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An adapted eigenvalue-based filter for ocean ambient noise processing
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ABSTRACT

Accurate approximations of Green’s functions retrieved from
the correlations of ambient noise require a homogeneous distri-
bution of random and uncorrelated noise sources. In the real
world, the existence of highly coherent, strong directional noise
generated by ships, earthquakes, and other human activities can
result in biases in the ambient-noise crosscorrelations (NCCs).
We have developed an adapted eigenvalue-based filter to attenu-
ate the interference of strong directional sources. The filter is
based on the statistical model of the sample covariance matrix
and can separate different components of the data covariance
matrix in the eigenvalue spectrum. To improve the effectiveness
and make it adaptable for different data sets, a weight is

introduced to the filter. Then, the NCCs can be calculated directly
from the filtered data covariance matrix. This approach is applied
to a 1.02 h data set of ambient noise recorded by a permanent
reservoir monitoring receiver array installed on the seabed.
The power spectral density indicates that the noise recordings
were contaminated by strong directional noise over nearly
half of the whole observation period. Beamforming and crosscor-
relation results indicate that the interference still exists even
after applying traditional temporal and spectral normalization
techniques, whereas the adapted eigenvalue-based filter can
significantly attenuate it and help to obtain improved crosscorre-
lations. The approach makes it possible to retrieve reliable ap-
proximations of Green’s functions over a much shorter recording
time.

INTRODUCTION

Over the past few decades, the reconstruction of Green’s func-
tions from the crosscorrelations of diffuse noise fields (CDNFs)
has become a popular technique in ambient-noise tomography. The
main idea of this technique is the extraction of expected waves (pre-
dominantly surface waves) from ambient-noise recordings without
any active sources and knowledge of the environment. This idea
initially originated from Aki (1957) and was further developed
in the early 2000s. Rickett and Claerbout (1999) state that the cross-
correlation function of the noise recorded by two passive sensors
equals the direct pulse response received when one of the sensors
is treated as a source in helioseismology. Weaver and Lobkis
(2001a, 2001b) find similar equivalence in diffuse acoustic fields
and demonstrate it by a theoretical derivation in finite systems
and laboratory ultrasonic experiments. Roux and Fink (2003) explore

the reconstruction of Green’s functions in underwater acoustics.
Later, they investigate the recovery of coherent wavefronts using
ocean ambient noise (Roux et al., 2004). Derode et al. (2003) extend
this theory and confirm the possibility to recover Green’s functions in
infinite open systems as well. Campillo and Paul (2003) apply this
technique to seismology using diffuse seismic coda and show the
possibility to retrieve surface waves using the diffuse noise generated
by distant sources. Shapiro and Campillo (2004) extract coherent
Rayleigh waves from ambient seismic waves and compute the period
group-velocity diagram that showed good consistency with previ-
ously predicted Rayleigh-wave tomographic maps. Later, they
carry out surface-wave tomography using the extracted Rayleigh-
wave Green'’s functions from long seismic noise sequences (Shapiro
et al., 2005).

The success of these early attempts has made this technique an
expanding research hot topic. Nowadays, surface-wave tomography
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based on CDNF has been done at different scales ranging from
hundreds of meters to thousands of kilometers (Chavez-Garcia
and Luzon, 2005; Gouédard et al., 2008; De Nisco and Nunziata,
2011; Liet al., 2012; Zhang and Gerstoft, 2014; Haned et al., 2015).
Besides, it has been proven that body waves can be reconstructed
from ambient noise (Roux et al., 2005a; Schimmel et al., 2011;
Nakata et al., 2014; Olivier et al., 2015), although it is much more
difficult than surface waves (Forghani and Snieder, 2010). More-
over, considering temporal subsurface changes, CDNFs are also ap-
plied to the passive monitoring area (e.g., Mordret et al., 2014;
Brenguier et al., 2015; Wu et al., 2016; Delaney et al., 2017).

