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Abstract—Tax-case processing is based on a classification
of common taxable conditions, e.g. retirement benefits, social
security benefits, income brackets. Based on those, groups of
people fall under certain categorizations and should be treated
equally. However, to maintain privacy, people from the same
group might be handled anonymously by different case handlers.
Consequently, tax-case processing for different individuals from
the same group categorization may end up with different results,
depending on the region in which the case is dealt with and
which case manager treats the given case. This situation maintain
privacy but violates fairness. On the other hand, some of the tax
calculation is personal since there is no isolation between the
taxable conditions data and the individual data. Often, taxable
data provides personally identifiable queues. Furthermore, tax
processing cannot take advantage of previous tax-case processing
that has been already conducted; thus, reducing the system’s
overall efficiency for cases that has been already processed. To
improve efficiency and transparency of the taxation process,
we have investigated and explored architectural designs for
privacy-preserving tax-case processing prototypes with the use
of blockchain technology. In this article, we provide an overview
of the available technologies, classify the architecture, and discuss
a proof-of-concept implementation that can facilitate those goals.
Based on the findings, a number of frameworks is considered and
a proof-of-concept is made to showcase the design intent. We
established, that in some cases it is possible to use blockchain
technology for tax-case processing to enhance the privacy and
improving the transparency at the same time.

Index Terms—tax-case processing, blockchain, privacy, cryp-
tography, anonymisation, zero-knowledge proofs

I. INTRODUCTION

In this work, we modify tax processing such that we can
decouple personal information from the taxable data needed
for the tax calculation. The framework that we propose uses
blockchain technology as the foundation. Secure distributed
ledger facilitates data integrity and transparency through its
built-in triple accounting, audit and validation mechanisms.
The transaction’s origin, destination and content are recorded,
such that changes in the system can be observed and verified
later. Thus, it can be observed and audited, whether tax-
cases were treated equally. Moreover, given that the GDPR
regulation was enforced on 25 May 2018, it is of interest to
develop a system which could meet compliance with the new
regulation; because it intends to give citizens the control of
their personal data and decoupling the tax processing from
the personal data attached to the individuals.

Tax-case processing with blockchain technology introduces
a number of challenges. One of these challenges is the distri-
bution of data such that privacy is preserved while allowing the

data to be processed. When simple anonymisation techniques
are used and data is not adequately protected, it can lead to
individuals being re-identified and sensitive information being
disclosed. Moreover, GDPR rules introduce challenges in the
context of blockchain technology. For instance, the right to
be forgotten require that personal data could be deleted. This
right is difficult to enforce because the public blockchain’s rely
on the immutability of the records. Consequently, support for
traditional deletion of data is not possible in typical blockchain
systems.

We have developed a taxonomy for discussing storage,
anonymity, ways to model data, and a number of different
mechanisms to isolate personal data from computational data,
such that data can be shared between tax-cases. As a result,
we have gained a much better understanding of the limitations
of privacy-preserving schemes, and what it means to be within
or outside certain privacy guarantees under particular trust
models. Moreover, various prototype implementations have
been tried on a hyper-ledger and Ethereum blockchains with
the contracts set up for the required logic. The example
implementations have addressed the problem of anonymity for
taxpayers, by using cryptography and anonymisation. Finally,
it is important to notice that although this work is about tax-
relevant data, it can be easily adapted for other types of data
e.g. healthcare data. The proposed solutions are inspired, but
not limited to, work only for the Norwegian tax-case process-
ing. The applicable data transformations can vary dependent
on the required utility and privacy, as well as the actual data
processing requirements.

II. FRAMEWORK DEVELOPMENT

Let us consider two core models: centralised data centre
and de-centralised one, in which user is put at the center.
In the case of a centralized data centre, we assume that
a tax administration has accumulated the data for tax-case
processing through some means. At this point, data cannot
be directly published to the blockchain as it is personally
identifiable. Therefore, some data anonymisation must take
place to enable publishing. The output of this procedure,
allows data to remain useful for taxation and maintain the
privacy to the taxpayers. Tax processor is responsible for
the actual taxation calculations. It is a logical machine that
implements taxation logic that can respond to requests. In
other words, the tax administration has all the data, including
personally identifiable information; but does not execute the



taxation processing on a privately hosted infrastructure. The
actual processing is offloaded to the tax processor.

In the de-centralised model, a tax payer takes the respon-
sibility of computing their own taxes. The institution (tax ad-
ministration) provides the computational data to the tax payer.
Once the taxpayer has accumulated the data and computed
their taxes, the output is published to the blockchain for the
tax administration to validate the actual calculation results. It
is the tax payer that stores and processes the data. The taxpayer
works as the tax processor. The tax administration knows who
is who and how much they should be charged based on the
ledger entries.

There are many considerations that need to be dealt with,
such as the balance between utility and privacy, how to support
a claims based system, the viable interactions between multiple
stakeholders, who is responsible for the data privacy, how to
guarantee a stakeholder’s authenticity, which data representa-
tion to chose, and measures to enable attribute modification or
expansion. These were some of the factors that played in, and
which the frameworks dealt with under different parameters.

