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A B S T R A C T   

This work investigates the possibility to apply the strain energy density method, as regards blunt V-notches under 
mixed loading condition, through finite element models with a free mesh pattern. It is worth underlining that the 
conventional procedure for the application of this method to this kind of components requires two different 
numerical simulations. A first simulation is needed to define the point of maximum of the first principal stress 
field along the notch fillet whose position represents an input for a second simulation to build the control volume 
in the right position to apply the method. Several numerical analyses were carried out to compare the con-
ventional procedure of the method with this new procedure that allows the application of the method as a post- 
processing tool. The main advantage of this new procedure applied to components without stress singularity is 
that, by accepting an error that depends on the mesh refinement, the efforts of designers and researchers and the 
calculation time are decreased. The error in evaluating the SED value has been found to have a zero average 
value with a standard deviation of 1% and a maximum absolute value of 4.5% having a ratio between the main 
geometrical parameters of the control volume and the average mesh size comprised in the following range 
3 < min[R0; γ/2]/Sizeaveraged ≤ 5. Dealing with this kind of components, the calculation time decreases by at least 
50% requiring one simulation instead of the two requested by the conventional procedure.   

1. Introduction 

The fracture assessment, as well as the fatigue life predictions, are 
faced by designers and researchers dealing with civil structures and 
mechanical components to avoid unexpected and catastrophic failures 
that could also involve loss of lives. The need of feasible tools to evaluate 
with accuracy the material properties under both static and dynamic 
conditions is evident but nowadays they are still mostly assessed based 
on a method that generally leads to an excessively conservative design. 
Even if this is generally accepted because of the difficulties to perform a 
more precise assessment, it is undesirable in those mechanical fields that 
require a lightweight design such as automotive and aircraft 
engineering. 

Dealing with welded joints, the failure assessment is usually 
demanded to global methods. The standards are mainly based on two 
global approaches: the nominal stress approach [1–3] that considers 
external loads or nominal stresses in the critical cross-section and 

compares them with the S-N curves that correlate the fatigue strength 
versus the number of cycles; the structural stress approach that considers 
the stress concentration effects of the component due to the global ge-
ometry [1–5] and allows the fatigue assessment using the structural 
stresses with an S-N curve that is independent on the particular type of 
weld and the geometry of the component. 

These methods represent nowadays the base for fatigue assessment 
in almost all areas of mechanical and structural engineering due to their 
simplicity and statistical proof. However, they generally lead to an 
excessively conservative design and, since their validation is based on 
tests carried out on geometry and conditions rarely encountered in 
practical applications, the assessment of a generic mechanical compo-
nent lacks actually a statistical validation [6]. A valid alternative is 
represented by the local approaches that are able to evaluate with more 
accuracy the mechanical properties of structural components [7–9]. 
Their major drawbacks are that they require expertise in their applica-
tion and that a feasible application of these methods requires the 
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determination of those parameters that have an incisive influence in the 
component behavior in order to avoid complicating, even more, the 
problem. 

In this work, we focus on the Strain Energy Density (SED) method 
that has been validated as a method to investigate both fracture in static 
condition and fatigue failure [10–15]. 

One of the major drawbacks of this method is that requires a Finite 
Element (FE) model built in order to have a volume, called control 
volume, centered on the critical point of the components according to 
the theory of the method that is explained in section 2. The application 
of this method to components without stress singularity results also in 
two different numerical simulations making the method less attractive. 

Following the researches of other authors [16–21], it became clear 
that an increasing interest has grown through the simplification of the 
method trying to avoid the construction of the control volume in the FE 
model and to exploit the SED method low sensitivity [22] to the mesh 
refinement in order to apply it using FE models with a free coarse mesh 
pattern. However, all the researches carried out with the purpose stated 
above are limited to components that present a stress singularity such as 
sharp V-notches and do not consider components with complex geom-
etry whose assessment both in static and fatigue assessment could 
benefit from the application of the SED method. 

In order to simplify the method with regards to its application to 
blunt V-notches, we evaluated the following points in this work:  

• the possibility to estimate the SED value without the construction of 
the control volume in the pre-processing phase of the FEM code 
dealing with components containing blunt V-notches under mixed 
mode loading;  

• the effect on the SED evaluation due to the error in evaluating the 
location of the maximum of the first principal stress field at the notch 
edge, an input needed to center the control volume in components 
without a stress singularity;  

• the influence of different FE modeling parameters in order to 
establish some useful recommendations for the designers that want 
to apply the SED method according to the volume free procedure. 