Accurate approximation of Green’s functions between receiver
pairs relies on several strict requirements of the CDNF (Draganov
et al., 2003, 2006, 2010; Wapenaar and Fokkema, 2006; Mikesell
et al., 2009; Fichtner et al., 2016; Delaney et al., 2017). One of the
main requirements is that the noise field should be diffuse and equi-
partitioned (Weaver, 2010), which means that all modes must have
equal amplitude and must be uncorrelated. To get a perfect equipar-
titioned diffuse wavefield, the noise should be generated by homo-
geneously distributed, uncorrelated sources (Derode et al., 2003;
Wapenaar, 2004; Weaver and Lobkis, 2006). However, this require-
ment is difficult to meet in the real world. Noise sources usually
tend to be nonstationary and heterogeneously distributed (Shapiro
et al., 2006; Seydoux et al., 2016; Delaney et al., 2017), resulting in
traveltime biases, spurious arrivals, and asymmetry features in the
retrieved Green’s functions (Tsai, 2009, 2011; Froment et al., 2010;
Fichtner, 2014; Fichtner et al., 2016).

To overcome these drawbacks introduced by the directional
nature of ambient noise and obtain a good estimation of the Green’s
function, performing the CDNF over long observation periods has
been chosen as a solution by some researchers. The observation
periods needed normally span from days (De Ridder and Biondi,
2013) to months (Shapiro et al., 2005; Bensen et al., 2007; Haned
et al., 2015; Behm et al., 2016). In addition, numerous preprocess-
ing techniques have been proposed to improve the emergence of the
Green'’s function in the past few decades. Most of these techniques
can be generally divided into two categories: individual approaches
and array-based approaches. The individual approaches work on
individual raw data recorded by one receiver. Most classical tech-
niques belong to this category, such as 1-bit normalization (Cam-
pillo and Paul, 2003; Larose et al., 2004; Hanasoge and Branicki,
2013), the data-clipping approach using an appropriate chosen am-
plitude threshold (Sabra et al., 2005b), the data selection approach
(Pedersen and Kriiger, 2007; Groos and Ritter, 2009; Groos et al.,
2012), and temporal and spectral domain normalization approaches
(Bensen et al., 2007). Many array-based approaches have also been
proposed to reduce the influence of strong directional sources and
enhance the quality of retrieved Green’s function in recent years.
Instead of individual raw data, array data are usually used in these
approaches, such as the passive inverse filter approach, which is
based on the constructed noise-filtered matrix and working directly
on the crosscorrelations (Gallot et al., 2012), the spatiotemporal fil-
ter approach, which is based on a beamforming formulation and
working on the sample covariance matrix (SCM) (Leroy et al.,
2012), and the spatial filter approach, which can filter the array data
and cut down contributions of sources at a given direction (Carriere
et al., 2014). Moreover, in ocean acoustics, Menon et al. (2012¢)
propose a novel method to isolate the diffuse component of the
ocean noise field. The random matrix theory (RMT) (Menon et al.,

2012a) is used to model the behavior of the eigenvalues of the noise
SCM. Then, sequential hypothesis tests are applied to the SCM
eigenvalues, rejecting strong, directional noise components based
on the statistical model. Seydoux et al. (2017) develop a spatial
equalization approach to attenuate the influence of strong directive
seismic sources. An eigenvalue cutoff is derived theoretically, and
the eigenvalues of the SCM are normalized based on it.

This work attempts to perform the CDNF over much shorter time
periods, using ambient noise recorded by ocean-bottom cables. In
this study, an adapted eigenvalue-based filtering technique is pro-
posed by introducing a weight to the eigenvalue-based preprocess-
ing method (Menon et al., 2012c; Seydoux et al., 2017) to improve
the effectiveness of this method, considering the existence of local
incoherent noise. The contribution of this paper lies in generalizing
the strategies previously presented by Menon et al. (2012c) and
Seydoux et al. (2017), and making it possible to extract reliable
surface-wave dispersion measurements over much shorter recording
time.

The paper is organized as follows: First, we summarize some
preliminaries and definitions of the Green’s function retrieval ap-
proach. The adapted eigenvalue-based filtering technique is intro-
duced based on the statistical model of the SCM. Then, we describe
the noise-recording array and the data processing procedure. We
also investigate the temporal and spectral property of the noise used
in this study. Later, the data analysis and results, including beam-
forming analysis, Green’s function retrieval, and dispersion curve
extraction, are presented to extensively evaluate the effectiveness
of the proposed approach. Finally, we summarize the work and
draw some conclusions.

