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Abstract Ergonomics play a crucial role in the design process of manual assembly 
systems, since a poorly ergonomic workplace leads to injuries, accidents, and mus-
culoskeletal disorders. Using Industry 4.0 solutions, smart technologies, and cloud 
platforms, the wellbeing of workers can be improved more easily than in the past. 
In this context, smartwatches can be used to monitor workers’ health and to collect 
data about the physical efforts of each worker during the working day, in relation to 
energy expenditure or heart rate monitoring. Managers can use data collected via 
these smart solutions to improve sequencing and scheduling processes in terms of 
both ergonomics and time, achieving a trade-off between ergonomics and produc-
tivity. Using real-time monitoring, a dynamic scheduling and sequencing approach 
can be implemented to guarantee the right safety level for each worker. In this chap-
ter, we give a general overview of smart tools for measuring and quantifying the 
ergonomics level. Based on the data from smartwatches, we propose a multi-objec-
tive assembly line balancing model and an ergo-sequencing model, and demonstrate 
the benefits of using smart solutions and Industry 4.0 tools. The limitations are dis-
cussed using a real case application. Our conclusions can guide managers and prac-
titioners during the design phase.  

1. Introduction  
 
Two significant movements have engaged manufacturing systems over the past ten 
years. One is the Industry 4.0 revolution, entailing the digitalization of products and 
processes across manufacturing sectors and supply chains (i.e. Ivanov et al., 2016a 
Ivanov et al., 2016b, Panetto et al., 2019). The second development concerns social 
sustainability and in particular human-centered design (HCD), workplace safety and 
ergonomics (i.e. Battini et al., 2011).  
The main objective of ergonomics is to achieve an optimal relationship between 
people and their work environment. However, to reach this optimal point, two main 
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conflicting factors must be addressed. On one hand, managers and companies re-
quire the maximum efficiency level and productivity, while on the other, workers 
need comfortable and safe workplaces to guarantee their health and physical well-
being. For this reason, several studies have been carried out over recent decades to 
achieve the right trade-off between the needs of the workers and the companies, 
with the common goal of avoiding work-related musculoskeletal disorders 
(WMSDs), diseases and accidents. WMSDs represent a significant concern glob-
ally, not only from a workers' point of view but also due to their economic impact. 
According to some estimations for the manufacturing sector, 12.5% of the work-
force missed days of work due to illness or injury in 2015. In the European Union, 
more than 40 million workers are affected by musculoskeletal disorders (MSDs) 
(about one in seven people), while in the US, MSDs represent about 30% of occu-
pational injuries. In the US, the median number of days absent from work due to 
WMSDs was 10 in 2012, while in the European Union this figure was about 12 
days. 

Consequently, both companies and states must allocate extra financial resources 
to deal with this crucial problem, since these costs negatively impact both compa-
nies’ earnings and the GDPs of countries. The decrease in the gross national product 
of the EU due to WMSDs was estimated at up to 2% in 2010, while in Canada (resp. 
US), the impact was estimated at up to 3.4% (resp. 2.5%) of the GDP.  

However, according to several studies, MSDs can be avoided through ergonomic 
improvements to the workplace, and may have a pay-back period of less than one 
year. Starting from these assumptions, academics and experts have focused their 
attention on this problem in recent years, and research works have been published 
on strategies, approaches and methods for improving workers’ wellbeing and safety, 
including the ergonomic features of manufacturing systems with an emphasis on 
manual assembly systems. Several studies have been performed to include classical 
ergonomic indexes such as OCRA, NIOSH, OWAS or RULA in assembly line bal-
ancing, scheduling or sequencing problems in the form of multi-objective functions 
or additional constraints.  
More recently, other strategies for including ergonomic and human factors into the 
design of assembly systems have focused on general and local physical fatigue from 
performing single tasks or a set of activities. Moreover, new smart technologies and 
Industry 4.0 solutions can provide useful data concerning the workers’ physical 
state, general health conditions or anthropological data. Wearables can also provide 
a wide range of sensors for measuring acceleration, motion and stress (e.g. number 
of steps, times of day when the operator is standing/sitting, and pace of work), which 
can be associated with the operators’ physical workload.  

Several benefits can be linked to the use of these new and innovative technolo-
gies. Firstly, the same device can be used to collect several types of data during the 
execution of tasks. These are also non-invasive solutions, since smart devices are 
light and easy to wear, and do not interfere with the working environment. All data 
collected with smart devices can be shared between managers or staff coordinators 
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via cloud platforms. In this way, suggestions or warnings can be provided to work-
ers within a few seconds, and dynamic scheduling or sequencing of the tasks to be 
performed can be done based on the workers’ condition. In this way, the risk of 
injury among workers is reduced, and a correct balance can be found not only for 
working time but also ergonomic effort.  

 Moreover, using the cloud platform, all data can be used to implement new as-
sembly workstations. The collected data can provide valuable measures of the er-
gonomics effort required to perform specific tasks or general activities, and thus can 
be used to correctly balance new workstations, not only from the point of view of 
time but also from an ergonomics perspective. In these circumstances, multi-objec-
tive approaches can be used to find a good trade-off between productivity and er-
gonomics.   

