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Abstract 17 

Biodiversity studies greatly benefit from molecular tools, such as DNA metabarcoding, which 18 

provides an effective identification tool in biomonitoring and conservation programmes. The 19 

accuracy of species-level assignment, and consequent taxonomic coverage, relies on 20 

comprehensive DNA barcode reference libraries. The role of these libraries is to support 21 

species identification, but accidental errors in the generation of the barcodes may compromise 22 

their accuracy. Here we present an R-based application, BAGS (Barcode, Audit & Grade 23 

System; https://github.com/tadeu95/BAGS), that performs automated auditing and annotation 24 

of cytochrome c oxidase subunit I (COI) sequences libraries, for a given taxonomic group of 25 

animals, available in the Barcode of Life Data System (BOLD). This is followed by 26 

implementing a qualitative ranking system that assigns one of five grades (A to E) to each 27 

species in the reference library, according to the attributes of the data and congruency of 28 

species names with sequences clustered in Barcode Index Numbers (BINs). Our goal is to 29 

allow researchers to obtain the most useful and reliable data, highlighting and segregating 30 

records according to their congruency. Different tests were performed to perceive its 31 

usefulness and limitations. BAGS fulfils a significant gap in the current landscape of DNA 32 

barcoding research tools by quickly screening reference libraries to gauge the congruence 33 

status of data and facilitate the triage of ambiguous data for posterior review. Thereby, BAGS 34 

has the potential to become a valuable addition in forthcoming DNA metabarcoding studies, in 35 

the long term contributing to globally improve the quality and reliability of the public reference 36 

libraries. 37 
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1. INTRODUCTION 42 

The availability of well-curated comprehensive reference libraries is fundamental for accurate 43 

DNA barcode-based species identification (Cariani et al., 2017; Ekrem, Willassen, & Stur, 44 

2007; Leese et al., 2016; Oliveira et al., 2016). The demand for high quality reference libraries 45 

has increased considerably since the introduction and extended use of DNA metabarcoding 46 

for biodiversity assessments and biomonitoring (Leese et al., 2018; Weigand et al., 2019). Due 47 

to the large number of reads from high-throughput sequencing (HTS) instruments, the required 48 

bioinformatics often include automated systems to match query sequences to reference 49 

sequences in DNA sequence repositories (e.g. Bengtsson-Palme et al., 2018), such as the 50 

Barcode of Life Data Systems (BOLD; Ratnasingham & Hebert, 2007) or NCBI GenBank 51 

(Sayers et al., 2019). With a few exceptions, such as R-Syst::diatom (Rimet et al., 2016), the 52 

UNITE database (Nilsson et al., 2018) or MIDORI (Machida, Leray, Ho, & Knowlton, 2017), 53 

which are reference libraries compiled and curated for specific taxa, typically, there is no 54 

supervision or quality control of the reference dataset. Therefore, inaccurate records in 55 

reference libraries may result in recurrent identification errors which can be perpetuated over 56 

time and across studies without being detected (Keller et al., 2020; Leese et al., 2016; Weigand 57 

et al., 2019). 58 

Errors or discordances can have operational or biological explanations. Operational errors 59 

include morphology-based misidentifications, cross-contamination of samples, mislabelling, 60 

accidental mistakes when recording data, among others (Packer, Gibbs, Sheffield, & Hanner, 61 

2009; Pentinsaari, Ratnasingham, Miller, & Hebert, 2019; Rulik et al., 2017). Possible 62 

biological reasons for discordances include recently diverged species and incomplete lineage 63 

sorting, introgression, insufficient discrimination capacity of the barcode marker, phenotypic 64 

plasticity, among others (Costa & Antunes, 2012; Lin, Stur, & Ekrem, 2018; Weber, Stöhr, & 65 

Chenuil, 2019; Weigand, Jochum, Pfenninger, Steinke, & Klussmann-Kolb, 2011). Although 66 

some data quality assurance and quality control (QA/QC) criteria have been implemented 67 
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upstream and along the DNA barcode production workflow (e.g. Hanner, 2005), no 68 

comprehensive tool for downstream quality control of the taxonomic accuracy in DNA barcode 69 

reference libraries is available to check QA/QC in a standardized way. Some QA/QC measures 70 

are implemented in BOLD: Labelling of barcode compliant records, flagging of sequences that 71 

are likely contaminations or based on misidentified specimens, flagging of sequences with stop 72 

codons (Ratnasingham & Hebert, 2007), and the possibility to run BIN-discordance reports 73 