METHODOLOGY
Green’s function retrieval

Analytic derivations show that the time derivative of the noise
crosscorrelation (NCC) C; ; between two sensors i and j (located
atr; and r;, respectively) is approximately proportional to the time-
domain Green’s function (Snieder, 2004; Roux et al., 2005b; Sabra
et al., 2005a):

dCy(1)

ir g

where C;;(t) is the NCC function and G(r;;r;,t) denotes the
Green’s function between source i and receiver j. This relationship
holds when the noise field is diffuse.

The NCC function C;;(t) is defined as the integration of two am-

bient-noise records s,(f) and s;(z)
T
Ci;() Z/) si(7)s;(t + t)dr, )

where T denotes the observation period. In practice, the time-
domain NCC function of the data Cy;() is often computed with

Cij(1) = F Ry (f)]. 3

where F~! represents the inverse Fourier transform and i%i_i (f) is
the entry of the SCM at frequency f.
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Estimation of the SCM

With real noise data recorded by an N-sensor array, the SCM
R(f) is estimated in the frequency domain as

S u, (Fu, ()", )

where u,, (f) is the N-element Fourier coefficients vector of the mth
time segment of the data at a particular frequency f, H denotes the
Hermitian transpose, and M is the number of segments. In fact, it is
sufficient to obtain a good estimation R(f) if M is three times larger
than N (Menon et al., 2012a).

Statistical model of the SCM

Following Gerstoft et al. (2012), we assume a data model u as
u=s+n,+n;, )

where s =Y K | §;s; represents K (< N) independent sources
with direction s; and complex amplitude Sy, n. ~CN(0,62R,)
represents the incoherent propagating seismic noise, and
n; ~ CN(0, 621) represents incoherent noise (e.g., electronic noise
and sensor self-noise), which is nonpropagating and uncorrelated
between the sensors.

Assuming s, n., and n; are uncorrelated with each other, the
covariance matrix is computed as

K
R = E(wu”) = Z S Psist + 0?R, + 621
=1
=R, +o?R, + 671, 6)

where E denotes the expected value and I is an N X N identity
matrix.

If a 2D noise field is considered (which is the case for surface
waves), the propagating noise covariance matrix is proportional
to the analytical covariance matrix of 2D isotropic noise field
derived by Cox (1973):

[Re]ij = Jo2afrllr; —x;), )

where f denotes the frequency, J, denotes the zeroth-order Bessel
function of the first kind, y denotes the considered wave slowness,
and r; denotes the position of the receiver i, leading ||r; — r;|| to be
the distance between the receivers i and j. If a 3D field is consid-
ered, one can find another alternative formula to replace equation 7
in Cox (1973).

The statistical model of the SCM liL. relating to a diffuse noise
field can be defined as (Mestre, 2008; Menon et al., 2012b, 2012c¢)

A 1
R, = —R.XX*, 8
c = Re ®)

where X is an N x M random matrix with entries X;; ~ CA/(0, 1). If
L Monte Carlo trials are applied to equation 8, the empirical cumu-
lative distribution of the largest eigenvalue of R, can be defined as

{a, < x}
Pmax \IA{L (X) = T ’ (9)
where ay, ..., a; are the largest eigenvalues of ﬁc from each trial,

denotes the cardinality of the set, and max |ﬁc denotes the largest
eigenvalue of R..

Adapted eigenvalue-based filtering technique

The definition of SCM makes it a positive semidefinite Hermitian
matrix that only has nonnegative eigenvalues. Similar to Menon
et al. (2012c), the objective of this approach is to isolate different
components of R based on the eigenvalue behavior of the statistical
model as

K N’ N
R == Zlk@k@f —|— Z ﬂk@k@kﬂ —|— Z /Ik‘A’k‘A’f
k=1 k=K+1 k=N'+1
=R, + R, +R,, (10)

where ﬁl > ;12 > > :IN > 0 are the eigenvalues of R, IA(S is the
strong, directional noise-related component, ﬁd is the diffuse noise-
related component, and ﬁi is the uncorrelated noise-related com-
ponent.

