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Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction
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In this paper, we propose a variational approach to estimate eddy viscosity using forward sensitivity method
(FSM) for closure modeling in nonlinear reduced order models. FSM is a data assimilation technique that blends
model’s predictions with noisy observations to correct initial state and/or model parameters. We apply this
approach on a projection based reduced order model (ROM) of the one-dimensional viscous Burgers equation
with a square wave defining a moving shock, and the two-dimensional vorticity transport equation formulating
a decay of Kraichnan turbulence. We investigate the capability of the approach to approximate an optimal
value for eddy viscosity with different measurement configurations. Specifically, we show that our approach
can sufficiently assimilate information either through full-field or sparse noisy measurements to estimate eddy
viscosity closure to cure standard Galerkin reduced order model (GROM) predictions. Therefore, our approach
provides a modular framework to correct forecasting error from a sparse observational network on a latent space.
We highlight that the proposed GROM-FSM framework is promising for emerging digital twin applications,
where real-time sensor measurements can be used to update and optimize surrogate model’s parameters.
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I. INTRODUCTION

Data assimilation (DA) is a family of algorithms and tech-
niques that aim at blending mathematical models with (noisy)
observations to provide better predictions by correcting initial
condition and/or model’s parameters [1–3]. DA plays a key
role in geophysical and meteorological sciences to make more
reliable numerical weather predictions. Standard popular al-
gorithms that are often adopted in weather prediction centers
include variational methods (e.g., 3D-VAR [4,5] and 4D-VAR
[6–11] methods), sequential methods (e.g., reduced rank (en-
semble) Kalman filters [12–19]), and hybrid methods [20–26].
Another method that mitigates the computational cost in solv-
ing the inherent optimization problem in variational methods
is called the forward sensitivity method (FSM) developed
by Lakshmivarahan and Lewis [27,28]. FSM builds on the
assumption that model error stems from incorrect specifica-
tion of the control elements, which include initial conditions,
boundary conditions, and physical/empirical parameters. The
FSM approach corrects the control elements using informa-
tion from the time evolution of sensitivity functions, defined
as the derivatives of model output with respect to the elements
of control.

Other than meteorology [29], DA tools are gaining pop-
ularity in different disciplines like reservoir engineering
[30] and neuroscience [31]. Recent works have also drawn
techniques and ideas from DA to enrich reduced order mod-
eling of fluid flows and vice versa [32–40]. In conventional
projection-based model reduction approaches, a set of sys-
tem’s realizations are used to build a reduced order model
(ROM) that sufficiently represent the system’s dynamics with
significantly lower computational cost [41–58]. This process
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includes the extraction of a handful of basis functions rep-
resenting the underlying flow patterns or coherent structures
that dominate the majority of the bulk mass, momentum and
energy transfers. In the fluid dynamics research community,
proper orthogonal decomposition (POD) is, generally speak-
ing, the most popular and effective technique that produces
hierarchically ordered solution-adapted basis functions (or
modes) that provide the optimal basis to represent a given
collection of field data or snapshots [51,59–62]. To emulate
the system’s dynamics, a surrogate model is often built by per-
forming a Galerkin projection of the full order model (FOM)
operators onto a reduced subspace spanned by the formerly
constructed POD modes [63–70].

However, the off-design performance of ROMs is usually
questionable since the reduced basis and operators are formed
offline for a given set of operating conditions, while the ROM
has to be solved online for different conditions. Therefore, a
dynamic update of model operators and parameters is often
sought to enhance the applicability of ROMs in realistic con-
texts. That being said, adoption of DA tools to absorb real
observations to correct and update ROMs should present a
viable cure for this caveat. The present paper aims at pushing
towards utilizing DA techniques to improve the performance
of nonlinear ROMs. A common problem that emerges in
such ROMs is the inaccuracy of solution trajectory, espe-
cially for long time integration of quasi-stationary problems.
This solution inaccuracy has been commonly attributed to the
modal truncation and intrinsic interactions between truncated
modes and retained modes. A correction term compensating
the effects of truncated modes has been often introduced to
achieve more accurate ROM results [71–76]. Furthermore,
recent studies have shown that model’s performance can be
improved by the choice of the projection method [77–79] and
the definition of the adopted inner product [80].
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To enhance the solution accuracy, closure and stabilization
techniques have been introduced to account for the effects of
discarded modes on the dynamics of the ROM. In particular,
eddy viscosity closures, inspired from large eddy simulations
(LES), have shown a significant success in ROM closure
modeling [32,81–85]. The estimation of an optimal value of
the eddy viscosity parameter has been the topic for many
research works though. For example, empirical relations can
be adopted [72,86,87], or ideas can be borrowed from LES
frameworks to dynamically compute a better approximation
of the eddy viscosity parameter [71,88–90]. Moreover, a 4D-
VAR approach has been suggested to provide an optimal
nonlinear eddy viscosity estimate in Galerkin projection based
ROMs [32]. An adaptive nudging technique has also been
recently introduced to force ROMs toward the reference so-
lution corresponding to the observed data [33].

Instead, in the present paper, we propose a framework
to estimate eddy viscosity closure using noisy observations
from a sparse observation network. In particular, we adopt the
forward sensitivity method to evaluate the sensitivity of ROM
predictions to the eddy viscosity parameter. Observations,
whenever available, can therefore be used to approximate a
more representative value of eddy viscosity to better reflect
the true system’s dynamics. We highlight that the proposed
approach is very suitable for emerging digital twin applica-
tions [91–96], where real-time measurements are abundant
(and noisy). Thus, efficiently assimilating these measure-
ments to improve ROMs can be a key enabler for such
applications which require many-query and near real-time
simulations. We test our approach using two test cases of vary-
ing complexity, namely the one-dimensional viscous Burgers
equation with a square wave representing a moving shock and
the two-dimensional vorticity transport equation applied to
Kraichnan turbulence. We apply the proposed GROM-FSM
to assimilate information from either full-field or sparse-field
measurements. Therefore, our approach provides a modu-
lar framework to optimally estimate closure parameters for
submodal scale physics, which can be effectively used in
emerging sensorcentric applications in transport processes.

The rest of the paper is outlined here. In Sec. II, we review
the forward sensitivity method and its mathematical founda-
tion as an established data assimilation algorithm. We then
construct the standard Galerkin ROM and the corresponding
reduced operators for the 1D Burgers problem and the 2D
vorticity transport equation in Sec. III. Then, we describe the
proposed approach for closure estimation via FSM, namely,
GROM-FSM, in Sec. IV. Results and relevant discussions
are provided in Sec. V. In particular, we consider the assim-
ilation of full-field and sparse-field measurements. For the
latter, we explore two approaches for assimilating information
from sparse observations. We also extend the eddy viscos-
ity estimation framework to permit mode-dependent closures.
Concluding remarks and insights are drawn in Sec. VI.

II. FORWARD SENSITIVITY METHOD

In this section, we briefly describe the forward sensitiv-
ity method (FSM) proposed by Lakshmivarahan and Lewis
[27]. The idea behind this technique is to find optimal con-
trol parameters by iteratively correcting the control for the

least-squares fit of the model to the observational data. The
control parameters in question here can be any unknown such
as initial conditions, boundary conditions, and physical model
parameters. The correction to each control parameter is dic-
tated by its corresponding sensitivity function. In essence, the
sensitivity function is the quantitative measure of influence
of each control parameter on the model states. The nature
of combining physical models with actual data to solve an
inverse problem is what makes FSM a modular DA approach.

