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a b s t r a c t 

In this paper, we consider Real-Time Optimization (RTO) and control of an oil production system. We 

follow a systematic plantwide control procedure. The process consists of two gas-lift oil wells connected 

to a pipeline-riser system, and a separator at the topside platform. When the gas injection rates are low, 

the desired steady flow regime may become unstable and change to slug flow due to the casing-heading 

phenomenon. Therefore, a regulatory control layer is required to stabilize the desired two-phase flow 

regime. To this end, we propose a new control structure using two pressure measurements, one at the 

well-head and one at the annulus. For the optimization layer, we compare the performance of nonlinear 

Economic Model Predictive Control (EMPC), dynamic Feedback-RTO (FRTO) and Self-Optimizing Control 

(SOC). Based on dynamic simulations using the realistic OLGA simulator, we find that SOC is the most 

practical approach. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Modeling, estimation, control, and optimization methodologies

re becoming exceedingly important in the upstream petroleum

ndustries. Concepts from Advanced Process Control (APC) are be-

ng developed and deployed in offshore oil and gas production

 Campos et al., 2015 ). There are however numerous remaining

hallenges ( Foss, 2012 ). 

One standard approach for control and optimization of multi-

nput multi-output processes is centralized model-based control

 e.g. , Nonlinear Model Predictive Control, NMPC) which simultane-

usly uses all the inputs and outputs of the system ( Engell, 2007 ).

n theory, such a control scheme can optimally handle the dynamic

nteractions between different input/output pairings, and provide

nputs for optimal operation of the system. However, the success

f this solution depends on obtaining a good process model and

he ability to update it. In addition, optimization using detailed dy-

amic models (with hundreds of state variables) is computation-

lly demanding and often not suitable for real-time applications.

ampos et al. (2015) says that many numerical issues need to be

ddressed before dynamic optimizers can be widely used in the

ffshore oil and gas production. Instead, fast local controllers can
∗ Corresponding author. 
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e used for stabilization while slower centralized optimizers may

e used for long-term optimization ( Skogestad, 2004 ). 

In our study, we initially attempted to solve an optimal oil pro-

uction control problem using a centralized NMPC approach, that

s, with a single optimizing controller. However, we were not suc-

essful. This was partly because the plant is unstable, also because

f the plant-model mismatch. We used the Olga simulator as the

real” process and a simplified dynamic model for the control de-

ign. Willersrud et al. (2013) successfully applied a centralized con-

rol structure (NMPC) to another oil and gas production system.

owever, they assumed no model-plant mismatch; that is, they

onsidered the same model for both optimization and simulation.

hus, robustness against modeling errors was neglected. Moreover,

his single-layer centralized strategy was not tested in closed-loop

ith unmeasured disturbances. 

Complex industrial processes require a structured con-

rol architecture for their operation. Skogestad (2004) ;

aputelli et al. (2006) ; Foss (2012) propose to decompose the

ontrol and optimization problem on different time scales.

uyben et al. (1997) and Skogestad (2004) propose systematic

rocedures for design of such plantwide control systems. 

The resulting multi-layer plantwide control structure in Fig. 1

 Skogestad, 2004 ) is well established in the process industry,

ee e.g. , Campos et al. (2015) . The lower control layers are fast

nd do not affect the optimization of the process. In practice,

he slow Real-Time Optimization (RTO) layer is designed based
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Schematic presentation of multi-layer control structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Production network model in Olga simulator (open-loop process without 

controllers). 
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on steady-state models. These models are usually detailed physi-

cal models, but they may also contain empirical nonlinear equa-

tions. Such models can be described, for example, by piecewise-

defined numeric functions in the optimization problem formula-

tion ( Gunnerud and Foss, 2010 ). 

The fastest regulatory layer typically controls levels, flow rates,

and pressures. There is also a growing interest in introducing a

slower secondary advanced (supervisory) control layer (APC), for

example using model predictive control (MPC), for coordination

purposes and for taking into account the constraints and interac-

tions ( Foss, 2012 ). 

The plantwide control structure design method presented by

Skogestad (2004) is divided into a Top-down analysis and Bottom-

up design ( Skogestad, 2004 , see Table 1). The Top-down analy-

sis starts with the definition of operational objectives, then the

identification of the manipulated variables and degrees of freedom

(DOF), optimization and finally selecting the primary variables for

control (CV 1 in Fig. 1 ). In contrast, the Bottom-up design starts

with the stabilizing control layer, then supervisory controller, and

ends up with providing the integration with the optimization layer.

The idea is that the control layer should contribute to the opti-

mization. 

For the top-down step a key decision is the selection of eco-

nomic controlled variables (CV 1 ). For the bottom-up step a key

desicion is the selection of stabilizing controlled variables (CV 2 ).

Often the CV 1 variables are active constraints and they are some-

times moved into the fast regulatory layer (as part of CV 2 ). 

Many papers on oil and gas production optimization focus only

on the optimization layer, assuming a perfect regulatory control
 Krishnamoorthy et al., 2016 ). However, gas-lifted wells and mul-

iphase risers may become dynamically unstable, in particular at

he optimum economic point ( Di Meglio et al., 2012 ). The usual

emedy to these instabilities is to use more lift-gas, which may

e costly or not available. Moreover, injecting more gas increases

he friction pressure loss which reduces the production rate. An-

ther passive solution is to choke a downstream valve, which may

ead to sub-optimal operation due to an increased back-pressure.

tabilizing the desired non-slug flow regime by feedback control

s shown as an optimal solution to gas-lifted well instabilities

 Dalsmo et al., 2002 ). Both robustness and tracking performance

re necessary for the stabilizing regulatory control layer. The reg-

latory control layer must remain stable despite the variations in

he process gain due to change of the operating point. 

