the lower soft tissue 

contrast, CT derived texture features may aid in the preoperative risk assessment as an adjunct 

to MRI. In fact, for prediction of pCSI, CTTA yielded slightly higher AUC than MRTA 

(CT_Entropy6 0.67 versus T2_MPP4 0.64), and if MRI is not available, the role of CTTA 

may potentially be even more important. In this context, however, it should be noted that our 

study allowed corresponding MR images to assist in tumour segmentation (to minimise ROI 

contamination) and as such, further studies are required to evaluate CTTA as a standalone 

prognosticator. Furthermore, our study does not propose a complete risk predicting model for 

endometrial cancer. However, given the previously published results on image texture 

analysis of MRI (17, 18) and PET (19), it seems plausible that a “texture signature”, including 

features from different imaging modalities, could improve preoperative risk stratification in 

endometrial cancer patients. 

The presence of lymph node metastases at surgical staging is an important risk 

classifier. In this study CTTA does not independently predict pLNM. A prior MRTA study 

also failed to identify independent predictors of pLNM among 87 texture features (18). 

Preoperative biomarkers for prediction of pLNM need to yield high diagnostic performance if 

these biomarkers are to guide tailored surgical treatment strategies offering less invasive 

surgery in low-risk patients. It is worth noting that aggressive disease does not always present 

with macroscopic lymph node metastases at the time of diagnosis or staging. Thus, if imaging 

can provide accurate prediction of pDMI, pCSI and histological type and grade, this would 

also be an important contribution to preoperative risk stratification. Anyhow, since no single 

promising texture marker for prediction of pLNM is currently identified, a future risk 

prediction model would probably benefit from a more multimodal and integrative approach, 

tentatively including elements from biopsy specimen (histological and molecular markers), 

blood sample, radiology and clinical information. 
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Our study has some limitations. First, the CT images were acquired using a non-

standardised imaging protocol, and hence the heterogeneous dataset represents a potential 

bias. E.g. differences in the quantities and types of contrast media administered may have had 

an impact on the derived image texture features. This, however, primarily increases the risk of 

type II errors, and our findings of independent predictors of high-risk disease could thus be 

regarded even more robust, as they are based on imaging data from routine clinical practice. 

Second, intra- and interobserver variability for the texture measurements has not been 

assessed in this study, in which manual segmentation was performed. Although not directly 

comparable, prior CTTA studies using the same software in other cancer types have shown 

good to excellent interobserver agreement (26, 27).  

Third, the two-dimensional, filtration-histogram based approach in TexRAD does not 

cover all aspects of texture analysis, and a three-dimensional approach analysing the entire 

tumour volume could potentially have yielded more relevant information on tumour texture. 

The literature is, however, equivocal regarding the superiority of whole tumour volume 

texture analysis over largest cross-sectional tumour area texture analysis. Studies on CT 

texture analysis in colorectal cancer yielded similar results for 2D and 3D segmentation of 

liver metastases (28), whereas for primary tumours the 3D segmentation yielded slightly 

better prognostic markers than that based on 2D segmentation (29). Since 2D segmentation is 

less time consuming, it is still widely used; however, with the introduction of more automated 

tumour segmentation tools, whole volume texture analyses may be easier to conduct in the 

future. 

 In conclusion, preoperative tumour texture analysis from CT yields imaging markers 

that independently predict high-risk disease and tend to predict reduced survival in 

endometrial cancer patients. This approach using radiomics to yield prognostic markers may 

enhance the role of standard diagnostic imaging methods and potentially contribute to 
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preoperative risk stratification in endometrial cancer. However, the value of image texture 

analysis in endometrial cancer needs to be further evaluated and validated across observers, 

centers and platforms, prior to potential implementation in clinic. 
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Table 1 

Univariable and multivariable logistic regression for prediction of deep myometrial invasion, cervical stroma invasion, 

lymph node metastases and high-risk histological subtype at surgical staging. The top ranked CT derived texture feature is 

included in each category. 