2. Strain Energy Density method 

The SED method is an energetic local approach validated as a method 
to investigate both fracture in static condition and fatigue failure 
[10,11,14,23–27]. 

As regard the static condition, the method assumes that brittle 
fracture occurs when the local SED, W, averaged over a given control 
volume, reaches a critical value, W = WC, that results to be independent 

on both the local geometry and the loading mode [10,11,28,29]. From a 
theoretical point of view, considering a material having a perfect brittle 
behavior, under static conditions, the mean SED critical value can be 
evaluated through the conventional ultimate tensile strength,σt , and the 
Young’s modulus of the material: 

WC =
σ2

t

2E
(1) 

What stated above represents the basic idea of this method, whose 
analytical frame [30–36] demonstrates also connections in closed form 
with other fracture mechanics methods such as the notch stress intensity 
factor. 

Dealing with welded joints made of steel or aluminium [37–43], two 
conditions allow the use of the SED method to assess their high cycle 
fatigue properties in terms of the cyclic average SED, ΔW: the brittle 
nature of the failure and the fact that it happens under the linear elastic 
regime. 

The first validation of the SED method, to assess the fatigue prop-
erties of welded joints, involved a study carried out on more than 300 
fatigue test data with toe failure under different loading modes [37]. The 
analysis was later applied to a larger bulk of experimental data involving 
components with competing failure modes under different loading 
conditions, providing a final synthesis based on 900 experimental data 
[44], where the number of cycles is given as a function of the cyclic 
average SED. 

Some more considerations should be done about the so-called control 
volume. This has a characteristic length, R0, that is dependent on the 
material properties and is different dealing with static and dynamic 
loadings conditions [30]. Besides, the control volume shape (this does 
not include the characteristic length R0) results to be dependent on both 
the local geometry and the loading conditions; indeed it takes different 
shapes with regard to the local geometry and different positions ac-
cording to the loading mode as explained below. 

As regards cracks and sharp V-notches in plane problems both in 
mode I and mixed mode loading, the control volume is a sector-shaped 
cylinder of radius R0 with its axis along the notch tip line as shown in 
Fig. 1(a) for V-notch and in Fig. 1(d) for cracks. 

Dealing with blunt notches [37,45–53], the control volume assumes 
a crescent moon shape, with R0 being its maximum depth inside the 
component. In this case, the control volume is given by the intersection 
between the component and a circle of radius r + R0, where 
r = ρ(π − 2α)/(2π − 2α) [45], being 2α the notch opening angle and ρ the 
notch radius. The center of the control volume is not always located on 
the notch bisector, but on a line rigidly rotated with respect to it and 
centered on that point where the first principal stress fields reaches its 

Fig. 1. Control volume for: (a) Sharp V-notch; (b) blunt V-notch under mode I loading; (c) blunt V-notch under mixed mode loading; (c) Crack; (d) U-notch under 
mode I loading; (e) U-notch under mixed mode loading. 
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maximum value, following, essentially, the mode I dominance concept. 
The center of this circle is located between the notch edge and the notch- 
fitting radius center, at a distance r from the notch edge as shown in 
Fig. 1(b) and (c) for blunt V-notches and in Fig. 1(e) and (f) for U- 
notches. The need to know the position of the first principal stress 
maximum (FPSM), in order to locate the control volume, leads to two 
different numerical simulations to apply the SED method to components 
with this geometry. 

The purpose of the present work is to evaluate the error in achieving 
the SED value for components without stress singularity, such as blunt V- 
notches, considering only one numerical simulation carried out though a 
model with a free mesh pattern built imposing only a refinement near 
the notch fitting curve according to a criterion explained in the next 
section. 

3. Finite element analysis 

The detail taken into account for this study is a flat, double V- 
notched, specimen with the notch bisectors lying on the same line that 
forms an angle β with the loading direction. The shape of this specimen 
allows to consider mixed mode loading conditions; indeed, with 
changing β, different contributions of mode I and mode II loading are 
achieved. Three different notch opening angles are considered, 
[30◦

; 45◦

;60◦

], while β assumes four different values, [45◦

;60◦

; 75◦

;90◦

],

and the notch fitting radius assumes five different values, 

[0.1; 0.5;2; 4; 8]mm. The specimens net section, calculated perpendicu-
larly to the load application direction, is maintained constant while the 
notch fitting radius and the notch opening angle change. 