Let the dynamical system of interest be defined by a set of
ordinary differential equations (ODEs) as below,

dx
dt

= f (x,α), (1)

where x(t ) ∈ Rn is the system state-vector with the initial
condition x0 and α ∈ Rp denotes the physical parameters. The
vector of control parameters is represented as c = [x0,α]T ∈
Rn+p. Here, it is assumed that the solution x(t ) exists and
is unique and has a smooth dependence with the control
vector c.

Discretizing Eq. (1) by using some numerical method like
Runge-Kutta schemes, we get a model equation which gives
the evolution of model states in discrete time as

xk+1 = M(xk,α), (2)

where xk = [xk
1, xk

2, . . . , xk
n]T denotes the time-

discretized model states at discrete time tk and M =
[M1(xk,α), M2(xk,α), . . . , Mn(xk,α)]T refer to the state
transition maps from time tk to tk+1. Differentiating Eq. (2)
with respect to x0, we get

∂xk+1
i

∂x0
j

=
n∑

q=1

(
∂Mi

∂xk
q

)(
∂xk

q

∂x0
j

)
, (3)

where 1 � i, j � n. Similarly, differentiating Eq. (2) with re-
spect to α, we obtain

∂xk+1
i

∂α j
=

n∑
q=1

(
∂Mi

∂xk
q

)(
∂xk

q

∂α j

)
+ ∂Mi

∂α j
, (4)

where 1 � i � n and 1 � j � p. In Eqs. (3) and (4), the su-
perscript refers to the discrete time index while the subscript
refers to the specific component. Now, we can define Uk as
the sensitivity matrix of xk with respect to initial state, where
[Uk]i j = ∂xk

i /∂x0
j for 1 � i, j � n. Also, we define Vk as the

sensitivity matrix of xk with respect to the parameter-vector α,
where [Vk]i j = ∂xk

i /∂α j for 1 � i � n and 1 � j � p. Then,
we can rewrite Eqs. (3) and (4) in matrix as follows:

Uk+1 = Dk
x(M)Uk, (5)

Vk+1 = Dk
x(M)Vk + Dα(M), (6)

initialized as U0 = I and V0 = 0.
Here, Dk

x(M) and Dα(M)k are the Jacobian matrices of
M(·) with respect to x and α at discrete time tk , respec-
tively. Moreover, Uk ∈ Rn×n and Vk ∈ Rn×p are called the
forward sensitivity matrices with respect to initial conditions
and parameters, respectively. In effect, the system dynamics in
Eq. (2) gets reduced to a set of linear matrix equations [Eq. (5)
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and (6)], which give the evolution of the sensitivity matrices
in discrete time. By first-order approximation, we have

�xk ≈ δxk = Ukδx0 + Vkδα, (7)

where δx ∈ Rn.
So far, no observational data have been used. Let z(t ) ∈ Rm

be the observation vector available for N time snapshots; and
h : Rn → Rm maps the model space Rn to the observation
space Rm. Hence, the observation vector can be defined math-
ematically as follows:

z(t ) = h(x̃(t )) + v(t ), (8)

where x̃(t ) ∈ Rn is the true state of the system and v(t ) ∈ Rm

represents the measurement noise, which is assumed to be
white Guassian noise with zero mean and covariance matrix
R(t ) ∈ Rm×m. Writing Eq. (8) in the discrete-time form, we
get

zk = h(x̃k ) + vk, (9)

where vk is white Gaussian noise with the covariance matrix
Rk . In most cases, Rk is a diagonal matrix. For simplicity,
we assume that Rk = σ 2

ObsIm, where Im is the m × m identity
matrix.

Assuming that the model is a perfect representation of the
actual physical phenomenon and given a starting guess value
of the control c, we can run the model forward to predict
xk ∀ 1 � k � N , then the forecast error ek

F ∈ Rm defined as

ek
F = zk − h(xk ). (10)

The forecast error ek
F is composed of the sum of a de-

terministic part defined as h(x̃k ) − h(xk ) and a random part
vk . The random error stems from the inherent error in the
mapping h : xk → zk and we have no control on it, however
it is the goal of FSM to minimize the deterministic part in
a least-squares sense at all the N time snaps by choosing an
optimal value for c.

Now, the goal of FSM is to find a perturbation to the control
δc from the given starting guess c. This, in turn, would cause
a δxk change in xk such that the actual observation matches
with the forecast observation from the model as follows:

zk = h(xk + δxk ) ≈ h(xk ) + Dk
x(h)δxk . (11)

Thus, the forecast error ek
F can be written as

ek
F = Dk

x(h)δxk . (12)

Combining Eq. (7) with Eq. (12), and setting Hk
1 =

Dk
x(h)Uk ∈ Rm×n, Hk

2 = Dk
x(h)Vk ∈ Rm×p, we get

ek
F = Hk

1δx0 + Hk
2δα. (13)

Equation (13) can be further simplified and written in terms
of the perturbation to the control δc as

Hkδc = ek
F , (14)

where Hk = [Hk
1, Hk

2] ∈ Rm×(n+p) and δc = [δx0, δα]T ∈
Rn+p.

Equation (14) can be formulated for all the N time snap-
shots for which observations are available and the following

linear equation is obtained:

Hδc = eF , (15)

where the matrix H ∈ RNm×(n+p) and the vector eF ∈ RNm are
defined as follows:

H =

⎡
⎢⎢⎣

H1

H2

...

HN

⎤
⎥⎥⎦, eF =

⎡
⎢⎢⎢⎢⎣

e1
F

e2
F
...

eN
F

⎤
⎥⎥⎥⎥⎦. (16)

Depending on the value of Nm relative to (n + p), Eq. (15) can
give rise to either an over-determined or an under-determined
linear inverse problem. In either case, the inverse problem can
be solved in a weighted least-squares sense to find an optimal
value of δc, with R−1 as a weighting matrix, where R is a
block-diagonal matrix constructed as follows:

R =

⎡
⎢⎢⎣

R1

R2

. . .

RN

⎤
⎥⎥⎦. (17)

For simplicity, we assume that R is a diagonal matrix
defined as R = σ 2

ObsINm, where INm is the Nm × Nm identity
matrix. Then, the solution of Eq. (15) can be written as

δc =
{

(HT R−1H)−1HT R−1eF , over-determined,
R−1HT (HR−1HT )−1eF , under-determined.

(18)

It has been seen that the first-order approximation progres-
sively yield better results by repeating the entire process for
multiple iterations until convergence with certain tolerance
[27].

III. REDUCED ORDER MODELING

In this section, we briefly derive a reduced order model
(ROM) for a dynamical system governed by the following
autonomous partial differential equation (PDE):

∂q

∂t
= F (q), (19)

where q is the state of system (flow field variables) and F (q)
governs the dynamics of q. We follow the standard Galerkin
projection to construct the sought ROM which includes two
main steps. First, the flow field variable q(x, t ) (where q(x, t )
represents the vectorized form of q at time t) is approximated
as a linear superposition of the contributions of a few modes,
which can be mathematically expressed as

q(x, t ) = q̄(x) +
R∑

k=1

ak (t )φk (x), (20)

where q̄(x) represents the mean-field, φk (x) are the spa-
tial modes (or basis functions), ak (t ) are the time-dependent
modal coefficients (i.e., weighting functions), and R is the
number of retained modes in ROM approximation (i.e., ROM
dimension). The second step is to project the governing equa-
tion [i.e., Eq. (19)] onto the subspace spanned by {φk}R

k=1.
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Thus, the two main ingredients for building a Galerkin ROM
(GROM) are the basis functions {φk}R

k=1 and a Galerkin
projection of the governing equation. To compute the basis
functions {φk}R

k=1, we follow the popular proper orthogonal
decomposition (POD) approach described in Sec. III A, fol-
lowed by derivation of GROM equations in Sec. III B. Overall,
this GROM approach utilizes a linear decomposition tech-
nique that is able to properly treat the nonlinearity of F (q),
since it accounts for nonlinear coupling of terms acting within
the linear space defined by the POD basis functions [42].