 

 

   

Univariable 

  

Multivariable 

     

Dependent variable  

(based on surgical 

staging/pathology) 

Predicting variable 

(covariates) 

Unadjusted OR (95% CI) p  Adjusted* OR (95% CI) p 

       

Deep myometrial 

invasion (pDMI) 

(n=153) 

ceCT_Entropy6 6.7 (2.8-16.0) <0.001  3.7 (1.4-9.7) 0.008 

MRI tumour volume 1.04 (1.02-1.07) <0.001  1.03 (1.00-1.05) 0.02 

MRI reading iDMI+ 5.0 (2.5-10.0) <0.001  2.3 (1.0-5.1) 0.04 

High-risk biopsy a 0.9 (0.5-1.9) 0.86  0.6 (0.2-1.4) 0.20 

Age 1.04 (1.00-1.07) 0.04  1.03 (0.99-1.07) 0.15 

 Predictor with cutoff b      

(n=71/153) ceCT_Entropy6 ≥4.84 3.9 (2.0-7.7) <0.001  2.4 (1.1-5.2) 0.02 

       

Cervical stroma 

invasion (pCSI) 

(n=153) 

ceCT_Entropy6 4.4 (1.5-12.8) 0.006  3.9 (1.2-12.4) 0.02 

MRI tumour volume 1.01 (1.00-1.01) 0.15  1.00 (0.99-1.01) 0.73 

MRI reading iCSI+ 4.9 (1.7-13.9) 0.003  3.8 (1.1-13.4) 0.03 

Biopsy Cervix+ 2.0 (1.0-3.7) 0.04  2.1 (1.0-4.2) 0.04 

Age 1.02 (0.98-1.07) 0.27  1.02 (0.98-1.07) 0.37 

 Predictor with cutoff b      

(n=68/153) ceCT_Entropy6 ≥4.85 4.6 (1.8-11.8) 0.001  4.5 (1.6-12.6) 0.004 

       

Lymph node 

metastases (pLNM) 

(n=131) 

ceCT_Kurtosis5 1.3 (1.1-1.7) 0.01  1.1 (0.8-1.5) 0.75 

MRI tumour volume 1.02 (1.01-1.03) 0.005  1.02 (1.00-1.03) 0.06 

MRI reading iLNM+ 21.6 (5.3-87.9) <0.001  12.2 (2.5-59.0) 0.002 

High-risk biopsy a 3.4 (1.2-9.9) 0.03  1.8 (0.5-6.4) 0.38 

Age 1.02 (0.97-1.08) 0.41  1.00 (0.93-1.07) 0.90 

 Predictor with cutoff b      

(n=61/131) ceCT_Kurtosis5 >0.16 6.0 (1.6-22.4) 0.007  3.4 (0.8-14.0) 0.09 

       

High-risk histological 

subtype a 

(n=153) 

ceCT_MPP5 1.01 (1.00-1.03) 0.02  1.01 (1.00-1.03) 0.10 

MRI tumour volume 1.02 (1.01-1.03) 0.004  1.02 (1.00-1.03) 0.05 

High-risk biopsy a 30.2 (10.6-85.5) <0.001  29.4 (10.0-86.4) <0.001 

Age 1.02 (0.99-1.06) 0.21  1.00 (0.96-1.05) 0.96 

 Predictor with cutoff b      

(n=96/153) ceCT_MPP5 >24.2 4.7 (2.2-10.2) <0.001  3.7 (1.3-10.1) 0.01 
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a High-risk-histological subtype is defined as endometrioid grade 3 or non-endometrioid subtype as opposed to low-risk 

histological subtype defined as endometrioid grade 1 and 2. 

b Cutoffs are determined by ROC curve analysis selecting the highest Youden index. Multivariable analyses are identical except 

texture variables are now categorical. 

* All covariates listed behind each dependent variable, grouped by vertical leaders, are included in each multivariable analysis. 

(When analysing texture variables with cutoff, the continuous variable is replaced by the corresponding categorical variable in the 

same analysis.) 

Significant p values (p<0.0025 in univariable analyses (after correction for number of test variables and inter-variable correlations) 

and p<0.05 in multivariable analyses) are given in bold. 

Texture features are annotated with number indicating spatial scale filter (SSF). 

ceCT, contrast-enhanced CT; CI, confidence interval; CT, computed tomography; iCSI, imaging-assessed cervical stroma invasion; 

iDMI, imaging-assessed deep myometrial invasion; iLNM, imaging-assessed lymph node metastases; MPP, mean of positive 

pixels; MRI, magnetic resonance imaging; OR, odds ratio; pCSI, pathology-assessed cervical stroma invasion; pDMI, pathology-

assessed deep myometrial invasion; pLNM, pathology-assessed lymph node metastases. 
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Table 2 

Univariable and multivariable Cox regression analysis for prediction of recurrence- and progression-free survival after 

treatment for endometrial cancer (n=155). 

