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Abstract— This paper presents a mathematical analysis of
the velocity obstacle algorithm applied to a nonholonomic
vehicle for avoiding a moving obstacle in the plane. The
velocity obstacle algorithm can be used for local navigation
among dynamic obstacles by continually computing a set of
unsafe velocities, and avoid the velocities inside of this set. The
method is commonly used for reactive collision avoidance as
it requires only limited knowledge of the obstacle behaviour
and is computationally inexpensive. A drawback of previous
analyses is the assumption that the vehicle and the obstacle are
constrained to follow specific types of paths, or the velocities
are assumed constant. We analyze the algorithm without such
constraints and derive a set of conditions to prove that vehicle
safety can be guaranteed in the general case. Moreover, we
prove that the method can safely be applied to vehicles subject
to nonholonomic constraints, with limited turning rates.

I. INTRODUCTION

Autonomous vehicles present a large potential for scien-
tific and commercial applications. To achieve autonomous or
semi-autonomous operations, the capability to avoid static
and dynamic obstacles without human intervention is crucial
for mission success and vehicle safety. Reactive collision
avoidance is important in autonomous operations when mo-
tion planning algorithms fall short. In complex environments
with dynamic obstacles the vehicle has to react quickly,
which can make the time consumption of motion planning al-
gorithms unacceptable. Moreover, reactive algorithms adapt
far better to environments with unexpected changes. Hence,
there is a need for reactive collision avoidance algorithms
for avoiding moving obstacles.

A common approach to reactive collision avoidance in
dynamic environments is the velocity obstacle (VO) approach
[1], where obstacles are represented as cones in the velocity
space. The cones, called velocity obstacles, represent the set
of constant velocities causing a collision between the vehicle
and an obstacle at some future time. Maintaining velocities
outside of the set guarantees a collision-free trajectory of
the vehicle. Navigation among multiple moving obstacles is
possible by avoiding the velocities inside the union of all
individual velocity obstacles. The concept can be applied
in motion planning algorithms by searching over a tree of
successive, feasible maneuvers [1].

The velocity obstacle approach has been extended to
include kinematic and dynamic vehicle constraints in [2], [3],
and has been used to implement the International regulations
for preventing collisions at sea (COLREGS) [4], [5]. The
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acceleration-velocity obstacles (AVO) [6] accounts for con-
straints in the vehicle’s acceleration. Other methods, such as
the nonlinear velocity obstacle [7] focus mainly on capturing
the behaviour of the obstacle rather than the constraints on
the vehicle. The velocity obstacle algorithm is extended to
3D in [8], [9] where the 3D velocity space is divided into a
set of discrete planes, and the 2D velocity obstacle is applied
to each plane.

Many examples of reactive collision avoidance in decen-
tralized, multi-agent systems employ velocity obstacles [6],
[10], [11], [12], [13]. To avoid oscillations, the reactive
behaviour of other agents must be taken into account, by
implicitly assuming that the other agents make the similar
collision avoidance reasoning. Several approaches are then
able to provide strong proofs of agent safety [10], [12].

Velocity obstacles have been successfully applied to non-
holonomic systems. However, the theoretical foundation of
the algorithm applied to such systems needs to be expanded.
Furthermore, safety should be investigated in combination
with the vehicle’s nominal behaviour, such as reaching a
target or path following. In this paper, we present a math-
ematical analysis of the velocity obstacle algorithm applied
to a vehicle that is subject to nonholonomic constraints, for
avoiding a moving obstacle that is capable of both turning
and accelerating towards the vehicle at any point in time. We
provide analytical proof of vehicle safety in the presence
of the obstacle, while also guaranteeing that the vehicle
will reach its target. We make very few assumptions on
the obstacle behaviour. Instead, we assume that the vehicle’s
forward speed and turning rate are lower bounded by realistic
minimum values. The lower bound on the vehicle’s turning
rate is especially interesting, because it guarantees safety of
the vehicle even when the turning rate is limited. Motivated
by [14], the vehicle’s forward speed is decoupled from its
heading, by requiring the vehicle to maintain a constant
forward speed, and only controlling the turning rate. Thus,
the algorithm is also suitable for vehicles that are restricted
by heavy linear acceleration constraints, and vehicles with
limited speed envelopes.

The paper is organized as follows. Section II describes
the vehicle model and associated control system, and the
model used to describe a moving obstacle. In Section III the
collision avoidance algorithm is presented. The algorithm
is mathematically analyzed in Section IV, supported by
numerical simulations in Section V. The concluding remarks
are given in Section VI.