In this chapter, we provide an overview of wearable 4.0 devices that can be used 
to evaluate ergonomics conditions. Energy expenditure will be used as an ergonom-
ics constraint in a mixed-assembly line balancing and sequencing problem. In Sec-
tion 2, general guidelines for direct ergonomics measurements and wearable tools 
are given, while in Section 3, general considerations about assembly systems are 
discussed. In Sections 4 and 5, the mixed-assembly line balancing problem and the 
sequencing problem will be detailed, while Section 6 presents a numerical case 
study. Finally, conclusions and general guidelines are provided in Section 7.  

2. Methods and tools to measure fatigue 
 

In this section, the main methods and tools used to quantify the physical effort re-
quired to execute a set of activities are described, and the pros and cons of each are 
listed.  
When workers execute assembly tasks, they are subjected to a physical effort that 
may involve the whole body or only certain parts. When the whole body is used, 
general fatigue arises, while local muscle fatigue arises if only certain parts of the 
body are involved in a strenuous effort. In both cases, several methods and tools can 
be used to evaluate this fatigue. However, only some of the available tools can be 
considered wearable devices, and only a few can be connected to the cloud, allow-
ing the possibility of evaluating workers’ conditions in real time (Battini et al., 
2018).  
Firstly, these methods can be categorised into qualitative and quantitative ap-
proaches. From within the quantitative approaches, we identify direct measurement 
tools or observational methods, and these will be discussed below. 

Qualitative methods consist of subjective evaluations, based on verbal estima-
tions made by the operators during execution of the task. The advantages of using 
these techniques are related to their low cost in comparison to other methodologies, 
which require high levels of investment to buy the required equipment and signifi-
cant amounts of time to understand how to use and test it in the specific industrial 
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context. Moreover, subjective evaluations can give feedback not only on the stress 
on the muscles and joints during the activity but also on the central nervous system.  

Despite these advantages, they are influenced by subjectivity, and this leads to 
difficulty in assessing the accuracy and variability of a given measure between dif-
ferent operators. Evaluations by operators for the same load may be different ac-
cording to their physical capacity and general health. In addition, the precision of a 
measure may be different if the operator has previous exposure to the benchmark. 
For this reason, qualitative methods can be used as a practical tool to involve work-
ers in some ergonomic decisions, giving them the opportunity to evaluate their 
working environment in a straightforward way.   

The other approach involves quantitative methods, which are related to the real 
measurement of the load using existing devices. Observational methods fall into the 
category of quantitative approaches.  

With regard to general muscular fatigue, the most widely used observation meth-
ods are those proposed by Garg in 1978 and the Predeterminate Motion Energy 
System (PMSE) proposed in 2016 by Battini et al. Both are based on a measure of 
energy expenditure. The positive aspect of both methods is that they can take into 
account the differences between one person and another in terms of age, body 
weight, and height. However, even if these approaches can provide accurate values, 
they cannot be put into practice quickly since they are based on an evaluation of 
every individual movement of the operator performing a task. Thus, these methods 
are very time-consuming approaches, and cannot be used to monitor workers’ well-
being in real-time. For this reason, wearable devices are preferable in order to col-
lect data that can be compared and then used to make appropriate changes.   

2.1. Wearable devices  
 

From the point of view of muscular fatigue, two main types of tools can be used 
to obtain direct, quantitative values of the local effort expended by a worker exe-
cuting a task.  

An electromyography (EMG) sensor (Figure 1) is the first type of device that 
made it possible to evaluate muscular fatigue, and is used to detect electrical activity 
in the muscles. It involves the placement of electrodes on the skin surface above the 
muscle, and the contraction is monitored in order to evaluate the percentage maxi-
mum voluntary contraction (MVC) of the muscle during performance of the activ-
ity. The disadvantages of the EMG are the influence of other muscle movements, 
interference from the electrical supply, and mechanical problems with the recorded 
measurements of MVC.  

Moreover, it is associated with certain problems related to the application, since 
different individuals may use different groups of muscles for the same task, and it 
is difficult to interpret the measure of MVC for multiple muscle groups.  
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This technology is complicated and costly for application in an industrial con-
text. Moreover, the equipment used can affect the usual way of executing a task, 
since the electrodes are connected to the main hardware with wires.  

 

 
Figure 1: EMG sensors (source: NexGen Ergonomics.com) 

 
There are also dynamometers and grip force sensors (Figure 2), which are tools 

that are able to measure the peak and average force in kilograms during 
carrying, pushing and pulling activities. They are fixed to the object to be carried, 
pushed or pulled, and slipping must be prevented. Before they are used, it is essen-
tial to understand the direction of the forces representing the path of motion of the 
operator. These devices are easy to use, and the output data can reveal the kind of 
movement that a given operator performed in addition to the influence of the height 
and weight of the item. Based on the force level, it is then possible to estimate the 
local fatigue. 

 

  
Figure 2: Hand dynamometer and hand-grip force sensors 

 
 General or global fatigue is measured using two main tools: oxygen consump-

tion (VO2) monitoring systems or heart rate (HR) monitoring devices (available in 
the latest generation of smartwatches).   

VO2 monitoring (Figure 3) is the most widely validated method in the literature, 
and its relationship with the activity performed has been demonstrated. However, it 
cannot be easily applied in an industrial context, since the investment required is 
considerable, and a certain level of preparation is needed for the use of the equip-
ment. In addition, the most significant limitations are the size of the equipment and 
the inconvenience of using a mask for taking measurements, as it can influence the 
operator’s performance due to stress and difficulties in breathing.  
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In recent years, the technology related to VO2 measurements has developed a 
great deal; wearable wireless equipment is now available, and data can now be pro-
cessed in real time. However, a laboratory testing phase is needed in order to eval-
uate whether additional effort is linked to wearing this technology, and only if pos-
itive laboratory results are achieved can this technology be implemented in 
companies. 