A. Publishing of anonymized datasets

Tax administration gathers data from multiple institutions
and aggregates the information per national ID (or tax ID
given to individual). This dataset is considered personal and
cannot be published. Therefore, the dataset must be treated
through data anonymization before it can be published onto a
public blockchain.

a sequence diagram on Figure 1 depicts how objects are to
interact with each other. It consists primarily of three entities:
the tax administration submitting datasets to a data publisher,
which, in turn, broadcasts information about the datasets to
clients of the application. At last, the tax administration must
be able to request taxation. To satisfy this, a tax processor is
designed. It contains the application logic required to execute
tax-case processing for taxpayers. After such a request is
processed, the taxation output is broadcast to everyone. As
a result, a framework to notify peers about the taxation phase
is proposed; where accumulation of the data and corrections
from pre-taxation and self declaration was done beforehand.
In other words, this design is concerned with transforming
personal data into computational data for the taxation phase;
and adopts the idea of a centralized data distribution, where the
tax administration holds access to the all the data, including
financial records as well as personal data.

At first, the tax administration is responsible for aggregating
data per national ID; in accordance to institutions’ reports. As
the volume of data increases, the tax administration must take
into consideration whether data publishing should take place.
The considerations varies dependent on the planned technique
to acquire anonymity. At some point this decision is made,
causing a transaction to be broadcast with its destination being
a smart contract in the blockchain. The data field’s content of
this transaction is an anonymized data or a data reference.
Where the smart contract is the data publisher, whose imple-
mentation differs dependent on the data representation.

Fig. 1. Sequence diagram for datasets publishing

Next, the data publisher is in charge of the management of
datasets. It keeps track of datasets and provides notifications
to clients of the system about any state updates (e.g. update
to the existing dataset or new datasets via broadcast in Figure
1). Storing data directly onto the blockchain is not possible
due to high costs [1]. Although it appears expensive, it should
be considered that the cost is a one-time cost for permanent
data storage [1]. Note that the cost is primarily a concern for
situations where public/permissionless blockchains are used,
as private/permissioned blockchains can adjust the parameters
affecting cost. However, when considering the performance
and flexibility of the data, it is preferable to store data off-
chain [1]. Moreover, if the data is stored at a centralized off-
chain platform, the tax administration can remain in control of
the data. In regard to GDPR, this can allow easier compliance
as data can be withdrawn. In distributed storage platforms,
none has implemented this feature yet, but some researchers
are exploring it. BigchainDB1 is examining the functionality
that would restrict access to data to a time limit [2], [3].
IPFS2 community appeared to be discussing the matter [4].
Swarm3 had yet to discuss it but proposed that it is possible to
withdraw data once demand and incentive diminish to preserve
accessibility [5].

At last, the tax processor is accountable for taxpayers
receiving their final taxation. In order to fulfill this duty,
there are multiple stages that shall take place. First, the tax
administration must release their dataset; which is required for
the taxation. Second, after the release notification is given; it
describes how one may interact with the dataset. For instance,
it may provide a uniform resource identifier(URI) such that
it could be downloaded. The URI is composed of a string of
characters used to identify a resource and allows the content
to be accessible to authorized parties. However, dependent on
this second stage, the design of this particular component can
greatly differ. There are three plausible design choices here:

• If data is stored on-chain, and made accessible to other
smart contracts; then the tax processor can simply request
to fetch this data for further processing. In other words,
there are two smart contracts in the picture. The data
publisher for storing data, and the taxation for tax-case

1Blockchain-centric Database management systems.
2Decentralised and Distributed peer-to-peer storage system.
3This is another example of a Peer-to-Peer storage system.



processing.
• If the data is stored off-chain, and served through some

Web API on the Internet. Then we have two plausible
design choices:

– Use an oracle to fetch data outside the walled garden
a blockchain impose. Where an oracle is a smart
contract, which have implemented the required func-
tions to pull content off the Internet. Utilizing it
would allow the taxation logic to be implemented as
a smart contract; especially when the data publisher
only stores references to the data.

– Implement the taxation logic as an off-chain applica-
tion and publish the results of the taxation on-chain.
In this scenario, the data publisher is the only smart
contract. Therefore, to support taxation broadcasts it
must be extended to support such functionality.

Regardless of the design choice, the attributes required to
perform taxation shall be available; such that taxation can
proceed with the calculations. Once finished, the output can be
published to the blockchain either through the data publisher
or tax processor. Where it includes an identifier, such that
the tax office is certain about how much they shall charge a
certain taxpayer. Finally, the publishing leads to notifications
being made, to notify clients about the latest updates.

In regard to errors, we envision that data and taxation errors
could be efficiently treated within the system. That needs
special attention from the tax administration. The errors must
be reported to the tax administration; such that a new and
accurate dataset could be generated and published. The data
updates shall be dealt with, by publishing another transaction
to broadcast another event such that the value stored in the
blockchain’s event log is updated.

B. Anonymity

No proposed anonymization scheme in academic literature
is found appropriate for taxation. This therefore requires an
additional research to identify and establish the best anonymi-
sation scheme for tax data. We hypothesize, that tabular data
anonymization schemes in many cases are appropriate. For
instance, we discovered that t-closeness had addressed how
MSA could be dealt with, and could be combined with k-
anonymity that can be combined with the quasi-identifiers.
Although there exist transformations based on permutation
or perturbation, those introduce untruthful data; which does
not fit to support taxation. Thus, we constrain ourselves to
generalization and suppression. This does, however, make
a number of tax payers being excluded from the system,
because their privacy cannot be guaranteed for (e.g. due to
data uniqueness).