II. SYSTEM DESCRIPTION

In this section we describe the system consisting of a
vehicle and a moving obstacle. We present the vehicle model
in Section II-A, and the obstacle model in Section II-B. The
vehicle’s control objective is stated in Section II-C, where we
require the vehicle to move towards a target while keeping a
minimum safety distance to the obstacle. The target reaching
guidance law is stated in Section II-D, and the kinematic
heading controller is stated in Section II-E.

A. Vehicle model

The vehicle is modeled as a kinematic unicycle-type
vehicle:

ẋ(t) = u cos(ψ(t)),

ẏ(t) = u sin(ψ(t)),

ψ̇(t) = r(t),

(1)

where p(t) , [x(t), y(t)]
> are the Cartesian coordinates of

the vehicle, u is the forward speed, and ψ(t) and r(t) are the
heading and heading rate, respectively. The vehicle’s velocity
vector is denoted v(t) , [ẋ(t), ẏ(t)]

>.
For convenience, we assume that the vehicle maintains

a constant forward speed given by an arbitrary outer-loop
controller, but directly controls the turning rate, r(t), in order
to follow the heading reference generated by the control
system:

Assumption 1: The vehicle’s forward speed u > 0 is
constant.

Assumption 2: The vehicle’s heading rate, r(t), is directly
controlled and bounded by

|r(t)| ≤ rmax, (2)

where rmax > 0 is a constant parameter.

B. Obstacle model

The obstacle is modeled as a nonholonomic vehicle:

ẋo(t) = uo(t) cos(ψo(t)),

ẏo(t) = uo(t) sin(ψo(t)),

ψ̇o(t) = ro(t),

u̇o(t) = ao(t),

(3)

where po(t) , [xo(t), yo(t)]
> are the Cartesian coordinates

of the obstacle center, uo(t) and ao(t) are the forward speed
and acceleration, and ψo(t) and ro(t) are the heading and
heading rate, respectively. The obstacle’s velocity vector is
denoted vo(t) , [ẋo(t), ẏo(t)]

>.
Assumption 3: The obstacle can be modeled as a moving,

circular domain Do with radius Ro > 0.
Assumption 4: The obstacle’s heading rate, ro(t), and

forward acceleration, ao(t), are bounded by

|ro(t)| ≤ ro,max,

|ao(t)| ≤ ao,max,
(4)

where ro,max ≥ 0 and ao,max ≥ 0 are constant parameters.

Assumption 5: The obstacle’s forward speed uo(t) ≥ 0 is
bounded by

uo(t) ≤ uo,max, (5)

where uo,max < u is a constant parameter.
By Assumption 5 we require the vehicle’s speed, u, to be
lower bounded by the maximum speed of the obstacle. This
is in general a necessary requirement when the obstacle is
non-cooperative, as it ensures that the vehicle is able to
escape the obstacle at some point in time.

C. Control objective

The objective of the control system is to make the vehicle
come within an acceptable distance of a target position pt ,
[xt, yt]

> at an unspecified point in time tf ∈ [0,∞). The
control objective can be written:

‖pt − p(tf)‖ ≤ da, (6)

where da ≥ 0 is the acceptance distance. The goal should be
achieved while keeping at least a minimum safety distance,
dε, to the obstacle:

d(t)−Ro ≥ dε > 0, ∀t ∈ [t0, tf] , (7)

where d(t) , ‖p(t) − po(t)‖ is the distance between the
vehicle and obstacle centers.

D. Guidance law

To make the vehicle reach the target position pt, the
heading reference is generated by a pure pursuit guidance
law [15]. The guidance velocity is given by

vdg(t) , u
pt − p(t)

‖pt − p(t)‖
, (8)

where u = ‖vdg(t)‖ is the speed of the vehicle. The desired
heading is given by

ψdg(t) , atan2 (yt − y(t), xt − x(t)) . (9)

E. Heading controller

To make the vehicle turn towards the desired heading
ψdg(t) with maximum turning power, we employ the kine-
matic heading controller:

r(t) =


0, if ψ̃(t) = 0,

rmax, if ψ̃(t) = (0, π] ,

−rmax, if ψ̃(t) = (−π, 0) .
(10)

The error variable ψ̃(t) , ψdg(t)−ψ(t) is chosen to belong
in the range (−π, π] to ensure that the vehicle always takes
the shortest turn towards the desired heading.