 

 
Figure 3: VO2 monitoring system 

 
Another type of tool that can be used to evaluate general fatigue is the HR mon-

itoring system. Nowadays, this tool is included in all smartwatches, and can provide 
and predict also some other important data such us the stress level of each workers, 
the number of steps perform during the day.  

The traditional HR monitor (Figure 4) is based on a Bluetooth HR sensor con-
nected to a watch, where the trend of the HR and the duration of the activity are 
visualized. It is commonly used to obtain feedback regarding training status and to 
improve the physical fitness of a person through accurate planning of the next train-
ing activities. It does not require specific knowledge, and does not interfere with the 
operator’s activity. It allows real-time feedback to be given to the operator, who can 
be conscious of his or her physical condition, and if appropriate can speed up or 
slow down the rate of the activity. Moreover, it recognises the effect that personal 
characteristics such as age, weight, VO2, HR at rest, and training status can have on 
the accumulation of fatigue. The use of HR as a measure of energy expenditure has 
been analysed both in the past and in more recent literature, and several works have 
demonstrated its applicability in evaluating general fatigue in terms of energy ex-
penditure. 

Measurements taken with an HR monitor are easier than those with a VO2 mask. 
Everyone can use the HR monitor without difficulty, and the measurement of HR 
to monitor fatigue levels can be carried out for several activities without disturbing 
the operators. It can also be connected to a cloud platform, and real-time values can 
be used to evaluate the workers’ physical state. 

Due to these advantages, an HR device may be the best device to carry out a 
fatigue analysis and to evaluate the energy expenditure required to perform a task 
or a set of activities.  
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Figure 4: HR monitoring systems (source: polar.com) 

 
Using these devices, sequencing solutions can be analysed and continuously 

changed with the aim of finding a solution that can assign more strenuous and heav-
ier activities first and lighter ones afterwards. However, these solutions may change 
according to the type of worker and his/her features, and for this reason, HR devices 
play a crucial role during this phase. It used correctly, they can provide continuous 
information on the health status of workers.  

3. Manual assembly systems: A general overview 
 
Manual assembly systems, also known as manual assembly lines, are used in several 
industrial contexts since they allow workers to collect and fit together various parts 
or components to create a final product. They were initially introduced to increase 
efficiency in the mass production of standardised products, but more recently they 
have gained importance in the low-volume production of customised products.  

Assembly systems or lines consist of several workstations at which a set of op-
erations, generally called tasks, are performed by one or more workers.  

 
Figure 4: A simple assembly line 

 
Due to technological and organisational restrictions, certain tasks can be per-

formed only after the execution of others, and it is therefore necessary to define a 
so-called precedence graph (Figure 5).  

 
Figure 5: Precedence graph 

 
Depending on the variety of products assembled on the same line, three types of 

assembly lines (Figure 6) may be used: 
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1. Single-model lines: The same product is manufactured in massive quantities in 
the same line. In this case, the tasks executed at each workstation are always the 
same, as is the workload. 

2. Multi-model lines: Several similar products are constructed on one or more lines. 
In this case, there are significant differences in the manufacturing processes of 
different products, and setups are generally required.  

3. Mixed-model lines: Several versions of the same family of an item are produced 
on the same line. In this case, models differ in terms of certain attributes or fea-
tures. Some products may or may not require certain tasks, and a given task may 
require a variable process time depending on the variety of product. In this case, 
since products are very similar to each other, no or short setup times are required 
when the product changes.  
The execution of the tasks required to obtain the final product is called manual 

assembly, and this represents one of the most critical phases of the production sys-
tems due to its high added value, its contribution to the final product quality, and its 
direct connection with the final market. For these reasons, practitioners and aca-
demics are continuously developing new approaches and improving the existing 
ones to increase efficiency and productivity, and to guarantee the required flexibil-
ity. 
 

 
Figure 6: Examples of assembly lines 

 
The problem of defining which tasks must be executed at each workstation is 

called the assembly line balancing problem (ALBP). The first attempt to create a 
balancing model was made by Salveson (1955), who suggested a linear program to 
describe all possible task assignments for an assembly line.  

Three different methodologies to address the ALBP are described in the litera-
ture: the single-model assembly line balancing problem (SALBP), the mixed-model 
assembly line balancing problem (MALBP), and the batch-model (or multi-model) 
assembly line balancing problem (BMALBP). 

In an ALBP, the objective or goal function may be the minimisation of the num-
ber of workstations (ALBP-1), minimisation of the cycle time (ALBP-2), or maxi-
misation of efficiency (ALBP-E). In each case, the aim is to evaluate the quality of 
a feasible solution based on the final goal and the constraints. 
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There also the feasibility problem (ALBP-F), in which the number of stations 
and the cycle time are known, and the problem involves evaluating whether or not 
a line with these characteristics can be operated.  

To solve ALBPs, it is necessary to take into account different kinds of constraints 
(such as assignment or cycle time constraints). The solution methods might be ex-
act, simple heuristics or metaheuristics, and a compromise is required between two 
or more conflicting objectives. This is known as a multi-criteria approach, and in-
cludes lexicographic resolution, fuzzy goal programming, and Pareto-based rank-
ing.  