Note that it is difficult to match each strong source to a particular
eigenvalue because some sources might have multiple effects over
several eigenvalues (Baggeroer and Cox, 1999). Melo et al. (2010,
2013) also do a related analysis. They study the singular-value spec-
trum of the crosscorrelogram (the crosscorrelations in a time-space
format) using singular-value decomposition. Their analogy indi-
cates that the sources in the stationary region may spread over dif-
ferent singular vectors, and mostly contributes to the largest
singular values. The field data example (Melo et al., 2013) indicates
the difficulty in relating certain events to certain singular values.

Moreover, lA{Y also contains a diffuse noise-related component
and an uncorrelated noise-related component and ﬁd also contains
an uncorrelated noise-related component, which means a precise
separation of R into the three components in equation 6 is not
possible.

The separation of R turns out to be the determination of values
for K and N’. At any given frequency, once K and N’ are deter-
mined, the strong, directional noise-related component and the un-
correlated noise-related component can be filtered, keeping only the
diffuse noise-related component in the SCM R. In this approach, the
eigenvalues of ﬁs are reweighted to the largest eigenvalue of ﬁd as

b= hkei= 1. K, (1)

and the eigenvalues of li,- are filtered as

~

2, =0,i=N'+1,...,N. (12)

The determination of number N’

Because all eigenvalues above the cutoff number N’ are set to 0,
an appropriate chosen cutoff value is important to make sure that the
seismic wavefield can be fully described with N’ eigenvalues and
the influence of uncorrelated noise can be well depressed. The
eigenvalue cutoff number N’ used here was theoretically derived
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by Seydoux et al. (2017) depending on the geometry and the de-
grees of freedom of considered wavefield. For a 2D wavefield case,
the cutoff value is defined as

N'(f) = min{22zfy¥ + 1,N/2}, (13)

where [x] is the least integer greater than or equal to x, y is the slow-
ness of the medium, and 7 is the typical separation of the array that
represents the average interreceiver distance. The term 7 is defined as

2 N N
i=1 j>i

where r;; is the great-circle distance between two sensors i and j.

The determination of number K

Following Johnstone (2001) and Menon et al. (2012c¢), a statistical
inference method is used to determine K. We attempt to identify
strong, directional noise-related eigenvalues of R with a statistical
hypothesis test.

At each frequency f, the eigenvalues {/All, ...,/AIN/,I} of R are
tested sequentially at each step k against the null and alternative
hypotheses:

‘Hy:This eigenvalue belongs to ﬁd

‘H;:This eigenvalue belongs to IA{Y. (15)

Starting with k& = 1, the test continues until H, no longer can be
rejected, which means that the remaining N’ — k eigenvalues are
not associated with the strong directional source(s).

The test statistic,

£(k) = i—’; (16)
is used at step k, with
~ ?V:/k /Ali
O = N -kl a7

where (k) is a normalization factor that makes z(k) comparable to
the analytical results at the same average power. The term N’ is used
in this approach instead of N because it is shown empirically that
including eigenvalues of ﬁi (which are very small compared with
other eigenvalues) makes the test statistic too large, leading to an
abnormal high-rejection probability of H, (Menon et al., 2012c).

The null hypothesis H, in equation 15 is rejected at a significance
level a if

7(k) > wP~!

max RV (1-a), (18)
where Pmax\f{f"““ is the empirical cumulative distribution of the
largest eigenvalue of an N —k + 1 dimensional SCM RY kL
which can be precomputed by 1000 Monte Carlo trials. The signifi-
cance level @ = 0.05 is used in this paper. We introduce a weight w
(0 <w <1) to this hypothesis test here because the existence of
incoherent noise components in lA{iv ~1 Will reduce the value of

7(k). In addition, the threshold determined by the hypothesis test
approach might not be equal to the exact threshold for strong,
directional noise in the real world. An appropriately selected w can
compensate these drawbacks and improve the effectiveness of this
approach.