III. COLLISION AVOIDANCE ALGORITHM
In this section we describe the velocity obstacle algorithm

[1]. We will give a brief introduction to the main concepts
behind the algorithm, which is the basis for deciding when
the vehicle is in need of collision avoidance, in Section III-
A. We will formulate the specific conditions for when the
vehicle should enter or exit collision avoidance (CA) mode
in Section III-B. To avoid a collision with the obstacle, we
propose a set of turning rules for the vehicle in Section III-C.



Fig. 1: The collision cone (area within the solid, tangent lines) and
the velocity obstacle (shaded area).

A. The velocity obstacle

Consider Figure 1, where the vehicle is illustrated as a
point mass, and the moving obstacle as a circular domain
with radius Ro. The line segment going from the center
of the vehicle, p(t), to the center of the obstacle, po(t),
can be described by the length d(t), and the orientation
α(t) , atan2(yo(t) − y(t), xo(t) − x(t)). If the obstacle
is static, and the vehicle’s heading angle lies between the
angular boundaries α(t)± sin−1(Ro/d(t)), then the vehicle
is headed for a collision. The condition can be directly
translated to a cone in the velocity space, whose sides are
rays pointing along these angular boundaries (see Figure 1).
We define the ray going from p, in the direction of the vector
v, as

l(p,v) , {p+ vt | t ≥ 0 }.

For a moving obstacle, the condition can be formulated in
the velocity space as the collision cone [1]:

Definition 1 (Collision cone): The set of relative veloci-
ties vr , v − vo that will cause a collision between the
obstacle and the vehicle, assuming the velocity vectors v
and vo are constant over time, is defined as

CCo , {vr | l(p,vr) ∩ Do 6= ∅ }. (11)
This corresponds to any relative velocity whose ray intersects
the obstacle domain Do. The collision cone can equivalently
be described in terms of absolute velocities as the velocity
obstacle [1]:

Definition 2 (Velocity obstacle): The set of absolute ve-
locities v that will cause a collision between the obstacle
and the vehicle, assuming the velocity vectors v and vo are
constant over time, is defined as

VOo , CCo ⊕ vo, (12)

where the operator ⊕ denotes the Minkowski sum.
The formulation is equivalent to translating the collision cone
by the obstacle velocity, vo, as seen in Figure 1.

Recall that in Section II-C we required the vehicle to
maintain at least a safety distance, dε, to the obstacle. The

safety distance is necessary in order to compensate for the
area of the vehicle, allowing the vehicle to be considered as a
point mass. The safety distance can be chosen large enough
to also compensate for any required separation distance
between the vehicle and the obstacle. Since the tangents
of the collision cone are determined by the radius of the
obstacle, we simply extend the obstacle radius by dε to
account for the additional distance. We will denote the
extended radius as Ro|ε , Ro + dε. The collision cone can
then be computed for the extended obstacle domain, Do|ε.
The tangents of the (extended) collision cone will be denoted
as

ψ±t (t) , α(t)± β(t), (13)

where we use the superscript ± to distinguish between the
two angles, and

β(t) , sin−1
(
Ro + dε
d(t)

)
. (14)

Moreover, we will denote the collision cone and the velocity
obstacle for the extended obstacle domain as CCo|ε and
VOo|ε, respectively.

B. Switching conditions

The velocity obstacle can be used to decide if the vehicle
is headed for a collision with the obstacle. Unlike the original
VO method [1] which employs a time-horizon to distinguish
between obstacles with imminent collision and long time to
collision, we will decide when the vehicle should switch to
collision avoidance mode based on the distance between the
obstacle and the vehicle, motivated by [14].

The control system is switched to collision avoidance
mode at a time t1 ≥ t0 when the obstacle is within a
specified threshold distance of the vehicle, simultaneously
as the guidance velocity is unsafe:

d(t1) ≤ dthreshold,

vdg(t1) ∈ VOo|ε(t1),
(15)

where dthreshold > 0 is a constant design parameter. The
vehicle exits collision avoidance mode at a time t2 > t1
when the guidance velocity is safe:

vdg(t2) /∈ VOo|ε(t2). (16)

C. The avoidance maneuver

If the vehicle enters collision avoidance mode the vehicle
is currently maintaining an unsafe velocity. The vehicle
should then perform an avoidance maneuver in order to avoid
a possible collision. In order to formulate the turning rules
for the avoidance maneuver we must first introduce some
mathematical notation.