As discussed in Section 1, during recent decades, many studies have highlighted 
the relevance of integrating ergonomics aspects into the design of an assembly sys-
tem, and for this reason, several studies have been carried out in the ALBP field.  

Most of the proposed methods integrate ergonomics using multi-criteria ap-
proaches, and single-model assembly lines are generally analysed. Finco et al. 
(2018) proposed a heuristic approach to integrate human energy expenditure into 
SALBP-1. Moreover, to improve workers’ well-being Finco et al. (2019) developed 
a mathematical model able to minimize smoothness index by integrating also work-
ers’ recovery time. However, the single-model assembly line represents a strong 
restriction for many companies, since the customisation level is very high nowa-
days, and thus mixed-model assembly lines are preferable over single-model alter-
natives.  

3.1. Mixed-model assembly line  
 
In this subsection, the characteristics of mixed-model assembly lines are described 
as part of our discussion of approaches that are able to integrate ergonomics into 
mixed-model assembly systems. 
As stated above, in a mixed-model assembly line, different models of the same 
product family are processed with no or minor setups or rearrangements required 
between the different workpieces. In this case, the production process is similar fr 
each product, and the differences are mainly due to customised features.  

For this type of assembly system, several decision problems may arise depending 
on the planning horizon. The first decision concerns the design of the assembly line 
in which the number of workstations, production rates, and workload must be de-
fined. All of these decisions are linked to the MALBP. A practical example of 
Mixed model line balancing and sequencing is provided by Azzi et al., 2012a and 
2012b. In addition to the SALBP, the MALBP-1, MALBP-2, MALBP-E, and 
MALBP-F consist of defining the number of workstations, cycle time, line effi-
ciency, and the feasibility problem, respectively. However, in these cases, the prob-
lem is more complicated, since each workstation must be balanced in each model. 
Smart solutions and cloud platforms could help managers and practitioners in this 
regard, since historical data on energy expenditure or the physical effort by workers 
in similar tasks could be used and adapted to the context under analysis. In this 
context, multi-objective approaches are preferable over mono-objective ones, since 
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ergo-time solutions can achieve higher efficiency levels and improvements in the 
health status of workers.  

Results obtained over a long period represent a basis for the division of the labor 
force and the production rate in the short-term. The short-term decision problem is 
known as a mixed-sequencing problem, and consists of finding a sequence of model 
units for assembly, based on the short-term production program of maximising or 
minimising an objective function. Smart and Industry 4.0 solutions can also lead to 
improvements in the working environment. In this phase, real-time measures can be 
taken, and real-time sequencing adjustments can be made based on physical effort 
data that are continuously monitored through smartwatches.  

The two problems described above are closely connected, since results obtained 
over the long term form the input data for a problem in the short-term. This means 
that the quality and efficiency of sequencing decisions and planning are strongly 
correlated with workload balancing. On the other hand, the quality of balancing 
solutions depends on the model mix and the possible sequences. However, these 
data are generally not available before line balancing, since demand cannot be fore-
cast exactly, and inefficiency can therefore occur.  

Moreover, the planning horizons are different, and problems must be solved sep-
arately. For this reason, a hierarchical planning system is generally used. 

Based on these assumptions, a MALPB and a sequencing model will be devel-
oped in the following sections. In both cases, ergonomics will be integrated accord-
ing to the energy expenditure required to execute each task. A hierarchical approach 
is followed. 

4. Ergo-mixed-model assembly line balancing 
problem 

 
In this section, an ergo-mixed-model assembly line balancing problem is discussed. 
The ergonomic level of each assembly task is defined using the energy expenditure 
rate, which can be measured with an HR monitoring device.  

A multi-objective MALB model that evaluates both the energy and time required 
for each task is developed to evaluate the effects of moving from a time-optimal 
solution to an energy-time optimal one.  

First, the MALBP is converted into an SALBP using the joint precedence graph. 
Then, the virtual average model (VAM) is considered, since this can simulate a set 
of various products, and the SALBP model is then solved. It is not easy to evaluate 
the behavior and efficiency of a mixed-model assembly line, and the use of a VAM 
can help make the balancing problem easier; however, for a multi-objective model 
that optimises time and energy, this approach can lead to optimal solutions in terms 
of time and energy that are different from those found by considering the entire mix 
instead of the VAM.  

In the following, the steps required to solve the MALBP will be described. 
 



11 

4.1. Virtual average model with time and ergonomics ap-
proaches 

 
Depending on the product mix and demand, it may be easier to turn the mixed-

model assembly line into a single-model case by joining the precedence graph of 
each model into a join precedence graph. A join precedence diagram implies that: 

• there is a common subset of tasks among the considered models; 
• some tasks may be required for one model but not for others; 
• the same task may have different operating times for different models, implying 

that it must be performed at the same station.  
The balancing of a mixed-model assembly line requires not only a joint prece-

dence graph but also the concept of the VAM, which consists of a dummy average 
model representing all the products assembled on this line. The time for each activ-
ity of the VAM can be calculated based on: 
• the maximum time required for this activity, considering all products; 
• the average time required for this activity, considering all products; 
• the weighted average time required for this activity, considering the mix of prod-

ucts. 
In this chapter, the third approach to evaluating the VAM is applied, and it is 

integrated with the multi-objective problem based on energy expenditure. 
In the multi-objective approach, we consider both the solution that optimises time 

and the one that optimises energy. The analysis of the Pareto frontiers allows us to 
evaluate the trade-off from one solution to the other. This gives the set of non-dom-
inated solutions for a multi-objective system, where the solutions optimise one of 
the objectives of the problem. 