(Ratnasingham & Hebert, 2013). However, there are several sources of potential discordance 74 

or errors that remain unscreened or unexplored through existing systems (Meiklejohn, 75 

Damaso, & Robertson, 2019; Mioduchowska, Czyz, Gołdyn, Kur, & Sell, 2018; Siddall, 76 

Fontanella, Watson, Kvist, & Erséus, 2009; Weigand et al., 2019).  77 

The origin of discordances and inaccuracies in DNA barcode data and DNA databases in 78 

general are well known (Harris et al., 2003; Meiklejohn et al., 2019; Mioduchowska et al., 2018; 79 

Pentinsaari et al., 2019; Siddall et al., 2009; Vilgalys, 2003), however, relatively few studies 80 

have addressed the problem of compilation, and quality control of reference libraries, 81 

particularly concerning taxonomic reliability (Leese et al., 2018; Weigand et al., 2019). For 82 

instance, CO-ARBitrator (Heller, Casaletto, Ruiz, & Geller, 2018) detects sequences 83 

mislabelled as cytochrome c oxidase subunit I (COI), but which are originating from non-84 

homologous loci. The “coil” R package (Nugent, Elliot, Ratnasingham, & Adamowicz, 2020) is 85 

also useful in detecting errors in animal barcoding and metabarcoding data by placing 86 

sequences in a reading frame and translating them to amino acids. While both packages 87 

successfully detect cases of non-homologous barcode sequences, they do not address the 88 

issue of taxonomic congruency. 89 

Recently, Rulik et al. (2017) proposed a pre-processing system for large datasets aiming to 90 

generate high quality DNA barcodes by verifying taxonomic consistency. However, this system 91 

requires a phylogenetic backbone for implementation, and it is meant to be used before 92 
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uploading data to reference libraries. It therefore does not consider global congruence with 93 

other data already available in either BOLD or GenBank.  94 

A large number of COI sequences are currently available in GenBank (Porter & Hajibabaei, 95 

2018) and although a fair portion of the records may not abide to the formal barcode data 96 

standards (Ratnasingham & Hebert, 2013), they still constitute a useful resource that should 97 

not be overlooked. In fact, many metabarcoding-based studies report taxonomic assignments 98 

based on all available COI data, thereby including non-barcode compliant records. This 99 

reinforces the need for a barcode compilation, auditing and annotation system that provides 100 

an indication of the taxonomic reliability of the records for end-users of reference libraries.  101 

Costa et al. (2012) proposed a ranking system to be implemented at the post-barcoding end 102 

of the barcode production pipeline, which considered all available sequence data for a given 103 

species (thus both barcode compliant and non-compliant). The ranking system attributes five 104 

different grades to species records (A to E), depending essentially on the level of congruency 105 

between morphospecies and the respective COI barcode clusters. Later, the system was 106 

updated to use Barcode Index Numbers (BINs; Ratnasingham & Hebert, 2013) as the 107 

reference DNA barcode clustering method (e.g. Knebelsberger et al., 2014; Oliveira et al., 108 

2016). In global terms, the goal was to provide end-users of reference libraries with a system 109 

to sort out and annotate species that can be confidently identified with current data, from 110 

ambiguous or inaccurate records that need revision, or to flag cases of suspected hidden 111 

diversity. The implementation of this ranking system to a compilation of COI barcodes from 112 

European fish revealed that the majority of species could be confidently identified with DNA 113 

barcodes (Oliveira et al., 2016), and a number of ambiguous records could be clarified upon 114 

careful revision. However, in these implementations of the ranking system, the attribution of 115 

the grades was dependent on individual analyses of each species' data, a strategy which would 116 

be impractical for the large DNA metabarcoding reference libraries involving hundreds or 117 

thousands of species.  118 
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To address this problem, we here introduce BAGS, an R-based application for automated 119 

auditing and annotation of DNA barcode reference libraries. We adapt the proposed Oliveira 120 

et al. (2016) ranking system, essentially based on match/mismatch between BINs and 121 

morphospecies identifications. BAGS can be applied to user-provided species lists or large 122 

taxon-specific datasets composed of all available COI barcode sequences in BOLD, including 123 

those mined from GenBank. BAGS also aims to facilitate revision and curation of barcode 124 

reference libraries, thereby contributing to improve their quality. 125 

 126 

2. METHODS 127 

2.1. Overview of BAGS 128 

BAGS features automated compilation of quality-filtered COI sequence datasets from BOLD, 129 

allowing for selection or exclusion of marine taxa through matching with the World Register of 130 