Motivated by [10], the vehicle is said to be in a conflict
with the obstacle if its relative heading angle with respect to
the obstacle, defined as

ψr(t) , atan2(ẏ(t)− ẏo(t), ẋ(t)− ẋo(t)), (17)



Fig. 2: The heading angles ψ±ca can be found geometrically by the
computation of φ±.

lies between the angular boundaries of the collision cone
defined in (13), i.e. ψr(t) ∈

(
ψ−t (t), ψ+

t (t)
)
. This can

equivalently be described by the following definition:
Definition 3 (Conflict): A conflict occurs between the ve-

hicle and the obstacle if the vehicle, with zero control input
r(t) = 0, will violate condition (7) at some point in the
future, provided the obstacle maintains its current velocity:

|ψr(t)− α(t)| < β(t). (18)
Since we generally want to work with absolute velocities,
it can be convenient to express a conflict in terms of the
absolute heading of the vehicle. The heading angles corre-
sponding to the tangents ψ±t (t) can be found geometrically
by considering Figure 2, as

ψ±ca(t) , φ±(t) + ψ±t (t), (19)

where the angles φ±(t) can be computed by using the Law
of Sines on the triangle consisting of vca, vo and vr, as

φ±(t) = sin−1
(
uo(t)

u
sin(π + ψ±t (t)− ψo(t))

)
. (20)

Based on [10], a measure of the distances to a conflict can
then be found as

γ±(t) , ±ψ(t)∓ ψ±ca(t), (21)

where the angles γ±(t) are wrapped into the domain
(−2π, 2π] such that the distances are negative when the
vehicle is in a conflict, and positive otherwise. The angles
correspond to the angular distances the vehicle must turn
to enter (or exit) a conflict in both directions. The shortest
angular distance to a conflict, denoted γ(t), is defined as

γ(t) ,

{
γ+(t), if ψr(t)− α(t) ≥ 0,

γ−(t), if ψr(t)− α(t) < 0,
(22)

where the angular difference is mapped to the domain(
ψr(t)− α(t)

)
∈ (−π, π].

We are now ready to present the structure of the avoidance
maneuver, where we need to consider two different scenarios.
In the first scenario, the angular distances to a conflict, γ±(t),
are negative, and a conflict then arises when the distance,
d(t), is reduced to dthreshold. In the second scenario, the
angular distance to a conflict reaches zero while d(t) <

dthreshold. In the first case, the vehicle can turn in either
direction to exit the conflict safely as long as dthreshold is
chosen with this in mind. The avoidance maneuver is then
given by the following turning rule, which will make the
vehicle seek to pass behind the obstacle. This is obtained by
maximizing the difference between the obstacle heading and
the heading candidates defined in (19), as presented in [14]:

d(t) = dthreshold,

j = arg max
j=±

|ψo(t)− ψjca(t)|, (23)

where j is the turning parameter, and the angular difference
is mapped into the interval (−π, π]. The control input is
given by

r(t) =

{
rmax, if j = + | γ+(t) ≤ ε,
−rmax, if j = − | γ−(t) ≤ ε.

(24)

In the second case, the vehicle can only turn safely in one
direction, i.e. away from the nearest conflict. We then let the
avoidance maneuver be defined as

d(t) < dthreshold,

r(t) =

{
rmax, if γ(t) = γ+(t) | γ+(t) ≤ ε,
−rmax, if γ(t) = γ−(t) | γ−(t) ≤ ε.

(25)

In both cases, the vehicle will turn until it is a constant,
angular safety distance ε ≥ 0 away from a conflict.

IV. MATHEMATICAL ANALYSIS
In this section, we present a mathematical analysis of the

collision avoidance algorithm stated in Section III, applied
to the system described in Section II. In particular, we will
prove that the vehicle modeled by (1), following the refer-
ence generated by the guidance law and the CA algorithm,
will reach the target position while keeping at least a safety
distance from an obstacle described by (3), provided that all
stated assumptions hold.

In Lemma 1 and 2 we prove that the distance between
the vehicle and the obstacle, d(t) − Ro, cannot be reduced
to less than dε, provided the vehicle never enters a conflict
with the obstacle. To make Lemma 2 useful, we derive
a necessary bound on vehicle’s turning rate in Theorem
1, in order to prove that the vehicle will avoid a conflict
with the obstacle if the vehicle starts outside a conflict,
and continuously turns away from the conflict at maximum
turning rate. Finally, in Theorem 2 we prove safety of the
overall system, allowing the vehicle to enter a conflict with
the obstacle under the requirement that the vehicle and
obstacle are initially separated by a minimum distance.

