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Abstract
Comorbidity is common among long-term sick-listed and many prognostic factors for return to work (RTW) are shared across 
diagnoses. RTW interventions have small effects, possibly due to being averaged across heterogeneous samples. Identifying 
subgroups based on prognostic RTW factors independent of diagnoses might help stratify interventions. The aim of this 
study was to identify and describe subgroups of long-term sick-listed workers, independent of diagnoses, based on prognos-
tic factors for RTW. Latent class analysis of 532 workers sick-listed for eight weeks was used to identify subgroups based 
on seven prognostic RTW factors (self-reported health, anxiety and depressive symptoms, pain, self-efficacy, work ability, 
RTW expectations) and four covariates (age, gender, education, physical work). Four classes were identified: Class 1 (45% of 
participants) was characterized by favorable scores on the prognostic factors; Class 2 (22%) by high anxiety and depressive 
symptoms, younger age and higher education; Class 3 (16%) by overall poor scores including high pain levels; Class 4 (17%) 
by physical work and lack of workplace adjustments. Class 2 included more individuals with a psychological diagnosis, while 
diagnoses were distributed more proportionate to the sample in the other classes. The identified classes illustrate common 
subgroups of RTW prognosis among long-term sick-listed individuals largely independent of diagnosis. These classes could 
in the future assist RTW services to provide appropriate type and extent of follow-up, however more research is needed to 
validate the class structure and examine how these classes predict outcomes and respond to interventions.
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Background

Prolonged sickness absence is costly for society and asso-
ciated with adverse health outcomes and comorbidity for 
the individual [1]. In order to help individuals return to 
work (RTW) effective vocational rehabilitation interven-
tions are required as healthcare treatment alone has lit-
tle impact on work outcomes [2]. However, the results of 
such interventions are inconclusive [3–6]. The variation 
in effectiveness found in RTW interventions could partly 
be due to the effects being averaged across heterogeneous 
samples, meaning some subgroups will have no benefit 
or possibly even experience negative outcomes of these 
interventions [7]. Diagnosis is also often used as basis for 
recruitment into such interventions, even though diagnosis 
provides limited information of the complexity and inter-
relationship between factors associated with prognosis 
[8, 9]. For example, musculoskeletal and psychological 
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disorders, the most prevalent diagnoses for loss of work 
days in Norway [10] and major causes of disability world-
wide [11], have considerable comorbidity and several 
shared prognostic factors for RTW [12–16]. In addition, 
patterns of relapse between RTW and sick leave are com-
mon for both of these diagnostic categories [17, 18]. An 
alternative approach could be using known factors that 
influence RTW for early identification of subgroups at risk 
of prolonged sick leave, regardless of diagnosis.

Identifying subgroups that can be used to stratify care is 
challenging and has been a focus of research in some fields 
for many years [19], mainly in patients with musculoskel-
etal disorders [20–23]. Such stratification approaches have 
shown effective in treatment of patients with low back pain 
[24]. However, few studies have attempted to identify sub-
groups based on prognostic RTW factors independent of 
diagnoses. One recent study identified subgroups of unem-
ployed sick-listed individuals based on their predicted 
risk of long-term sickness absence and found four groups 
characterized by negative RTW expectations, positive 
RTW expectations, mental limitations and physical limi-
tations [25]. Such research is still lacking for those with 
an employment contract. As many social insurance and 
healthcare professionals serve varied user groups, identi-
fying homogeneous subgroups independent of diagnosis 
could assist these services to channel resources towards 
those who may benefit the most [26].

The aim of the present study was to identify and 
describe subgroups of long-term sick-listed workers, 
independent of diagnoses, based on prognostic factors for 
RTW. In particular, we wanted to investigate the following 
research questions:

1. What characterizes subgroups of long-term sick listed 
workers, independent of diagnoses, based on prognostic 
factors?

2. How are the psychological and musculoskeletal diagnos-
tic categories distributed within these subgroups?

Methods

Study Design

This cross-sectional study used data from a cohort of 
sick-listed workers in an ongoing randomized controlled 
trial [27]. All data in the present study were collected at 
inclusion in the trial, prior to randomization. The study 
was approved by the Regional Committee for Medical 
and Health Research Ethics in South East Norway (No: 
2016/2300). Written informed consent was obtained from 
all participants.