Another important aspect is the tax office’s ability to per-
form re-identification. Although the anonymized data does
not contain identifiers, the tax administration must be able
to acquire the correct taxation for a particular tax payer.
In order to fulfill this requirement, another mechanism must
be introduced to the system. There are two methods which
turns out to be imminent: 1. encrypt the identifier with the

tax administration encryption key, or 2. create randomized
identifiers to be published, which are mapped to a national ID
in a private data store. Regardless which mechanism is used,
it is included with the anonymized data on the blockchain.
Moreover, considering that both methods can be reversed back
to personal data they are subject to GDPR and must comply
with the requests to be forgotten. We will look into this in the
following section.

C. GDPR requirements

Our framework may allow compliance to GDPR through
a combination of anonymization and encryption. The access
to the identifiers must be restricted, such that only the tax
administration shall be able to identify the data owner. The
actual taxable data has been scrubbed for potential identifiers
and is, therefore, possible to leave it in a public storage system.
In order to perform re-identification, additional information is
required such as a decryption key or national ID to randomized
identifier mappings. This implies that once a request to erasure
of data has been received, a process must instantiate to destroy
such additional information.

Alternatively, a scheme similar to BCDiploma could be
used. It has been marketed as a GDPR compliant solution
for publishing diplomas. To obtain this compliance, the data
is encrypted with three separate keys on the blockchain [6].
Two of the keys, namely the graduate key and persistence
key are required to create a intermediate key. In which the
graduate key is integrated into a URL for the diploma to be
accessed. The intermediate key is combined with the school’s
permanent key, to derive the final key. To satisfy the right to
be forgotten, the school’s graduate can request the persistence
key to be destroyed to render the data inaccessible; as all keys
must take part in the decryption process. In other words, the
blockchain is used as a storage platform for encrypted data.
The data needs to undergo a decryption procedure off-chain at
the school responsible for publishing diplomas. The procedure
is initiated when a reader application transmit a request to the
diploma’s URL that consists of diploma number and graduate
key.

Finally, note that cryptographicly obfuscated data can also
fulfill the right to be forgotten by deleting the data. However,
this requires that data is stored in a storage platform, that
allows to delete objects. As of now that implies that data is
stored off-chain. There are some private blockchain proposals
in the permissioned ledgers space, such e.g. Accenture’s
proposal of a editable blockchain through chameleon hashes
[7], that might enable deletion of the data on chain.

D. Advantages and disadvantages

The advantages associated with this framework are:
• Freedom of flexibility in terms of anonymization
• Simple design, similar to existing architectures
• Allows storage to be done either on-chain or off-chain

The disadvantages associated with this framework are:
• Requires off-chain software to anonymize datasets



Fig. 2. Publish self-taxation

• Institutions cannot publish information directly to the
blockchain, it needs to be obfuscated, encrypted and
anonymized

• Tax administration is responsible for collecting and
anonymizing data

• Does not allow accumulation of reported data to be done
on-chain

III. SELF-TAXATION

To provide an enhanced privacy model, let us try to turn
the roles around. It would be the taxpayers that compute their
taxes themselves. As such, the tax administration only needs
to verify the taxes to determine if they can be considered au-
thentic and valid. As a result, much of the taxation process can
be offloaded to the taxpayers. To make taxpayers participate in
this scheme, we deem it necessary to provide some incentives.

In this framework, the taxpayers are responsible for com-
puting their taxes themselves. Considering that taxpayers may
not have all the required data, the institutions are obliged
to provide the data export mechanism; which both, the tax
administration and taxpayers, can utilize. When the taxpayer
has reached a conclusion about data to include in taxation, it is
processed by a number of different functions. The functions
serve the purpose of calculating tax and creation of proofs
that the function has been executed correctly. They are based
upon the idea of cryptographic proofs, where the user acts
as a prover; and the data verification as a verifier. The
verification serves the purpose of filtering out, inaccurate or
untruthful taxations; while also acting as an interface for the
tax administration to retrieve taxation data. Figure 2 depicts
the interactions, that can occur in this framework.

With the emphasis on self-taxation, we achieve a shift in
entities’ responsibilities. The tax payers now take a more
participatory role, because taxation has typically been dealt
with by the tax administration. This involves a variety of tasks
to be fulfilled. There is the need to gather the data for the
individual’s national ID. As depicted in Figure 2, there are
two suggested approaches to achieve this:

• 1: Interaction with institutions’ own infrastructure, which
are capable of authentication, authorization and data
export. A tax payer may therefore need to perform
numerous login procedures, to verify their identity to
different data providers; such that data export can start.
There is no connection to the blockchain, and is thus
referred to as a off-chain approach. Consequently, this is

considered an active approach to obtain data because of
the number of institutions that must be interacted with.

• 2: Institutions publishes data, to the tax payers’ address
in the blockchain. This make the process less interactive,
and demand less effort from the tax payer; because the
institutions do the effort of sending data. This approach
is considered passive, due to the reduced number of
interactions required. Moreover, since it makes use of
the blockchain network, it is referred to as an on-chain
approach.

We capture the interactive property in the following defini-
tion:

Definition 1 (Passive/active gathering): The process of
harvesting data is passive, if the user does not have to interact
with institutions to export the data. It is considered active, if
such interactions must take place to receive the data.

If we assume that data is gathered, the tax payer can
continue by computing their taxes. This involves downloading
a set of functions that are to be executed, either from the
blockchain or the tax administration itself. The place where
such functions are stored does not affect the privacy model.
Once executed, a taxation and proof from running the func-
tions are returned. This data is to be passed to a smart contract
on a blockchain for data verification.