Lemma 1: Consider a static obstacle, and let the vehicle
and the obstacle initially be separated by a distance d(t0) >
Ro|ε. If the vehicle maintains a heading angle satisfying

|ψ(t)− α(t)| = β(t), ∀t ≥ t0, (26)

where β(t) is given by (14), then the vehicle will converge to
a circle with radius Ro|ε and center in the obstacle center, po.
Moreover, if the vehicle maintains a heading angle satisfying

|ψ(t)− α(t)| ≥ β(t), ∀t ≥ t0, (27)



then
d(t)−Ro ≥ dε, ∀t ≥ t0. (28)

Proof: Consider the line segment going from the origin
of the vehicle, p(t), to the origin of the obstacle, po, with
length d(t) and orientation α(t). The time-derivative of d(t)
is found geometrically as

ḋ(t) = −u cos(ψ(t)− α(t)). (29)

Let the vehicle satisfy (26) where β(t) is defined in (14).
We can then write (29) as

ḋ(t) = −u

√
1−

(
Ro|ε

d(t)

)2

. (30)

Solving (30) for d(t), it can be seen that d(t) has a minimum
value equal to Ro|ε, when ḋ(t) = 0. Hence, we have
established that d(t) is lower bounded by Ro|ε. Since the
vehicle initially satisfies d(t0) > Ro|ε, then by (30) ḋ(t0) <
0. Moreover, ḋ(t) < 0 ∀d(t) > Ro|ε, and ḋ(t) = 0 if and only
if d(t) = Ro|ε. Thus, ḋ(t) ≤ 0 ∀t ≥ t0. Since ḋ(t) ≤ 0 and
d(t) is lower bounded, then d(t)→ Ro|ε as t→∞. Hence,
the position of the vehicle, p(t), converges to a circle with
radius Ro|ε and center in po.

Now, let the vehicle satisfy (27). The time-derivative of
d(t) from (29) then satisfies

ḋ(t) ≥ −u

√
1−

(
Ro|ε

d(t)

)2

. (31)

Hence,
d(t)−Ro ≥ dε, ∀t ≥ t0, (32)

which concludes the proof.
Lemma 2: Consider an obstacle moving with time-varying

velocity vo(t), and let the vehicle and the obstacle initially be
separated by a distance d(t0) > Ro|ε. If the vehicle maintains
a heading angle satisfying

|ψr(t)− α(t)| ≥ β(t), ∀t ≥ t0, (33)

then
d(t)−Ro ≥ dε, ∀t ≥ t0. (34)

Proof: Consider a coordinate frame no attached to the
obstacle and aligned with the inertial frame n, moving with
the obstacle velocity vo(t). In this frame, the obstacle is
static and the vehicle has the velocity vr(t) = v(t)− vo(t).
Hence, Lemma 1 can be applied for the vehicle with the
relative velocity vr(t) and heading ψr(t) = ∠v(t) − vo(t)
defined in (17).
The above analysis supports the main concept behind the
algorithm, which serves as a useful metric to decide if the
vehicle should change its course at a point in time. We will
apply Lemma 2 in the following analysis, where we consider
the full system described in Section II, in combination with
the collision avoidance algorithm stated in Section III.

Theorem 1: Consider an obstacle described by (3) and a
vehicle described by (1). If Assumption 1-5 hold, and the
vehicle starts outside a conflict, i.e.:

|ψr(t0)− α(t0)| ≥ β(t0), (35)

then the vehicle will maintain a distance to the obstacle
satisfying

d(t)−Ro ≥ dε, ∀t ≥ t0, (36)

provided it maintains a continuous control input, r(t), satis-
fying

γ+(t) = 0 =⇒ r(t) = rmax,

γ−(t) = 0 =⇒ r(t) = −rmax,
(37)

where

rmax ≥ ro,max
uo,max

u
+

ao,max√
u2 − u2o,max

. (38)

Proof: The proof of this theorem follows along the
lines of the proof presented in [10], which argues that if
the vehicle starts conflict-free, and continuously turns away
from the conflict or exerts no control input r(t) = 0, then the
vehicle avoids a collision with another vehicle following the
same collision avoidance algorithm. Since we are not dealing
with a cooperating vehicle but rather with an unpredictable
obstacle, an extended analysis is required, and we also end
up with a necessary bound on the vehicle’s turning rate.