Study Setting

In Norway, employees are entitled to 12 months of full wage 
benefits when on sick leave. For the first 16 days of sick 
leave wages are paid by the employer, while the remaining 
year is paid for by the National Insurance Scheme through 
the Norwegian Labour and Welfare Administration (NAV) 
[28].

Participants and Recruitment

Participants in the present study were employed work-
ers aged 18–62 on sick leave for eight weeks the previous 
6 months, with a current sick leave status of 50–100%. Eligi-
ble participants living in Trondheim, Central Norway, were 
invited via NAV’s electronic communication site. Data from 
participants included in the trial from August 2017 to Octo-
ber 2019 were used in the present study. In this period 4708 
individuals were invited, of which 709 (15%) accepted and 
received a questionnaire by e-mail at eight weeks of sick 
leave. This questionnaire was answered by 571 (81%) of the 
included participants.

Measurement Instruments

The questionnaire included questions related to sociode-
mographic characteristics, symptoms and health, and work-
related factors. Variables were selected a priori based on a 
literature search of reviews on prognostic factors for RTW. 
Factors such as perceived health [29], symptom severity 
[13], and the possibility of workplace adjustments are pre-
dictors for prolonged sick leave [30, 31]. Furthermore, fac-
tors such as RTW self-efficacy [15], perceived work ability 
and RTW expectations have also been shown to be important 
for RTW [13, 32]. Common sociodemographic factors are 
age, education, gender, and the physical demands of one’s 
work [13, 16, 32]. In addition, information on participants’ 
current diagnosis was obtained from NAV.

Sociodemographic Characteristics

Sociodemographic factors included age, gender, educational 
level and the physical demands of the participants’ work. 
Age was scored as a continuous variable. Education was 
dichotomized as higher (completed minimum 3 years of 
college/university) or lower. Participants were asked how 
physically demanding their job was by describing their work 
using the categories “Mostly sedentary work”, “Work that 
demand that you walk a lot”, “Work where you walk and lift 
a lot”, “Heavy manual labour”, and “Do not know / unsure”. 
This variable was dichotomized (physically demanding work 
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or not) by combining the two less demanding categories and 
the two more demanding categories. “Do not know / unsure” 
was set to missing (n = 18).

Symptoms and Health

Anxiety was assessed using the Generalized Anxiety Dis-
order-7 questionnaire [33], and depression with the Patient 
Health Questionnaire-9 [34]. Anxiety and depression scores 
were combined into the Patient Health Questionnaire Anxi-
ety and Depression Scale (PHQ-ADS), which has shown 
to be a valid and reliable composite measure of depression 
and anxiety [35]. The PHQ-ADS was used to assess anxiety 
and depression symptoms on a scale from 0 to 48, where 0 
indicate low levels of symptoms and 48 indicate high levels 
of symptoms.

Pain intensity was assessed by an item from the Brief 
Pain Inventory [36, 37] querying participants to “Describe 
your average pain intensity the last week” on a scale from 0 
(no pain at all) to 10 (worst possible pain).

To detect individuals who may have had other health 
issues besides anxiety, depression or pain, we included the 
EQ-VAS analog scale from the EQ-5D-5L questionnaire 
[38]. This question asks participants to rate their current 
health on a scale from 0 to 100 (0 being worst possible 
health and 100 being best possible health) and was used to 
assess general health status.

Work Related Factors

Workplace adjustment latitude was examined with the ques-
tion “To what degree do you feel your workplace facilitates 
work adjustments?”. Response options ranged from 1 (to a 
very low degree) to 10 (to a very high degree).

Self-reported work ability was measured using the work 
ability score (WAS), which is an item from the Work Abil-
ity Index [39]. WAS asks participants about their “current 
work ability compared with lifetime best” on a scale from 0 
(completely unable to work) to 10 (work ability at its best). 
WAS has been shown to be a good alternative to using the 
full index [40, 41].

Work related self-efficacy was measured using an 11-item 
RTW-SE scale [42]. The scale has 11 questions on expecta-
tions of working if the participants were to imagine being 
back to work tomorrow. The scale ranges from 0 “totally 
disagree to 5 “totally agree”. An average score of the 11 
items was used.

Return-to-work expectations was measured by the ques-
tion “Starting today, how many months do you believe 
you will be sick-listed?”. Answers greater than 12 months 
(n = 14) were set to 12 months, as individuals need to apply 
for more long-term benefits after 12 months [43].