Marine Species (WoRMS) checklists (WoRMS Editorial Board, 2020). It delivers taxon-specific 131 

libraries annotated with qualitative grades based on BIN/morphospecies congruence and on 132 

the amount of available data for each species (A to E, see below for details), which can be 133 

downloaded whole or sorted by grade. A user-friendly interface allows for minimal operation 134 

for users non-familiar with R (R Development Core Team, 2019), while providing a grasp of 135 

the overall quality of the reference library through a graphical output of the proportion of records 136 

and species assigned to each of the five grades. However, since BAGS can also be run locally, 137 

the more experienced R users have the option to make adjustments to the code. The users 138 

may then (frequently if necessary) use the annotated datasets to compile their own 139 

personalized and reviewed libraries (e.g. BOLD datasets) and use them for taxonomic 140 

assignment of HTS metabarcoding-generated reads. 141 
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BAGS is composed of four main features which are implemented in sequence (Figure 1): a) 142 

data mining and library compilation, b) marine taxa filter (optional), c) library auditing and 143 

annotation and d) auditing output and annotation-based library sorting. 144 

2.2. BAGS pipeline 145 

2.2.1. Data mining and library compilation 146 

BAGS offers the option for library compilation based on a choice of taxa or through a user-147 

provided species list. Records matching the selected taxa or species list will be retrieved and 148 

then filtered. All the data is retrieved from BOLD (www.boldsystems.org), using the “bold” R 149 

package (Chamberlain, 2019). Therefore, the taxa introduced by the user must be present in 150 

BOLD at the time of use. Any taxonomic rank from species to phylum belonging to the kingdom 151 

Animalia can be submitted, but it should be noted that some ranks, particularly intermediate 152 

ranks, are not implemented in BOLD or may not be available for some species.  153 

The mining of the target taxa can be achieved through three options: download all the records 154 

available (all taxa), download only records of species occurring in marine habitats (which may 155 

include any taxa present in brackish waters) or download the non-marine species' records (i.e. 156 

not present in neither marine or brackish water habitats). This marine species selection or 157 

exclusion filter is accomplished resorting to the “worms” R package (Holstein, 2018), which 158 

checks the habitat type(s) assigned in WoRMS to each species in a query dataset, among the 159 

four available (marine, brackish, freshwater or terrestrial). 160 

Records are removed if at least one of the following criteria is verified: a) records with 161 

sequences shorter than the minimum size chosen by the user (between 300 and 650 bp), or 162 

with sequences that have more than 1% ambiguous base calls (Ns); b) records without species 163 

name (this includes records identified only by genus or any higher taxonomic rank), or without 164 

BIN; c) by default, records without information of the sampling location (either latitude or 165 

country of origin), although users can choose to include those records. Records with 166 



8 
 

ambiguous expressions present in the species name (e.g. sp., complex., etc; see Appendix 1: 167 

https://doi.org/10.5061/dryad.2rbnzs7kx) or in the COI sequence (i.e. not IUPAC nucleotide 168 

code; see Appendix 1: https://doi.org/10.5061/dryad.2rbnzs7kx) are not removed, however, 169 

the ambiguous expression is removed.  170 

At the end of this procedure, a filtered reference library is downloaded and available for the 171 

subsequent auditing and annotation step. 172 

2.2.2. Auditing and annotation 173 

Following the initial quality-filtering steps, the BAGs pipeline subsequently proceeds to the 174 

implementation of the auditing and annotation system adapted with modifications from Oliveira 175 

et al. (2016). The five annotation grades attributed to each species in a compiled library are 176 

defined as follows (Figure 2): 177 

Grade A - Consolidated concordance: the morphospecies is assigned to a single BIN, which 178 

integrates only members of that species. Additionally, the species is represented by more than 179 

10 specimens in the library. 180 

Grade B - Basal concordance: the morphospecies is assigned to a single BIN, which integrates 181 

only members of that species, but there are 10 or less specimens in the library. 182 