The introduction of the weight here actually generalizes the two
approaches proposed by Menon et al. (2012c) and Seydoux et al.
(2017). When w =0, all eigenvalues tested are rejected and
reweighted to the same value according to equation 11. Then, this
approach actually converges to the spatial equalization method pro-
posed by Seydoux et al. (2017). When O < w < 1, this approach can
be recognized as a relaxed version of the spatial equalization
method, which can keep more original information of the diffused
noise component and show an improved performance compared
with w = 1. When w = 1, this approach is working in the same
way with Menon et al. (2012c), except the slight difference on the
determination of N'.

NOISE RECORDING AND PROCESSING

The ocean wave-related noise data studied in this paper were
recorded by a straight cable of a permanent reservoir monitoring
(PRM) receiver array. The cable contains 254 hydrophones with
a spacing of 50 m for a total cable length of 12.65 km. In addition
to normal active seismic sources, passive seismic data were ac-
quired during those periods outside active PRM operations. The
data used here were continuously recorded for 1.02 h at a sampling
rate of 500 Hz on 14 September 2015.

The raw noise recording for one receiver and its spectrogram are
shown in Figure 1. As is shown in Figure 1a, the noise recording is
contaminated by unknown events with large amplitudes, high en-
ergy, and directional property (which is shown in a beamforming
study later). Although most of the energy of the unknown events
spreads in the frequencies larger than 4 Hz (Figure 1b), the NCCs
might be affected significantly.

The power spectral density is presented in Figure 2. It shows a
clear peak at 0.09 Hz, which can most likely be recognized as in-
fragravity waves generated mostly by surf breaking at coastlines
(Olofsson, 2010). The microseisms, spanning from 0.2 to 4.5 Hz,
are believed to be generated by nonlinear wave-wave interaction of
wind-generated ocean gravity waves traveling in opposite directions
(Olofsson, 2010). Therefore, the microseisms are thought to be
more evenly distributed in the ocean and the Green’s functions are
retrieved over the frequency band 0.2—4.5 Hz in this study. Strong
directional sources, including earthquakes, ship noise, and other
sources with high energy, dominate the spectrum beyond 4.5 Hz.

To retrieve the empirical Green’s function from the ambient
noise, several preprocessing steps are applied to the data recorded
by each sensor individually. First, the data are demeaned, detrended
(Bensen et al., 2007), and band-pass filtered between 0.2 and
4.5 Hz. Then, 1-bit normalization is applied to the filtered data to
reduce the effect of energetic arrivals in the time domain. This step
is done by keeping only the sign of the signal. Then, the normalized
data are divided into nine blocks with 405 s each, and each block is
further segmented into M = 90 segments of 4.5 s. After that, Fou-
rier transform is applied to each segment, and the SCM for each
frequency ﬁ( f) is computed using equation 4 for each block, with
N =30 and M = 90. Finally, the eigenvalues of the SCM are com-
puted and filtered by the adapted eigenvalue filter, and the filtered
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SCMs are stacked over blocks before calculating
the NCC using equation 3.

DATA ANALYSIS AND RESULTS
Beamforming analysis

To evaluate the isotropic nature of the noise
field, conventional beamforming is performed
for each block at several frequencies. The beam
power is estimated with respect to the incident
angle as

B(f.0) = b (£ O)R(f)b(f.0), (19)

where 6 is the incident angle, b(f, 6) is the plane-
wave beamformer, with the nth entry given
by b,(f,0) = e~2nf7dsin0)/% in which 7 is the
phase speed of the surface wave and d is the in-
terstation spacing. We estimate the phase speed
based on the profile of Snorre field (a reservoir
that is very close to the Grane field studied here;
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Figure 1. (a) The raw noise recording at one sensor. Because the amplitude of pressure
is not used in the proposed method, the pressure is normalized with the maximum
amplitude. (b) The power spectral density (dB to 1 Pa?/Hz) as a function of time and

Li et al, 2012). An estimated phase speed
2 = 1000 m/s is used in this study. Although
the dispersion feature of the surface waves is ignored here, it does
not make a big difference for this data set. Moreover, more accurate
beamforming can be applied after the dispersion curves of the sur-
face wave are extracted.