 

   

Univariable 

  

Multivariable 

     

Outcome Predictor Unadjusted HR (95% CI) p  Adjusted HR (95% CI) p 

       

RPFS 

ceCT_Kurtosis5 1.2 (1.1-1.2) <0.001  1.1 (1.0-1.2) 0.06 

MRI tumour volume 1.01 (1.00-1.01) <0.001  1.01 (1.00-1.01) 0.01 

High-risk biopsy a 3.6 (1.9-6.9) <0.001  2.6 (1.3-5.2) 0.01 

Age 1.03 (1.00-1.07) 0.06  1.02 (0.98-1.05) 0.33 

       

a Categorical variable. High-risk biopsy is defined as endometrioid grade 3 or non-endometrioid subtype as opposed to low-risk 

comprising endometrioid grade 1 and 2. 

Significant p values (p<0.0025 in univariable analyses (after correction for number of test variables and inter-variable correlations) 

and p<0.05 in multivariable analyses) are given in bold. 

The texture feature (ceCT_Kurtosis5) is annotated with a number indicating spatial scale filter (SSF=5). 

ceCT, contrast-enhanced CT; CI, confidence interval; CT, computed tomography; HR, hazard ratio; MRI, magnetic resonance 

imaging; RPFS, recurrence- and progression-free survival. 
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Figure legends  

 

Figure 1  

Endometrial carcinoma manually segmented (blue line) on contrast-enhanced CT image in (a) 

an 81-year-old woman diagnosed with stage 1a cancer (endometrioid grade 1). Texture 

analysis showed low tumour entropy (Entropy6=4.49 corresponding to 25-percentile in study 

cohort). (b) An 88-year-old woman with stage 2 cancer (endometrioid grade 1) and high 

tumour entropy (Entropy6=5.54 corresponding to 95-percentile). Native image on top and 

fine, medium and coarse filtration of the tumour depicted below. 

 

Figure 2 

Receiver operator characteristics (ROC)-curves visualising the diagnostic performance of the 

top ranked texture features for predicting presence of the staging parameters deep myometrial 

invasion (pDMI) (a), cervical stroma invasion (pCSI) (b), lymph node metastases (pLNM) (c) 

and for high-risk histological subtype (d). P values refer to the test of equal areas under the 

diagonal and the ROC-curve. AUC, area under the ROC-curve. 

 

Figure 3 

Kaplan-Meier plot depicting significantly different patient survival for the top ranked tumour 

texture feature Kurtosis5. High tumour values for Kurtosis5 (above 75-percentile) were 

significantly associated with reduced recurrence- and progression free survival (p<0.001). P 

value refers to the Mantel-Cox (log-rank) test. 
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Suppl. Figure 1A 

Corresponding MR images (a-e) and tumour segmented CT image (f) in an 81-year-old woman 

diagnosed with stage 1a cancer (endometrioid grade 1) (same patient as in Figure 1a): Sagittal 

T2, depicting MRI axial oblique plane (red line) and CT coronal plane (blue line) (a), axial 

oblique T2 (b), axial oblique contrast-enhanced T1 (c), DWI b1000 (d), ADC-map (e) and 

contrast-enhanced CT image with tumour delineation (blue line) (f). The coronal CT plane was 

the best approximation of a true cross-sectional tumour plane in this patient – due to the uterus 

being anteverted. 

 

Suppl. Figure 1B 

Corresponding MR images (a-e) and tumour segmented CT image (f) in an 88-year-old woman 

with stage 2 cancer (endometrioid grade 1) (same patient as in Figure 1b): Sagittal T2, depicting 

MRI axial oblique plane (red line) and CT axial plane (blue line) (a), axial oblique T2 (b), axial 

oblique contrast-enhanced T1 (c), DWI b1000 (d), ADC-map (e) and contrast-enhanced CT 

image with tumour delineation (blue line) (f). Notice that the axial CT plane was the best 

approximation of a true cross-sectional tumour plane, being almost identical to the slightly 

oblique MRI plane, in this patient with a neutrally positioned uterus. 
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Suppl. Table 1 

Spearman correlation coefficients (rs) for CT derived texture features (at different filter levels (SSF 0-6)) in tumour ROIs 

of 155 endometrial cancer patients. 