Grade C - Multiple BINs: the morphospecies is assigned to more than one BIN, and all of those 183 

BINs integrate only members of that species. 184 

Grade D - Insufficient data: the species has less than three specimens available in the library 185 

and none of the BINs assigned to the species integrates specimens from another species. 186 

Grade E - Discordant species assignment: more than one species is assigned to a single BIN. 187 

All the records of that species will be assigned to grade E. 188 

The BAGs auditing pipeline consists of a series of annotation steps, each comprising data 189 

checks with two possible outcomes (Figure 2). Every set of sequences for a given species 190 
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entering the pipeline will be annotated with a single grade (A to E). Discordant species 191 

assignments (grade E) are immediately screened at the front end of the pipeline, followed by 192 

records with insufficient data (grade D), then grade C. Grades A or B are attributed last, if the 193 

records were not retained in the previous screens. The screening steps involve checking 194 

against the full BOLD database, thus not exclusively considering the reference library being 195 

downloaded at the time of the annotation, that would limit concordance-checking to the 196 

downloaded species’ data only.  197 

BOLD (like GenBank) limits the number of searches or queries per IP/user to avoid the 198 

overload of their webservice. Therefore, to avoid blocking the access to BOLD, we periodically 199 

(approximately every two months) download the entire BOLD dataset for animals and protists  200 

in order to calculate the number of BINs for each species, as well as the number of species for 201 

each BIN. With this solution, BAGS can work faster and without the computational limitations 202 

of real-time query searches on BOLD.  203 

2. 2. 3. Output and annotation-based file sorting 204 

The auditing system proceeds then to the annotation of the records with the pre-defined grades 205 

to each species in the reference library, following the pipeline described before. In due course 206 

the reference library will be created and downloaded in the form of a tabular file containing the 207 

following: species name, BIN, COI-5P sequence, country or region of origin, the grade that 208 

was attributed to the species, number of base pairs in the sequence, family, order, class, 209 

sample ID, process ID, latitude, longitude and in the case of marine taxa libraries, an additional 210 

column with the valid species name according to WoRMS. The user has also the option to 211 

download the reference library in fasta format, giving the choice of which grades to include. 212 

The fasta files can be download with all grades, combinations of different grades or separately 213 

for each grade.  214 
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Lastly, BAGs summarizes the data regarding the reference library that was created, in the form 215 

of a text report plus two bar plots: one displaying the number of specimens for each attributed 216 

grade and another displaying the number of species for each attributed grade. In order to 217 

repeat the process for additional target libraries, the user must refresh the page and start over 218 

again. 219 

2. 3. Informatic implementation 220 

BAGS is an application written entirely in the open-source programming language R, designed 221 

using the “shiny” R package framework (Chang, Cheng, Allaire, & Xie, 2019), having therefore 222 

an underlying customization with HTML and CSS. It is possible to launch BAGS locally on any 223 

environment that has R installed, as well as through any R IDE such as RStudio (RStudio 224 

Team, 2016), where it can fully operate as long as there is a stable internet connection and 225 

the databases BOLD and WoRMS are functional. The application can be used without any 226 

prior knowledge of the R programming language, and the instructions for launching it can be 227 

consulted in the “README” file. BAGS is stored at web servers and can also be used remotely, 228 

which allows its launching from any web browser (https://bags.vm.ntnu.no or https://tadeu-229 

apps.shinyapps.io/bags; additional links are provided at https://github.com/tadeu95/BAGS). 230 

The script that allows the application to be run locally without constraints in R, as well as a 231 

“README” file, are currently stored at GitHub: https://github.com/tadeu95/BAGS. 232 

2.4. Performance assessment  233 

In order to test BAGS performance, two independent tests were performed. First, to 234 

understand if the marine and non-marine taxa selection filters were functional and reliable, we 235 

downloaded three files, using the “all taxa”, the “marine taxa” and the “non-marine” taxa options 236 

for a family of shrimps, Palaemonidae, which comprises species from various aquatic habitats. 237 

This was followed by checking the report generated by BAGS and manually checking 30 238 

random species from each of the three libraries previously generated.  239 

https://bags.vm.ntnu.no/
https://tadeu-apps.shinyapps.io/bags
https://tadeu-apps.shinyapps.io/bags
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Second, to assess the accuracy of BAGS’ auditing and grade assignment, we selected three 240 

trial reference libraries  likely to display distinctive features and quality issues: marine 241 