Next, the data verification entity is a smart contract respon-
sible for the verifying the authenticity of the generated proofs
and taxation that it receives. That is to say, it contains the
necessary logic required to perform verification of the proofs.
When done verifying a given proof, the proof and taxation
can be stored within the entity if this is desired. If it ends
up following that route, the entity is also responsible for the
management of taxation and proofs. On the other hand, if the
data is not stored in the entity, but rather persisted onto the
blockchain through events; then the entity only broadcasts the
result of the verification and taxation, such that clients can
search for the events.

This brings us to the last remaining piece: the tax adminis-
tration. They are responsible of creating the data verification
entity, publishing functions and the additional data required to
generate proofs (e.g. cryptographic keys). Furthermore, they
must also retain some mapping from a published taxation to
its respected national ID. This could be done by registering
a blockchain account to the tax administration, and providing
digitally signed proof about being a citizen within the Norwe-
gian state. Describe details of such registration schemes are
out of scope for this paper.

A. Anonymity

Anonymity in this scheme is provided through zero-
knowledge proofs. Suppose the tax administration are given
a taxation x of some value, and wish to have some proof that
a tax payer knows the value w that resulted in taxation x.
Normally, this would involve giving w to the tax administra-
tion; which could compute the taxation to check if it equals to
taxation x. However, the tax payer does not want to reveal the
value w to the tax administration; only that he or she knows the



value. In essence, we want to obtain the functionality described
in the following function (without conveying w):

1 function C(x, w) {
2 return ( taxation(w) == x );
3 }

The function takes the secret value w and public taxation
x as input, and returns true if the taxation of w equals x.
Unfortunately, it requires that the secret value w is revealed,
which is not a desirable feature. Therefore, it would be
interesting to translate this function, such that only a proof
of knowing w would be enough. This would result in privacy,
because the value w is never disclosed.

In other words, we need the ability to convince a verifier
that the prover possess knowledge of a witness, which satisfies
some relation without revealing the secret. In cryptography,
there is a method referred to as zero-knowledge proofs which
satisfies this ability. There exists a variety of implementa-
tions, often categorized into non-interactive or interactive zero-
knowledge proofs. For this framework we are interested in
the non-interactive case; because it enables greater efficiency,
by requiring minimal interaction from the prover to verify
the proof. This type of proof construction could be done
by zero-knowledge non-interactive argument of knowledge,
also referred to as zk-SNARK. It is beyond the scope of
this article to discuss the use of zero knowledge proofs in
detail. We have used existing implementations in our proof of
concept, and identified some of the limitations of the existing
implementations.

B. GDPR requirements

Our framework fulfills privacy requirements and the right
to be forgotten through zero-knowledge proofs and encryption.
Both techniques are categorized as cryptographic obfuscation,
but each has different purpose. The former aims to provide
proof for a certain taxation without revealing the actual
financial or personal data; while the latter aims to enable such
proofs, by transmitting securely the personal data to the tax
payer. If institutions published the actual data on-chain, it is
encrypted with the taxpayer’s encryption keys. Thus, to enable
right to be forgotten the taxpayer only needs to destroy their
key.

Moreover, the design also entails that institutions and tax
administration need some sort of mapping between national
IDs and their blockchain identifiers. This is because institu-
tions shall publish data to the right recipient, and for the tax
administration to retrieve the correct taxation. As a result, tax
payers must register themselves, to verify the identity behind
a certain blockchain identifier. Unfortunately, this means that
when a right to be forgotten request arrives; such mappings
must be deleted from the private data store of the tax admin-
istration. To summarize, the following shall happen in case of
a right to be forgotten:

• Tax payer shall destroy their decryption key
• Tax administration shall remove their mapping

As a result, the data is rendered inaccessible, because the
decryption keys to the data is no longer available. Furthermore,
no one shall know that a national ID is mapped to a certain
blockchain identifier.

C. Advantages and disadvantages

The advantages associated with this framework are:
• Core data can be transferred off-chain/on-chain
• Taxation process off-loaded to the taxpayers
• Privacy through cryptographic obfuscation and end-user

data ownership
• Smart contract only needs to verify proofs
• Data transparency on how taxation is verified and applied

The disadvantages associated with this framework are:
• Does not support a claims-based system
• Mapping between blockchain identifier and national ID

is required
• Associations made by various institutions may erode

privacy
• Impossible to proof that mappings between identifiers are

deleted
• Requires tax payers to verify their identity
• Taxpayers need to be coerced to participate and conduct

the calculations. This is equivalent to filling out the tax
returns.

IV. SYNTHETIC DATA

In order to evaluate the proposal we needed to generate a
synthetic dataset. This allowed us to experiment with different
anonymization schemes, to evaluate of how generalization and
suppression could be applied to guarantee privacy.

The distribution parameters used were the following:

1) Age (Gaussian): Avg: 28 [8], Std: 3
2) Municipality (Uniform): Range: [0101-5054] [9]
3) Income (Gaussian): Avg: 16000, Std: 3000
4) Debt (Gaussian): Avg: 280826 [10], Std: 10000
5) Wealth (Gaussian): Avg: 10000, Std: 1000
6) BSU (Gaussian): Avg: 12500, Std: 1000
7) Married (Bernouilli):

P(married|<30): 7.3% [11], P(¬married|<30): 92.7%
[11]

Although numerous of the attributes had information about
their averages, no measures of their standard deviations were
found for their Gaussian distribution. Therefore, it was re-
quired to generate some random values that likely do not
represent the true distribution. Moreover, a couple of assump-
tions were laid for the averages of Wealth, BSU, and Income
attributes such that data could be generated. These assumptions
were:

• We assumed students had acquired part-time jobs, and
have a minimum wage of 150,- NOK per hour. The
average work hours were estimated to be ≈ 8 hours per
week; and only one third of the Norwegian students were
estimated to have part-time work [12]. This resulted in



the following equation to acquire the income average:
150 ∗ 8 ∗ 4 ∗ 10/3 = 16k

• Next, we assumed students had been saving in average
100k, for students between 18-26 years old [13]. Thus,
we divided 100k/8k to obtain the estimate that students
insert roughly 12.5k each year into BSU.