Diagnosis

Diagnosis was retrieved from the sick leave certificate and 
obtained from NAV. Diagnosis is usually set by the indi-
vidual’s general practitioner, using the International Clas-
sification of Primary Care (ICPC-2) [44]. Diagnoses were 
categorized as “Musculoskeletal” (ICPC-2 L), “Psychologi-
cal” (ICPC-2 P), or “Other” (containing all other diagnoses).

Statistical Analysis

Latent class analysis (LCA) was used to identify classes of 
sick-listed individuals based on their scoring on the prog-
nostic RTW factors. LCA attempts to identify subgroups, 
or classes, of individuals who share common characteristics 
and are as distinct as possible from the other identified sub-
groups [45]. LCA is a cluster analysis method that has some 
advantages over traditional techniques. For example, LCA 
can produce statistical information about model fit that can 
help guide model selection [46]. The method is also flexible 
and can be used with different types of data, allows for dif-
ferent subgroup distributions (i.e., shape, size, and orienta-
tion), and handles missing values well [46, 47].

The seven a priori chosen prognostic factors included as 
indicators in the LCA model were anxiety and depression, 
pain, general health, work ability, workplace adjustment lati-
tude, return to work self-efficacy, and return to work expec-
tations. The sociodemographic variables age, gender, edu-
cational level and physically demanding work were included 
as active covariates in the model (see Fig. 1).

The LCA was performed using an iterative approach 
starting with a model with a one-class solution and con-
tinuing up to seven classes. Model fit was assessed using 
the adjusted Bayesian Information Criteria (aBIC) [48] as 
it has been shown to be the most accurate information cri-
teria in simulation [49]. The optimal number of classes was 
decided based on a combination of aBIC and substantive 
interpretation (i.e. if the classes are distinct and have practi-
cal meaning based on the scoring on the prognostic factors). 
Based on the scoring patterns, the LCA estimated posterior 
probabilities for inclusion into each class for each individual, 
and the participants were assigned to the class where they 
had the highest posterior probability. A posterior probability 
above 0.7 is recommended, and 0.9 is suggested as good 
when assessing uncertainty of the class assignment [50].

We tested several model specifications as suggested by 
Masyn [51]. First, by allowing (or not allowing) class vari-
ances to be unequal across the latent classes. Secondly by 
relaxing the assumption of local independence by allow-
ing (or not allowing) indicator variables to covary within 
a class. For the most unrestricted model we then examined 
the covariance matrices for the indicator residuals in each 
class and identified pairs of variables whose residuals were 
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significantly associated within a class (p < 0.05), indicating 
local dependence [52]. We then relaxed the assumption of 
local independence only where local dependence was indi-
cated. For each model, a minimum of 200 random draws 
were performed in order to achieve an optimal model. After 
latent class modelling had been performed, we also exam-
ined the prevalence of the diagnosis categories within each 
class.

All analyses were performed using Stata 15.1 (StataCorp. 
2017. Stata Statistical Software: Release 15. College Station, 
TX: StataCorp LLC).

Results

Sample Description

The final sample (n = 532) consisted of 65% women, 65% 
had higher education and the mean age was 44 years (SD 
9.8). The mean symptom scores indicated mild anxiety and 
depressive symptoms (15.8 SD 10.2) [35], and mild to mod-
erate pain intensity (4.3 SD 2.7) [53]. The mean work ability 
of 3.5 (SD 2.7) can be described as “poor” [41]. Diagnoses 
were split by about a third for musculoskeletal (37%), psy-
chological (32%), and all other diagnoses (31%). See Table 2 
and Fig. 3 for additional characteristics.