The primary objective of this study is to apply the plantwide

ontrol design procedure on the gas-lift production system.

e compare three online optimizing control strategies, namely,

) Economic NMPC, 2) Self-Optimizing Control, and 3) Di-

ect input adaptation using a new model-based feedback-RTO

 Krishnamoorthy et al., 2019 ). Moreover, we study the effect of un-

easured disturbances in reservoir pressure and gas-oil ratio. We

se the Olga simulator as the “real” plant and use a simplified dy-

amic ODE model for state estimation and optimization. This ap-

roach allows us to study the effect of modeling errors. 

The article is organized as follows. In Section 2 , we intro-

uce the oil production network. The top-down analysis is ex-

lained in Section 3 . The bottom-up design procedure is presented

n Section 4 where the design and the robustness properties of

he regulatory control layer are presented. In Section 5 , we con-

ider the optimization layer including the Economic NMPC, self-

ptimizing control and the dynamic Feedback-RTO. Dynamic sim-

lations are presented in Section 6 . After discussing the findings

nd challenges of this work in Section 7 , the concluding remarks

re given in Section 8 . 

. Oil production network 

The oil production network is simulated using the Olga simula-

or and is represented in Fig. 2 . Olga is the industry-standard tool

or simulating dynamic multiphase flow ( Schlumberger, 2018 ). In

his work, the Olga model consists of two wells operated by gas-

ift. The oil wells feed a common pipeline-riser connected to a top-
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Fig. 3. Fluid properties. 
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Fig. 4. Gas-lift performance curve (adapted from Aamo et al., 2005 ). 
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ide separator. The system has seven control inputs (Manipulated

ariables, MVs): 

• Gas injection mass flow rate at the annulus top of each well

(MV 1A , MV 1B ) 

• Production choke valve opening of each well (MV 2A , MV 2B ) 

• Top-side valve opening (MV 3 ) 

• Two valves for separator control (MV 4 , MV 5 ) 

We consider fourteen measurements: 

• Pressure measurements (7) at the riser top, at the inlet of the

pipeline, at the wellheads, at the top of each annulus and in

the separator 

• Mass flow rate measurements (6) gas and liquid rates at the

two wellheads and at the riser top 

• Level measurement (1) in the separator 

The two vertical wells are assumed to be geometrically iden-

ical with a tubing and annulus length of 2048 m. The inner di-

meter of the tubing is 0.124 m, and the annulus is modeled by

 cylindrical (not annular) pipe with 0.2 m diameter. The rough-

ess of the pipes is set to 4.5E-5 m. The reservoir temperature is

ssumed to be 108 ◦C. The well inflow relation is assumed to be

inear ( i.e. , w res = PI (P res − P bh ) ) with a Productivity Index (PI) of

.247 kg/s/bar. Nominally, the feed from the reservoir is oil for the

resent case study, that is, the produced gas-oil ratio (GOR) and

ater-cut are assumed to be negligible at nominal conditions. The

wo reservoir pressures are considered to be different; the nominal

alues are 160 bar for well A and 170 bar for well B. 

The pipeline length is 4300 m, where the last 2300 m has a

egative inclination of 1 ◦. The pipeline goes to a riser with height

00 m. The pipeline and riser have a diameter of 0.2 m and rough-

ess of 2.8E-5 m. The separator operates at a constant pressure of

 bar. 

In Olga, the fluid properties can be specified by a black-oil

odel or as PVT Tables. We use PVT tables generated by PVTSim©.

or a given feed composition, these tables contain all fluid proper-

ies such as viscosity, gas density, oil density, and gas mass fraction

s functions of pressure and temperature. The viscosity of the oil

onsidered in this paper ranges from 0.2 to 1 cP, which is not suffi-

ient to classify it as a heavy oil. In Fig. 3 , we show the oil density

nd gas mass fraction as a function of pressure at 88 ◦C. The pro-

uced fluid is at ‘undersaturated condition’ and does not have free

as in the range of bottom-hole pressures considered. With these

uid conditions and the low reservoir pressure, the wells consid-
red in this work are not naturally flowing . Therefore, gas-lift is re-

uired to assist the production. 

The two gas-lifted oil wells operate in the casing-heading in-

tability region when the injected gas rates are low. As shown

n Fig. 4 , the theoretically optimal steady-state operating point is

n this region ( Aamo et al., 2005 ). The casing-heading instability

auses slugging flow regimes which are characterized by large flow

nd pressure oscillations in the form of a limit cycle behavior. The

lugging causes safety problems and inadequate separation of oil

nd gas. Moreover, as seen from Fig. 4 , the average production un-

er slugging is less than the production with non-slug flow. To

void slugging, stabilizing control is required. The stabilization is

erformed by low-level controllers in the regulatory layer. 

.1. Models 

Three different models of the oil production network are used

n this work as described next. 

.1.1. Reference model in the Olga simulator 

The Olga model of the oil production network is used as the

real” process in the subsequent dynamic simulations. When the

evelopment of Olga was initiated in the1980’s at NTNU and Sintef,

ne of the motivations was to study the dynamics of slow flow

egimes for offshore oilfields ( Bendiksen et al., 1991 ). The simulator

ncludes empirical correlations which have been fine-tuned by data

rom the oil-fields in the North Sea. 

However, for the user, the simulator is a black box and the user

annot see the model equations. This means it is difficult to use

he commercially available Olga simulator for production optimiza-

ion. 

.1.2. Spline surrogate model 

With the Olga simulator, it is possible to find the global op-

imal operating point and optimal cost. To this end, we gener-

ted data points from simulations using Olga and constructed a

urrogate spline model ( Jahanshahi et al., 2016; Grimstad et al.,

016 ). The surrogate spline model consists of piecewise third-order

r fourth-order polynomials. These models have the necessary ac-

uracy and smoothness (two times differentiable) for global opti-

ization solvers, and are then used to find the optimal operating

oints for different disturbance scenarios. The optimal cost values

re used as a benchmark to compare the different optimizing con-

rol methodologies. 