As regards the SED evaluation, this was carried out considering five 
different values of the control volume radius [0.2;0.4; 0.6; 0.8;1]mm, 
five different mesh refinements and two different elements character-
ized by first and second order shape functions, respectively three-node 
PLANE 182 and six-node PLANE 183 in Ansys software, for each set of 
the geometrical parameters listed above. A comparison regarding the 
SED evaluation involving finite elements with different shape functions 
is also available in the literature [28] in regard to sharp V-notches 
revealing already low differences with changing the shape function of 
the used finite element. It is worth noting that the theoretical explana-
tion given for the low sensitivity of SED to the mesh refinement [22] 
coupled with the purpose of the present work to assess the influence of 
variations in the integration domain, i.e. approximated control volume 
shape through selections of elements, make the authors assume a limited 
influence determined by the integration scheme exploited by the FE 
software. Considering that the expected error in evaluating the SED 
value is assessed without neglecting data coming from element selec-
tions that approximate very coarsely the control volume theoretical 
shape (see Fig. 6) resulting in conservative recommendations for 
applying the volume free procedure for the SED evaluation, the lower 
influence of the integration scheme exploited by the FE software could 
be considered covered in the present work. 

Fig. 2. Schematic representation of model geometry.  

Fig. 3. FE models and particular of the notch tip zone discretization with: (a) free mesh for the application of the free volume SED (Model A); (b) mapped mesh to 
define the position of the first principal stress (Model B); (c) mapped mesh with control volume (marked in red) for the application of the conventional SED method 
(Model C). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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This model, shown in Fig. 2, would require two different simulations 
for the application of the SED method; indeed, dealing with complex 
geometries that do not present a stress singularity like a sharp corner, 
there is the need to carry out the first simulation to evaluate the position 
of the FPSM that represents the input for a second simulation to build the 
control volume and apply the method. Three different models, shown in 
Fig. 3, are considered in the present study. 

Model A has a completely free mesh realized imposing only the 
number of divisions along the notch fitting curve (see Fig. 3 a); the di-
visions are established as a fraction of half the notch fillet length γ/2 =

ρ∙(π − 2α)/2, shown in Fig. 5, or of the control volume radius R0 when 
the following condition is satisfied R0 < γ/2. Five different mesh re-
finements, defined as a fraction of R0 or γ/2 and the size of the element, 
sizeimp., are considered according to the condition stated above: 
[4; 8; 10;15;20]. 

Model B is built in order to have a mapped mesh pattern for the 
geometry considered but without the construction of the control volume 
(see Fig. 3b); this model is useful to evaluate the exact position of FPSM 
along the notch fitting curve whose value is taken as the reference to 
evaluate the accuracy of model A in estimating the position of the FPSM. 
Since this model is taken into account as a reference model, only one 
simulation, with a very refined mesh, is considered for each combination 
of the geometrical parameters. 

Model C is represented by the conventional model built to evaluate 
the SED value with the construction of the control volume that uses as 
input the position of the FPSM acquired through the model B (see 
Fig. 3c). Model C, same as model B, is used only as a reference model to 

assess the error of model A. 
The SED value has only been evaluated for models A and C. As 

regards the model A, the SED value is acquired through a selection of the 
elements using a polar coordinate system centered along the segment 
that links the point of FPSM and the center of curvature of the notch 
fitting curve at a distance r, whose value is assessed according to Fig. 1, 
from the component surface considering for the selection the following 
radial range: [0; r + R0]. The result of such a selection is shown in Fig. 4 
(a). As regards the model C, the SED value is acquired through the 
conventional procedure of the SED method leading to a control volume 
as shown in Fig. 4(b). 

From Fig. 4(a) and (b), that show also the SED contour plot in the 
control volume for both the models shown in Fig. 3(a) and (c), it is 
possible to state that the new method to acquire the SED value stated 
above leads to a selection of the elements near the FPSM position that 
approximates very well the control volume built following the conven-
tional procedure for the SED method. 

4. Results and discussions 

As stated above, the main aim of the present work is to evaluate the 
possibility to estimate the SED value with a free mesh model, dealing 
with components containing rounded V-notches under mixed mode 
loading that would require two different numerical simulations to apply 
the SED method following the conventional procedure of this method. 

The application of the SED method to complex geometries is 
complicated by the need to establish the position of the FPSM in order to 

Fig. 4. Control volume and SED contour plot for: (a) Model A; (b) Model C.  