   

Mean 

  

SD 

  

Entropy 

 

SSF  0 2 3 4 5 6 
 

0 2 3 4 5 6 
 

0 2 3 4 5 6 
 

0        
 

        

 
      

 

2 rs 0.14 

 

    

 

0.74
** 

 

     

 

0.85
** 

 

     
 

3 rs 
0.21

* 
0.97

** 
    

 

0.44
** 

0.70
** 

     

 

0.70
** 

0.88
** 

 

    
 

4 rs 
0.26

** 
0.90

** 
0.97

** 
   

 

0.30
** 

0.44
** 

0.89
** 

    

 

0.58
** 

0.74
** 

0.94
** 

 

   
 

5 rs 
0.33

** 
0.76

** 
0.85

** 
0.94

** 
  

 

0.24
* 

0.30
** 

0.72
** 

0.93
** 

   

 

0.54
** 

0.66
** 

0.86
** 

0.96
** 

 

  
 

6 rs 
0.35

** 
0.62

** 
0.72

** 
0.84

** 
0.96

** 
 

 

0.20
* 

0.23
* 

0.60
** 

0.80
** 

0.94
** 

  

 

0.53
** 

0.63
** 

0.81
** 

0.91
** 

0.98
** 

   
        

   

MPP 

  

Skewness 

  

Kurtosis 

 

SSF  0 2 3 4 5 6 
 

0 2 3 4 5 6 
 

0 2 3 4 5 6 
 

0        
 

        

 

           

 

2 rs 0.11 

 

      

 

0.40
** 

 

     

 

0.40
** 

 

   

 

 

3 rs 
0.28

** 
0.72

** 
 

    

 

0.39
** 

0.63
** 

 

    

 

0.37
** 

0.65
** 

   

 

 

4 rs 
0.32

** 
0.48

** 
0.87

** 
 

   

 

0.40
** 

0.42
** 

0.81
** 

 

   

 

0.32
** 

0.34
** 

0.72
** 

  

 

 

5 rs 
0.38

** 
0.34

** 
0.69

** 
0.90

** 
 

  

 

0.41
** 

0.29
** 

0.54
** 

0.84
** 

 

  

 

0.33
** 

0.26
** 

0.44
** 

0.77
** 

 

 

 

6 rs 
0.41

** 
0.28

** 
0.58

** 
0.78

** 
0.95

** 
   

0.38
** 

0.23
** 

0.38
** 

0.63
** 

0.91
** 

   

0.31
** 

0.25
** 

0.31
** 

0.49
** 

0.84
** 

 

 

** Correlation is significant at the 0.0025 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

CT, computed tomography; MPP, mean of positive pixels; ROI, region of interest; SD, standard deviation; SSF, spatial scale filter. 
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Suppl. Table 2 

Top ranked CT derived texture features in relation to clinical and histological characteristics of 155 endometrial cancer patients. 

 

 

   

Entropy6 a 

  

MPP5 b 

  

Kurtosis5 c 

      

Variable n Median (95% CI) p*  Median (95% CI) p*  Median (95% CI) p* 

Myometrial invasion    <0.001   <0.001   <0.001 

<50% 83 4.7 (4.5-4.8)   24 (19-28)   -0.3 (-0.4-0.0)  

≥50% (pDMI) 70 5.0 (4.8-5.1)   36 (28-44)   0.3 (0.1-0.9)  

Cervical stroma invasion    0.005   0.03   0.71 

No 126 4.8 (4.7-4.8)   26 (22-31)   0.0 (-0.2-0.2)  

Yes (pCSI) 27 5.1 (4.9-5.2)   34 (27-45)   0.2 (-0.6-1.4)  

Lymph node metastases    0.10   0.56   0.01 

No 115 4.8 (4.7-4.9)   28 (25-34)   0.0 (-0.3-0.2)  

Yes (pLNM) 16 5.1 (4.7-5.3)   32 (18-57)   0.8 (0.2-2.1)  

Histological type/grade   0.007   0.002   0.02 

E1+2 91 4.7 (4.6-4.8)   24 (20-31)   0.0 (-0.3-0.2)  

E3+NE 62 4.9 (4.8-5.1)   35 (29-44)   0.3 (-0.2-1.0)  