Amphipoda (Malacostraca: Crustacea), Chironomidae (Diptera: Insecta), and marine fish 242 

(Actinopterygii, Elasmobranchii and Holocephali). These trial libraries include two key 243 

invertebrate groups in aquatic monitoring, which are likely to be relevant in metabarcoding 244 

applications, and one of the most well-represented groups of vertebrates in BOLD, thereby 245 

enabling the screening of a large and diverse number of records and species.. Three reference 246 

libraries were downloaded using as input “Amphipoda” (within the marine taxa filter option), 247 

“Chironomidae” (all taxa option), and “Actinopterygii,Elasmobranchii,Holocephali” also within 248 

the marine taxa filter option. Then, the grade assignment was checked by randomly sampling 249 

30 species from each assigned grade, from each compiled library and checking the data 250 

manually to assess if the grades were correctly assigned to their specimens. Due to the 251 

massive amount of data available for Chironomidae (more than 400,000 sequences accessible 252 

on BOLD), the species in the compiled library were matched against a list of European species 253 

used for freshwater biomonitoring under the EU Water Framework Directive  (BOLD checklist 254 

DNAqua-NET: Diptera, code CL-DNADI, 584 spp. Chironomidae) in order to simplify the 255 

performance assessment. Neighbour-Joining trees (Saitou & Nei, 1987) of the species 256 

assigned to grade C were created on the BOLD workbench, to evaluate the monophyly/non-257 

monophyly of each species. Within grade E, different plausible origins for the discordance were 258 

scored for the following categories: synonym; faulty or ambiguous species names; 259 

consolidated morphospecies grouped in one BIN; probable misidentification and inconclusive 260 

origin. 261 

 262 

3. RESULTS 263 

3.1. Marine taxa selection filter 264 
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 Using the input “Palaemonidae” within the marine filter, the marine taxa library comprised 60 265 

species assigned to 73 BINs, and a total of 577 specimens, while the non-marine taxa library 266 

comprised 51 species, 67 BINs and a total of 318 specimens. Comparatively, the “all taxa” 267 

option library had 123 species, 148 BINs and 1,022 specimens. The 30 species randomly 268 

sampled of the marine-filtered library were correctly assigned (i.e. all the 30 species were 269 

registered as being from marine or brackish environments when checked manually upon on 270 

WoRMS; Appendix 2: https://doi.org/10.5061/dryad.2rbnzs7kx). Nonetheless, this included 271 

species which were registered simultaneously as occurring in both marine and freshwater 272 

habitats. On the other hand, the 30 species manually checked from the non-marine taxa library 273 

revealed to be all exclusive from freshwater environments (i.e. not present neither in marine or 274 

brackish waters, and therefore not present in the marine library). 275 

3.2. Trial datasets 276 

The marine Amphipoda dataset had a total of 6,385 specimens in the compiled library, 486 277 

species and 736 BINs; the Chironomidae dataset consisted of a total of 90,214 specimens, 278 

1,113 species and 1,883 BINs; and the marine fishes dataset comprised 107,434 specimens, 279 

8,381 species and 9,779 BINs (Appendix 3: https://doi.org/10.5061/dryad.2rbnzs7kx). The 280 

distributions of the number of species per grade in each of the compiled reference libraries 281 

(Figure 3) show that the proportion of possible cases of hidden diversity (grade C) is higher in 282 

the two invertebrate libraries (Amphipoda and Chironomidae; around 20%) compared with the 283 

marine fish library (less than 10%). Cases of insufficient records, which consist of species with 284 

less than three specimens in the BAGS-compiled library (Grade D), are also less prevalent in 285 

the marine fishes (~18%) when compared to both invertebrate libraries (40% and 26% for 286 

Amphipoda and Chironomidae respectively). On the other hand, cases of apparent 287 

discordance (Grade E) are considerably less prevalent in the Amphipoda library (only 12% of 288 

the cases) and much more frequent in the marine fish library (44%). The number of species 289 
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per BIN (grade E) varied between 1 and 49 for Amphipoda, 1 and 12 for Chironomidae and 1 290 

and 88 for fish (Figure 4).  291 

For the three groups, the 30 randomly sampled species were correctly assigned to the 292 

qualitative grades (Appendix 4: https://doi.org/10.5061/dryad.2rbnzs7kx). Grade C species 293 