Model Selection

The more unrestricted models generally had better model 
fit compared to the more restrictive models (see Table 1). 
The chosen model specification which presented the best 

fit included class-varying variances, as well as relaxation 
of the assumption of local independence for those vari-
ables that were found to covary within a class (Model 5 in 
Table 1). The five-class model presented the lowest aBIC 
and this model and those with ± one class were further 
examined. The four and the five class models showed simi-
lar patterns, however the four-class solution was selected 
based on the interpretation of practical meaning and sim-
plicity. Posterior probabilities were generated for 532 par-
ticipants, meaning 39 participants had too many missing 
values to be classified. The average posterior probabilities 
of class membership in the final model were 0.90, 0.83, 

Fig. 1  Latent class model. Indicator variables (anxiety and depression, pain, health, workplace adjustment latitude, work ability, return to work 
self-efficacy, and return to work expectations) and covariates (age, gender, education and physically demanding work)

Table 1  Model fit (adjusted Bayesian Information Criteria) for the 
latent class models

Lower fit indices indicate a better-fitting model. Model 1: Class-
invariant variances, diagonal covariances between indicator variables 
within classes. Model 2: Class-varying variances, diagonal indicator 
covariances. Model 3: Class-invariant variances, unrestricted indi-
cator covariances (*The 7-class model failed to reliably converge). 
Model 4: Class-varying variances, unrestricted indicator covariances. 
Model 5: Class-varying variances, unrestricted indicator covariances 
where local dependence was indicated.

Classes Model 1 Model 2 Model 3 Model 4 Model 5

1 19,920 19,920 19,382 19,382 19,376
2 19,536 19,360 19,285 19,075 19,039
3 19,419 19,187 19,042 19,023 18,994
4 19,200 19,090 19,011 18,974 18,917
5 19,144 18,988 19,002 18,951 18,898
6 19,122 18,950 19,009 18,959 18,908
7 19,093 18,937 N/A* 19,010 18,911
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0.90 and 0.88 in Classes 1–4 respectively which indicated 
that subjects were classified with low uncertainty.

Class Prevalence and Characterization

Table 2 describes the characteristics of the four classes and 
normalized class profiles can be found in Fig. 2. The first 
and largest class (45%, n = 240) was indicative of individuals 
who had low symptom scores, high RTW self-efficacy and 
high work ability. Class 2 included 22% (n = 114) of partici-
pants and had the highest level of anxiety and depression 

symptoms, poorest self-efficacy as well as younger age, less 
physically demanding work and higher education. The third 
class included 16% (n = 87) of participants and consisted of 
those with poor scores on several of the prognostic variables, 
including higher levels of pain, and anxiety and depressive 
symptoms. They also more frequently had lower educa-
tion and physically demanding work. Further, individuals 
in Class 3 expected to be sick listed longer than the other 
classes. Class 4 included 17% (n = 91) of the participants and 
was characterized by moderately high pain and anxiety and 
depressive symptoms. Similar to Class 3, subjects in Class 

Table 2  Characteristics of the overall sample and classes (values given are mean (SD), unless otherwise stated)

Education: Percentage of individuals that have completed a minimum of 3 years of higher education at the college or university level. Physically 
demanding work: Percentage of individuals that rate their work as “demanding a lot of walking and lifting” or “heavy manual labour”. Self-
reported health: Higher number indicate better health. Pain intensity: Higher number indicate more pain. Anxiety and depressive symptoms: 
Higher number indicate more symptoms. Workplace adjustment latitude: Higher number indicate greater possibility for work adjustment. Return 
to work self-efficacy: Higher number indicate greater self-efficacy

Variable (full range) Sample
n = 532

Class 1 
n = 240
(45%)

Class 2 
n = 114
(22%)

Class 3 
n = 87
(16%)

Class 4 
n = 91
(17%)

Age (18–62 years) 44 (10) 46 (9) 39 (9) 45 (10) 45 (10)
Gender (female)—n (%) 351 (66%) 160 (67%) 81 (71%) 56 (64%) 54 (59%)
Education (higher)—n (%) 351 (66%) 175 (73%) 98 (86%) 31 (36%) 47 (52%)
Physically demanding work (more)—n (%) 179 (34%) 67 (28%) 13 (11%) 49 (56%) 50 (55%)
Self-reported health (0–100) 50.4 (20.5) 54.3 (20.9) 45.0 (18.1) 48.8 (23.3) 49.1 (18.0)
Pain intensity (0–10) 4.3 (2.7) 4.1 (2.6) 3.1 (2.6) 6.1 (2.1) 4.2 (2.5)
Anxiety and depressive symptoms (0–48) 15.8 (10.1) 9.1 (5.0) 23.8 (7.7) 20.7 (10.9) 18.5 (10.7)
Work ability (0–10) 3.5 (2.6) 4.1 (2.9) 3.4 (2.1) 2.4 (2.3) 3.4 (2.6)
Workplace adjustment latitude (1–10) 6.0 (3.0) 7.6 (2.0) 6.0 (2.2) 5.8 (3.0) 1.7 (0.7)
Return to work self-efficacy (0–5) 2.5 (1.1) 2.9 (1.0) 1.8 (0.7) 2.6 (1.1) 2.3 (1.1)
Expected sickness absence length (0–12 months) 3.0 (2.7) 1.8 (1.2) 3.0 (0.7) 6.9 (3.7) 2.2 (1.6)