.1.3. Simplified dynamic model 

A simplified nonlinear dynamic model of the process is used

or the state and parameter estimation and for solving the dy-

amic optimization problem (NMPC). The state equations of the

odel are the mass balances in different parts of the net-

ork. The gas-lift well model is similar to the one used by
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Fig. 5. Cost as a function of gas injection rates of two wells, generated by surrogate 

models. 
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Jahanshahi et al. (2012) with some modifications, and the pipeline-

riser model is as presented by Jahanshahi and Skogestad (2014) . 

The dynamic model can be represented as a set of ordinary dif-

ferential equations: 

˙ x = f ( x, u, d ) (1a)

y = h ( x, u, d ) (1b)

where x represents the dynamic states, i.e. , the mass of liquid and

gas in the pipeline segments, u represents the manipulated vari-

ables (MV), i.e. , the valve openings and the mass injection of lift-

gas, and d represent the disturbances, e.g. accounting for variations

in the reservoir pressure and GOR. The outputs y includes vari-

ables of particular interests, such as pressure measurements and

constrained outputs. 

We fine-tuned the simplified dynamic models to match the

Olga simulator. The valve coefficients were used as the tuning pa-

rameters for this purpose. The model tuning purpose is to match

both the dynamic and steady-state behavior. The dynamic behavior

consists of the critical valve opening at which the slugging starts

as we open the valve gradually, and the frequency of the slugging

just after the critical valve opening. The steady-state behavior con-

cerns the pressure and flow rate values of the stable (stabilized)

process. The model tuning criteria and procedure are described by

Jahanshahi and Skogestad (2014) : 

3. Top-down design procedure 

3.1. Definition of operational objectives 

The primary goal is to optimize an economic objective which

in most cases corresponds to recover as much oil as possible. The

objective can be seen from a long-term perspective, where the

reservoir dynamics play an essential role ( Jansen et al., 2009 ), or

from a short-term perspective (commonly known as daily produc-

tion optimization), where the reservoir is considered to be static

( Kosmidis et al., 2005; Gunnerud and Foss, 2010; Codas et al.,

2012; Grimstad et al., 2016 ). This work considers the short-term

perspective and therefore disregards the reservoir dynamics. The

short-term optimization of gas-lift wells is often constrained by

the maximum amount of available lift-gas ( Camponogara et al.,

2009 ). 

In this work, we minimize the operation cost, J = injected gas

cost - produced oil value. This is the negative of the economic

profit. The constraints include the maximum injection rates and

the minimum valve pressure drops. The latter are for controlla-

bility purposes. The constraints are controlled in the regulatory

layer as explained in the bottom-up design, Section 4.2 . Ideally,

the constraints should be controlled at their corresponding phys-

ical bounds, but a back-off is introduced to ensure feasibility and

stable operation. 

More precisely, the steady-state optimization problem is: 

min 

u 
J = αg (w inj,A 

+ w inj,B 

) − αo (w o ,A + w o ,B ) (2a)

subject to 

0 = f (x, u, d) (2b)

y = h (x, u, d) (2c)

w inj,A 

+ w inj,B 

≤ w 

max 
gl (2d)

b y ≤ y ≤ b y u 

(2e)

l 
 

u 

l 
≤ u ≤ b u u 

(2f)

The five decision variables u = (w inj,A 

, w inj,B 

, v w 

A 
, v w 

B 
, v p ) are

he two gas injection rates and three valve openings. αo , αg are oil

nd gas prices ($/kg). Eq. (2d) is the constraint on the total avail-

ble gaslift, (2e) are the constraints on selected outputs ( e.g. valve

ressure drops), and (2f) are the constraints on the five decision

ariables. 

.2. Manipulated variables and degrees of freedom 

As mentioned, the degrees of freedom for the steady-state op-

imization are the three valve openings (v w 

A 
, v w 

B , v 
p ) and the two

as injections rates ( w inj, A , w inj, B ). There are actually five valves,

ut it is assumed that two downstream valves are used to keep

onstant separator level and pressure. The degrees of freedom re-

ulting from the three valves are replaced by the valve pressure

rop setpoints (CV 1s ). This transformation does not have any im-

act on the control performance, but it is essential for optimization

urposes due to the uncertainty of the valve models. 

.3. Optimal operation 

The steady-state real-time optimizer uses the surrogate spline

odel to represent the gas-lift system. The two injection rates are

he unconstrained steady-state degrees of freedom for the opti-

ization. 

To obtain the surrogate model, we used the built-in paramet-

ic study tool in Olga, and we applied 0.01 kg/s steps in the two

as injection rates which gave 420 points for each disturbance sce-

ario. Fig. 5 shows a plot of the cost as a function of the two gas

njection rates with other parameters at their nominal values. 

In addition to the nominal operating point, we also optimize

he process for disturbances in the two reservoir pressures (D1,

2) and their gas-oil (mass) ratios (D3, D4). The nominal reservoir

ressures are 160 and 170 bars, and the nominal gas-oil mass ra-

ios are 0. Table 1 summarizes the optimal inputs and correspond-

ng cost for various disturbances. 

.4. Active constraints 

The primary economic controlled variables (CV 1 ) consist of the

ctive constraints plus self-optimizing controlled variables. In gen-

ral, it is always economically optimal to open the valves as much
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Table 1 

Optimal gas injection rates for various disturbance scenarios. 

Nom. D1 D2 D3 D4 

DVs P res,A 160 155 155 160 160 

P res,B 170 170 165 170 170 

GOR A 0 0 0 0.03 0.03 

GOR B 0 0 0 0 0.03 

u opt w inj, A 1.296 1.279 1.277 0.847 0.846 

w inj, B 1.325 1.321 1.307 1.315 0.830 

J opt −28.433 −27.878 −27.313 −28.827 −29.239 
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a  
s possible. A maximum valve opening is equivalent to a minimum

ressure drop of the valve. That is, the three valve pressure drop

onstraints on the three valves are always active and these are thus

elected as primary controlled variables (CV 1 ). As a result, only the

wo gas injection rates are unconstrained degrees of freedom for

he steady-state optimization. 