• Finally, that students had acquired a cheap car with an
average value of 10k. Its value is accounted for when
measuring how much wealth a certain student had in a
particular year.

V. IMPLEMENTATION

A. Publishing of tabular data

To realize the Publishing of anonymized datasets frame-
work, we chose to first address the underlying assumption
that the data (base data plus corrections from pre-taxation
and self-declaration) had been established. This was done
through the synthetic data generation explained in Section IV.
With this data in possession, we needed some anonymization
toolbox that had implemented a variety of anonymization tech-
niques. This toolbox must support k-anonymity, t-closeness,
and the creation of value generalization hierarchies. Based on
a comparison of different anonymization tools [14], it was
discovered that only ARX fulfilled these requirements. As
such, we sought to use this tool to generalize and suppress
the data; to achieve certain objectives set in the k-anonymity
and t-closeness privacy models. As mentioned earlier, these
models has certain parameters. In the case of k-anonymity, it
was common to: (1) get a data custodian to select a value of
k commensurate with the re-identification probability they are
willing to tolerate (a threshold risk) [15]; or (2) determine the
optimal value for k based on some utility vs privacy curve
[16]. However, for t-closeness there is no well established
method to determine a value for t [17]. Roy and Jena [17] did
therefore propose to use some method based on how sensitive
attributes were partitioned in equivalence classes [17]. What
these methods tend to share, was the use the information loss
imposed by the applied generalization. Such a metric was
not viable for our scenario, when we sought to achieve the
specified privacy goals. More specifically, to limit reuse of
data for other purposes than just tax calculation; we were
required to apply the maximum generalization, to such a point
that it was almost only viable for taxation. In other words,
generalization was static and not a variable. What was a
variable though, was how many tax payers could be suppressed
from the dataset due to set privacy-guarantees. Therefore, we
came to the decision that the number of suppressed records
was a more appropriate metric. Unfortunately, support to find
optimal privacy parameters based on this metric was not im-
plemented in ARX. Therefore, we leave this as further work. If
we were to implement some algorithm for the optimal privacy
parameters, we would make use of optimization algorithm
to minimize a cost function(e.g. gradient descent); in which
the privacy-guarantees and suppressed records were taken into
account. Finally, some algorithm would finalize the choice by
looking for the elbow point and evaluate the resulting risks.

(a) Attribute Age (b) Attribute Municipality

Fig. 3. A figure of two value generalization hierarchies

However, this wass out of scope for this paper. We restricted
the problem and chose a single parameter set instead, which
is appropriate for testing purposes. Once established, ARX
was to generalize and suppress the following attribute setup:
Quasi-Identifiers: {Age,Municipality,Married}, Sensitive
Attributes: {Income,Debt,Wealth,BSU}. The VGHs used
were shown in Figure 3.

For the data publisher, we pursued a centralized design
pattern; in terms of how the blockchain logic is distributed.
It appeared that such a design pattern was preferable because
it imposed less cost, limit replication of identical code, and
unified logic. This involved a single smart contract being re-
sponsible for taking upon the data publisher role. As discussed
earlier, it was generally preferable to store data off-chain in
terms of efficiency. However, in scenarios where data was to
be processed on-chain to generate some output; the data must
exist on-chain or be imported through the oraclize service.
Since the transaction size limit was close to roughly 0.1MB
on Ethereum, it was hard to publish the data in one swoop;
taken into consideration that the synthetic data of 30k records
was roughly 2MB. If we were to scale the application to 1
million records, the data would need to be split into numerous
transactions. It was therefore decided that data was better
stored off-chain. Given our limited access to numerous storage
platforms, it was decided that the distributed file system Inter
Planetary File System (IPFS) shall be used. It turned out to
be the more established and mature decentralised file storage
protocol, that offers content-addressable access. Consequently,
the data publisher’s design was reduced to act as a registrar
for external URIs. To store these, it was deemed that events
would be emitted rather than storing them within the contract.
The reasoning behind this was their cheaper form of storage;
and the ability to easily scan the history of events, to get a
project of the state of the taxation and published datasets.
The following code-snippet depicts how we developed a
smart contract capable of emitting events. It was developed
with the programming language Solidity version 0.4.16,
and has defined two types of events: DatabaseReceipt and
TaxationReceipt. The two events had defined certain attributes
as indexed, such that they are parameters that can be
searched for. To enable publishing of such events, the client
needs to call either the depositData() or depositTax() functions.

pragma s o l i d i t y ^ 0 . 4 . 1 6 ;

c o n t r a c t T a x R e c e i p t {



// Event definitions for databases
event D a t a b a s e R e c e i p t (

// Indexed attributes allow the event
t o be s e a r c h e d f o r by t h e a t t r i b u t e
address indexed _owner ,
// Non-indexed attributes
s t r i n g _name ,
bytes32 _hashURI ,
s t r i n g _comment