Age, years   0.30   0.008   0.16 

<68 77 4.8 (4.6-4.9)   25 (20-31)   -0.1 (-0.3-0.2)  

≥68 (median and above) 78 4.8 (4.7-5.0)   35 (27-44)   0.3 (-0.2-0.8)  

BMI, kg/m2   0.05   0.14   0.28 

<25 45 5.0 (4.7-5.2)   33 (24-45)   0.3 (-0.1-0.8)  

≥25 (overweight) 107 4.8 (4.7-4.9)   28 (24-31)   0.0 (-0.3-0.2)  

* Mann-Whitney U Test. 

a Highest ranked CT derived texture feature for prediction of myometrial invasion (pDMI) and cervical stroma invasion (pCSI). 

b Highest ranked CT derived texture feature for prediction of histological type/grade. 

c Highest ranked CT derived texture feature for prediction of lymph node metastases (pLNM) and recurrence- and progression-free 

survival.  

Texture features are annotated with number indicating spatial scale filter (SSF). 

Significant p values after correction for number of test variables and inter-variable correlations (<0.0025) are given in bold. 

BMI, body mass index; CI, confidence interval; CT, computed tomography; E1-3, endometrioid grade 1-3; MPP, mean of positive pixels; 

NE, non-endometrioid; pCSI, pathology-assessed cervical stroma invasion; pDMI, pathology-assessed deep myometrial invasion; pLNM, 

pathology-assessed lymph node metastases. 
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Suppl. Table 3 

Top ranked CT derived texture features for predicting FIGO staging parameters, histological tumour characteristics and survival in 155 endometrial cancer patients. 

 

  

Deep myometrial invasion 

(pDMI) 

  

Cervical stroma invasion 

(pCSI) 

  

Lymph node metastases 

(pLNM) 

  

High-risk histology 

(E3+NE) 

  

Reduced recurrence- and 

progression-free survival 

         

Rank Texture feature p*  Texture feature p*  Texture feature p*  Texture feature p*  Texture feature p+ 

1 Entropy6 8.74×10-6  Entropy6 0.0053  Kurtosis5 0.0121  MPP5 0.0016  Kurtosis5 1.44×10-6 

2 Kurtosis3 9.52×10-6  Entropy5 0.0075  Kurtosis4 0.0123  Entropy4 0.0022  Kurtosis4 2.05×10-5 

3 Kurtosis4 1.97×10-5  Entropy4 0.0153  Kurtosis2 0.0149  Entropy5 0.0029  Kurtosis3 1.80×10-5 

4 Entropy5 6.97×10-5  MPP4 0.0193  Kurtosis6 0.0192  Entropy3 0.0037  Kurtosis6 0.0067 

5 Entropy2 2.96×10-4  Skewness3 0.0344  Kurtosis3 0.0320  Entropy6 0.0068  Skewness3 0.0114 

6 Kurtosis5 2.99×10-4  MPP5 0.0346  Entropy2 0.0365  MPP6 0.0068  Entropy5 0.0114 

7 MPP6 3.54×10-4  SD5 0.0405  MPP0§ 0.0415  MPP4 0.0109  Entropy6 0.0126 

8 Mean5 4.27×10-4  SD4 0.0417  Mean0§ 0.0422  Skewness2 0.0117  Skewness4 0.0155 

9 Mean6 4.33×10-4  SD6 0.0424  Entropy5 0.0730  SD6 0.0128  Entropy4 0.0243 

10 Kurtosis2 4.48×10-4  MPP3 0.0476  Entropy0 0.0800  Skewness3 0.0185  Kurtosis2 0.0250 

 

* Mann-Whitney U Test. 

+ Univariable Cox regression analysis. 

§ Low values of MPP0 and Mean0 predicted lymph node metastases. For all other texture features listed, high values predicted high-risk disease. 

Significant p values after correction for number of test variables and inter-variable correlations (<0.0025) are given in bold. 

Texture features are annotated with number indicating spatial scale filter (SSF). 

ceCT, contrast-enhanced CT; CT, computed tomography; E3, endometrioid grade 3; FIGO, the International Federation of Gynecology and Obstetrics; MPP, mean of positive pixels; NE, 

non-endometrioid; pCSI, pathology-assessed cervical stroma invasion; pDMI, pathology-assessed deep myometrial invasion; pLNM, pathology-assessed lymph node metastases; SD, 

standard deviation. 
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