.5. Primary controlled variables CV 1 for self-Optimizing control 

In this section, we apply the self optimizing control

 Skogestad, 2004 ) to select the two associated controlled variables

CV 1 ) to be kept at constant setpoint. These controlled variables

re regulated by the two unconstrained DOFs (gas injection rates).

he objective is to achieve an acceptable loss with constant set-

oints when disturbances occur without re-optimizing the process

or the disturbances. The setpoint values are chosen as the nominal

ptimal values. The loss relative to the ideal (reoptimized) costs

or each disturbance are shown for seven candidate controlled

ariables (CV 1 ) in Table 2 . Here, the loss is the difference between

he cost at the steady-state and the optimal cost ( L = J ss − J opt ).

he loss has the same unit as the cost ($/s). The optimal cost

alues are given in Table 1 . The losses in Table 2 are obtained

rom simulations in the Olga simulator without any simplification.

e also considered the open-loop case (Alternative 0) where the

wo gas injection rates are kept constant. 

We conclude that the well-head gas flow rates (Alternative 7)

re the best controlled variables (CV 1 ) for self-optimizing control.

ote that the well-head gas flow rate is the sum of the injection

ate, the produced gas from the reservoir, and the gas flashed from

he petroleum at the lower pressure of the well-head compared to

he reservoir pressure. Controlling the well-head liquid flow rates

Alternative 6) gives the worst result, even worse than the open-

oop case (Alternative 0). Constant GOR at the well-head also gives

mall losses (Alternative 1). 

.6. Production rate 

The location of the throughput manipulator (TPM) is not con-

idered in this work, because it is optimal to minimize the pro-

uction cost, and the production rate is set indirectly by the opti-

ization. The optimal production rate is affected by the prices of

njected gas and produced oil, as well as the different disturbances.

owever, in general, the throughput manipulator should be located

lose to the bottleneck. For example, it should be located close to

he receiving facilities if the maximum capacity of processing units

e.g., separation) is the bottleneck. 

. Bottom-up design procedure 

.1. Selection for regulatory controlled variables CV 2 

From a controllability point of view, the bottom-hole pressure

s the preferred Controlled Variable (CV 2 ) for stabilizing control of

as-lift oil wells ( Jahanshahi et al., 2012 ). However, the bottom-

ole pressure is often not available, and if it is available, it has
ong sampling time intervals only suitable for monitoring purposes.

ottom-hole sensors can also easily fail and are generally not re-

laced in case of failure. 

Aamo et al. (2005) proposed to apply a nonlinear observer to

stimate the bottom-hole pressure from a combination of top-side

easurements. These topside measurements are the tubing head

ressure, casing head pressure, and the multi-phase fluid density.

ahanshahi et al. (2012) have carried out a controllability analysis

n unstable gas lift oil wells, and have concluded that a combina-

ion of topside measurements results in a robust stabilizing control

ystem. 

Codas et al. (2016) considered combining the tubing head

ressure (CV 1 ) and the casing head pressure (CV 2 ) by apply-

ng cascade control. Both CVs are located at the seabed and

re relatively robust and easy to measure. Fig. 6 shows such

 control structure (CS1) where the annulus pressure (CV 2 ) is

ontrolled in the inner loop (slave) and the tubing pressure

CV 1 ) is controlled by the outer loop (master). Here, the pro-

uction choke valve opening is used as the Manipulated Vari-

ble (MV) for the regulatory control, and the tubing pressure

etpoints (CV 1s ) are available as a DOFs for the optimization

ayers. 

Alternatively, the pressure drops over the two wellhead valves

CV 1 ) can be controlled by the master controller. This is reason-

ble because, as noted, the minimum pressure drop is an active

onstraint and should be selected as CV 1s . Such a control struc-

ure is shown as Control Structure 2 (CS2) in Fig. 6 . A similar con-

rol structure is applied to control the pipeline-rise subsystem (see

ig. 7 ). 

The master loops of the cascade controllers are here classified

s part of the supervisory control. The master loop helps for the

tabilization by avoiding drift from the controller design point ( i.e.

eeping the system in the linear region), and at the same time

rack the optimal setpoints given by the optimization layer. The

racking performance of the master control loops is important for

ptimal operation. 

.2. Setpoints for active constraints 

In this work, we have used 2 bar pressure as the minimum

ressure drop �P for the wellhead valves, and 0.7 bar for the riser

hoke. 

For optimal operation, it is desired to minimize the pressure

rop in the network. Therefore, these �P constraints will always

e active, and should be selected as primary controlled variables

CV 1 ). The proposed control structure (CS2 in Fig. 6 ) allows for

ontrolling the pressure drops at their constraints. 

.3. Regulatory control layer 

A block diagram of the regulatory controllers and the distur-

ances are shown in Fig. 8 . The regulatory layer must keep the

rocess stable during the transition along the optimal path pro-

ided by the supervisory controllers, and reject disturbances on

 fast time scale. The reservoir pressure and gas-oil-ratio (GOR)

re uncertain parameters which are considered as unknown distur-

ances in this work. Besides, the MVs used by the layers above are

isturbances to the regulatory layer. For example, the gas injection

ates used for as the DOFs for optimization are disturbances to the

egulatory controllers. 

.4. Robustness 

The main consideration for tuning the regulatory controllers is

obustness. The robustness is evaluated at two operating points,

t the initial conditions and at the steady-state optimal point. The
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Table 2 

Loss compared to optimal (J opt ) for four disturbance scenarios. The well-head gas mass flow rates (Alternative 7) are selected for 

self-optimizing control. 

Controlled variables Description J opt Disturbances 

Nominal D1 D2 D3 D4 

−28 . 433 −27 . 878 −27 . 313 −28 . 827 −29 . 239 

0 Open-loop No control Loss 0.000 0.001 0.001 0.274 0.480 

1 GOR wh,A , GOR wh,B Well-head GORs 0.000 0.004 0.005 0.001 0.001 

2 P wh,A , P wh,B Well-head pressures 0.000 0.042 0.018 0.000 0.000 

3 P inl Pipeline inlet pressure 0.000 0.005 0.018 0.166 0.001 

4 Z top Topside valve opening 0.000 0.004 0.013 0.165 0.005 

5 Z wh,A , Z wh,B Well-head valve openings 0.000 0.019 0.022 0.014 0.022 

6 w Lwh, A , w Lwh, B Well-head liquid mass flow rate 0.000 1.639 2.551 0.007 0.033 

7 w Gwh, A , w Gwh, B Well-head gas mass flow rate 0.000 0.001 0.001 0.000 0.000 

Fig. 6. Cascade control structures used for regulatory control of oil wells. 