The beam power of the unfiltered SCM R(f) is presented in
Figure 3. It shows that the noise field is approximately isotropic over
the entire duration at 1 Hz (Figure 3a), except for 30-35 min, when
an unknown event with high energy happened at approximately
—10°-20°. This event can be recognized more clearly at 2 and 3 Hz
in Figure 3b and 3c, respectively. In addition, Figure 3a—3c indicates
that noise signals coming from —20° to 20° turn stronger as the fre-
quency increases. A source dominates the beam power at 4 Hz in
Figure 3d, with an almost constant direction of 35°, which is recog-
nized as the source of the unknown energetic events shown in Figure 1
considering the high consistency in time.

After applying the adapted eigenvalue-based filter, the filtered SCM
1:2'( f) is expected to be a good approximation to
R, (f). Beamforming on the fillered SCMR'(f)is @) o,
presented in Figure 4b—4d and Figure 4f—4h at 2
and 4 Hz, respectively, for different weight values.
When w = 1, only part of the strong directional
power (caused by the unknown energetic events)
can be removed (Figure 4b and 4f). The strong di-
rectional power drops relatively as the weight de-
creases. When the weight decreases to 0.2, most of 0
the effect of the strong directional power is elim-
inated (Figure 4c and 4g). When the weight de-
creases to 0, this approach is working exactly as
the spatial equalization method proposed by Sey-
doux et al. (2017), and the beamforming results
(Figure 4d and 4h) do not show big improvements
compared to the case w = 0.2. Although the
eigenvalue filter can remove most of the strong,
directional power, the beam power between

45

0

Angle (°)

Angle (°)

frequency (known as a spectrogram).

PSD (dB to 1 Pa?/Hz)
|
o
S

—100 : : :
1072 107" 10° 10!
Frequency (Hz)

Figure 2. Power spectral density. Frequency axis is in logarithmic
scale for display purposes.

b) g . &

Time (min)

Time (min)

—45° and 45° is still a little higher compared with
other directions (approximately 5 dB higher in

Figure 3. Conventional beamforming results (dB with the reference to the maximum
energy) using the unfiltered SCM R(f) at (a) 1 Hz, (b) 2 Hz, (¢) 3 Hz, and (d) 4 Hz.
The beam power is normalized at each time segment.
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Figure 4h). A possible reason is that the sources between —45° and 45°
are not strong enough and the effects of these sources are indistin-
guishable in the eigenvalue spectrum using this approach.

Empirical Green’s function retrieval

The raw NCC, rather than its time derivative, is often used as an
approximation to the empirical Green’s function (Derode et al.,
2003; Roux et al., 2004; Gerstoft et al., 2008). The SCMs computed
from consecutive blocks are stacked and averaged, and equation 3 is
used to calculate the resulting NCC as (é‘,-j(t»T = F-! [(ﬁij(f))T],
where T represents the averaging time. Thirty NCCs between 30

recording pairs are treated as one gather. The maximum distance
for one gather is 1450 m. As is shown in Figure 5, we can have
225 gathers in this cable at most, with an overlap of 1400 m. Each
gather contains the averaged information of the seabed structure
covering 1450 m. In this study, we only focus on obtaining better
NCCs for a single gather. A further lateral change of the seabed
structure can be investigated, but it is beyond the scope of this paper.

The NCCs obtained using different approaches are presented in
Figure 6. Note that all the NCCs are band-pass filtered between 0.2
and 4.5 Hz. The standard NCCs retrieved from the unfiltered SCM
calculated using only classic temporal and spectral normalization
(TSN) (Bensen et al., 2007) are shown in Figure 6a. The result
is asymmetric, and the NCCs are apparently do-
minated by the unknown energetic events. As a
result, the expected surface waves are shielded.
Figure 6b and6c presents the NCCs retrieved

Angle (°)