In order to apply this kind of approach, it is necessary to know the task time and 
the energy expenditure for each task in each model. We denote jmt  as the time for 

task j in model m, jme   as the relative energy expenditure, and md   as the percentage 

demand of model m in the considered mix. The formulae for jt  and je  for a VAM 

are as follows: 

j jm mm
t t d=∑                                                         (1) 

j jm mm
e e d=∑                                                        (2) 

 
4.2. Time-SALBP and Energy-SALBP with VAM  

 
The definition of jt allows us to balance the mixed-model assembly line with the 

SALBP-2, which is the SALBP model that minimises the cycle time with a 
predefined number of stations, in order to increase the productivity. Based on the 
binary linear model in the single-model assembly line, the binary variable jkx  is 
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used to indicate the assignment of task j to station k, and kB  is the set of tasks 
assignable to station k (within a set of workstations from 1 to K). To solve the 
SALBP-2, the following constraints need to be considered: 

• Occurrence constraint: 
1 1,..,jkk

x j n= ∀ =∑                                    (3) 

• Cycle time constraint: 
1,..,jk jj

x t c k K≤ ∀ =∑                                        (4) 

• Precedence constraint: 
( , )hk jik i

kx ix h j A≤ ∀ ∈∑ ∑                       (5) 

 
There may be many different balancing solutions, and each one needs to be 

evaluated. In this case, unlike traditional approaches, the objective functions 
considered are the time smoothness index (SX-T) and the energy smoothness index 
(SX-E), which measure the equality of workload distribution among the stations and 
the physical load on workers at different stations, respectively. They are defined as 
follows:  

 
2

1
min min ( )

K
r jk jk j

SX T c x t
=

− = −∑ ∑                               (6) 

2
1

min min ( )
K

r jk jk j
SX E e x e

=
− = −∑ ∑                              (7) 

where rc  (resp. re ) is the maximum station time (resp. energy expenditure) for all 
stations. 
To evaluate the trade-off between the time-based and energy-based optimal 
solutions, the Pareto frontier (the set of non-dominated solutions of a multi-
objective system) is defined using the following function: 

2 2
1 1

min{ ; } min{ ( ) ; ( ) }
K K

r jk j r jk jk j k j
SX T SX E c x t e x e

= =
− − = − −∑ ∑ ∑ ∑

(8) 
 
4.3. Time- and energy-MALBPs  

 
In a mixed-model assembly line, the time-SALBP and energy-SALBP refer to the 
concept of VAM might not be enough to evaluate the changing properly in the 
Pareto frontier. When the same balancing solutions are evaluated knowing the 
number of stations and the cycle time (MALBP-F), the idle time and the workloads 
may be different depending on the distribution of work. To evaluate a balancing 
solution properly, it is necessary to include objective functions for the analysis of 
smoothed station loads. In a mixed-model assembly line, we can define mkT  and 

mkE as the processing time and energy expenditure per unit of model m at station k. 
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kS is the set of tasks assigned to station k, and mkT  and mkE  can be defined as 
follows: 

k
mk jmj S

T t
∈

=∑                                                    (9) 

k
mk jmj S

E e
∈

=∑                                                 (10) 

Knowing the values of mkT  and mkE , we can define mrc  and mre for the model m 
as: 

max{ | 1,.., }mr mkc T m M= =                                       (11) 
max{ | 1,.., }mr mke E m M= =                                       (12) 

 Having defined these instances, the balancing solutions can be evaluated not 
only in terms of the operation time but also the operation energy. 

The following functions express the maximal deviation of the operation 
time/operation energy of a model from the maximum station time/energy weighed 
on the demand of each model: 

1 1
| |

M K
t mk mr mm k

T c d
= =

Ψ = −∑ ∑ (13) 

1 1
| |

M K
e mk mr mm k

E e d
= =

Ψ = −∑ ∑ (14) 

The multi-objective functions of this second approach are introduced to allow us 
to compare them with a time-based and energy-based approach applied to a virtual 
average product, in order to demonstrate how the Pareto frontier changes when one 
approach or the other is used for a mixed-model assembly line. 

 
4.4. Numerical application 

 
A numerical example is provided here to evaluate the effects that energy expendi-
ture can have on the solution to the MALBP. 

In the case study described here, there are three models, and the joint precedence 
graph contains 17 tasks that are denoted by A,..,Q (Figure 7). For each model and 
each task, the time and the energy expenditure are given in Table 1.  

In this case, smartwatches are used to evaluate HR values while executing the 
tasks, and energy expenditure values are then obtained using regression models and 
general formulae. 

Different kinds of VAM are also considered, and these are obtained by consid-
ering a different demand for each model weighted in the mix. The correlation index 
R between the time and energy expenditure for each model and VAM is known. 
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Figure 7: The joint precedence graph 

 
This analysis aims to apply a multi-objective approach through the utilisation of 

the Pareto frontier in a MALBP, and to discover whether or not the traditional 
practice of evaluating a mixed model assembly line by approximating all the 
considerations to the concept of a VAM has a meaning, and in which cases. 

This numerical example is calculated by computing different balancing solutions 
for each kind of VAM using the Patterson and Albracht algorithm, and evaluating 
each possible assignment of the task to each station in order to respect the 
occurrence, cycle time and precedence constraints. 

