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Abstract

The availability of modern technology and the recent proliferation of devices
and sensors have resulted in a tremendous amount of data being generated,
stored and handled in various applications that affect almost all aspects of
daily life. The analysis and detection of interesting events from such mas-
sive amounts of data, which typically originate from multiple sources and
have many different forms and characteristics, are important tasks. A major
challenge is that the data generated in this way are inherently dynamic, and
their underlying distribution may change and evolve over time. Despite the
efficiency of existing state-of-the-art methods, many challenges remain to be
solved. One limitation is that most existing methods are designed to work
well with certain specific characteristics, or for certain predefined assump-
tions about the data, for example that they are stable and independent, and
have identical underlying distributions. Moreover, although many existing
approaches have been shown efficient and effective in practical applications,
the proposed solutions often lack formal theoretical foundations. Hence,
these results are mostly based on heuristics and empirical observations.

An important aspect, particularly in dynamic environments, is that the
data characteristics are normally unknown beforehand, and that such as-
sumptions about data are rarely valid in real life. With this in mind, the
main goal of this thesis is to address the aforementioned drawbacks and chal-
lenges, by developing novel approaches and techniques for detecting events,
while taking into account the different characteristics and the dynamic na-
ture of the underlying distribution of the data. An important contribution
of this work is that in addition to demonstrating the efficiency and effec-
tiveness of our methods in practice, via empirical studies and experiments,
we also provide principles and theoretical foundations to prove that the
efficiency of the proposed methods also holds in formal proofs. Several ex-
tensive experiments are carried out to thoroughly evaluate the performance
of the proposed methods. In particular, we perform comprehensive eval-
uations using both synthetic datasets with ground truths and real-world
datasets. The experimental results show that our proposed approaches out-
perform alternative state-of-the-art algorithms on event detection problems,
and demonstrate their efficiency, effectiveness, and applicability.
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“No man ever steps in the same river twice, for it’s not
the same river and he’s not the same man.”

- Heraclitus, 535 BC – 475 BC

“It is not the strongest of the species that survives, nor
the most intelligent; it is the one most adaptable to change.”

Charles Darwin, 1809 – 1882

“Everything in the real world is dynamic and changing.”

Unknown
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5.5 Results with Naẗıve Bayes(NB) and Hoeffding Tree(HT) clas-
sifiers on synthetic datasets . . . . . . . . . . . . . . . . . . . 143
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Part I

Overview and Preliminaries
This part introduces the motivation and research context for this PhD

work. It also presents the research questions and the methodologies used to
conduct this research. An overview of the connection between the contribu-
tions of this work and the publications making up this thesis is presented at
the end of the first chapter. The second chapter briefly presents the back-
ground and preliminaries related to the research topic of this thesis, and
discusses related work and alternative state-of-the-art approaches.
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Chapter 1

Introduction

In this chapter, we first introduce the motivation and research context for
this PhD work (Sections 1.1 and 1.2). We raise several research questions
related to the context and motivation, and use these questions to define the
problem addressed in this thesis. Next, we present the methodologies used
in this research to address these research questions (Section 1.3). Section 1.4
explains the research method used, and Sections 1.5 and 1.6 describe our
contributions and the connection between the contributions and publica-
tions. Finally, the structure of the thesis is described.

1.1 Motivation

This work seeks to tackle and overcome challenges related to event detection
that arise from evolving data (i.e., data that change over time). Data are
naturally generated, and are used in real-world applications in every aspect
of daily life. They are used in many important domains such as geome-
try, physics, biology and computer science, to name only a few. In real-
world applications, data exist in many different forms, with many different
characteristics. For instance, the two main types of data are unstructured
and structured data (where semi-structured data can be considered as a
form of structured data). Most data in real applications is in unstructured
form, such as in text and documents, and these unstructured data are nor-
mally preprocessed and transformed into structured data in order to enable
easy estimation and maintenance. Structured data offer a standardized for-
mat that can provide comprehensive and insightful knowledge of the whole
data. There are various types of structured data, for example the transac-
tional data used in retail, attribute-relation data, points of interest (POI),
multidimensional array data (tensors), and graphical data, among others.

3



4 Introduction

Detecting and analyzing interesting events (i.e., changes, anomalies, fraud
detection) within massive amounts of data in different forms is an impor-
tant task in the field of data mining. Since data are constantly changing and
different types of data may have different characteristics, detecting events
in evolving data is a relatively difficult problem.

A significant challenge that arises when working with various types of
structured data in dynamic environments is that information on the char-
acteristics of the data is not available. Although efficient methods have
been designed to work well with certain specific characteristics, the charac-
teristics of the data are in most cases unknown beforehand, and a robust
solution needs to take into account the different characteristics of data in
order to avoid bias. This means that an efficient solution must take into
account the different characteristics of the data, and needs to automatically
adapt to any changes both quickly and accurately.