(Table 1, Appendix 5: https://doi.org/10.5061/dryad.2rbnzs7kx) were mostly monophyletic: 294 

between 66% (Chironomidae) and 80% (fish). Discordances or potential errors in grade E 295 

annotations had different possible sources (Table 2). Misidentifications (between 37% and 296 

67%) and ambiguous species names (between 10% and 33%) contributed the most to the 297 

grade E cases, while synonyms the least (overall 3.4%). 298 

 299 

4. DISCUSSION 300 

While molecular and computational tools have been increasingly providing taxonomists with 301 

large volumes of data to analyse, the need for systems which classify and audit that data is 302 

now more relevant than ever. This is especially the case when dealing with publicly available 303 

DNA barcodes, which can be freely submitted to biological databases and subsequently used 304 

by researchers anywhere, at any time (Curry, Gibson, Shokralla, Hajibabaei, & Baird, 2018; 305 

Meiklejohn et al., 2019). Moreover, given the establishment of DNA barcoding as one of the 306 

primary drivers behind the recent scientific efforts in uncovering and explaining biodiversity 307 

(DeSalle & Goldstein, 2019; Pennisi, 2019), our primary goal with BAGS is to facilitate the 308 

implementation of curation and quality control measures among taxonomists and biodiversity 309 

scientists. Additionally, we seek to do this through a user-friendly and automated platform, 310 

removing any need for programming skills in order to audit and annotate a reference library. 311 

BAGS differs from the "BIN discordance report” available at BOLD, within the sequence 312 

analysis tools. First of all, whereas the BOLD tool is BIN-centred, our approach is 313 

morphospecies-centred. This fundamental difference has a number of consequences. While 314 
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BOLD reports discordant BINs, BAGS reports on discordant morphospecies, meaning that a 315 

morphospecies displaying even a single record in a discordant BIN is classified as grade E. 316 

The morphospecies-centred approach also enables BAGS to report on species occurring in 317 

multiple - but non-discordant - BINS (grade C), therefore serving as a barometer of suspected 318 

hidden diversity in reference libraries. Finally, BAGS also takes into consideration the amount 319 

of sequences available in the database, providing a grasp of gaps in comprehensiveness of 320 

coverage for morphospecies in the reference libraries (grades A, B, and D). From an auditing 321 

and taxonomic curation point of view, the morphospecies-centred approach is also more 322 

advantageous. 323 

Ultimately, we present this application as a way to sort out taxonomic incongruencies and point 324 

out possible cases of human error during the generation of the barcodes, as well as uncovering 325 

potential cases of hidden diversity among species. Overall, our comprehensive testing of 326 

BAGS indicates that it enables researchers with a simple tool for fast screening of the quality 327 

status of massive reference libraries, thereby allowing them to sort highly robust records and 328 

pinpoint those in need of curation and revision, while unravelling the main issues that may 329 

arise during the generation of DNA barcodes for a particular group of organisms.  330 

4.1. BAGS performance assessment tests and some considerations 331 

The different efficiency tests performed with BAGS (either marine/non-marine and grade 332 

annotation) allowed to verify the correct performance of this application. The different manual 333 

tests (i.e. non-automated; Appendixes 2 and 4: https://doi.org/10.5061/dryad.2rbnzs7kx) and 334 

the ongoing tests performed by us and colleagues during beta tests, did not bring to light any 335 

errors of the application in the filtering or the auditing and annotation steps. 336 

It is important to point out that some transitional marine species (i.e. present in estuaries) are 337 

registered in WoRMS as being from brackish habitats, which can include both typical marine 338 

or freshwater species (e.g. Phoxinus Rafinesque, 1820). These species should not be 339 
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excluded from marine reference libraries as they may be also detected in metabarcoding 340 

studies in fully marine environments. If the goal is to gather as much barcode compliant records 341 

as possible in the final dataset, regardless of the habitat, it is advisable to use the “all taxa” 342 

option. However, we consider the “marine” and “non-marine” options of BAGS as a useful 343 

resource if the user wishes to use a customized and size-amenable reference library targeting 344 

preferentially only marine or non-marine organisms. 345 

By using three distinct taxa important in biomonitoring studies, BAGS allowed us to promptly 346 

understand the differences in the level of congruency of their available DNA barcodes and in 347 

the quality of their respective reference libraries. Recent initiatives (e.g. deWaard et al., 2019; 348 