) ;

// Event definition for taxations
event T a x a t i o n R e c e i p t (

// Indexed attributes allow the event
t o be s e a r c h e d f o r by t h e a t t r i b u t e
bytes32 indexed _hashURI ,
address indexed _owner ,
u i n t indexed _enc ryp ted ID ,
// Non-indexed attributes
u i n t _ t a x a t i o n

) ;

// Function definitions for tax administration
t o p u b l i s h data or t a x e s
f u n c t i o n d e p o s i t D a t a ( s t r i n g _name , bytes32 _hashURI ,
s t r i n g _comment )
p u b l i c { emi t D a t a b a s e R e c e i p t ( msg . sender , _name ,
_hashURI , _comment ) ; }

f u n c t i o n d e p o s i t T a x ( u i n t _enc ryp ted ID , bytes32 _hashURI
,

u i n t _ t a x a t i o n )
p u b l i c { emi t T a x a t i o n R e c e i p t ( _hashURI , msg . sender ,
_enc ryp ted ID , _ t a x a t i o n ) ; }

}

To interact with the smart contract, a decentralized applica-
tion(DApp) was made. We use the web3js library, to enable
communication with Ethereum in the web browser. The library
behave as an application programming interface(API), which
forwards its requests to a Ethereum full node (e.g, geth). In
other words, it allowed users to publish external URIs for
datasets and taxations in a web-browser. However, in order
to obtain the external URIs; the multihash from IPFS needed
to be retrieved. As such, the js-ipfs-api library was imported to
enable uploads to IPFS and obtain the multihash of uploaded
datasets.

To summarize, the proof-of-concept addressed the privacy
goals in the following manner: The risk of unintended reuse of
data is limited through a strict domain specific generalization.
Moreover, the generalization was done such that the granular-
ity is good enough for taxation purposes. Given that the data
was transformed through anonymization techniques, to protect
against identity and attribute disclosures through k-anonymity
and t-closeness; we could potentially allow data to be made
publicly accessible (but to make sure, an evaluation of the
re-identification risk should be done until such a decision can
be made). Finally, we believe that GDPR compliance could be
achieved by requesting the encryption key tied to an encrypted
identifier to be deleted upon request. Unfortunately, we did not
implement or draft a procedure to how this encryption key
can be deleted in an auditable procedure. The source code is
released to the public domain.4

4https://github.com/neeps/taxreceipts

B. Self-taxation with zero-knowledge techniques

This was an ambitious attempt intended to realize the
self-taxation framework, where the tax payers are in charge
of computing their taxes themselves; while preserving the
integrity and privacy of the process. If the process is not
honest, the tax administration cannot trust the published val-
ues. In such a scenario, the value of the system is greatly
reduced. Although, such verifiable computing can already be
obtained in the blockchain, because all computations must be
replicated on the network’s nodes; it does not achieve the
desirable privacy features, that we sought towards eventual
GDPR compliance. In particular, we were interested in the
ability to keep information secret and provide proof about
knowing such information. To obtain the desired privacy, zero-
knowledge proofs were combined with blockchain technology.
Furthermore, to ensure that tax payers cannot make deceptive
inputs; there must be a function to verify the authenticity of the
data. This may involve the verification of a signature attached
to the retrieved base data.

ZoKrates is a toolbox to generate keys, proofs, and smart
contracts; and it is suitable to create and verify zero-knowledge
proofs in Ethereum, without needing to know about the under-
lying details. To enable this, it supported a high-level language
and a compiler to transform programs to provable constraint
systems [18]. To get started with the toolbox, the sequence of
commands to generate proofs and a verification contract are
specified. The first prerequisite is that the logic has already
been written in the mentioned high-level language. Once this
has been established, it can be fed into the compile command.
It outputs an arithmetic circuit (program C. Next, the output
is passed to the setup command, to generate the proving key
and verification key. It implements the key generator function.
Next, a set of parameters called witnesses must be created
for use in generation of a proof. This is because the proof is
dependent on specific values of public and private parameters.
To deal with this, the compute-witness command generates a
witness file. The proof can now be made, by executing the
generate-proof command which feeds the public and private
witnesses, and public key into the prover function. At last, the
export-verifier command can be used to generate a solidity
verification contract; which contains the verification key and
a verifier function.

Unfortunately, the high-level language was limited in its
functionality. First, it only supported prime field elements
(unsigned integers, subject to modulo). This prevented real
numbers from being obtainable in the software’s current im-
plementation. As such, one could not represent the applicable
tax rates for salaries, wealth, and more. To understand whether
this was a limitation with ZoKrates or zero-knowledge proofs
in general, we discussed with Jacob Eberhardt, the author of
ZoKrates and quote him: “It is possible to simulate binary
arithmetic and with that floats in an arithmetic circuit, though,
so that way it could be supported. However, we currently
do not expose types for that, as it leads to a huge number
of constraints and with that proofs that are expensive to



Fig. 4. Workaround for float-point arithmetic

generate”. Support for floats were also mentioned in the lib-
snark’s vnTinyRam preprocessor [18], [19], which is another
circuit generator that shares part of its pipeline to create zero-
knowledge proofs. It mentioned that floating-point arithmetic
are not directly supported, but could be implemented in
software [19]. Second, there was no support for arrays; as
such all the input parameters must be explicitly defined in the
function declaration. As a result, it was not possible to create
a single program capable of tackling every taxation scenario.
Therefore, it may be necessary to create separate programs for
each respected group of tax payers. Third, a function to verify
signatures would be needed to prevent deceptive inputs. There
does currently not exist any libraries implemented in this high-
level language, to allow for such functionality.