A. Proper orthogonal decomposition

Proper orthogonal decomposition (POD) is a data-driven
modal decomposition technique that gained remarkable pop-
ularity in the fluid mechanics community due to its simplicity
as well as robustness. Given a set of solution trajectories or
realizations (known as snapshots), POD lays out a systematic
approach to compute a solution-adapted basis functions that
provide the optimal basis to represent a given set of simulation
data or snapshots. Specifically, POD produces hierarchically
organized basis functions, based on their contribution to the
total system’s energy, which makes the modal selection a
trivial process. In particular, given a collection of system
realizations, we build a snapshot matrix A ∈ Rn×N as follows:

A =

⎡
⎢⎢⎣

q(x1, t1) q(x1, t2) . . . q(x1, tN )
q(x2, t1) q(x2, t2) . . . q(x2, tN )

...
...

. . .
...

q(xn, t1) q(xn, t2) . . . q(xn, tN )

⎤
⎥⎥⎦, (21)

where n is the number of spatial locations and N is the number
of snapshots. A mean-subtracted snapshot matrix Ã is defined
as Ã = A − 1

N A1N×N , where 1N×N is an N × N matrix of
ones. Then, a thin singular value decomposition (SVD) is
performed on Ã as follows:

Ã = U�VT , (22)

where U ∈ Rn×N is a matrix with orthonormal columns are
the left singular vectors of Ã, which represent the spatial basis
as

U =

⎡
⎢⎢⎣

U1(x1) U2(x1) . . . UN (x1)
U1(x2) U2(x2) . . . UN (x2)

...
...

. . .
...

U1(xn) U2(xn) . . . UN (xn)

⎤
⎥⎥⎦, (23)

while the columns of V ∈ RN×N are the right singular vectors
of Ã, representing the temporal basis as

V =

⎡
⎢⎢⎣

V1(t1) V2(t1) . . . VN (t1)
V1(t2) V2(t2) . . . VN (t2)

...
...

. . .
...

V1(tN ) V2(tN ) . . . VN (tN )

⎤
⎥⎥⎦. (24)

The singular values of Ã are stored in descending order as the
entries of the diagonal matrix � ∈ RN×N ,

� =

⎡
⎢⎢⎣

σ1

σ2
. . .

σN

⎤
⎥⎥⎦, (25)

where σ1 � σ2 � . . . σN � 0. For dimensionality reduction
purposes, only the first R columns of U, corresponding to the
largest R singular values, are stored. Those represent the most
effective R POD modes, denoted as {φk}R

k=1 in the rest of the
manuscript. The computed basis functions are orthonormal by
construction as

〈φi; φ j〉 =
{1 if i = j,

0 otherwise, (26)

where the angle parentheses 〈·; ·〉 stands for the standard inner
product in Euclidean space (i.e., dot product). We note that
the presented direct algorithm might be unfeasible for larger
data sets, as stacking snapshots into a single huge matrix is
usually prohibitive. Instead, the method of snapshots [59] can
be followed to efficiently approximate the POD bases.

B. Galerkin ROM

Having a set of POD basis functions in hand, an orthogonal
projection can be performed to obtain the Galerkin ROM
(GROM). To do so, the ROM approximation [Eq. (20)] is
substituted into the governing equation and an inner prod-
uct with the POD basis functions is carried out. In deriving
the GROM equations, we highlight that the POD bases
are only spatial functions (i.e., independent of time) and
the modal coefficients are independent of space. We also
utilize the orthonormality property of the basis functions to
get the following set of ordinary differential equations (ODEs)
representing the tensorial GROM:

dak

dt
= Bk +

R∑
i=1

Li,kai +
R∑

i=1

R∑
j=1

Ni, j,kaia j, (27)

where B, L, and N are the vector, matrix, and tensor of
predetermined model coefficients corresponding to constant,
linear, and nonlinear terms, respectively. We note here that the
last term results from the quadratic nonlinearity encountered
in most of the fluid flow systems. In particular, we consider
here two cases of particular interest. First, we consider the
one-dimensional Burgers equation as a prototypical test bed
for transport systems with quadratic nonlinearity and Lapla-
cian dissipation. For this case, we solve the problem of a
moving shock, which can be considered as a challenging case
for ROM applications [87]. In the second case, we consider
the vorticity transport equation, with an application to the
two-dimensional decaying turbulence.

1. 1D Burgers problem

The one-dimensional (1D) Burgers equation is defined
with the following partial differential equation (PDE):

∂u

∂t
= −u

∂u

∂x
+ 1

Re

∂2u

∂x2
, (28)

where Re is Reynolds number relating the inertial and viscous
effects. Using the definition

u(x, t ) = ū(x) +
R∑

k=1

ak (t )φk (x), (29)

043302-4



FORWARD SENSITIVITY APPROACH FOR ESTIMATING … PHYSICAL REVIEW E 102, 043302 (2020)

the GROM model coefficients can be precomputed during an
offline stage as

Bk =
〈
− ū

∂ ū

∂x
+ 1

Re

∂2ū

∂x2
; φk

〉
,

Li,k =
〈
− ū

∂φi

∂x
− φi

∂ ū

∂x
+ 1

Re

∂2φi

∂x2
; φk

〉
,

Ni, j,k =
〈
− φi

∂φ j

∂x
; φk

〉
.

2. 2D Kraichnan turbulence

The two-dimensional (2D) Kraichnan turbulence problem
models how randomly generated vortices evolve [97]. De-
spite the apparent simplicity, the decaying 2D Kraichnan
turbulence is very rich in its dynamics and follows the 2D
Navier-Stokes equations, which can be written in vorticity-
streamfunction formulation (vorticity-transport equation) as
follows:

∂ω

∂t
= −J (ω,ψ ) + 1

Re
∇2ω, (30)

where ω is the vorticity and ψ is the streamfunction. J (ω,ψ )
and ∇2ω are the Jacobian and Laplacian operators, respec-
tively, which can be defined as

J (ω,ψ ) = ∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
, (31)

∇2ω = ∂2ω

∂x2
+ ∂2ω

∂y2
. (32)

The vorticity-stream function formulation enforces the incom-
pressibility condition, where the vorticity and stream function
fields are related by the following Poisson equation

∇2ψ = −ω. (33)

With the POD algorithm implemented, a set of POD basis
functions {φk (x, y)}R

k=1 are obtained from the snapshots of
vorticity fields. The prognostic variable vorticity in Eq. (30)
is defined as

ω(x, y, t ) = ω̄(x, y) +
R∑

k=1

ak (t )φk (x, y). (34)

Since the vorticity and stream function are related by the
kinematic relationship given by Eq. (33), the basis func-
tions [θk (x, y)] and mean field [ψ̄ (x, y)] corresponding to the
stream function can be obtained from those of the vorticity as
follows:

∇2ψ̄ (x, y) = −ω̄(x, y), (35)

∇2θk (x, y) = −φk (x, y), k = 1, 2, . . . , R, (36)

which might result in a set of basis functions for the stream
function that are not necessarily orthonormal. Moreover, the
reduced order approximation of stream function shares the
same temporal coefficients ak (t ),

ψ (x, y, t ) = ψ̄ (x, y) +
R∑

k=1

ak (t )θk (x, y). (37)

The GROM coefficients for this case can be defined as
follows [98]:

Bk =
〈
− J (ω̄, ψ̄ ) + 1

Re
∇2ω̄; φk

〉
,

Li,k =
〈
− J (ω̄, θi ) − J (φi, ψ̄ ) + 1

Re
∇2φi; φk

〉
,

Ni, j,k = 〈−J (φi, θ j ); φk〉. (38)

Due to the quadratic nonlinearity in the aforementioned
systems, the computational cost of solving Eq. (27) is O(R3).
Therefore, the number of retained modes has to be reduced
as much as possible to keep the computational cost afford-
able. However, this truncation ignores the dyadic interactions
between the first R modes and the remaining ones. As a
result, an erroneous behavior might arise in the ROM solution
[99–102], and closure and stabilization techniques have been
introduced to improve ROM accuracy [71,84,103–105]. As
highlighted earlier in Sec. I, closure approaches based on
physical significance have been usually relied on the analogy
between LES and ROMs, e.g., the addition of an artificial
viscosity term [81]. Recently, data-driven closure methods
have been also pursued, e.g., using variational multiscale tech-
niques [89,106,107], machine learning algorithms [108–111],
and polynomial approximations [112,113].

IV. CLOSURE ESTIMATION VIA FSM

To stabilize the GROM, a closure model is usually nec-
essary for complex flows. In the present paper, we consider
adding a linear eddy-viscosity term to the governing equation
as follows:

1D Burgers:
∂u

∂t
= −u

∂u

∂x
+ (ν + νe)

∂2u

∂x2
, (39)

2D Turbulence:
∂ω

∂t
= −J (ω,ψ ) + (ν + νe)∇2ω, (40)

where ν is the kinematic viscosity (i.e., Re−1 in dimensionless
form) and νe is an artificial eddy viscosity to add an extra
dissipation to stabilize the system. If we follow the same
procedure in Sec. III B, then we get the following GROM with
closure:

dak

dt
= Bk + νeB̂k +

R∑
i=1

Li,kai + νe

R∑
i=1

L̂i,kai

+
R∑

i=1

R∑
j=1

Ni, j,kaia j, (41)

where B̂ and L̂ are the constant and linear coefficients re-
sulting from the introduction of the eddy viscosity term and
defined as follows:

1D Burgers: B̂k =
〈
∂2ū

∂x2
; φk

〉
, L̂i,k =

〈
∂2φi

∂x2
; φk

〉
,

2D Turbulence: B̂k = 〈∇2ω̄; φk〉, L̂i,k = 〈∇2φi; φk〉.
It remains to compute or assume a good estimate for νe.

Using an a priori estimate for νe can produce a stable ROM
solution. However, as the flow evolves, this prior value might
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become less effective. Therefore, there should be a strategy to
dynamically update this estimate based on the flow conditions
and regimes.

In this regard, we borrow ideas from meteorological data
assimilation to correct and update our parameter estimate
using live and realistic (possibly noisy) measurements. In
particular, we use the forward sensitivity method (FSM), de-
scribed in Sec. II, to compute an optimal value for eddy
viscosity given a few field observations. This also allows us
to update our estimate whenever a new observation becomes
available. We start with a prior estimate of eddy viscosity
(e.g., zero if no priors are available), and solve the ROM
equation for a given period of time, Tw. As we solve GROM,
we also collect some field measurements during this period
Tw. A penalty term is thus computed as the difference between
the GROM prediction and observations, which is used to up-
date our prior estimate for νe. This updated value is therefore
used to evolve the GROM until new observations become
available to match with model’s predictions, and so on. The
period over which measurements are collected Tw is called
the data assimilation window. Note that model’s states [e.g.,
ak (t )] can be different from the measured quantities [e.g.,
u(x, t )], and a mapping between model space and observa-
tion space has to be defined. In the following, we formalize
our framework for FSM-based eddy viscosity estimation for
GROM, called GROM-FSM in the present study. Defining our
dynamic model as

da
dt

= f (a, νe), (42)

where a is the vector of modal coefficients defined as a =
[a1, a2, . . . , aR]T (the superscript T denotes transpose). The
(time-continuous) model map f = [ f1, f2, . . . , fR]T is de-
fined as fk = Bk + νeB̂k + ∑R

i=1 Li,kai + νe
∑R

i=1 L̂i,kai +∑R
i=1

∑R
j=1 Ni, j,kaia j .

A time-discretization scheme can be utilized to convert this
model from continuous-time map f to a discrete-time map M
as

ak+1 = M(ak, νe), (43)

where the superscript k denotes the time index. In our im-
plementation, we adopt the fourth-order Runge-Kutta scheme
(RK4) for temporal discretization.

Suppose we collect measurements zk at a single time in-
stant tk , where tk ∈ [0, Tw]. The forecast error is defined at tk
as

ek
F = zk − h(ak ), (44)

where h(·) defines the mapping from model space to observa-
tion space. In our results, we consider two mapping cases. In
the first case, we preprocess field observations to compute the
“observed” coefficients (i.e., zk = ak

Obs), where the mapping is
simply identity matrix (i.e., h(ak ) = ak). In the second case,
we keep observations as velocity field measurement (zk =
uk

Obs), where the mapping becomes a reconstruction map (i.e.,
h(ak ) = uk). Specific details are to be given in Sec. V.

Although the FSM can be used to treat uncertainties in ini-
tial conditions as well as model parameters, we only consider

the estimation of the eddy viscosity parameter νe. Thus,

Hk
2δνe = ek

F , (45)

where Hk
2 = Dk

a(h)Vk as defined in Sec. II. Details of defining
model Jacobian are given in the Appendix. For more than a
single observation time, we stack Eq. (45) at different obser-
vation times to get the following equation:

H2δνe = eF . (46)

Also, a block-diagonal matrix R is constituted with the mea-
surement covariance matrices Rk at subsequent observation
times. Equation (46) defines an over-determined system of
linear equations in δνe. A weighted least-squares solution can
be computed, with a weighting matrix of R−1 as follows:

δνe = (
HT

2 R−1H2
)−1

HT
2 R−1eF , (47)

where δνe is added to our prior estimate of νe (also called
background) to obtain a better approximation and the process
is repeated until convergence. The procedure for using FSM
to compute the eddy viscosity is summarized in Algorithm
1. A tolerance limit has to be set to define convergence (e.g.,
1 × 10−6). We also note that an initial guess for eddy viscosity
parameter is required for proper implementation of the algo-
rithm. If no prior knowledge of νe is available, then a zero
initial guess usually works fine. Meanwhile, since collected
FOM snapshots are already available during an offline stage,
they can be treated as field measurement data with negligible
noise (corresponding to the underlying solution’s assumptions
and numerical approximations). Thus, Algorithm 1 can be
applied offline along with the construction of GROM model
to provide a prior estimate of the suitable closure parameter.

V. RESULTS

In this section, we present our results for the utilization of
the proposed methodology to compute and update the eddy
viscosity parameter via FSM, applied to the introduced two
test problems (i.e., 1D Burgers problem and 2D Kraichnan
turbulence).