For each feasible balancing solution for each VAM (whose values of jt  and je   

depend on the particular mix considered), SX-T (resp. SX-E) is calculated based on 
the concept that a mixed-model line can be transformed to a single-model one by 
producing a VAM. We then calculate tΨ  and eΨ , based on which we derive the 
line efficiency in terms of time and energy, considering the effect that a particular 
mix might have. 
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A 19.20 0.76 24.00 0.95 28.80 1.14 24.00 0.95 27.20 1.07 23.20 0.92 21.60 0.85
B 46.00 2.69 55.20 3.23 36.80 2.15 46.00 2.69 41.40 2.42 52.13 3.05 44.47 2.60
C 15.60 1.08 13.00 0.90 10.40 0.72 13.00 0.90 11.27 0.78 13.43 0.93 14.30 0.99
D 7.00 0.18 5.60 0.14 8.40 0.21 7.00 0.18 7.70 0.19 6.07 0.15 7.23 0.18
E 20.00 0.95 25.00 1.19 30.00 1.43 25.00 1.19 28.33 1.35 24.17 1.15 22.50 1.07
F 15.00 0.88 12.00 0.70 18.00 1.06 15.00 0.88 16.50 0.97 13.00 0.76 15.50 0.91
G 4.00 0.12 5.00 0.15 6.00 0.18 5.00 0.15 5.67 0.17 4.83 0.15 4.50 0.14
H 45.60 1.47 30.40 0.98 38.00 1.23 38.00 1.23 36.73 1.19 34.20 1.11 43.07 1.39
I 11.00 0.96 8.80 0.77 13.20 1.16 11.00 0.96 12.10 1.06 9.53 0.84 11.37 1.00
J 64.00 3.65 96.00 5.47 80.00 4.56 80.00 4.56 82.67 4.71 88.00 5.02 69.33 3.95
K 68.00 4.06 85.00 5.07 102.00 6.09 85.00 5.07 96.33 5.75 82.17 4.90 76.50 4.56
L 30.00 1.20 25.00 1.00 20.00 0.80 25.00 1.00 21.67 0.87 25.83 1.03 27.50 1.10
M 60.00 1.08 72.00 1.30 48.00 0.87 60.00 1.08 54.00 0.97 68.00 1.23 58.00 1.05
N 65.00 1.17 52.00 0.94 78.00 1.41 65.00 1.17 71.50 1.29 56.33 1.02 67.17 1.21
O 36.00 0.74 45.00 0.92 54.00 1.10 45.00 0.92 51.00 1.04 43.50 0.89 40.50 0.83
P 20.00 0.40 25.00 0.50 30.00 0.60 25.00 0.50 28.33 0.57 24.17 0.48 22.50 0.45
Q 19.20 0.76 12.80 0.50 16.00 0.63 16.00 0.63 15.47 0.61 14.40 0.57 18.13 0.72

MIX A MIX B MIX C MIX D

72.2% - 5.56% - 22.2%

VAM   SCENERIES

0.559 0.729 0.678 0.662 0.684 0.696 0.598

MODEL 1 MODEL 2 MODEL 3 33.3% - 33.3% - 33.3% 5.56% - 22.2% -72.2% 22.2% - 72.2% - 5.56%
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Table 1: Input data for the numerical example 

Using these functions, it is possible to define two different kinds of frontiers. The 
aim of obtaining the non-dominant solutions in terms of time and energy is the same, 
but the first considers SX-E  and SX-T, and the second eΨ  and tΨ . 

These two approaches cannot have the same frontier, as can be seen in the 
example below, which involves a mix containing 33.3% of M1, 33.3% of M2, and 
33.3% of M3. The numbers and types of scenarios are different (where each one 
implies a specific balancing solution within the frontier) (Figure 8). 

 

 
 

Figure 8: SALBP and MALBP frontiers for mix A 
If the scenarios for the Pareto frontier are different between the two approaches, 

we need to evaluate whether the difference is more evident for some mixes than 
others. If this difference is substantial, the choice of the SALBP approximation is 
not the right way to evaluate a mixed-model line, or if used, the choice of one of the 
SALBP solutions would not correspond appropriately to the MALBP solution. 

In Figure 9, the efficient frontier for the MALBP is compared with the frontier 
for the MALBP for each mix, the scenarios for the SALBP frontier are considered 
and the scenarios of the time-optimal solution and energy-optimal solution are 
highlighted. 

The difference between the two frontiers is not the same in all mixes, but the 
frontier for the SALBP is always to the right of the real frontier for each mix 
considered. A frontier can move from left to right if the correlation index R (the 
relation between jt  and je ) decreases; the more it increases, the more the frontier 

moves to the left and is reduced to a point.  
In order to evaluate the deviation between the two frontiers optT∆  and optE∆ , it 

is necessary to consider the two-point of time-optimal and energy-optimal solutions 
of the two frontiers and to analyse the subsequent measures. We define T VAM−Ψ  
and E VAM−Ψ as the optimum points of the SALBP frontier for time and energy and 

*
TΨ , *

EΨ  the optimum points for time and energy for the other frontier in the 
MALBP. 
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*

*
T VAM T

opt
T

T −Ψ −Ψ
∆ =

Ψ
                                       (15) 

*

*
E VAM E

opt
E

E −Ψ −Ψ
∆ =

Ψ
                                         (16) 

The results for the mixes considered here are as follows: 
 

Mix optT∆  optE∆  

A 20.6% 1.7% 
B - 2.6% 
C 11.9% 9.7% 
D 29.7% 9.2% 

Table 2.  Results for the different mixes  
 

 
Figure 9: Comparison of SALBP and MALBP frontiers for all mixes 

 
As it can be seen from the table above, the error in the points of the energy-optimal 
solutions is lower, since the feasible balancing solutions take into account only the 
time (cycle time). Conversely, there is a higher value of error for the time-optimal 
solutions. 
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5. Ergo-sequencing problem 
 
As stated in Section 3, for mixed-model assembly systems, the balancing phase 
represents the long-term decision process. During the balancing phase, important 
decisions concerning the assembly system design are taken. Moreover, the 
assignment of tasks to stations is conducted based on the long-term demand for 
items and the VAM.  