2 Hz
90
45
0
—45
-90
0 10 20 30 40 50 60

from the filtered SCM R’. Most of the effect
of the unknown energetic events is removed in
Figure 6b, but some small peaks belonging to
the unknown energetic events can still be recog-
nized. The effect of the unknown energetic
events turns invisible in Figure 6c, using the
weight w = 0.2. Although the effect of the un-
known energetic events is completely removed

when the weight decreases to 0, spurious arrivals
appear in Figure 6d. This phenomenon indicates
that this approach turns too aggressive for these
data when w = 0, normalizing all the eigenvalues
of ﬁs and ﬁd. It not only decreases the strong

b) 2Hz,w=1
90
45
<
© 0
=)
=
< —45
-90
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C 2 Hz, w=0.2 4 Hz, w=0.2
) 90 : g)90 :
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2
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90 90

45 45
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—45 —45
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0 10 20
Time (min) Time (min)

sources, but it also enhances some unexpected
noise, causing spurious arrivals in the NCCs.
These arrivals dominate the NCCs, and surface-
wave arrivals are shielded.

To further enhance the signal-to-noise ratio of
the NCCs, averaging of the positive and negative
parts of NCC functions (Bensen et al., 2007;
Fichtner et al., 2016) is used here. Averaging the
30 40 50 60 positive and negative parts after the eigenvalue
filtering can compensate these shortcomings and
lead to more reasonable results. Figure 7 presents
the comparison between the normal NCCs and
averaged NCCs for w = 0.2. Figure 7b shows
a clearer dispersion feature of the surface waves
compared with Figure 7a. The case w = 0.2 in
Figure 8 further shows the necessity of the aver-
aging. Although the peaks at G and H in the case
show good symmetry considering the time axis,

30 40 50 60

Figure 4. Conventional beamforming results (dB with reference to the maximum they havedifferentamplitudes due to the effect of
energy). (a and e) Results obtained using unfiltered SCM R(f). (b-d and f-h) Results the unknown energetic events.
obtained using the filtered SCM R’(f) with different values of weight. The beam power

is normalized at each time segment.

Weight-selection study

The best weight for this approach should re-

H450m move most of the effect of the strong sources and

12 3. 30 31 224 225 .. 253 254 keep the useful information of the data as much
=G " 31 ® —o *—o—o as possible. Note that the best weight might be

ather Gather 224 different for different data sets, which makes it a

Gather 2 Gather 225 data-dependent parameter. Figure 8 presents the

Figure 5. The cable geometry and gathers.

NCC functions retrieved with four representative
weights at the distance 1250 m. The amplitudes of



Downloaded 01/01/20 to 47.91.206.22. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

Adapted eigenvalue-based filter

these NCC functions are nominalized by the maximum of each line
for display purposes. The dotted line denotes the NCC function re-
trieved from the SCM calculated using the TSN. Several peaks show

up at the positive part of this NCC, which are rec-
ognized as the effect of the unknown energetic
events. For the cases w = 0.5 (green line) and
w =1 (red line), the NCC functions are affected
by these peaks belonging to the unknown ener-
getic events at A, B, C, D, E, and F apparently,
shown in Figure 8. As the weight decreases to 0.2,
it shows an improved signal-to-noise ratio and
better symmetry feature. Spurious arrivals appear
when w = 0 (blue line), which means that some
noise other than surface waves is enhanced unex-
pectedly, leading to biased traveltimes. More val-
ues of w are studied, and it shows that a reasonable
good result can be obtained using w = 0.2, which
is selected for this data set.

The degree of symmetry of the NCCs is al-
ways considered as an indicator for more reason-
able results. We define an asymmetry index S to
quantify the asymmetry as

101C(1) = C(=1)2dt
§==2L0 | , 20
T 1C(0Far e

where C(7) is the crosscorrelation function and
T, is the time limit considered. In this way,
smaller asymmetry index means better symmetry
of the NCCs. We take Tj = 4.5 s and plot the
asymmetry index as a function of weight in Fig-
ure 9. It shows that the asymmetry index de-
creases steadily as the weight decreases from 1
to 0.2, indicating a better and better symmetry con-
dition. But as the weight continues to decrease, the
asymmetry index starts to increase, so decreasing
the value of the weight cannot improve the quality
of the crosscorrelations. Although better symmetry
conditions can be reached for w < 0.1, spurious
arrivals similar to Figure 6d start to arise and domi-
nate the waveforms. Therefore, w = 0.2 is consid-
ered to be a good choice for this data set.