Fig. 2  Normalized class pro-
files. Variables are normalized 
on a scale from 0 to 1, where 1 
indicates poorer scores. In this 
representation, mean scores 
were divided by the variable’s 
full range and reversed where 
higher numbers originally indi-
cated favorable scores
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4 more frequently had a physically demanding job than the 
sample mean, but Class 4 was also characterized by poor 
possibilities for workplace adjustments.

Diagnosis

Figure 3 describes the distribution of the diagnosis catego-
ries in the sample and classes. Participants with a psycho-
logical diagnosis was to a greater degree grouped into Class 
2 (62%). Those with musculoskeletal diagnoses were more 
evenly distributed between Class 1 (40%), Class 3 (49%) 
and Class 4 (50%). Similarly, “Other” diagnoses were less 
frequently placed in Class 4 (15%), but more evenly distrib-
uted among the other classes. Diagnosis was missing for 30 
participants in the final model.

Discussion

This cross-sectional study identified four classes of sick-
listed individuals based on seven prognostic RTW factors 
and four covariates. The four classes were characterized 
by distinct patterns across prognostic RTW factors, largely 
independent of sick leave diagnosis.

Previous research has attempted to define more homoge-
neous patient subgroups with the goal of reducing complex-
ity and simplifying treatment options [54]. These endeavors 
have frequently been based on individual characteristics such 
as symptoms, pain sites, or other prognostic factors, and 
usually within defined patient groups. Previous studies have 
found subgroups that differ in severity [55–57], or subgroups 
that are qualitatively distinct, for example in symptoms or 
personal factors [22, 58–60]. For instance, studies using 
prognostic factors have found subgroups characterized by 

low risk, mental health issues, physical limitations and pain, 
and workplace related concerns in patients with musculo-
skeletal disorders [61, 62]. The present study adds to the 
previous literature by grouping individuals regardless of 
sick leave diagnosis into comparable subgroups that differ 
both in severity (i.e. most favorable scores on RTW predic-
tors in Class 1, medium in Class 2 and Class 4, and poorest 
scores in Class 3) and qualitatively (e.g. mental health issues 
and workplace factors in Classes 2 and 4, respectively). The 
findings suggest that sick-listed individuals can be classified 
based on prognostic factors rather than diagnosis in an RTW 
context. A cross-disease approach in the RTW process has 
also previously been advocated [13].

Implications for Practice

Identification of those at risk (or not at risk) for prolonged 
sick leave is important for both social insurance and voca-
tional rehabilitation services in order to create plans for 
RTW [63]. This is important in order to design rehabilitation 
services and to allocate appropriate resources based on the 
expected prevalence of a risk group. Screening to identify 
and provide additional care to high risk groups with muscu-
loskeletal disorders has shown to reduce time off work for 
these groups [24].

Class 1, with almost half of the participants, was charac-
terized by advantageous scores on several of the prognos-
tic RTW factors compared to the other classes. Identifying 
those with good prognosis may be useful in order to avoid 
excessive assistance (overtreatment) for these individuals 
[64], which may even delay RTW [65]. However, further 
research is needed to determine whether individuals in Class 
1 have a favorable RTW prognosis.

Fig. 3  Distribution of diagnos-
tic groups based on ICPC-2 
diagnoses set by the worker’s 
general practitioner. Percentages 
within each class and in the 
total sample
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Class 2 was characterized by younger age, anxiety and 
depressive symptoms, and poor RTW self-efficacy. Further-
more, Class 2 had a higher prevalence of individuals with 
a psychological diagnosis compared to the other classes. 
These characteristics indicate that work-focused cognitive 
therapies that could help promote self-efficacy could be use-
ful for such a group [66, 67]. However, the mean scores for 
anxiety and depressive symptoms were similar in Class 3 
and Class 4. This indicate that anxiety and depression symp-
toms were common for those with poorer prognostic scores 
(Classes 2–4) in the present study regardless of the preva-
lence of psychological diagnoses in the classes.