Fig. 5. Diagram reporting the error of the model A in evaluating the position of the FPSM vs the error in evaluating the SED value (left); curvilinear system of 
coordinate (right). 
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center the control volume in which the SED value is to be evaluated. The 
need to determine the stresses to know the right position for the control 
volume leads to the doubt that a very refined mesh is needed to compute 
exactly this position. In order to understand the effect that an imprecise 
evaluation of this point could have on the assessment of the SED value, 
we evaluated, through the model B, the position of the FPSM with a very 
refined mesh and we computed the error that the use of the model A 
could lead with its evaluation considering the analysed geometry in the 
present work. Since the position of the FPSM is characterized by two 
different coordinates of X and Y, it was decided to introduce a curvi-
linear coordinates system, shown in Fig. 5, in order to define the position 
of the FPSM with only one coordinate. In this way, it is possible to 
evaluate the error of this position through a single value. However, 
considering that the main aim of this work is to assess the error in 
evaluating the SED value, the authors were not interested in the error of 
the position itself but on the effect that this error could lead to the SED 
evaluation. We analysed the results with this purpose reporting in dia-
grams the error in the evaluation of the SED value vs the error in eval-
uating the position of the FPSM. Fig. 5 reports one of these diagrams that 
shows, for a fixed value of β and for models meshed with six-node 
PLANE 183 elements, the SED error vs the FPSM position error for all 
the possible combinations of the geometrical parameters listed in section 
3. 

From the diagram, it is evident that bigger error values in evaluating 
the position of the FPSM lead to smaller errors in evaluating the SED 
value. In the most cases, a small error for the SED value is associated 
with a small error in the FPSM position value but some cases lead to low 
error for the SED value even with a bigger error in the position value. It 
was not possible to establish whether a relation between the two errors 
was possible, but, considering that the position of the FPSM is not known 
a priori, such a relation would have been not useful for the purpose of 
this work. The same considerations are possible considering all the other 

combinations of β and element types in the present work. 
It is worth underlining that the different mesh refinements reported 

in section 3 represent only the imposed mesh size at the notch fillet but 
they do not reflect well the mesh size obtained within the elements se-
lection; indeed, no convergence of the FE solution is reached with 
increasing the imposed mesh refinement. This is due to the fact that the 
imposed mesh size at the fillet does not take into account the mesh 
pattern of the elements selections. A simple solution to consider also the 
mesh pattern, according to the authors, is to take into account an 
average mesh size, sizeave, inside the control volume making the 
assumption that the elements have a perfect equilateral triangle shape. 
An example of the problem stated above is reported in Fig. 6(c) that 
shows the elements selection that has the greatest difference between 
the imposed mesh size and the averaged mesh size obtained. 

Considering the large amount of acquired data through the numer-
ical simulations, we report in tables, for each combination of β and 
average mesh refinement inside the control volume, the mean error, μ, 
the standard deviation, σ, and also the maximum and minimum errors 
achieved for the combination of all the other parameters considered in 
the present work. Table 1 reports the values for the six-node PLANE 183 
elements while Table 2 reports the values for the three-node PLANE 182 
elements. 

From Tables 1 and 2, it is possible to notice that: the use of the 
element PLANE 183 leads to an average error of zero with a low stan-
dard deviation and maximum error achieved of almost 8% in absolute 
value; the use of the element PLANE 182 with three nodes usually leads 
to a negative average value that decreases, in absolute value, going from 
mixed mode conditions to mode I condition (β = 90◦ ). The better esti-
mation of the SED value given by the PLANE 183 element is better 
appreciable through Fig. 7 that reports the mean error, μ, and the 
standard deviation, σ, with changing β and the mesh refinement for all 
the combination of 2α and element type. The decreasing mean value of 

MN

MX

MN

MX

MN

MX

Plane 183 Plane 183 Plane 183

a) b) c)Control volume Err SED max Control volume Err SED min Control volume max 

Fig. 6. Control volume mesh for: (a) maximum error achieved; (b) minimum error achieved; (c) maximum difference between the mesh size imposed and the average 
mesh size. 