Another important challenge is that data evolve (e.g., data in the form of
a stream), and their underlying distributions may also change independently
of each other, under constraints that may also be continuously changing.
In addition, the correlations and transitions between features or groups of
features extracted from data are complex. Nevertheless, most existing ap-
proaches assume that data are: (i) stable; (ii) drawn from the same distribu-
tion; and (iii) independent and identically distributed. These assumptions
usually do not hold in real, dynamic environments, and the performance of
traditional approaches is consequently dramatically reduced when changes
occur. Meanwhile, several empirical experiments and studies have shown
that there are important dependencies among data points in real-world ap-
plications [178, 17]. No sufficient study has investigated detection events in
dynamic and fast-evolving data with a focus on the correlations and tran-
sitions of the data. This leads to a particular need to design an efficient
solution that carefully considers the dependencies among data, in which
the corresponding hypotheses for detecting events are capable of capturing
insightful and meaningful events for the user.

In the context of high dimensional and streaming data, where data arrive
in a stream with high volume and velocity, the design of an efficient solu-
tion with limitations on memory and computational infrastructure is also a
challenge. More specifically, the task of detecting events, e.g., dense subten-
sors and subgraphs, is generally hard, and this is typically an NP-complete
or NP-hard problem. Thus, instead of using an exact method with high
complexity and high resource consumption, approximation approaches are
commonly used, and these methods usually have polynomial time complex-
ity that depends on the dimensions and the size of the data. Despite their
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efficiency in practical applications, most currently existing approaches lack a
formal theoretical foundation that can guarantee the quality of the solution,
since the results and efficiency are mostly based on heuristics and empirical
observations. An important drawback of methods with formal theoretical
foundations is that they can only provide a loose theoretical guarantee for
the solutions to the event detection problem. A further limitation of current
methods is a lack of generalization, e.g., the number of estimations they can
perform at a time. This means that state-of-the-art methods can estimate
only one instance of an estimator with minimal guarantees on the quality
of the solution. Motivated by this, we aim in this work to address these
drawbacks and challenges by proposing novel techniques and methods for
detecting events in various types of data in evolving environments. More
specifically, we investigate the following:

1. Dynamic memory allocation and data structures that take into ac-
count the unknown distribution and characteristics of data, in order
to avoid bias between dense and sparse distributions when construct-
ing patterns;

2. Temporal dependencies and hypotheses for detecting changes in evolv-
ing data;

3. Simulations of the correlations and transitions of features in order to
sketch a stream with concept drift;

4. Generalization and expansion of the problem of multiple event esti-
mation, with a better guarantee of the quality of the solutions; and

5. Provision of a well-founded theoretical solution to prove the efficiency
and correctness of our solutions.

1.2 Research Context

This research work forms part of the BigData strategic research project [1]
at NTNU, and was supported and funded by the MUSED (MUlti-Source
Event Detection) [2] project, one of the strategic projects within the BigData
project. MUSED is hosted by the Faculty of Information Technology and
Electrical Engineering at NTNU. It focuses on developing the framework
and techniques necessary for effective and efficient detection and prediction
of events from multiple and possibly heterogeneous streaming data sources.

The proposed approaches need to take into account the fact that data
in this context are generally dynamic, and that the underlying distribution



6 Introduction

may be constantly changing. The aim of this PhD thesis is to examine and
solve challenges related to event detection and prediction in a continuously
changing environment involving various types of data. Some of the main
challenges faced in relation to event detection problems in big, dynamic,
streaming data are as follows:

• The high volume and high velocity of data;

• Limitations on the memory and computation infrastructure;

• Data that constantly change and evolve, with unknown underlying
distributions;

• Highly complex and correlated features within high-dimensional data;

• The assumption of independent and identically distributed character-
istics, and hypotheses based on this assumption;

• A lack of theoretical foundations for guarantees of the quality, effec-
tiveness, and correctness of these methods, from both a practical and
a theoretical perspective.

1.3 Research Questions

The goal of this research study is to design and build a new, efficient and
effective framework for mining (event detection) in various types of data
such as transactional data, attribute-relation data, points of interest, ten-
sors, and graph data. The main research problem is to fully understand and
utilize the characteristics (e.g., density, distribution, dependence) of various
types of dynamic data (transactions, points of interest, graphs, tensors) to
model user behaviors for event detection problems such as patterns, changes,
fraud and anomaly detection. Figure 1.1 illustrates the relations between
data structure, behavior modeling and events in an event detection task,
and studying the relationships between these three aspects is the main task
of this thesis. This work also aims to address the problems with the current
lack of insight, understanding and theoretical analysis of state-of-the-art
methods.