Class 3 was characterized by individuals who generally 
scored poorly on many of the prognostic RTW factors. Indi-
viduals in this class reported both pain and mental health 
symptoms, but more often had a musculoskeletal diagno-
sis than a psychological diagnosis. For those experiencing 
chronic pain, research has emphasized that psychosocial 
factors, such as fear-avoidance beliefs and psychological 
distress, are associated with poor outcomes [68]. Such fac-
tors are common in the first few months after injury [69] but 
may not always be identified when seeking help for physical 
symptoms [70]. Previous cluster analyses of musculoskel-
etal patients have also identified psychologically distressed 
subgroups [22, 60, 62, 71], which could be similar to Class 
3 in the present study. Such groups may benefit from broader 
interventions also focusing on coping, problem solving, and 
other psychosocial factors [4, 72, 73].

Class 4 was characterized by physically demanding work 
in combination with poor possibilities of workplace adjust-
ments. Although some work tasks are difficult to accom-
modate to individual employees, Class 4 may still indicate 
a proportion of sick-listed workers where workplace inter-
ventions could be sought in order to facilitate RTW as work 
adjustments are important for RTW [16, 31]. Where adjust-
ments are difficult, interventions could address other aspects 
of the workplace, such as supervisor support, disability man-
agement practices, and workplace culture [71, 73]. Some of 
those experiencing low adjustment latitude after illness may 
also need help or encouragement in finding a more suitable 
job. Job changes can be a solution to ill health in order to 
avoid movement out of employment [74].

In patients with back pain, using risk factors to identify 
subgroups led to the development of the PRICE tool [61, 
62, 71, 75]. The PRICE tool can be used to identify those 
with poor prognosis for RTW and also indicates where assis-
tance should be focused (e.g., the workplace, psychological 
coping, physical activation) for this patient population [75]. 
The present study indicated similar subgroups independ-
ent of diagnoses as those described in the aforementioned 
studies, which supports the relevance of our subgrouping 
approach. The identified subgroups may indicate typical 
barriers to RTW at this stage of sick leave. Such groups 

could be used, for instance by social insurance workers who 
serve a diagnostically varied user group, as a starting point 
to identify problem areas that could be the focus for voca-
tional rehabilitation interventions. For the present findings, 
however, further research is needed to examine the practi-
cal relevance of prognostic subgrouping across diagnoses. 
Identification of subgroups based on risk of prolonged sick 
leave may be useful in itself if the predictive validity of the 
classes is acceptable. However, it does not necessarily fol-
low that such subgroups respond to interventions. Matching 
interventions to prognostic risk factors can be difficult and 
has previously been found to be lacking in practice [73]. 
Furthermore, investigations of intervention effects for such 
subgroups require separate carefully designed studies [76].

Strengths and Limitations

Use of LCA reduced complexity of the variable combina-
tions into four distinct groups and allowed us to identify 
differences between the classes of long-term sick-listed indi-
viduals across diagnoses. Further, using prognostic factors 
on their continuous scale in the LCA retained all information 
on the variables, which is useful as sick individuals usually 
differ on a continuum rather than by dichotomous symp-
tom or diseases states [9]. The classes in the present study 
were based on a priori identified prognostic factors that are 
predictors for RTW, thereby increasing theoretical validity.

There are some limitations to drawing strong conclusions 
from this study. First, the findings in the present study needs 
to be replicated and the classes validated in representative 
samples. Additional research should also be performed 
with additional or different prognostic variables to exam-
ine if the class structures and prevalences are significantly 
altered. Second, sick leave outcomes for these classes should 
be investigated to examine whether the classes predict pro-
longed sickness absence. Finally, the study may suffer from 
selection bias of participants that may affect the composition 
and prevalence of the classes.

Conclusions

The present study show that a heterogeneous sample of long-
term sick-listed individuals can be classified into four dis-
tinct classes based on prognostic RTW factors, largely inde-
pendent of medical diagnosis. These four classes differed 
both in severity and qualitatively across prognostic factors 
for RTW. Identifying subgroups based on prognostic vari-
ables might be useful to identify problem areas that could be 
the focus for additional RTW follow-up. Further research is 
needed to validate the class structure, the predictive validity 
of the classes and how they respond to interventions.
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