Note that if a long time recording is used, the
weight should be considered as a time-dependent
parameter as well because the number and co-
herence of the noise sources in this field might
change over time. In this study, the weight is con-
sidered as a time-independent parameter because
a very short-time recording is used.

The extraction of dispersion curves

The slowness-frequency transform, a multi-
sensor method, is used to extract the dispersion
curves from the retrieved NCCs (McMechan and
Yedlin, 1981). In this method, the signal ampli-
tude is expressed as a function of frequency and
phase speed in a Gabor diagram. An example of
a Gabor diagram extracted from the ambient
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noise NCCs using eigenvalue filter with weight w = 0.2 is shown
in Figure 10. Note that the amplitude is normalized independently at
each frequency for display purposes. One fundamental and three
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Figure 6. Comparison of the NCCjg retrieved from the (a) unfiltered SCM calculated
using the TSN and filtered SCM R’ with different weights (b) w =1, (c) w = 0.2,
and (d) w = 0. The NCCs are band-pass filtered between 0.2 and 4.5 Hz.
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higher order modes can be recognized apparently over the investi-
gated frequency band 0.2—4.5 Hz. The corresponding phase-speed
dispersion curves are also extracted and indicated in Figure 10 with
white dots.

An example of dispersion curves extracted using different ap-
proaches (or weights) is presented in Figure 11 for comparison. The
fundamental modes of three approaches are well-matched in the fre-
quency band 0.7-1.7 Hz. The fundamental mode and the second-
order mode extracted using the TSN (black dots) are mixed together,
due to the influence of strong, directional noise. Dispersion curves

extracted using the adapted eigenvalue-based filter with w =1
and w = 0.2 are roughly matched in all four modes. The influence
of unknown energetic events in the case w = 1 (shown in Figures 4,
6, and 8) is thought to be the reason of the differences between w = 1
and w = 0.2. The differences can be either larger or smaller for differ-
ent gathers in Figure 5. When w = 0, the curves (blue diamonds)
become flat and do not show a good dispersion feature, which can
be indicated by the waveforms in Figure 6d as well. That is because
some unexpected noise is also enhanced under this condition and the
expected surface waves are shielded.

Figure 8. The NCC functions retrieved with differ-
ent weights at a distance of 1250 m. The amplitudes
are normalized by the maximum of each line for
display purposes. The term w denotes the weight
and TSN denotes the classic temporal and spectral
normalization method. The letters A—H mark differ-
ent peaks for the NCC functions. The dotted line
denotes the NCC functions using the unfiltered
SCM.
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w = 0.2, and w = 0, respectively.
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CONCLUSION

We have proposed and applied an adapted eigenvalue-based filter
to retrieve the surface wave part of Green’s functions from ocean
ambient noise recorded by a PRM array. Beamforming analysis
shows that strong, directional noise still exists in the recordings, even
after applying the traditional TSN techniques.

To get the wavefield closer to be equipartitioned, averaging the
crosscorrelations over time and 1-bit normalization are used. More-
over, by separating different components in the eigenvalue spectrum
of the SCM, the proposed eigenvalue-based filter significantly re-
duces the influence of stubborn, strong, directional sources and rel-
atively reinforces the weak isotropic background noise. After using
these methods mentioned earlier, the equipartitioned wavefield ac-
tually can be partially recovered, and a good-quality Green’s func-
tion retrieval is ensured. The approach makes it possible to retrieve
reliable surface-wave dispersion measurements over a much shorter
recording time (approximately 1 h) even if the noise recordings are
contaminated by strong directional noise over nearly half of the
whole observation period.

An appropriate chosen filtering weight is important for this ap-
proach. The introduced weight generalizes previously proposed eigen-
value-based approaches and makes it adaptable for different data sets.
Note that the weight is a data-dependent parameter, and it might be
time-dependent if a long time recording is used. A careful weight-
selection study must be implemented before this approach is applied,
to attenuate the interference of strong directional noise sources and
avoid spurious arrivals.
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