However, in the short-term, for mixed-model assembly systems, the main issue 
is to define the sequence of products to launch down the line in order to respect the 
short-term demand for products and to minimise certain objective functions such as 
the total work overload, the total idle time or the labor cost. In the short-term, the 
demand mix may be slightly different from the long-term one due to problems with 
material suppliers. Companies must therefore schedule the assembly process 
according to the availability of material, and the model mix may therefore change. 
Proper assembly sequencing can be used to cover inefficiencies. 

In recent years, companies have solved the sequencing problem in several ways, 
but in most cases, ergonomics and working conditions have been neglected.  
However, in the same way as the balancing process, wearable devices, Industry 4.0 
solutions, IoT or cloud platforms can be used to achieve good product sequencing, 
including workers’ physical conditions. Dynamic scheduling can therefore be 
conducted, and real-time changes can be made based on the operators’ fatigue level. 
In this way, a reduction in productivity can be avoided by assigning light tasks to 
more fatigued workers and heavier tasks to less fatigued ones. 

Starting from balancing solutions provided with a multi-objective approach 
defined in the previous section, a sequencing model that evaluates energy 
expenditure inefficiencies is presented. Since the balancing methodology used 
above generates several solutions, the sequencing model is applied to each 
balancing scenario associated with the Pareto frontier. Finally, the model sequence 
that provides the best results in terms of both work overload and energy overload is 
chosen. 

  
5.1. Sequencing model 

 
Starting from the line balancing phase and considering the features of each model 
in terms of operating times than energy expenditure, Eq. (9) (resp. Eq. (10) can be 
used to evaluate the processing time (resp. energy expenditure) in model m at station 
k. The set of data acquired through Eqs. (9) and (10) forms the input data for the 
sequencing model. The following data are required to solve the problem. For each 
model, the short-term demand is known, and this is set to 'md , while the sequence 

length I is equivalent to the sum of the demand in each model  'mm
I d=∑ . 

The sequencing decision variable is introduced as follows: 
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1,
0,mi

if mis assigned to theith positionof the sequence
y

otherwise


= 


  

The other variables that must be included are: 

• * ,kiE k i∆ ∀  , defined as , 1 ,max{0; }m i m im mmk mk
E y E y+ −∑ ∑ . This repre-

sents the energy expenditure overload between two consecutive units processed. 
Only positive gaps are considered, since models that require higher ergonomic 
effort should be assessed before the lighter ones. 

• ,kis k i∀  represents the operator start position at station k for the i-th unit; 
• ,kiwo k i∀  represents the work-overload at station k for the i-th unit. This is 

defined as max{0; }ki mi rm mk
s T y c− −∑   

The objective function of the sequencing model is defined as follows: 
min min *kik i

EO E= ∆∑ ∑                                       (18) 

This minimises *kiE∆ considering all stations and the sequence of the product. The 
following constraints then need to be considered: 

• Only one model unit must be assigned to each position of the sequence, accord-
ing to the following formula: 

1mim
y i= ∀∑                                                   (19) 

• For each model, the short-term demand 'md must be met, according to: 

'mi mi
y d m= ∀∑                                          (20) 

• The processing of a model unit must start only when the previous unit has been 
completed, as defined by: 

, 1 ,k i ki mk mi r kim
s s T y c wo k i+ ≥ + − − ∀∑                               (21) 

• The line must be in the initial state before and after unit production: 

1 , 1 0k k Is s k+= = ∀                                               (22) 

• The objective function  *miE∆  is defined as the maximum value, and is nonlin-
ear. To linearise this variable, the following additional constraints and an addi-
tional Boolean variable must be included in the final model: 

, 1 ,* ; 1,.., 1ki m i m im mmk mk
E E y E y k i I+∆ ≥ − ∀ ∀ = −∑ ∑            (23) 

* 0 ; 1,.., 1kiE k i I∆ ≥ ∀ ∀ = −            (24) 

, 1 ,* (1 ) ; 1,.., 1ki m i m i ikm mmk mk
E E y E y UB z k i I+∆ ≤ − + − ∀ ∀ = −∑ ∑           (25) 
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* 0 ; 1,.., 1ki ikE UBz k i I∆ ≤ + ∀ ∀ = −           (26) 
• While the following constraints set the type of variables: 

0 ,kis k i≥ ∀                                                (27) 
0 ,kiwo k i≥ ∀                                                (28) 

{0;1} ,miy m i∈ ∀                                        (29) 
{0;1} ; 1,.., 1kiz k i I∈ ∀ ∀ = −                     (30) 

The sequencing model proposed here assigns a model unit in a point of the 
sequencing length to minimise the total energy overload of the assembly systems, 
based on the difference in energy expenditure between two consecutive product 
units. Moreover, the processing of each unit model starts only after the previous one 
has been completed. In this way, both the time and ergonomics aspects are 
considered simultaneously.  
 