Table 1 
Error % for element PLANE 183.  

min[R0 ; γ/2]
Sizeaveraged  

β  

45◦ 60◦ 75◦ 90◦

μ  σ  Max Min μ  σ  Max Min μ  σ  Max Min μ  σ  Max Min 

1.10 < ratio ≤ 3  0.43 2.12 6.92 − 4.24 0.18 1.93 6.62 − 3.05 0.51 2.36 8.07 − 5.65 0.24 1.66 4.60 − 6.37 
3 < ratio ≤ 5  − 0.16 1.15 4.44 − 4.40 − 0.14 0.70 2.18 − 2.39 0.07 0.83 3.04 − 1.99 0.06 0.76 3.62 − 1.33 
5 < ratio ≤ 7  0.13 0.63 2.91 − 2.41 − 0.07 0.56 1.72 − 1.83 0.17 0.61 2.00 − 1.35 0.04 0.47 1.75 − 1.36 
7 < ratio ≤ 9  − 0.03 0.49 1.30 − 2.04 0.03 0.40 1.17 − 1.43 0.09 0.33 1.70 − 0.70 0.04 0.31 1.67 − 0.58 
9 < ratio ≤ 11  0.04 0.38 1.60 − 1.25 0.03 0.45 1.66 − 1.26 0.06 0.33 1.63 − 0.81 0.05 0.37 2.03 − 1.38 
11 < ratio ≤ 13  0.09 0.32 1.14 − 0.62 0.00 0.28 0.61 − 0.81 0.11 0.32 1.39 − 0.42 0.08 0.36 1.37 − 0.71 
13 < ratio ≤ 15  0.07 0.16 0.36 − 0.22 − 0.03 0.23 0.50 − 1.27 0.06 0.19 1.24 − 0.43 0.01 0.27 1.04 − 1.97 
ratio > 15  0.12 0.14 0.45 − 0.03 − 0.02 0.09 0.09 − 0.30 0.07 0.14 0.65 − 0.24 0.05 0.11 0.46 − 0.20  
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Table 2 
Error % for element PLANE 182.  

min[R0 ; γ/2]
Sizeaveraged  

β  

45◦ 60◦ 75◦ 90◦

μ  σ  Max Min μ  σ  Max Min μ  σ  Max Min μ  σ  Max Min 

1.67 < ratio ≤ 3  − 3.27 2.62 4.29 − 8.35 − 1.06 2.22 2.73 − 4.93 − 0.64 2.76 5.86 − 4.05 0.29 2.90 7.21 − 3.71 
3 < ratio ≤ 5  − 3.53 1.60 1.20 − 9.01 − 2.00 1.13 2.75 − 7.10 − 1.10 1.11 2.76 − 4.22 − 1.08 1.10 2.52 − 5.08 
5 < ratio ≤ 7  − 3.37 1.23 0.53 − 6.69 − 2.17 0.80 0.23 − 4.76 − 1.30 1.15 1.43 − 3.69 − 1.51 1.02 1.91 − 4.42 
7 < ratio ≤ 9  − 3.19 0.99 1.48 − 5.86 − 2.02 0.54 0.23 − 4.24 − 1.26 0.58 0.43 − 3.58 − 1.13 0.79 − 0.05 − 3.53 
9 < ratio ≤ 11  − 3.04 0.85 0.11 − 5.14 − 1.99 0.57 − 0.72 − 3.40 − 1.17 0.50 − 0.01 − 2.96 − 0.92 0.68 0.01 − 3.05 
11 < ratio ≤ 13  − 3.03 0.62 − 1.83 − 5.24 − 2.09 0.50 − 0.99 − 3.59 − 1.67 0.63 − 0.06 − 3.47 − 1.62 0.64 − 0.60 − 3.54 
13 < ratio ≤ 15  − 2.78 0.86 − 1.20 − 5.02 − 1.97 0.47 − 0.68 − 3.19 − 1.08 0.55 0.59 − 2.99 − 0.91 0.66 0.66 − 2.83 
ratio > 15  − 2.21 0.62 − 1.03 − 3.36 − 1.89 0.37 − 1.10 − 2.87 − 1.16 0.49 − 0.04 − 2.61 − 0.93 0.66 − 0.02 − 2.93  

Fig. 7. Mean value, μ, and standard deviation, σ, of the error in evaluating the SED with changing β and mesh refinement for different notch opening angle 2α and 
element utilised in the FE analysis. 
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the error, μ, with increasing β reflects the bad capability of the three- 
node PLANE182 element to simulate mixed mode problems. However, 
it is worth underlining that the use of the PLANE 182 element could lead 
to acceptable results in terms of SED decreasing even more the 
computational time required; this depends of course on the accuracy 
required by the application considered. As regards the standard devia-
tion, the use of the two different elements does not lead to huge dif-
ferences while, as regards the maximum and minimum values, it is 
possible to notice that the use of the PLANE 182 element could lead also 
to an underestimation of the SED value of − 9%. 

However, it is worth underlining that high values of the error in 
absolute value are related to a bad element selection due to the mesh 
pattern, as shown in Fig. 6 (a) and (b). A qualitative check to the shape of 
the selection in order to understand how much it deviates from the 
theoretical shape of the control volume help avoiding huge errors in the 
estimation. 