Fig. 7. Cascade control structure used for regulatory control to stabilize pipeline- 

riser subsystem (CS4). 

 

 

 

 

 

 

 

 

 

Fig. 8. Block diagram of the decentralized regulatory control structure used to sta- 

bilize the gaslift network. 
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gas injection rates to the wells are initially 1 kg/s, with the three

valves 50% open. PI tunings, gain margin and phase margin for

six pressure controllers are shown for the two operating points in

Table 3 . The gain margins are larger than 2 for all cases. That is, if

the process gain increases by a factor 2 or decreases to half due to

nonlinearity, the system remains stable. 

Fig. 9 shows the sensitivity transfer functions S = (I + GC) −1 

and T = I − S as functions of frequency at the optimal operating

point. Here, S is the transfer function from an output disturbance

to CV 1 , and T is the transfer function from CV 1s to CV 1 . These are

for the master controllers. The peaks of sensitivity transfer func-
ions (M s -value) are not larger than 1.4 which indicates good ro-

ustness ( Skogestad and Grimholt, 2012 ). 

. Optimization layer 

.1. Economic nonlinear model predictive control 

In this section, we apply nonlinear economic model predictive

ontrol (EMPC) as defined by the following optimization problem.
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Table 3 

PI tuning and robustness measures of controllers. Initial operating point is w inj,A = 1 , w inj,B = 1 , Z wh , A = 

0 . 5 , Z wh , B = 0 . 5 , Z top = 0 . 5 . 

Design point Controller K c T i [ s ] GM 

a PM 

a DM [s] a ‖ S ‖ b ‖ T ‖ b 
Initial operating 

point 

PC an,A −2 × 10 −5 600 2.39 20.67 13.69 – –

PC wh,A 0.016 100 3.85 66.19 2988 1.40 1.00 

PC an,B −2 × 10 −5 600 2.57 19.67 11.90 – –

PC wh,B 0.016 100 3.90 66.83 3193 1.40 1.00 

PC inl −2 × 10 −6 300 3.86 53.24 377.87 – –

PC top 0.4 300 – 105.02 1224 1.00 1.00 

Optimal point PC an,A −3 × 10 −5 600 3.32 32.33 20.56 – –

PC wh,A 0.016 100 4.81 72.28 2926 1.26 1.00 

PC an.B, −3 × 10 −5 600 3.11 32.14 20.37 – –

PC wh,B 0.016 100 4.66 72.03 2945 1.27 1.00 

PC inl −2 × 10 −6 300 6.49 80.65 10.39 – –

PC top 0.4 300 – 100.90 1051 1.00 1.00 

a Larger is better. 
b Smaller is better. 

Fig. 9. Sensitivity transfer functions for regulatory control loops at the optimal op- 

erating point. 
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k + n p ∑ 

k 

g (x k , u k ) + 

k + n p ∑ 

k 

�u 

T 
k R �u k 

] 

, k ∈ Z + , (3a)

subject to 

x k +1 = F (x k , u k , d k ) , k ∈ Z + , (3b) 

≤ φ(x k , u k ) ≤ φ, k ∈ Z + , (3c)

 ≤ u k ≤ u , k ∈ Z + , (3d)

u ≤ �u ≤ �u , k ∈ Z + , (3e)
k 
here Z + denotes the set of non-negative integers. The first term

n (3a) sums the economic cost J (2a) over the prediction horizon

 t k , t k + n p } where g (x k , u k ) = J , and the second summation term pe-

alizes large control movements to regularize the problem and

ake the control action smooth. Note that this second term does

ot have any steady-state effect, because at steady-state the in-

ut change �u k is zero. The weight matrix R is a tuning param-

ter which is chosen as a diagonal matrix. The continuous-time

odel (1a) is discretized using the direct single shooting method

 c.f. , Biegler, 2010 ). Thus, the equality constraints (3b) modeling the

ynamic process are directly substituted in the objective function

3a) and inequality constraints (3c) by the NLP solver. Input con-

traints and rate of input constraints are imposed in (3d) and (3e) ,

espectively. An extended Kalman filter is also implemented to give

ull state-feedback for the EMPC implementation. 

.2. Steady-state gradient control (feedback RTO) 

Recently, there have been several developments on using tran-

ient measurements along with steady-state RTO, such as works by

ao and Engell (2016) , Krishnamoorthy et al. (2018) , François and

onvin (2013) and Krishnamoorthy et al. (2019) to name a

ew. However, the methods proposed by Gao and Engell (2016) ;

rishnamoorthy et al. (2018) ; François and Bonvin (2013) require

xplicitly solving a steady-state numerical optimization problem at

ach time step, unlike the method in Krishnamoorthy et al. (2019) ,

here the optimization is achieved via feedback control. Therefore

n this paper, we consider the recently proposed dynamic feedback

TO approach ( Krishnamoorthy et al., 2019 ), which is based on

stimating the steady-state gradient using process measurements

 meas and a nonlinear model. A state estimation scheme is used to

stimate the states ˆ x and the unmeasured disturbances ˆ d . In this

aper, for the sake of demonstration, we use an augmented ex-

ended Kalman filter (EKF) for combined state and parameter esti-

ation, see Simon (2006) for a detailed description. 

Once the states and unmeasured disturbances are estimated to

et an updated nonlinear model (1a) , the model is linearized to

btain a local linear dynamic model from the inputs u to the ob-

ective function J . This linear model is given in state-space form by

he matrices A, B, C and D . 