Hobern & Hebert, 2019; Leese et al., 2016) have been striving to increase the taxonomic 349 

coverage of universal databases, however, DNA barcodes are still missing for many species 350 

(e.g. Weigand et al., 2019) or are poorly represented (high prevalence of grade D species here 351 

observed; Figure 3), reinforcing the continuous need for the completion of reference libraries.  352 

BAGS performance tests allowed to spot a high proportion of grade C species (multiple BINs), 353 

reaching around 20% in Chironomidae and Amphipoda, but less prevalent in marine fish 354 

(Figure 3). Species with multiple BINs may occur for a number of reasons, starting with the 355 

non-optimal BIN splitting (Ratnasingham & Hebert, 2013), Wolbachia-related artefacts 356 

(especially terrestrial arthropods; Smith et al., 2012), or may simply reflect phylogeographic 357 

differentiation within the same species. However, they also often suggest undescribed or 358 

cryptic diversity. Indeed, a fair amount of cases of cryptic diversity have been reported in the 359 

literature for marine amphipods (e.g. Hyalidae, Desiderato et al., 2019; Gammaridae, Hupało 360 

et al., 2019), while the family Chironomidae belongs to an order (Diptera) notorious for 361 

incorporating large numbers of hidden species (Ekrem, Stur, & Hebert, 2010; Lin, Stur, & 362 

Ekrem, 2015). In marine fish on the other hand, detection of cryptic species has been less 363 

reported (Knebelsberger et al., 2014; Oliveira et al., 2016), maybe due to the fact that their 364 

taxonomy is possibly more updated, morphological differentiation is more rigorously 365 
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established for most species, or the fact that their high mobility may reduce the likelihood of 366 

genetic divergence between populations over larger distances. A number of studies have been 367 

addressing the curation of marine invertebrate’s DNA barcodes, including Amphipoda (e.g. 368 

Lobo et al. 2016; Radulovici et al. 2019; Raupach et al. 2015), which may explain the lowest 369 

proportion of possible discordances (Grade E) out of the three groups analysed (Figure 3). 370 

Contrarily, the marine fishes’ reference library showed a prominently high proportion (~44%) 371 

of grade E species (Figure 3), mainly due to misidentifications, consolidated morphospecies 372 

aggregated in one BIN or faulty species names lexicon (Table 2). There are some extreme 373 

cases which greatly contribute to this scenario, as for instance, BINs BOLD:AAC8034 and 374 

BOLD:AAB3926, consisting of 40 and 88 species respectively (Figure 4). In the latter case, out 375 

of 88 species, only one is spelled correctly (“Pseudanthias squamipinnis”), while the remaining 376 

were named “Unknown” or “Pseudanthias sp.” followed by different alphanumeric 377 

designations. Since these ambiguous species names, possibly interim names, are not properly 378 

standardized, BAGS considers them different species for the purpose of comparison against 379 

BOLD database and grade assignment, even though it does remove the ambiguous 380 

expressions and specimens assigned only to genus, in the compiled libraries. Considering this 381 

and other possible grade E scenarios, we hold the view that this grade should serve as an 382 

incentive for a close examination of that particular species' records, and not as a definitive 383 

signalling of unreliability. Indeed, the detailed inspection of grade E cases after BAGS 384 

annotation revealed that most of them are likely pseudo-discordances and, if eventually 385 

clarified, could lead to an estimated overall reduction of 80% in grade E species.     386 

4.3. BAGS limitations 387 

Although this current version of BAGS has its own merits and stands on its own as a complete 388 

tool, filling a gap in the current DNA barcoding research landscape that we identified, there are 389 

still limitations that we would like to address in future versions. Currently, BAGS does not have 390 

the ability to flag gross sequence mismatches, such as bacterial sequences mistakenly 391 
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assigned to animals, as it has been previously reported (Siddall et al., 2009). Although these 392 

might be rare events, it would be useful to fully discriminate these cases so that the congruency 393 

of the reference library is increased, and more errors are subsequently flagged. Additionally, 394 

in its current version, BAGS cannot distinguish grade C's monophyletic from non-monophyletic 395 

species, nor can it recognize synonyms and other apparent discordances, such as faulty or 396 

interim species names, in species graded E. Moreover, since BAGS implements grades which 397 