To get around the issue regarding lack of rational numbers
arithmetic, it was first thought of splitting up the computation
into two operations: by multiplying the dividend with the input
variable, and then divide the result on the specified divisor.
This would allow the tax rate, to be applied and be represented
as a pair of integers.

Furthermore, given that the system was built on top of
prime field elements, it meant that any value going beneath
0 was subject to modulo arithmetic. This is similar to how a
clock would work, in that once it reach 24:00 it goes back to
00:00. Except, in this example we may go in the opposite
direction: 0 to the relevant modulus M. To showcase this,
an application resulting in −1 was made. The result of this
is shown in Figure 5, where the modulus M is revealed in
∼ out_0. In other words, precautions must be made to ensure
that potential negative numbers are handled correctly. This
could either be done, by imposing if-else conditions checking
for such occurrences (e.g, if a < b then 0 else (a-b)).

Before we ventured into more complex arithmetic circuits
and evaluation of which tax rates were appropriate for certain
attribute values. The prototype beneath was made for a simple
taxation scenario, where a number of parameters had been pre-
defined. For instance, assume that Bob was a single college
student making him subject to tax class 2. Second, he had more
debt than wealth such that he was not subject to wealth taxes.
Third, he lived in the municipality and county of Oslo; so he
was not qualified to receive tax deductions which individuals
living in Finnmark and Troms county can claim. Fourth, his
income for 2016 was 70k. This resulted in a minimum standard
deduction of 31.8k, because 43% of the income was 30.1k
which was less than the lower limit of 31.8k; therefore the

Fig. 5. Example of modulus arithmetic

lower limit was set. Moreover, this deductions was subtracted
from the gross income to produce the general income of 38.2k.
Then, we subtract the personal allowance from the general
income, to obtain the basis for general income tax. Provided
that there are no additional income based upon interests, a
bracket tax rate of 0.0% applies because the income was less
than 159.8k. At last, a national insurance contribution was
computed as well. In other words, Bob was to be represented
by the following data:
Bob = (taxClass : 2, income : 70k,minStandardDeduction : 31.8k)

(1)

d e f main (private t a x C l a s s , private income , private
mStanda rdDeduc t ion ) :

// Subtraction, where evaluation for negative number is
required

g e n e r a l I n c o m e = if income < mStanda rdDeduc t ion then 0
else ( income − mStanda rdDeduc t ion ) f i

// Another deduction based on taxClass
p e r s o n a l A l l o w a n c e = if t a x C l a s s == 1 then 51750 else

76250 f i
// Subtraction, where evaluation for negative number is

required
g e n e r a l I n c o m e = if g e n e r a l I n c o m e < p e r s o n a l A l l o w a n c e then

0 else ( g e n e r a l I n c o m e − p e r s o n a l A l l o w a n c e ) f i

// Compute taxes
gTax = ( g e n e r a l I n c o m e * 25) /100
nTax = ( income * 82) /1000
t a x = gTax + nTax

// Return taxes
return t ax , nTax , gTax

Before we expanded our prototype application to support
tax rate evaluation, it was discovered that the initially planned
workaround for division did not work as intended. Since the
ZoKrates toolkit was built upon prime field elements, the
division operator provides some challenges. For instance if we
tried to do x = 6333/1000, the system would try to determine
which integers x would be such that x∗1000 = 6333 (mod p)
was satisfied. Since real numbers were not supported, the value
x obtained would be a number close to modulus; which when
multiplied with 1000 would go beyond modulus and result in
6333 when (mod p) was applied. In other words, the system
was not capable of simulating real numbers. As such, ZoKrates
use case for taxation at its current iteration was limited. The
proof-of-concept was therefore not expanded to support tax
rate evaluation.

As a last resort, a possibility was to reduce the implemen-
tation to range proofs instead. This meant that the tax payer
would no longer compute taxes, but provide information such
that taxation can proceed. For instance, one may use range
proofs to reveal information about a certain attribute, e.g. that
a salary is within the salary bracket: [400k - 500k]. Or another
option, would be to use range proofs to support a certain tax
rate being applied. This would help the tax administration



manage and apply certain taxation templates, dependent on the
claims about tax rates. In terms of anonymization techniques,
the range-proofs could be regarded an alternative approach
to achieve generalization. One implementation of such range
proofs was zkrangeproof [20]. It requires the Ethereum clients
to include a precompiled smart contract; such that validation
can be done, because it was regarded too expensive to be
run in the Ethereum virtual machine(EVM). Unfortunately, the
authors have specified that due to security vulnerabilities in
An Efficient Range Proof Scheme [21], the proofs generated
from this system were no longer zero-knowledge. Although
ZoKrates could be used to generate such proofs, there was
no support for more than ’>’ operator; and the less than
’<’ operator was experimental and had bugs reporting about
strange behaviours [22], [23]. Thus, we chose to not pursue
this approach either.

VI. RESULTS

Our project focused on architectural consideration and ex-
perimentation with existing technology to evaluate how to
implement tax-case processing with enhanced transparency
and privacy features. We learned that:

• Storing data on-chain was expensive on Ethereum, as
roughly 2 MB had a cost of $48.57 to publish (at the time
of research, mid 2018). In comparison, a reference to the
same 2 MB on IPFS had a cost of $0.0092. Thus, if data
must be stored on a public blockchain; it was preferable
to store data off-chain due to costs and preferable in a
centralized storage platform such that ability to delete
data upon request can be obtained.