The angular distances to a conflict, γ±, can be found from
substituting (13) and (19) into (21) as

γ± = ±ψ ∓ (α± β + φ±), (39)

which has the time-derivative
dγ±

dt
= ±r ∓

(
dα

dt
± dβ

dt

)
∓ dφ±

dt
. (40)

The time-derivative of α is found geometrically as

dα

dt
= −‖vr‖

d
sin(ψr − α), (41)

while the time-derivative of β can be computed from (14) as

dβ

dt
=

d

dt

(
sin−1

(
Ro|ε

d

))
(42)

= −ḋ
Ro|ε

d
√
d2 − (Ro|ε)2

(43)

=
‖vr‖
d

cos(ψr − α) tan(β), (44)

where ḋ is found geometrically. The time-derivative of φ±

can be computed from (20) as

dφ±

dt
=
d
(
ψ±o,−

)
dt

· ∂φ
±

∂ψ±o,−
+
d (uo)

dt
· ∂φ

±

∂uo
, (45)

where we define ψ±o,− , π+ψ±t −ψo. We compute the terms
as
d
(
ψ±o,−

)
dt

· ∂φ
±

∂ψ±o,−
= (46)

=
∂

∂ψ±o,−

(
sin−1

(
uo sin(ψ

±
o,−)

u

))
ψ̇±o,− (47)

=

(
−ro +

dα

dt
± dβ

dt

)
(uo/u) cos(ψ

±
o,−)√

1− (uo/u)
2
sin2(ψ±o,−)

, (48)



and

d (uo)

dt
· ∂φ

±

∂uo
= (49)

=
∂

∂uo

(
sin−1

(
uo sin(ψ

±
o,−)

u

))
u̇o (50)

= ao
sin(ψ±o,−)

u
√

1− (uo/u)
2
sin2(ψ±o,−)

. (51)

For convenience, we define

P (ψ±o,−) ,
(uo/u) cos(ψ

±
o,−)√

1− (uo/u)
2
sin2(ψ±o,−)

, (52a)

Q(ψ±o,−) ,
sin(ψ±o,−)

u
√
1− (uo/u)

2
sin2(ψ±o,−)

. (52b)

Finally, we find the derivative of γ± as

dγ±

dt
= ±r ± roP (ψ

±
o,−) +

‖vr‖
d

(1 + P (ψ±o,−))

(± sin(ψr − α)− cos(ψr − α) tan(β))∓ aoQ(ψ±o,−).
(53)

Since the shortest distance to a conflict, γ, is defined as (21),
we can write ± sin(ψr − α) = | sin(ψr − α)|. Recall that
the vehicle starts outside a conflict, i.e. satisfies (35). Since
| tan(ψr − α)| ≥ tan(β) the following must thus hold:

| sin(ψr − α)| − cos(ψr − α) tan(β) ≥ 0. (54)

Moreover, (52a) and (52b) are bounded by Assumption 5:

P (ψ±o,−) ∈
[
−uo

u
,
uo

u

]
, (55a)

Q(ψ±o,−) ∈

[
− 1√

u2 − u2o
,

1√
u2 − u2o

]
. (55b)

Since u > uo, then
∣∣P (ψ±o,−)∣∣ < 1. Hence, (53) can be

reduced to

dγ±

dt
≥ ±r ± roP (ψ

±
o,−)∓ aoQ(ψ±o,−). (56)

From (56) we can formulate the following lower bound on
the vehicle’s required turning rate, in order to compensate for
the obstacle’s maximum turning rate, forward acceleration
and speed:

rmax ≥ ro,max
uo,max

u
+

ao,max√
u2 − u2o,max

. (57)

If the vehicle satisfies (57), then a continuous control input
satisfying (37) also ensures that

dγ(t)

dt
≥ 0, ∀t ≥ t0, (58)

meaning that the shortest angular distance to a conflict is
either constant or increasing with time. Hence,

|ψr(t)− α(t)| ≥ β(t), ∀t ≥ t0, (59)

which implies that

d(t)−Ro ≥ dε, ∀t ≥ t0, (60)

by Lemma 2.
The result of Theorem 1 agrees with intuition. If the vehicle
is able to turn away from the obstacle faster than the obstacle
can turn and accelerate towards it, then the vehicle will
be able to escape the obstacle by turning in the opposite
direction. Theorem 1 is useful because it proves that the
vehicle will be able to maintain at least a safety distance to
the obstacle at all times, provided dthreshold is chosen large
enough for the vehicle to turn out of any conflict before the
obstacle comes within the safety distance. We will use this
fact to prove the final theorem of the paper, where we require
the following assumption to hold:

Assumption 6: The vehicle’s maximum heading rate
rmax > 0 satisfies

rmax ≥ ro,max
uo,max

u
+

ao,max√
u2 − u2o,max

. (61)

Theorem 2: Consider an obstacle described by (3) and a
vehicle described by (1). If Assumption 1-6 hold, the vehicle
follows the guidance law (8) with the heading controller (10),
the switching rules (15)-(16), and the turning rules (23)-
(25), then the vehicle will reach the target position pt while
maintaining a distance to the obstacle satisfying

d(t)−Ro ≥ dε, ∀t ∈ [t0, tf], (62)

where tf is the time of arrival at pt, provided the vehicle and
the obstacle initially are separated by a distance:

d(t0) ≥ Ro + dε +
2u+ πuo,max

rmax
. (63)

Proof: Let the vehicle enter CA mode at a time t1 ≥ t0
as the distance satisfies d(t1) = dthreshold. In order to satisfy
condition (62) the vehicle must be able obtain a safe heading
before the obstacle is closer than the safety distance, dε. To
achieve this, the threshold distance should be above a lower
bound, and it is shown in [14] that this minimum value is

dmin , Ro + dε +
2u+ πuo,max

rmax
. (64)

As long as dthreshold ≥ dmin, and the vehicle and the obstacle
are separated by a distance d(t0) ≥ dmin, the vehicle will
reach a safe heading satisfying

|ψr(t)− α(t)| ≥ β(t), (65)

before the obstacle is within the safety distance of the
vehicle. Since the vehicle follows the turning rule (24) until it
exits collision avoidance mode at a time t2 > t1, the vehicle
will maintain a heading angle satisfying (65), and keep a
distance to the obstacle satisfying d(t) − Ro ≥ dε, ∀t ∈
[t0, t2], by Theorem 1.

Since the obstacle can turn towards the vehicle after it exits
CA mode, causing the current velocity to become unsafe, the
vehicle has the possibility of re-entering CA mode. If the
distance between the vehicle and the obstacle does not satisfy
d(t) = dthreshold at this point, the vehicle will immediately
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Fig. 3: The first scenario. The vehicle is the orange polygon and
the obstacle is the red circle. The magenta circle represents the
radius Ro|ε. The obstacle and vehicle trajectories are the red and
blue dashed lines, respectively. The target position, pt, is marked as
an ’X’. The blue arrow represents vdgr, and the red cone represents
CCo|ε with length dthreshold.

turn away from the conflict by the turning rule (25), ensuring
that the vehicle cannot enter a conflict, i.e. satisfies (65) at
all times. Hence, by Theorem 1 the vehicle will satisfy

d(t)−Ro ≥ dε, ∀t ∈ [t0, tf], (66)

where tf is the time of arrival at pt. Finally, since u > uo,max

the vehicle will be able escape the obstacle at some point in
time and proceed to the target pt.

V. SIMULATIONS

This section presents numerical simulations of two scenar-
ios where the vehicle avoids a moving obstacle by following
the collision avoidance algorithm described in Section III.
The vehicle is modeled as a unicycle (1) with constant
forward speed equal to u = 2 m/s, and maximum turning
rate rmax = 0.5 rad/s in both scenarios. The target position
is chosen as pt = [160, 0]> m. The minimum safety distance
is set to dε = 5 m, and the angular safety distance to ε = 10◦.
The acceptance distance is chosen as da = 4 m. The obstacle
is modeled as the nonholonomic vehicle (3) with radius
Ro = 10 m.

In the first scenario, the obstacle turns in a clockwise circle
while increasing its forwards speed, with constant turning
rate equal to ro = ro,max = 0.1 rad/s and acceleration equal
to ao = ao,max = 0.05 m/s2. The obstacle’s initial speed
is uo(t0) = 0.5 m/s and its maximum speed is uo,max =
1.8 m/s. The minimum threshold distance of Theorem 2 is
computed as dmin ≈ 34.3 m, and we choose dthreshold = 35 m.
Assumption 6 holds with the presented parameters, verified
by direct calculation.