˙  = A x + B u (4a)

 = Cx + D u (4b)

The steady-state gradients can then be estimated as follows

 Garcia and Morari, 1981; Krishnamoorthy et al., 2019 ). 

 

 u = −CA 

−1 B + D (5) 
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Fig. 10. Block diagram of the dynamic Feedback-RTO method. 
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The process can be driven to its optimum by controlling the es-

timated steady-state gradient to a constant setpoint of zero using

any feedback controller, for example a PI controller. The idea is il-

lustrated in Fig. 10 . 

Note that the steady-state gradient is obtained from a dynamic

model and not from the steady-state model as would be the con-

ventional RTO approach ( François et al., 2012 ). The use of a dy-

namic model means that we can use the transient measurements,

and thus avoid the wait time for the process to reach steady-state,

as required for conventional RTO. 

5.3. Self-optimizing control (SOC) 

We have in Section 3.5 found that the well head gas rate is a

very promising self-optimizing variable (see Table 2 ). Therefore, in

addition to economic MPC and the feedback RTO approach, we also

study the performance of self-optimizing control, by keeping the

wellhead gas rate constant at its nominal optimal value. 

6. Simulation results 

In this section, we compare the three alternative optimization

approaches by dynamic simulations. 

6.1. Implementation and computation time 

The Olga simulator is treated as the “real” process. The con-

trollers (including the optimization) are implemented in Python

using the simplified dynamic model of the process. The simpli-

fied dynamic model of the process is implemented in Modelica.

The Modelica compiler generates a functional mock-up unit (FMU),

which is a standard model component that can be shared with

other applications. The resulting model was imported to CasADi

( Andersson et al., 2019 ) which includes efficient automatic differ-

entiation techniques. NMPC and EKF were implemented using the

CasADi verion 2.0.0. The communication between the Olga Simu-

lator and the controllers was done by OPC Data Access where the

Olga OPC Server is a built-in module of the simulator and the OPC

client is coded in Python. We have published all of the models

(Olga, Modelica, Spline models) and python codes for optimization

and control as a Github repository ( Jahanshahi and Codas, 2020 ). 

We have used the Single Shooting formulation in this work, and

Ipopt ( Wächter and Biegler, 2006 ) with the linear solver ‘Mumps’

was used to solve the optimization problem. The embedded DAE

solver IDAS from the SUNDIALS library ( Hindmarsh et al., 2005 )

was used to integrate the dynamic system over the prediction hori-

zon and to compute exact derivatives. Using IDAS, we were able to

choose the max step time of the integration to meet integration er-

ror tolerances. Because of stiffness, high nonlinearity, and inclusion

of regulatory controls in the dynamic system, we used 2 s as the

max step time of the IDAS solver to promote accuracy and prevent
umerical errors, which lead to failure of the optimization. Around

0% of the CPU time was used for NLP function evaluations. 

The full discretization (the Collocation Method, Biegler, 2010 )

s usually faster than embedding a DAE solver with sensitivities

uch as IDAS. However, our dynamical system is stiff, and for ac-

uracy, it requires very refined timesteps on some intervals. While

DAS checks the accuracy and adjusts the timesteps online to meet

he tolerances, the full discretization alternative requires fixing the

imestep offline, i.e., before the problem is solved. Thus, we pre-

erred to use IDAS at the expense of a higher computational bur-

en because it is more robust as it deals with stiffness online. 

The sampling interval of the measurement updates for the state

stimation using EKF is 10 s, but the control interval of the EMPC

s set to 20 min. Both the prediction and control horizons of EMPC

re set to 12 h. The dynamic model used for the EKF and the

ptimization includes 21 state variables and five inputs. There-

ore, for a single shooting formulation of the EMPC, there are

 × 12 × 3 = 180 optimization variables. We tried shorter predic-

ion/control horizons ( e.g. , 8 h), but the process did not settle on

he steady-state optimal for short prediction horizons. 12h was the

hortest prediction horizon with successful results. 

Choosing shorter control intervals is beneficial, and it leads to

 smoother response of the control system. However, the compu-

ation time of the EMPC optimization, which is dependant on the

umber of the optimization variables, must be less than the cho-

en control interval. We found that 20 min control interval with

2 h prediction/control horizon (180 optimization variables) is a

ood trade-off between the smooth response and the computation

ime. With the settings we chose, each EMPC optimization takes

bout 18–20 min of computation time to solve. We used an HP

Book workstation (with 16 GB RAM and Intel Core i78850H CPU,

 cores/12 threads running at 4.1 GHz) to run the EMPC simula-

ions. 

The computation time of the Feedback-RTO and self-optimizing

ontrol are less than the EKF sampling interval. As a result, the

eedback-RTO and self-optimizing control can update the optimal

ontrol settings (injection rates and pressure setpoints) at each

ampling interval (10 s). Time scale separation is necessary for

he regulatory controllers to settle to the new optimal setpoints

efore we perform a new re-optimization ( Foss, 2012; Saputelli

t al., 2006 ). One should notice that the time-scale separation con-

erns the closed-loop time constant of the upper control layer, not

he sampling time interval of the data acquisition and the control

ignal. In general, a more frequent MV signal update leads to a

moother operation when the closed-loop time constant (adjusted

y the controller gain) is kept constant. 

.2. Optimization at nominal conditions 

Figs. 11 and 12 compare the performance of EMPC, self-

ptimizing control and dynamic Feedback-RTO when taking the

ystem from an initial operating point to the optimal steady-state

ith no disturbance. 

We fine-tuned the simplified dynamic model so that its opti-

al operating point is very close to that of the Olga model. There-

ore, the dynamic optimization converges to the same values as the

teady-state RTO based on the surrogate model. 

Fig. 11 shows the two gas injection rates and Fig. 12 shows the

ost and two gradients. The gradients for EMPC and self-optimizing

ontrol are shown for comparison purposes, as the gradients are

sed for control only by Feedback-RTO. For self-optimizing con-

rol, we show in Fig. 13 the well-head gas flow rates which are the

elf-optimizing CV 1 s. The optimal setpoints for the self-optimizing

ontrol are provided by the steady-state optimizer explained in

ection 3.3 . As expected, the estimated gradients for the self-
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Fig. 11. Gas injection rates for nominal conditions. 