5.2. Numerical example 
 
A numerical example is used to test the balancing approach and to evaluate the 
sequencing methodology. The balancing solutions obtained for mix A are used. In 
the short-term, the demand for each model and among models can change, and six 
scenarios are therefore analysed, as shown in Table 3. 
 
 
 

Model Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 
Model 1 6 4 7 5 7 7 
Model 2 6 7 7 6 6 3 
Model 3 6 7 4 7 5 8 

Table 3.  Short-term demand mix 
 
The sequencing model is then applied for each mix, and each balancing solution is 
related to each point of the Pareto frontier (see Figure 8).  
It is interesting to note from Table 4 that for the same point on the Pareto frontier, 
and thus the same balancing solution, the total energy overload is assumed to always 
have the same value. Conversely, Table 5 shows that the total work overload, 
defined as kik i

WO wo=∑ ∑ , varies between mixes for the same balancing 

solution. Moreover, the same model is used continuously until the short-term 
demand is achieved. In this way, the sequencing approach is closely linked to the 
differences in energy expenditure at each station between models.  
 

SX-E SX-T 
Energy overload 

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 
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4.56 57.16 0.86 0.86 0.86 0.86 0.86 0.86 
5.31 25.79 0.96 0.96 0.96 0.96 0.96 0.96 
5.91 13.96 0.93 0.93 0.93 0.93 0.93 0.93 
6.01 10.82 0.89 0.89 0.89 0.89 0.89 0.89 
6.45 8.77 1.02 1.02 1.02 1.02 1.02 1.02 

Table 4.  Energy overload results  
 

SX-E SX-T 
Work overload 

Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 
4.56 57.16 120 140 116 128 112 100 
5.31 25.79 180 210 120 210 150 240 
5.91 13.96 228 266 164 262 194 284 
6.01 10.82 240 280 181 237 207 285 
6.45 8.77 258 301 211 288 228 279 

Table 5.  Work overload results  
 
Figure 10 provides information that is valuable for identifying which point on the 
Pareto frontier is preferable compared to the others, and this can help in the selection 
of the mix. For each point on the Pareto front, both the EO and WO for each mix 
are illustrated.  
The point on the Pareto front that provides acceptable results in terms of EO that 
WO is the one at which the value of SX-E is minimised, while the point that mini-
mises SX-T provides a higher EO and WO.  
It is interesting to compare the ergo-sequencing results with those of the traditional 
sequencing model (EO* and WO*) that minimises the work overload. We define 

( )mix iEO∆ and ( )mix iWO∆  for a generic mix i-th as: 

 
mi ( ) ( )

( )
( )

*
*

x i mix i
mix i

mix i

EO EO
EO

EO
−

∆ =                                  (31) 

mi ( ) ( )
( )

( )

*
*

x i mix i
mix i

mix i

WO WO
WO

WO
−

∆ =                                 (32) 
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Figure 10.  Graph of energy and work overload  

 
Table 6 shows the deviation between the results of the ergo and traditional sequenc-
ing models. The mean value of the mix is shown.  
These results are very interesting, and confirm that the point on the Pareto front that 
minimises SX-E is preferable over the others for two main reasons.  
Firstly, WO is higher than WO*, but it is closer to WO* than the other points. Its 

EO∆ is −80.21%, meaning that the solution provided by the ergo-sequencing model 
can achieve the minimum EO and at the same time can provide correct solutions in 
terms of WO.  

Moreover, the higher the value of SX-T, the lower the value of WO, since the 
work load is not well balanced between workstations, and idle time can occur in 
support of work-overload. Good sequencing results can therefore be achieved. 

 
  

SX-E SX-T EO∆  WO∆  

4.56 57.16 −80.21% 11.33% 
5.31 25.79 −76.71% 24.31% 
5.91 13.96 −78.92% 28.47% 
6.01 10.82 −79.64% 16.34% 
6.45 8.77 −79.82% 13.87% 

Table 6.  Results for energy and work overload  

6. Conclusion  
 
The design of efficient assembly systems requires the integration of ergonomics 
aspects, since the wellbeing and safety of operators implies an improvement in the 
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final product quality and a reduction in costs related to absenteeism and employee 
turnover caused by accidents or injuries. Moreover, an ergonomics evaluation can 
be quickly conducted using smart solutions such as smartwatches, which can 
provide several forms of information about a worker’s physical condition. Since 
many types of data can be collected with wearable devices, the cloud platform 
represents the best solution for collecting all of these data, which will be used to 
modify or improve the assignment of tasks to each workstation. 

In this chapter, a balancing and sequencing model for a mixed-model assembly 
line has been described and discussed. The ergonomics level related to each task is 
defined based on the energy expenditure, since this can be easily quantified with 
smartwatches or HR monitoring systems. Using a multi-objective balancing model, 
SX-E and SX-T are minimised, and an in-depth analysis has been performed using 
a numerical example.  

For each balancing solution belonging to the Pareto front, the ergo-sequencing 
model was applied to minimise the total energy overload. In this phase and the 
balancing phase, smartwatches can be used to monitor and quantify the physical 
effort required to execute the set of tasks assigned to each station according to the 
mix used.  

Positive results are obtained since the optimal ergo-sequencing solution means 
that both energy and time overload can be minimised.  
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