• The privacy models proposed in the field of anonymiza-
tion techniques tend to be implemented for tabular data
representations. We have not found tools to obtain e.g. t-
closeness for graph data.

• The search for k-anonymity and t-closeness’s optimal
parameters were either based on information loss or a data
custodian specifying a privacy guarantee. Considering
that the generalization we applied was maximized to limit
reuse, and there were no specified privacy guarantee to
obtain; we proposed to rather use the amount suppressed
records, as a mean to find the optimal parameters. But
support to find optimal parameters based on this metric,
was not to be found in the data anonymization tool ARX.

• To determine if the value of k-anonymity and t-closeness
were adequate to protect privacy, a risk analysis should
be done to evaluate re-identification risks.

Also, for the self-taxation framework, we attempted to
create an implementation specialized in self-taxation with zk-
SNARKs. In this architecture, tax payers were in charge of their
data, and control whom to share it with and how it would be
processed. It allowed us to identify that: the tools available
to do zero-knowledge proofs for blockchains are scarce, and
those available have limited capabilities, often reduced to
simple integer arithmetic. Thus, until support for either integer
division or floating point arithmetic is implemented, zero-

knowledge proofs libraries for taxation cannot be expected to
work.

Moreover, due to the issue of transactional privacy we were
limited to privacy-preserving schemes on the data field in a
transaction for the implementation. Which unfortunately, had
to be done through off-chain/third-party applications because
the schemes were not available in Ethereum’s blockchain
client. In addition, the lack of code obfuscation made us rely
on peers to do confidential processing off-chain; as we cannot
process cryptographicly obfuscated data without leaking per-
sonal data. Although some headway was made by allowing
zero-knowledge proofs to be verified on-chain, we cannot
do computations on homomorphic encrypted data, SMPC, or
encryption/decryption in a smart contracts on Ethereum, as
all the data keys would leak through the public/transparent
computational model. Thus, if privacy-preserving tax-case
processing was to be done on-chain, the personal data had to
be made computational either through anonymization-based
schemes or zero-knowledge proofs. As a result, we have
identified a number of limitations of blockchain technology
in the context of implementing privacy-preserving tax-case
processing.

VII. DISCUSSION

In this article, two frameworks were proposed with attention
to two different data processing models. Those were: (1)
a centralized data centre where the tax administration had
accumulated the data, and (2) a decentralized data centre
where institutions and organizations publish the data to the
public and the taxpayers compute taxes themselves. To address
the privacy requirements and right to be forgotten set by the
GDPR regulation, the mentioned frameworks suggested the
following measures: (a) Use of anonymization and crypto-
graphic obfuscation or pseudonymization to make the data
anonymous; (b) Storing data off-chain, to bypass the problem
with blockchains’ immutability. Thus, data can be deleted
upon request or when vulnerabilities with the applied privacy
arise. Note that compliance to the right to be forgotten appears
to also be satisfied if, for example, the decryption key is
deleted; despite data being persisted onto a blockchain.

With these measures we sought to accomplish privacy
where: data reuse was limited to certain scenarios, the data
granularity preserved ability to perform tax calculations, trans-
parency of the taxation process was granted, and that data
would be removed if the right to be forgotten was activated.
However, due to the public nature and privacy limitations
of blockchain technology; it was recognized that the lack of
transactional privacy and code obfuscation made the model
reliant on off-chain data anonymization. Thus, the convenience
of blockchain technology was diminished. It makes it difficult
to encourage the use of blockchains for privacy-preserving tax-
case processing. Nevertheless, we have identified the methods
and metrics available to apply and evaluate anonymity; whilst
preserving data transparency and ability to process data on-
chain. We found that anonymization techniques allowed data
to remain in a public and interpretable state for tax-case



processing; zero-knowledge proofs could be verified on-chain
with Ethereum. But until anonymization has been addressed
in regard to re-identification risks with a high-dimensional
dataset, the tools for zero-knowledge proofs provide func-
tionality for integer division, or floating-point arithmetics and
additional advances are made in either transactional privacy
of transactions (e.g. through ring signatures like in the case of
Monero, or through zero-knowledge proofs like in ZCash) we
conclude that the blockchain technology is not mature enough
to be recommended for tax case processing. Other alternatives
should be considered.

Even if the frameworks had addressed the privacy goals with
off-chain data anonymization, it would be at the cost of trans-
parency; because a portion of the system would be hidden from
the public. One of the advantages of blockchain technology
is its transparency. With it being limited to maintain privacy,
we suggest that other ICT models should be considered. For
instance, one could use a traditional database system with
secure signing and encryption mechanisms combined with PKI
to achieve similar if not better privacy metrics with most of the
blockchain problems not-applicable. Therefore, we advocate
further work to focus on evaluating alternative technologies, as
well as making research into privacy techniques in blockchain
technology.

We conclude that blockchain technology could potentially
be feasible with anonymisation-based schemes for privacy-
preserving tax-case processing. But until the experiments have
been repeated for high-dimensional datasets, and an appropri-
ate re-identification risk has been set it is hard to advocate
the use of the researched models, due to the limited scope
of the study. To attain the sought efficiency and transparency
for privacy-preserving tax-case processing remains an open
research question.
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