A. 1D Burgers problem

For the 1D Burgers problem, we assume an initial condi-
tion of a square wave defined as

u(x, 0) =
{1, if 0 < x � L/2,

0, if L/2 < x � L,
(48)

with zero Dirichlet boundary conditions, u(0, t ) = u(L, t ) =
0. We consider a spatial domain of L = 1, and solve at
Re = 104 for t ∈ [0, 1]. For numerical computations, we
use a family of fourth order compact schemes for spatial
derivatives [114], and skew-symmetric formulation for the
nonlinear term. Also, we use the fourth-order Runge-Kutta
(RK4) scheme for temporal integration with a time step of
10−4 over a spatial grid of 4096. For POD basis generation,
we collect 100 snapshots (i.e., every 100 time steps). The tem-
poral evolution of the 1D Burgers problem using the described
setup is shown in Fig. 1, where we can see the advection of the
shock wave.
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Algorithm 1: Forward sensitivity method for
estimating eddy viscosity in GROM closure

Input : Dynamic model M(·), observation operator
h(·), initial condition a1, a set of
observations z1, z2, . . . zN , an initial guess
for eddy viscosity parameter νe, and a
tolerance tol value

Output: An estimate of the eddy viscosity νe

initialization
for i ← 1 to max iter do

V1 = 0
eF = z1 − h(a1)
H2 = D1

a(h)V1

R = R1

for n ← 1 to N − 1 do
an+1 = M(an, νe)
Vn+1 = Dn

a(M)Vn + Dn
νe(M)

if (observation zn+1 is available) then
en+1

F = zn+1 − h(an+1)
Hn+1

2 = Dn+1
a (h)Vn+1

eF =
eF

en+1
F

, H2 =
H2

Hn+1
2

R =
R

Rn+1

end

end

δνe = HT
2 R−1H2

−1
HT

2 R−1eF

if (δνe ≤ tol) then
break

else
νe = νe + δνe

end

end

The described Burgers problem with square wave is chal-
lenging for ROM applications. In our GROM implementation,
we consider R = 8 modes and �t = 0.01 for time integration.
In the following, we discuss the estimation of eddy viscosity
via FSM using full and sparse-field measurements.

1. Full-field measurement

In our first case, we investigate the assimilation of noisy
full-field measurement as

uObs(x, t ) = u(x, t ) + v(x, t ), (49)

where v(x, t ) is a white Gaussian noise with zero mean and
covariance matrix R(t ). In particular, we define R(t ) = σ 2

ObsI,
with σObs = 0.1. We assume a data assimilation window of
0.5 s and collect measurements at t = 0.25 and t = 0.5, as
demonstrated in Fig. 2.

Instead of defining a map between model space and obser-
vation space, we preprocess our measurement by projecting
them onto the POD basis to compute the “observed” modal
coefficients as

ak
i,Obs = 〈

uk
Obs − ū; φi

〉
. (50)

Thus, zk = ak
Obs and the observation operator is defined

h(a) = a, with a Jacobian equal to the identity matrix [i.e.,

FIG. 1. Evolution of the FOM velocity field, characterized by a
moving shock with square wave.

Da(h) = IR, where IR is the R × R identity matrix]. Also, the
observational covariance matrix is set as Rk = σ 2

ObsIR. If we
implement the procedure described in Sec. II to obtain an
estimate for νe and solve GROM with and without closure,
then we obtain the results in Fig. 3 for the temporal evolution
the modal coefficients. For comparison, we also plot the true
projection values of a, defined as

ak
i = 〈

uk
FOM − ū; φi

〉
. (51)

Also, we sketch reconstructed velocity field at final time
t = 1 in Fig. 4. It is clear that GROM without closure is
unable to capture the true dynamical behavior of the described
Burgers problem. However, GROM-FSM is shown to almost
match the true projection. It is assumed that true projected
values represent the best values that projection-based ROM
can provide. For quantitative assessment, we also plot the
root-mean-squares error (RMSE) of ROM predictions defined

FIG. 2. Noisy measurement of velocity fields at t = 0.25 s and
t = 0.50 s, assuming sensors are located at all grid points.
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FIG. 3. Temporal evolution of POD coefficients, assuming full-
field measurements are available.

as

RMSE(t ) =
√√√√1

n

n∑
i=1

[uFOM(xi, t ) − uROM(xi, t )]2. (52)

2. Sparse-field measurement

Since full-field measurements are usually inaccessible, we
extend our study to consider sparse-field measurements. In
particular, we locate sensors at eight points, equally spaced
at 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 8/8 as shown in
Fig. 5. To assimilate those measurements, we consider two
cases. The first one is similar to the full-field measurement
case, where we preprocess those measurements to compute
a least-squares approximation of the corresponding observed
modal coefficients. In the second case, we keep our obser-
vation as field measurements and define an operator to map
model state (i.e., modal coefficients) to observations (i.e.,
velocity).

a. From measurements to POD coefficients. To preprocess
the sparse measurements to approximate the observed modal
coefficients, we sample Eq. (20) at the sensors locations as
follows:⎡

⎢⎢⎣
φ1(xO1) φ2(xO1) . . . φR(xO1)
φ1(xO2) φ2(xO2) . . . φR(xO2)

...
...

φ1(xO8) φ2(xO8) . . . φR(xO8)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

ak
1,Obs

ak
2,Obs
...

ak
R,Obs

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

uk
Obs(xO1) − ū(xO1)

uk
Obs(xO2) − ū(xO2)

...

uk
Obs(xO8) − ū(xO8)

⎤
⎥⎥⎥⎦, (53)

which can be generally solved using the pseudo-inverse. Then,
the same observation operator and its Jacobian as defined in

FIG. 4. Velocity field reconstruction in case of full-field mea-
surements. Top: reconstruction of final velocity field using GROM
and GROM with FSM eddy viscosity compared to the FOM and true
projection fields. Bottom: RMSE of reconstructed fields at different
time instants.

Sec. V A 1 are used. The temporal evolution of the modal
coefficients are given in Fig. 6. Although the GROM-FSM
results are better than GROM, they are significantly worse
than those in Fig. 3. Of course, this is to be expected since
we are using measurements at only 8 points, rather than 4096
locations. However, we also find that the observed modal co-
efficients calculations using Eq. (53) is greatly sensitive to the
level of noise. Indeed, we find that least-squares computations
sometimes do not converge (a remedy will be provided in
Sec. V A 2 b). Moreover, we can see that the POD modal
coefficients from observations are significantly different than
the true ones.

The reconstructed field at final time as well as the RMSE
at different times are demonstrated in Fig. 7. We see that
a small improvement is obtained in GROM-FSM, compared
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FIG. 5. Noisy measurement of velocity fields at t = 0.25 s and
t = 0.50 s, assuming sensors are located at eight grid points.

to GROM. We also note that for different noise levels, we
get different performances for the GROM-FSM. This implies
that this way of assimilating sparse observations is less re-
liable, and a more robust approach should be utilized. In
Sec. V A 2 b, we discuss another way of using sparse ob-
servations to perform data assimilation for ROM closure.

b. From POD coefficients to measurements. Now, we dis-
cuss defining an observational operator to construct a robust
map between model space and measurement space. Similar
to Sec. V A 2 a, we sample Eq. (20) at sensor location,
but we introduce a map to reconstruct the velocity field at
these locations using the model predicted coefficients. In other
words, in Sec. V A 2 a, we use the sensors measurements to
approximate a value for ak

Obs. But in this section, we use model
predicted coefficients ak to approximate the velocity field

FIG. 6. Temporal evolution of POD coefficients, where sparse-
field measurements are preprocessed to estimate the observed POD
coefficients.

FIG. 7. Velocity field reconstruction in case of preprocessing
sparse-field measurements to compute the observed POD coeffi-
cients. Top: reconstruction of final velocity field using GROM and
GROM with FSM eddy viscosity compared to the FOM and true
projection fields. Bottom: RMSE of reconstructed fields at different
time instants.

values at sensor locations [i.e., uk (xO1), uk (xO2), . . . , uk (xO8)]
as follows:

⎡
⎢⎢⎣

φ1(xO1) φ2(xO1) . . . φR(xO1)
φ1(xO2) φ2(xO2) . . . φR(xO2)

...
...