Fig. 12. Cost function and gradients for nominal conditions. 
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Fig. 13. Self-optimizing control: gas flow rates at well-heads (CV 1 ) at nominal con- 

ditions. 
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ptimizing control approach to zero as the gas flow rates settle to

heir optimal setpoints. 

Figs. 14–16 show the optimal setpoints and the performance of

he low-level pressure controllers for EMPC, self-optimizing control

nd Feedback-RTO, respectively. As discussed earlier, the Feedback-

TO updates the optimal settings more frequently, and the process

esponse is smoother than with EMPC. The regulatory controllers
or the self-optimizing control and Feedback-RTO show only one

vershoot when the optimization is turned on (at t = 1 h), whereas

here is one overshoot for every 20 min for EMPC ( Fig. 14 ). The

vershoots are because of the inverse response of the process to

he step changes of the pressure setpoints and the gas injection

ates with 20-minute intervals. The process with the �P outputs is

on-minimum phase . 

For the self-optimizing control, we have a decentralized control

ayer with five CVs and five MVs. The two unconstrained DOFs (gas

njection rates) are used to control the self-optimizing CV 1 s (gas

ow rates at the well-heads shown in Fig. 13 ). The remaining DOFs

re the three CV 1s setpoints used to control the three �P (CV 1 ) on

heir constraints ( Fig. 15 ). 

The three optimizing control methods are next compared for

wo disturbances scenarios as follows. 

.3. Optimization in presence of disturbance in reservoir pressure 

The first disturbance scenario is a 5 bar decrease in the reser-

oir pressure of both wells (D1, D2). The disturbances are ramped

own within 10 h. We do not use step changes because they are

ot typical for a real process, and also because a large step change

rashes the numerical simulation. 

Fig. 17 show the cost and loss from the ideal for the disturbance

n the reservoir pressures. As expected, reduced reservoir pressures

ave a negative effect on the production and increases the cost. 

Fig. 18 shows the gas injections for the reservoir pressure dis-

urbances. Injecting gas to less productive wells does not pay off in

erms of economy. Therefore, the decrease in the reservoir pressure

auses the optimizer to decrease the gas injection rate slightly.

owever, it depends on the specified gas price in the cost func-

ion. 

.4. Optimization in presence of disturbance in mass gas-oil ratio 

The second disturbance scenario (D3, D4) is a 3% increase in

he mass gas-oil ratio of the fluid coming from the reservoir. The

isturbances are ramped up within 10 h. Fig. 19 show the cost

nd loss from the ideal for the GOR disturbances. As expected, in-

reased gas-oil ratio decreases (improves) the cost. 
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Fig. 14. EMPC: Optimal setpoints and performance of low-level pressure con- 

trollers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Self-optimizing control: Performance of low-level pressure controllers. 

d  

t  

u  

N  

E  

a  

n  

t

7

7

 

n  

t  

t  

s  

t  

a  

s  

t  

s  

t  

w  

 

f  

b  

t  

F  

b  
Fig. 20 show the gas injections for the gas-oil ratio disturbances.

We observe that the increase in the gas-oil ratio has a more signif-

icant effect on the manipulated variables than the reservoir pres-

sure disturbance when we compare Figs. 18 to 20 . The optimizer

decreases the gas injection significantly to compensate for the ex-

tra gas coming from the reservoir due to the gas-oil ration in-

crease. From a fluid mechanics point of view, the excess gas causes

an increase in the fluid velocity and the friction in the well, which

leads to more pressure drop, and consequently, the larger pressure

drop would decrease the production rate. 

6.5. Performance of EKF for parameter estimation 

Both the EMPC and the Feedback-RTO rely on the joint state

and parameter estimation by EKF. The disturbances in the reservoir

pressure (D1, D2) and the gas oil ratio (D3, D4) are estimated as

parameters. Figs. 21 and 22 show the performances of EKF for es-

timating the disturbances when the well-head pressures and flow

rates are used as the available measurements. The accuracy of this

estimation depends on the model used by the EKF. As shown in the

Figs. 21 and 22 , there are almost 10% estimation errors compared

to the actual values of the Olga simulator. 

6.6. Comparison of three optimizing control methods 

The losses are compared in Table 4 . For self-optimizing control,

we use the variable that is found in Table 2 , namely, the gas mass

flow rates at wellheads. The loss values in Table 4 show that for

the disturbances in the reservoir pressures (D1, D2), none of the

controllers have any significant advantage over the open-loop (gas

injections kept at their nominal optimal values). However, this is
ependent on the regulatory layer control design. The losses with

he self-optimizing control are the lowest overall, and the loss val-

es of the Feedback-RTO are lower than those for the Economic

MPC for the disturbances in the gas-oil ratios (D3, D4). Since the

MPC and Feedback-RTO are based on the same dynamic model

nd the same EKF, this is a surprising result that is discussed in the

ext section. Regardless of the dynamics, we expected they settle

o the same steady-state. 

. Discussion 

.1. Effect of regulatory controllers on optimization 

For the disturbance in the reservoir pressure (D1, D2), we do

ot obtain any significant benefit from the optimizing control over

he open-loop situation ( i.e. , the gas injection rates are kept at

heir nominal optimal values). However, it depends on the control

tructure of the regulatory layer. In this work, we chose to control

he pressure drop of the wellhead valves because their constraints

re active, and in practice, they will be controlled on a constant

etpoint. Hence, it becomes easier to apply the self-optimizing con-

rol. If we control the wellhead pressures (CS1) instead of the pres-

ure drops (CS2), we will get poor results for the disturbances in

he reservoir pressures. Obviously, it is not optimal to keep the

ellhead pressure constant when the reservoir pressure decreases.