are defined based on the BIN/morphospecies matches, the limitations associated with the 398 

accuracy of the BIN clustering algorithm may emerge in some results or particular groups of 399 

organisms. This could be possibly improved in future versions with the introduction of 400 

customized OTU clustering algorithms that may be useful to complement the BIN-based 401 

auditing, opening possibilities for its application beyond COI sequences and the BOLD 402 

database. 403 

Many databases (e.g. BOLD, GenBank, WoRMS) have systems that detect excessive calls by 404 

the same user (i.e., too many searches or queries) that might overload their webservice, and 405 

therefore, they either limit the number of calls or block the user’s IP address for a period of 406 

time. Since BAGS relies on multiple searches on BOLD, this restriction would limit its efficiency. 407 

To overcome this constraint, part of the data necessary to implement the grade annotation 408 

system is regularly downloaded by us from BOLD, and used for comparison. However, since 409 

the full species name and BIN dataset is locally stored for this purpose, the grade attribution 410 

can potentially change every time new barcode records and BINs are added to BOLD. 411 

 412 

5. FINAL REMARKS 413 

We can envision several prospective improvements that may be considered in future versions 414 

of BAGS. One such key improvement would be to introduce the capability to detect cases of 415 

deep discordance which may in fact appear concordant (hence pseudo-concordances), such 416 
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as the cases of bacterial DNA inadvertently amplified from metazoan DNA during PCR,  further 417 

included in public genetic repositories assigned to metazoan species (Siddall et al., 2009). 418 

Introduction of a phylogenetic placement auditing tool would constitute a possible solution to 419 

detect such events, and it would also be essential to discriminate cases of monophyly and 420 

non-monophyly in grade C-assigned species. Additional improvements to BAGS may include 421 

implementation of alternative clustering algorithms and customized filtering thresholds, making 422 

it prone for future implementations using other DNA-barcode sequence systems and 423 

databases. Finally, the inclusion of a subsidiary tool to perform a detailed revision of grade E 424 

records, in order to signal, for example, pseudo-discordances generated by synonyms or 425 

ambiguous species designations, possibly using machine learning and artificial intelligence 426 

systems. Eventually, some discordances may require individual professional judgement that 427 

cannot be accomplished with automated procedures.  428 

It is our goal that BAGs can facilitate and stimulate the much-needed revision and curation of 429 

reference libraries. We urge all users to contribute to this critical task for the sake of the quality 430 

of the libraries and ultimately the soundness of the research that depends on it.  431 
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Tables and figures 614 

Table 1 - Percentage of monophyletic or non-monophyletic species assigned to grade C of each tested taxonomic 615 
group, according to their position in the Neighbour-Joining trees constructed. 616 

 Monophyletic Non-monophyletic 
Marine Amphipoda 76.7% 23.3% 

Chironomidae 66.7% 33.3% 

Marine fish 80.0% 20.0% 

Overall 74.4% 25.6% 
 617 

 618 

Table 2 - Percentage of the different plausible origins for the assignment of grade E to species in for each tested 619 
taxonomic group. 620 

 Synonym Ambiguous 
species names  

Consolidated 
morphospecies 
aggregated in 

one BIN 
Misidentification Inconclusive 

Marine Amphipoda 0.0% 30.0% 0.0% 66.7% 3.3% 

Chironomidae 0.0% 33.3% 10.0% 50.0% 6.7% 

Marine fish 10.0% 10.0% 26.6% 36.7% 16.7% 

Overall 3.4% 24.4% 12.2% 51.1% 8.9% 
 621 
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 622 

Figure 1 – Overview of BAGS' four main features and their arrangement along the informatics pipeline. 623 
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 624 
Figure 2 – Workflow for automated auditing and annotation of qualitative grades to each species in a BAGS-625 
compiled reference library (adapted from Oliveira et al. 2016). 626 
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 628 

Figure 3 - Barplots displaying the distribution of the number of species assigned to each qualitative grade for the 629 
three taxonomic groups tested. From top to bottom: marine Amphipoda, Chironomidae and marine fish 630 
(Actinopterygii, Elasmobranchii and Holocephali). 631 
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633 

 634 

 635 
Figure 4 – Number of species per BIN in the grade E dataset generated through BAGS for each tested taxonomic 636 
group (marine Amphipoda, Chironomidae, marine fish). 637 
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