φ1(xO8) φ2(xO8) . . . φR(xO8)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

ak
1

ak
2
...

ak
R

⎤
⎥⎥⎥⎦ (54)

=

⎡
⎢⎢⎢⎣

uk (xO1) − ū(xO1)

uk (xO2) − ū(xO2)
...

uk (xO8) − ū(xO8)

⎤
⎥⎥⎥⎦. (55)
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FIG. 8. Temporal evolution of POD coefficients, where sparse-
field measurements are compared against POD field reconstruction
using the observer operator C.

Thus, we define zk = uk
Obs, and the observation operator

h(a) = Ca, where C is the matrix of basis functions sampled
at sensors locations as follows:

C =

⎡
⎢⎢⎣

φ1(xO1) φ2(xO1) . . . φR(xO1)
φ1(xO2) φ2(xO2) . . . φR(xO2)

...
...

φ1(xO8) φ2(xO8) . . . φR(xO8)

⎤
⎥⎥⎦. (56)

Thus, the Jacobian of h(·) is defined as Da(h) = C. We repeat
the same GROM-FSM implementation with those redefined
operators. Results are shown in Figs. 8 and 9, where we can
see that this approach of assimilating measurements is more
robust than the one discussed in Sec. V A 2 a with higher accu-
racy. We also note that similar performance is achieved using
higher level of noise in measurements, while the approach in
Sec. V A 2 a requires very low level of observational noise.

Finally, for a big picture comparison, we plot the spa-
tiotemporal evolution of reconstructed velocity fields for all
discussed measurement setups compared to FOM and true
projection fields in Fig. 10. From this figure, we notice that
solution of GROM without closure is unstable, and brings
nonphysical predictions. However, predictions of GROM-
FSM with full-field measurements almost match the true
projected fields. Also, assimilating sparse observations via the
reconstruction map C is significantly superior to approximat-
ing observed coefficients using the pseudoinverse approach.
The latter shows some nonphysical predictions, similar to
GROM.

B. 2D Kraichnan turbulence

For 2D turbulence, the inertial range in the energy spec-
trum is proportional to k−3 in the inviscid limit according
to the Kraichnan-Batchelor-Leith (KBL) theory [115–117].
In our numerical experiments, the initial energy spectrum in

FIG. 9. Velocity field reconstruction where sparse-field measure-
ments are compared against POD field reconstruction using the
observer operator C. Top: reconstruction of final velocity field using
GROM and GROM with FSM eddy viscosity compared to the FOM
and true projection fields. Bottom: RMSE of reconstructed fields at
different time instants.

Fourier space is given by

E (k) = 4k4

3
√

πk5
p

exp

[
−

(
k

kp

)2]
, (57)

where k =
√

k2
x + k2

y and kp is the wave number at which

the maximum value of initial energy spectrum occurs. During
the time evolution process, due to the nonlinear interactions,
this spectrum quickly approaches toward k−3 spectrum. The
magnitude of the vorticity Fourier coefficients is related to the
energy spectrum as

|ω̃(k)| =
√

k

π
E (k). (58)
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FIG. 10. Surface plots for the temporal evolution of velocity fields from (a) FOM, (b) true projection, (c) GROM and FSM with (d) full
and (e, f) sparse measurements configurations. Note: (e) shows the results using the method presented in Sec. V A 2 a, while (f) refers to the
method presented in Sec. V A 2 b.

Thus, the initial vorticity distribution (in Fourier space) is
obtained by introducing a random phase. For more details
regarding derivation of the initial vorticity distribution from
an assumed energy spectrum can be found in Ref. [118]. In
the present study, we use a spatial computational domain of
(x, y) ∈ [0, 2π ] × [0, 2π ] and a time domain of t ∈ [0, 4].
Periodic boundary conditions are applied in both x and y di-
rections. A spatial grid of 5122 and a time step of �t = 0.001
are used for FOM solution, and 800 snapshots of vorticity
fields are stored for POD basis generation. A fourth-order
accurate Arakawa scheme [119] is adopted for spatial dis-
cretization. Contours of voriticy field at different time instants
are shown in Fig. 11 initiated by introducing a random phase
shift in the Fourier space, with kp = 10.

For ROM implementation, we consider R = 16 corre-
sponding to a RIC value of around 80%. Similar to the
1D Burgers problem, we test the FSM capabilities to esti-
mate an optimal value of eddy viscosity considering full and
sparse-field measurements with σObs = 0.1. We assume a data
assimilation window of 2, and measurement data are collected
at t = 1 and t = 2, while testing is performed up to t = 4.
We highlight here that all the 2D fields are rearranged into
1D column vectors to follow the same notations provided
in Sec. III (e.g., the Euclidean inner product). However, for
contour plots, they are reshaped back into 2D fields.

1. Full-field measurement

Since full-field measurements are available (though noisy),
we can project these field data onto the basis functions φ to
obtain the corresponding observed modal coefficients as

ak
i,Obs = 〈

ωk
Obs − ω̄; φi

〉
. (59)

Following the same procedure as in Sec. V A 1, an opti-
mal value of eddy viscosity parameter is estimated with the
FSM methodology. In Fig. 12, we show the GROM solu-
tion equipped by an eddy viscosity closure, computed by
the proposed approach compared to the background solution
of standard GROM without closure. Also, we plot the true
projection (TP) results, where the true POD modal coefficients
are obtained as

ak
i = 〈

ωk
FOM − ω̄; φi

〉
. (60)

From Fig. 12, we can observe an improvement in the
prediction of modal coefficients incorporating the estimated
eddy viscosity. Reconstructed vorticity fields are also pro-
vided in Fig. 13 along with the variation of root-mean-squares
error with time. Although predictions are improved with the
GROM-FSM implementation compared to the GROM solu-
tion, it is observed that this improvement is only significant
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FIG. 11. FOM results showing the time evolution of vorticity fields for the 2D turbulence problem: (a) t = 0.0, (b) t = 2.0, and (c) t = 4.0.

at later times. Moreover, some modes (especially the first
few) show better results than the others; see Fig. 12. We
believe this is caused by the assumption of fixed eddy viscos-
ity contribution for all modes. Therefore, in the optimization
process involved in FSM, higher importance is given to those
first few modes (since they possess the largest contribution).
Consequently, a value of eddy viscosity that yields the best
correction for those first modes is computed and applied for
all modes. To mitigate this issue, we extend our closure esti-
mation framework to allow mode-dependent variations of the
eddy viscosity parameter.

a. Mode-dependent eddy viscosity. Instead of assuming a
fixed eddy viscosity parameter as is the case in Eq. (41), we

FIG. 12. Time evolution of the modal coefficients for the 2D
turbulence case, assuming full-field measurements are available at
t = 1 and t = 2.

permit the variation of this parameter with modes as follows:

dak

dt
= Bk + νe,kB̂k +

R∑
i=1

Li,kai + νe,k

R∑
i=1

L̂i,kai

+
R∑

i=1

R∑
j=1

Ni, j,kaia j . (61)

Thus, our goal now is to compute the values of νe,k , where k =
1, 2, . . . , R. In other words, we need to estimate R local values
of eddy viscosity parameters, rather than a single global value.
Indeed, this approach is also common in large eddy simula-
tions, where a spatially varying eddy viscosity is considered.
Figure 14 displays the time evolution of modal coefficients
with a mode-dependent eddy viscosity computations. We can
observe that almost equivalent improvements are obtained
for all the modes, which highlights the superiority of this
approach over the assumption of fixed eddy viscosity.