The Feedback-RTO gives lower losses than the EMPC ( Table 4 )

or gas-oil ratio disturbances (D3, D4), although they are designed

ased on the same dynamic model. There are two reasons for bet-

er performance of the Feedback-RTO, which reinforce each other.

irst, the Feedback-RTO is faster to compensate for the distur-

ances by adjusting gas injections ( Fig. 20 ), because it acts on the
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Table 4 

Loss from optimal for different control designs and different disturbances. 

Disturbances 

Nominal D1 D2 D3 D4 

J opt = −28 . 433 J opt = −27 . 878 J opt = −27 . 313 J opt = −28 . 827 J opt = −29 . 239 

Open-loop 0.000 0.001 0.001 0.274 0.480 

Self-optimizing control 0.000 0.001 0.001 0.000 0.000 

Economic NMPC 0.000 0.000 0.000 0.010 0.022 

Dynamic Feedback-RTO 0.000 0.000 0.000 0.003 0.004 

Fig. 16. Feedback RTO: Optimal setpoints and performance of low-level pressure 

controllers. 
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Fig. 17. Cost and loss from ideal for disturbance in reservoir pressures (D1, D2). 

Fig. 18. Optimal gas injection for disturbance in reservoir pressures (D1, D2). 
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ystem every T c = 10 s compared to T c = 1200 s of the EMPC. Sec-

nd, the dynamic response of the regulatory controllers for the

eedback-RTO is smoother than EMPC (see Fig. 23 ). For the EMPC,

he responses of the process to the step changes in gas injection

ates cause spikes in the control variables. The spikes decrease the

ontrol performance and hinder the controllers from tracking the

ptimal setpoints. Therefore, the limitation of the regulatory con-

rol performance affects the optimization too. To verify this argu-

ent, we increased the control interval of the EMPC from 20 min

o 1 h so that the regulatory controllers have larger spikes and

ence a worse performance (see Fig. 23 ). As a result, the loss val-

es of EMPC increased by about 38%, as seen in Fig. 24 . 

.2. Importance of robust regulatory control 

Dealing with an unstable plant is a challenge for long-term

ynamic optimization. Explicitly considering the regulatory con-

rollers in the model for dynamic optimization seems necessary,

or accuracy and completeness. However, this approach requires

roper tuning and possibly gain-scheduling for robustness. If the
ystem becomes unstable, the optimization problem cannot be

olved because of invalid Jacobians. This is related to the fact that

hen the system becomes unstable, the inputs saturate that is

u = 0 , and note that elements of the Jacobians matrix are ap-

roximately ( �y i )/( �u j ). 
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Fig. 19. Cost and loss from ideal for disturbance in gas-oil ratio (D3, D4). 

Fig. 20. Optimal gas injection for disturbance in gas-oil ratio (D3, D4). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. Performance of EKF for estimating the disturbances in reservoir pressure 

(D1, D2) by measuring well-head pressures and flow rates. 

Fig. 22. Performance of EKF for estimating the disturbances in gas-oil ratio (D3, D4) 

by measuring well-head pressures and flow rates. 
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Excluding the regulatory dynamics from the optimization is

possible only when the two control layers operate at completely

different time scales, such that the regulatory dynamics do not af-

fect the optimization. However, this is not the case for our system.

7.3. Consideration of active constraints in MPC 

As explained above, reducing the control interval of EMPC in-

creases the number of the optimization variables. We know that

three of the input constraints (related to pressure drop setpoints)

are active at the optimal point. We used this information for the

disturbance rejection simulations and removed these three vari-

ables from the optimization problem by replacing the inequality

constraints by equality constraints. This reduces the number of op-

timization variables from 180 to 72, saving a significant amount of

computation time. 
.4. Computation time for steady-state models 

To obtain the data for the surrogate spline models, we run each

imulation for 20 h to reach the steady state. It takes about 15 min

o finish each simulation on a laptop with a quad-core CPU run-

ing at 3.7 GHz. It took about five days to run 420 simulations and

enerate the surface shown in Fig. 5 . 

By using surrogate models, it is possible to incorporate the

ommercially available simulation models ( e.g. , Olga, LedaFlow, K-

pice) into the optimization problem formulation. However, con-

tructing the surrogate models based on simulation data involves

xtensive offline computations to obtain the steady-state data.

evertheless, this approach is becoming a viable solution with the
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Fig. 23. Performance of low-level pressure controllers for EMPC with different con- 

trol intervals compared to Feedback-RTO. 
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Fig. 24. Cost and loss for EMPC with different control intervals compared to 

Feedback-RTO. 
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vailability of faster computers and using cloud computing with

igh (parallel) processing power. 

. Conclusion 

To our knowledge, this is the first publication on the complete

ontrol structure design (including both the regulatory and the op-

imization layer) applied to an oil production network and tested

n the Olga simulator. 

We compared three approaches for optimization layer. The dy-

amic Feedback-RTO and self-optimizing control are able to steer

he operation to the optimal point more smoothly compared to

conomic MPC (EMPC). In case of unknown disturbances, self-

ptimizing control results in the lowest loss compared to EMPC

nd Feedback-RTO. 

We conclude that the self-optimizing control is the most prac-

ical method for our case study. However, this depends on the

ight choice of the controlled variables and the control structures

hroughout the control hierarchy. In this way, we found the gas

ass flow rate at the well-head as the best controlled variable for

elf-optimizing control. Also, controlling the pressure drop over the

alves ( i.e. supervisory layer) is necessary to control the process on

he active constraints. 

. Future works 

As shown by the simulations, the results of the EMPC signif-

cantly improves if optimization acts on the system with shorter

ime intervals. However, shorter control intervals of the EMPC gives

 larger number of optimization variables when the control hori-

on is kept constant and requires more computation to solve the
roblem. On the contrary, the computation time must be shorter

han the control intervals. We suggest implementing methods to

peed up solving the optimization problem, such as implement-

ng a warm-start strategy and using a rolling horizon. Also, paral-

el processing using multi-threaded programming techniques can

educe computation time significantly. For example, the EMPC and

he EKF should run on two separate threads. 
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