The trajectories of the vehicle and the obstacle during
the collision avoidance scenario are plotted at four different
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Fig. 4: The second scenario.

moments in time, in Figure 3. The relative guidance velocity,
vdgr(t) , vdg(t)−vo(t), is included in order to demonstrate
when the vehicle enters and exits CA mode. It can be seen in
the top left plot that the vehicle enters CA mode at t = 18
s, as d(t) = dthreshold. The vehicle turns left according to
the turning rule (23), aiming to pass on the rear side of the
obstacle. However, the obstacle turns and accelerates directly
towards the vehicle, making the vehicle pass in front of it
instead, seen in the top right plot. At t = 44 s the relative
guidance velocity becomes safe, seen in the bottom left plot.
The vehicle can then proceed to the target, which is finally
reached at t = 83 s, seen in the bottom right plot of Figure
3. To verify that condition (7) holds, the distance between
the vehicle and the obstacle, d(t)−Ro, has been plotted in
Figure 5a, together with the threshold distance and the safety
distance. Hence, the simulation result supports the theoretical
result of Theorem 2.

In the second scenario, the obstacle follows the heading
references generated by a constant bearing (CB) guidance
law [15], with the vehicle position as the target, in order
to purposely collide with the vehicle. To follow the heading
references, the obstacle employs the same kinematic con-
troller as the vehicle, defined in (10). Rather then pursuing
the target, the CB guidance scheme accounts for the target’s
velocity vector in order to generate a direct collision course.
The obstacle has a constant forward speed equal to uo = 1.5
m/s, and maximum turning rate equal to ro,max = 0.4 rad/s.
We calculate dmin ≈ 32.4 m, and choose dthreshold = 33 m.
Assumption 6 is satisfied with the specified parameters.

Trajectories of the vehicle and the obstacle are plotted in
Figure 4. The obstacle can be seen to cut in front of the
vehicle in order to cause a collision, forcing the vehicle to
enter CA mode at t = 15 s, in the top left plot. The vehicle
enters CA mode as d(t) < dthreshold, and turns left according
to turning rule (25), seen in the top right plot. The obstacle
continues to block the vehicle’s path as the vehicle attempts
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(a) Distance, d(t)−Ro, during the first simulation.
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(b) Distance, d(t)−Ro, during the second simulation.

Fig. 5: Distance to the obstacle during both simulations.

to maneuver around the obstacle. Still, the vehicle manages
to keep the required distance from the obstacle at all times
by following the CA algorithm, verified by Figure 5b. The
vehicle finally exits CA mode at t = 81 s and proceeds
to the target, seen in the bottom two plots of Figure 4.
Hence, we can conclude that the simulation result supports
the theoretical result of Theorem 2.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a mathematical analysis of the
velocity obstacle algorithm applied to a nonholonomic vehi-
cle for reactive collision avoidance of a moving obstacle.
The algorithm is based on mapping the obstacle to the
velocity space as a set of unsafe velocities, called the velocity
obstacle, and the vehicle avoids the obstacle by maintaining
velocities outside of this set. The main contribution of this
paper is a theoretical analysis of the performance of the
algorithm when applied to a vehicle in a collision avoidance
scenario. The vehicle is restricted to maintain a constant
forward speed, and is subject to nonholonomic constraints.
Despite this, the analysis shows that the vehicle can safely
avoid a moving obstacle, even in the case where the obstacle
is able to turn and accelerate towards the vehicle. This is
in contrast to the original formulation of velocity obstacles,
which both assumes that the obstacle maintains a constant
velocity, and does not deal well with vehicles with restricted
forward speed and nonholonomic constraints.

Although safety analyses have been presented for the
multi-agent scenario, we here analyze the algorithm without
any assumptions on the decision-making of the obstacle, and
allow for fully non-cooperative behaviour. In the extreme
case, this means that the obstacle could aim to collide
with the vehicle. Still, we are able to guarantee vehicle
safety in any scenario under the mild assumption that the
vehicle’s speed is lower bounded by the obstacle speed, and
by requiring the vehicle’s turning rate to satisfy a lower
bound. This was demonstrated through simulations where
the obstacle actively sought to collide with the vehicle.

In this paper, we have examined scenarios with a circular
obstacle. This is not a requirement of the algorithm; if the
obstacle shape is non-circular, the collision cone may be

computed to fit the exact shape of the obstacle by substituting
the circular domain, Do, with any shaped domain, D. How-
ever, the performance of the algorithm in such cases remains
to be analysed and is a topic of future research. Other topics
concern the issue of avoiding multiple moving obstacles, and
applying the algorithm to nonholonomic vehicles capable
of acceleration/deceleration. Analysis of such scenarios is
inherently more complex and remains a subject for future
work.
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