The quality of vorticity field reconstruction is also man-
ifested in Fig. 15 with the contour plots at final time and
variation of RMSE with time. Interestingly, it can be noted
that reductions of RMSE are obtained at earlier times than
those in Fig. 13. To understand this behavior, we investigate
the GROM predictions without closure. we can see that the
deviation of GROM predictions for the dynamics of the first
few modes do not exhibit significant deviations during the
assimilation window of t = 2. However, the latest modes
show larger deviations during the same period. However, for
fixed eddy viscosity, the contribution of the first few modes
(corresponding to the large convective scales) is predominant.
As a result, a small value of eddy viscosity is computed to
match the level of correction required for those large scales.
Considering global eddy viscosity implementation, the latest
modes (corresponding to small dissipating scales) receive mi-
nor corrections. However, a mode-dependent eddy viscosity
implementation allows for detection of larger corrections re-
quired for dissipative scales as seen in the modal coefficients
predictions in Fig. 14 and RMSE trend in Fig. 15.
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FIG. 13. Reconstructed vorticity fields for the 2D turbulence problem at t = 4 for (a) true projection, (b) GROM, and (c) GROM-FSM
along with the RMSE variation with time (d), assuming full-field measurements are available at t = 1 and t = 2.

2. Sparse-field measurement

For measurement sparsity investigation, we assume a sen-
sor located each 32 grid points. This corresponds to placing
sensors at around 0.1% of the total spatial locations. Since
it has already been shown that defining a mapping from the
POD coefficients to the measured field variables provides a
robust data assimilation framework, we follow the same pro-
cedure here. We also consider global and local eddy viscosity
implementations.

a. Fixed eddy viscosity. With the mapping defined in
Sec. V A 2 b, we apply the FSM eddy viscosity estima-
tion framework with sparse data and global eddy viscosity.
The time dynamics of the resolved modes is demonstrated
in Fig. 16 for a few selected modal coefficients. We obtain
similar results as those obtained with full-field measurements,
and we can observe that the predictions for the first few
modes are much better than the remaining modes. Also, the
reconstructed vorticity fields and computed RMSE are shown
in Fig. 17.

FIG. 14. Time evolution of the modal coefficients for the 2D
turbulence case, with full-field measurements and mode-dependent
eddy viscosity closure. Note the equal improvements in predictions
for all the modes.

b. Mode-dependent eddy viscosity. Allowing the variation
of eddy viscosity yields notable enhancement of the prediction
accuracy for all the modes as depicted in Fig. 18, compared to
Fig. 16. Reconstructed vorticity fields at t = 4 with GROM,
GROM-FSM and true projection results are plotted in Fig. 19.
We also see the reduction of RMSE even with the considered
0.1% sparsity in measurements data.

C. Computational cost

The forward sensitivity method avoids the solution of the
adjoint problem usually encountered in variational approaches
for assimilating observational data to improve model’s pre-
dictions. Nonetheless, the main computational burden results
from the recursive matrix-matrix multiplication as described
in Eq. (6). However, since all computations are implemented
in ROM space, the size of Jacobian matrices are O(R), which
reduces the memory and computational time requirements.
Also, the deployed forward model in each iteration is the
GROM model, which is computationally efficient when a few
modes are retained in the ROM approximation. Moreover, our
numerical experiments show that convergence occurs after a
couple of iterations. We document the computational time for
each iteration and the number of iterations for the explored
test cases in Tables I and II using Python implementation.
We highlight here that each iteration takes around twice the
time of solving the GROM equations. For instance, for the 1D
Burgers problem, the solution of the GROM equations takes
about 0.176 s, while a single iteration of the FSM algorithm
consumes less than 0.35 s. Similarly, for the 2D turbulence
case, the CPU time to solve the GROM equations is almost
4.445 s, while a single iteration takes an order of 8 s. This

TABLE I. The CPU time (in seconds) per iteration and number of
iterations required for eddy viscosity estimation using the proposed
FSM-based methodology for the 1D Burgers problem. Sparse 1
refers to the implementation of mapping from measurement to POD
coefficients (Sec. V A 2 a), while Sparse 2 refers to the mapping from
POD coefficients to measurement (Sec. V A 2 b).

Measurement CPU time (s) No. of iterations

Full 0.342 7
Sparse 1 0.331 9
Sparse 2 0.344 8
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FIG. 15. Reconstructed vorticity fields for the 2D turbulence problem at t = 4 for (a) true projection, (b) GROM, and (c) GROM-FSM
along with the RMSE variation with time (d), with full-field measurements and mode-dependent eddy viscosity closure. Note the significant
decrease in RMSE at earlier times than those in Fig. 13.

is comparable to the computational time of variational ap-
proaches, where the forward and adjoint problems have to be
solved in each iteration. Further reductions in FSM computing
time might be achieved by efficient matrix-matrix multiplica-
tion algorithms.

From Table II, we can also see that the CPU time per
iteration for full-field measurement case is slightly smaller
than that in case of sparse data. We believe that this is at-
tributed to the difference in measurement space sizes in each
case. For the full measurement case, we first project the data
onto the basis functions to estimate the observed modal co-
efficients, and assume our measurements live in ROM space.
So, the size of observational vector and forward sensitivity
matrices are all O(R). However, for the sparse case where we
define a map from modal coefficient to field reconstruction,
the observations are assimilated in FOM space. Therefore,
the size of resulting vectors and matrices, corresponding to
measurements, depends on the number of sensor data. For

FIG. 16. Time evolution of the modal coefficients for the 2D
turbulence case, with sparse-field measurements and fixed eddy vis-
cosity closure. Note the better improvements in the first few modes
compared to the latest ones.

the 2D case, this number is relatively larger than R, and
thus the resulting matrix computations become slightly more
expensive. However, for the 1D Burgers problem in Table I,
the CPU for either the full or sparse measurements is similar
since we are using eight sensors for the sparse case. This is the
same as the number of modes in the ROM approximation. We
also notice in Table II that the CPU time for mode-dependent
(i.e., local) eddy viscosity estimation is larger than that in case
of fixed scalar eddy viscosity approximation. This is caused
by the larger sizes of the model Jacobians with respect to its
parameters [see Eq. (4)] as well as the solution of a bigger
weighted least-squares problem [e.g., Eq. (47)].

VI. CONCLUDING REMARKS

In the present study, we propose a data assimilation-based
approach to provide accurate ROMs for digital twin appli-
cations. In particular, we use the forward sensitivity method
(FSM) to estimate as well as update an optimal value of eddy
viscosity for ROM closure. We exploit ongoing streams of
observational data to improve the stability and accuracy of
ROM predictions. We test the framework with the prototypical
one-dimensional viscous Burgers equation characterized by
strong nonlinearity and the two-dimensional vorticity trans-
port equation for the 2D Kraichnan turbulence problem. We
investigate the assimilation of full-field and sparse-field mea-
surements. For full-field measurements, we illustrate that
projecting those noisy measurements produces good estimate
of observed modal coefficients, which can therefore used to
estimate an optimal value for eddy viscosity. However, we find

TABLE II. The CPU time (in seconds) per iteration and num-
ber of iterations required for eddy viscosity estimation using the
proposed FSM-based methodology for the 2D turbulence problem.
Here, [global] refers to the estimation of a global eddy viscosity
parameter for all modes, while [local] refers to the estimation of
mode-dependent eddy viscosities.