An interesting relationship has been found between the error in 
evaluating the SED W and the ratio between the control volume radius 
and the fillet length, R0/γ. In particular, the error in evaluating the SED 

decreases with decreasing the ratio R0/γ as presented in the diagrams 
reported in Fig. 8 that shows the effects of the mesh criteria considered 
in the present work. According to the authors, the decreasing error in 
evaluating the SED with decreasing the ratio R0/γ could be addressed to 
the fact that, with low ratio of R0/γ, the two arcs that define the control 
volume for this kind of geometry are much greater than R0 and, being 
the mesh size a ratio of R0, the selection of elements performed to 
evaluate the SED for model A is able to give a better approximation of 
the control volume shape leading to a lower error in the SED evaluation. 
For values of the ratio R0/γ greater than 0.5 a mesh size defined as a ratio 
of γ/2 leads to a lower error in evaluating the SED. The mean value μ and 
the standard deviation σ of the error in evaluating the SED value are 
almost unchanged but a greater effect has been detected as regards the 
maximum error achieved through the simulations carried out. 

Fig. 9 reports also two different examples of the control volume. In 
particular, the one on the right shows how the mesh changes according 
to the meshing criterion established in section 3; Indeed, as regards the 
control volume characterized by a ratio R0/γ = 0.637, it is possible to 
appreciate the better approximation of the control volume shape given 
by a mesh size of (γ/2)/4 instead of R0/4 . 

5. Conclusions 

The possibility to evaluate the SED value through a free mesh FE 
model is investigated in the present work in order to simplify the SED 
method as regards its application to complex geometries under mixed 
loading conditions that would require two different FE simulations to 
assess the SED value through the conventional procedure of the method. 
Several numerical analyses have been carried out for three different FE 
models with changing several geometrical parameters, control volume 
radii and mesh refinements under different mixed mode loading con-
ditions obtained with changing the angle β between the loading direc-
tion and the notch bisectors line. The error in evaluating the SED value 
has been obtained comparing the results obtained through a free mesh 
FE model and a FE model that allows the application of the conventional 
procedure of the SED method. The main conclusions are the following:  

• The application of the SED method does not require an accurate 
determination of the position of the FPSM, whose coordinates are 
needed to build the control volume in the right position along the 
notch fillet, considering that an error in evaluating this position 

a) b)

Fig. 8. Error SED W % vs ratio R0/γ considering: (a) a mesh size of R0/Refinement ; a mesh size of R0/Refinement if R0/γ < 0.5 and a mesh size of (γ/2)/
Refinement if.R0/γ ≥ 0.5 

Fig. 9. Control volume shape and mesh with changing the ratio R0/γ and the 
meshing criteria utilised to realise the model A. 
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results in a lower and, in overall, acceptable assessment of the SED 
value.  

• A good approximation of the SED value can be achieved with a free 
mesh model whose accuracy depends on the mesh refinement 
defined as the ratio between R0 or γ/2 and the sizeave. following the 
criterion explained in section 3, according to which the mesh size at 
the notch fillet should be defined as a ratio of the minimum between 
the control volume R0 and γ/2.  

• With an obtained mesh refinement comprised in the following range 
3 < min[R0; γ/2]/Sizeaveraged ≤ 5, the evaluation of the SED value with 
a free mesh model, as regards the six nodes PLANE 183 element, 
leads to an average error of zero with a standard deviation not 
exceeding 1% and with a maximum error, in absolute value, lower 
than 4.5%.  

• The use of the three-node PLANE 182 element results not appropriate 
to evaluate the SED value in mixed mode conditions with an error 
that can reach a maximum underestimation of 9%. Depending on the 
loading conditions the SED value is estimated with a negative 
average value that decreases, in absolute value, going from mixed 
mode conditions to mode I condition (β = 90◦ ).  

• A relationship has been noticed between the error in evaluating the 
SED error and the ratio between the control volume radius and the 
fillet length R0/γ: the error in evaluating the SED decreases with 
decreasing the ratio R0/γ. According to the authors, this could be a 
result of a greater difference between the length of the two arcs that 
define the control volume in comparison to the control volume 
radius R0 leading to a better approximation of the control volume 
shape the mesh size being defined as a ratio of the control volume 
radius R0 for the value of the ratio R0/γ lower than 0.5. 

In Table 3, the modeling recommendations for designers applying 
the SED method are reported based on the results of the present work. 
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