Measurement CPU time (s) No. of iterations

Full [global] 7.766 5
Full [local] 9.482 4
Sparse [global] 7.898 4
Sparse [local] 9.532 4
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FIG. 17. Reconstructed vorticity fields for the 2D turbulence problem at t = 4 for (a) true projection, (b) GROM, and (c) GROM-FSM
along with the RMSE variation with time (d), with sparse-field measurements and fixed eddy viscosity closure. Reduction of RMSE compared
to GROM without closure starts to become remarkable around t = 2.

that a similar approach of using sparse-field measurements
to approximate the observed states is significantly sensitive
to measurements noise. However, we demonstrate that defin-
ing an observational operator via a ROM reconstruction map
can be successful in utilizing sparse and noisy data. Using
real-time observations can steer ROM parameters and pre-
dictions to reflect actual flow conditions. We also remark
that the collected snapshots of full order model solutions
can be assimilated by treating them as full-field measure-
ments, with negligible noise (corresponding to discretization
and numerical approximation errors). This should provide a
prior estimate for the eddy viscosity parametrization during
an offline stage. We emphasize that fusing ideas between
physics-based closures (e.g., the ansatz for eddy viscosity) and
model reduction with variational data assimilation techniques
can provide valuable tools to construct reliable ROMs for
long-time as well off-design predictions. This should leverage
ROM implementation for real-life application.

FIG. 18. Time evolution of the modal coefficients for the 2D tur-
bulence case, with sparse-field measurements and mode-dependent
eddy viscosity closure.
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APPENDIX: COMPUTING MODEL JACOBIANS

We describe the computation of the model Jacobian in
discrete-time formulations. We only present the case with a
fixed global eddy viscosity parameter. Extension to mode-
dependent closure estimation is straightforward. For temporal
discretization of the GROM equations, we use fourth-order
Runge-Kutta (RK4) method as follows:

ak+1 = ak + �t

6
(g1 + 2g2 + 2g3 + g4),

where

g1 = f (ak, νe), g2 = f
(

ak + �t

2
g1, νe

)
,

g3 = f
(

ak + �t

2
g2, νe

)
, g4 = f (ak + �tg3, νe).
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FIG. 19. Reconstructed vorticity fields for the 2D turbulence problem at t = 4 for (a) true projection, (b) GROM, and (c) GROM-FSM
along with the RMSE variation with time (d), with sparse-field measurements and mode-dependent eddy viscosity closure.

Thus, the discrete-time map defining the transition from time
tk to time tk+1 is written as

M(ak, νe) = an + �t

6
(g1 + 2g2 + 2g3 + g4).

Then, the “total” Jacobian of M is an R × (R + 1) matrix,
computed as

Dk (M) = [
Dk

a(M), Dk
νe

(M)
]

= P + �t

6
(Dg1 + 2Dg2 + 2Dg3 + Dg4),

where P = [IR, 0R×1] ∈ RR×(R+1). The Jacobian of the model
M with respect to the model state ak is the first R columns
of D(M), while the Jacobian of M with respect to the eddy
viscosity parameter νe is the last column of D(M).

Here, Dg1, Dg2, Dg3, and Dg4 are evaluated using the chain
rule as follows:

Dg1 = Df (ak, νe),

Dg2 =
(

Df
(

ak + �t

2
g1, νe

))(
I(R+1) + �t

2

[Dg1

Q

])
,

Dg3 =
(

Df
(

ak + �t

2
g2, νe

))(
I(R+1) + �t

2

[Dg2

Q

])
,

Dg4 = (Df (ak + �tg3, νe))

(
I(R+1) + �t

[Dg3

Q

])
,

where Q = 01×(R+1). Finally, the Jacobian of Df (ak, νe) is
defined as Df (ak, νe) = [Daf (ak, νe), Dνe f (ak, νe)], where

∂ fk

∂a j
= (ν + νe)L j,k +

R∑
i=1

Ni, j,kai +
R∑

i=1

N j,i,kai,

∂ fk

∂νe
=

R∑
i=1

Li,kai,

for 1 � j, k � R.
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[49] M. Korda and I. Mezić, Linear predictors for nonlinear dy-
namical systems: Koopman operator meets model predictive
control, Automatica 93, 149 (2018).

043302-17

https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
https://doi.org/10.1256/qj.05.135
https://doi.org/10.1029/2001JC000873
https://doi.org/10.1109/MCS.2009.932225
https://doi.org/10.1175/MWR2946.1
https://doi.org/10.1002/qj.2325
https://doi.org/10.1175/MWR-D-14-00195.1
https://doi.org/10.1175/2008MWR2444.1
https://doi.org/10.5194/npg-20-669-2013
https://doi.org/10.1175/MWR-D-13-00351.1
https://doi.org/10.1175/MWR-D-13-00350.1
https://doi.org/10.1155/2010/375615
https://doi.org/10.1073/pnas.97.21.11143
https://doi.org/10.2118/117274-PA
https://doi.org/10.3389/fams.2018.00052
https://doi.org/10.1017/jfm.2015.14
https://doi.org/10.1016/j.cma.2019.112596
https://doi.org/10.1016/j.compfluid.2018.10.006
https://doi.org/10.1002/fld.1316
https://doi.org/10.1016/j.jcp.2015.04.030
https://doi.org/10.1002/fld.1365
https://doi.org/10.1016/j.jmarsys.2005.04.003
https://doi.org/10.1016/j.jcp.2018.10.042
http://arxiv.org/abs/arXiv:2007.00793
https://doi.org/10.1016/S0168-9274(02)00116-2
https://doi.org/10.1016/j.paerosci.2003.12.001
https://doi.org/10.1016/j.cma.2019.03.050
https://doi.org/10.2514/1.J057791
https://doi.org/10.1016/j.compfluid.2018.07.021
https://doi.org/10.1137/14096815X
https://doi.org/10.1007/s11071-019-05363-1
https://doi.org/10.1016/j.acha.2018.08.002
https://doi.org/10.1016/j.automatica.2018.03.046


AHMED, BHAR, SAN, AND RASHEED PHYSICAL REVIEW E 102, 043302 (2020)

[50] D. Hartmann, M. Herz, and U. Wever, Model order reduction a
key technology for digital twins, in Reduced-Order Modeling
(ROM) for Simulation and Optimization (Springer, Berlin,
2018), pp. 167–179.

[51] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley,
Turbulence, Coherent Structures, Dynamical Systems, and
Symmetry (Cambridge University Press, Cambridge, 2012).

[52] K. Taira, S. L. Brunton, S. T. Dawson, C. W. Rowley, T.
Colonius, B. J. McKeon, O. T. Schmidt, S. Gordeyev, V.
Theofilis, and L. S. Ukeiley, Modal analysis of fluid flows:
An overview, AIAA J. 55, 4013 (2017).

[53] K. Taira, M. S. Hemati, S. L. Brunton, Y. Sun, K. Duraisamy,
S. Bagheri, S. T. Dawson, and C.-A. Yeh, Modal analysis of
fluid flows: Applications and outlook, AIAA J. 58, 998 (2019).

[54] B. R. Noack, M. Morzynski, and G. Tadmor, Reduced-order
Modeling for Flow Control, Vol. 528 (Springer, Berlin, 2011).

[55] C. W. Rowley and S. T. Dawson, Model reduction for
flow analysis and control, Annu. Rev. Fluid Mech. 49, 387
(2017).

[56] N. J. Nair and M. Balajewicz, Transported snapshot model
order reduction approach for parametric, steady-state fluid
flows containing parameter-dependent shocks, Int. J. Numer.
Methods Eng. 117, 1234 (2019).

[57] E. Kaiser, B. R. Noack, L. Cordier, A. Spohn, M. Segond, M.
Abel, G. Daviller, J. Östh, S. Krajnović, and R. K. Niven,
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