The research objective is to develop efficient algorithms for:

• Data structure analysis and change detection hypotheses;

• User behavior modeling; and
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Figure 1.1: Relationships between data structure, behavior modeling and
events in the event detection problem.

• Event detection in high-dimensional and complex data.

The primary objective of the work is to propose methods that not only give
good performance in terms of runtime and memory consumption, but also
offer high levels of accuracy and high scalability. In addition to demon-
strating the efficiency of these methods in practice through empirical ex-
periments, a further important objective is to provide principles and formal
theoretical foundations for the proposed methods, in order to prove their
efficiency. In order to achieve the main goal of this research, a set of research
questions and corresponding sub-tasks can be established as follows:

RQ1. Selection of data characteristics and features:

• On which characteristics of the data do the efficiency and accu-
racy of a data stream mining algorithm largely depend?

• How can we avoid bias when constructing the data characteris-
tics? How can we design efficient methods to work well with a
variety of different characteristics of data, and specifically with
streaming data in a high-dimensional space?

RQ2. Change hypotheses:

• How can we identify hypotheses for changes in the underlying
distribution of data?
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• How can we handle the evolving and drifting characteristics of
streaming data?

• What is the impact of the dependencies of data features on
modeling data features?

RQ3. Simple and robust models:

• What is the most effective data structure that can be employed?

• How can we design models that easily and quickly adapt to the
evolution of data?

• What are the mechanisms for the tuning process of these learn-
ing models?

RQ4. Efficiency and effectiveness of methods:

• How can we develop accurate, fast and adaptable models?

• How can we achieve a low computational complexity with a
rapid response to changes?

• How can we automatically set the coefficients of these models?

RQ5. Correlations between data features:

• Are there any correlations/transitions between data points or
the features of data in the data space?

• Are these correlations impacted by or involved in the evolving
or drifting of features?

RQ6. Theoretical guarantee foundation:

• What are the limitations of the current methodologies and meth-
ods for event detection in terms of theoretical guarantee foun-
dation?

• Are there any other fundamental theories and guarantees that
can provide a more theoretical guarantee for the current state-
of-the-art algorithms in the context of event detection?

RQ7. Generalization:

• Can we overcome these limitations on guarantees of current so-
lutions?
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• Is it possible to generalize the problem?

• Can we provide concrete proofs to guarantee better solutions?

In order to answer these research questions, we explore and address these
challenges by proposing novel techniques and methods for detecting events
in various types of data in evolving environments. The following areas are
studied:

1. A dynamic memory allocation mechanism and a linear joining method
for avoiding bias when constructing patterns with unknown distribu-
tions and characteristics of dense and sparse data;

2. Hypotheses for detecting changes in evolving data and the impact of
data dependencies on the detection of changes and concept drift;

3. Simulations of the correlations and transitions of features in relation
to change detection and sketching a stream with concept drift;

4. Generalization of the problem of multiple event estimation with a bet-
ter quality guarantee for the solutions, and expansion of this problem
to both tensor and graph data;

5. A well-founded theoretical solution that can guarantee the efficiency
and correctness of these solutions.

1.4 Research Method

In order to successfully carry out this research work, the following iterative
ideas were applied via a sequence of steps.

1. Defining and articulating a research question: The objective of this
work is specified by determining two targets: (i) providing a novel and
better solution to existing research problems; and (ii) solving a novel
practical research problem.

2. The topics and challenges that will be pursued in more detail are
thoroughly described.

3. For each working problem, we carry out a detailed examination of the
background and literature for the problem.

4. The state-of-the-art algorithms are identified, with their advantages
and the limitations and drawbacks that could be addressed and im-
proved.
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5. For each working problem, new theoretical principles and hypotheses
are proposed to demonstrate the correctness of the proposed methods.

6. An empirical study is carried out to propose a novel approach and
develop a new solution to solve the problem or improve existing solu-
tions.

7. The algorithms are implemented and extensive experiments performed
to allow us to compare the proposed method with the state-of-the-art
alternatives in the literature. We analyze and evaluate this comparison
and present an in-depth discussion to demonstrate the strong and weak
points of each method.

1.5 Contributions

The contributions of this thesis include novel techniques, approaches and
improvements to current state-of-the-art methods in order to address issues
related to event detection problems. In particular, our contributions are a
combination of both practical research and a novel theoretical foundation.
Novel and efficient algorithms are designed using the research methodology
and the novel proposed theoretical foundation. Extensive experiments are
also performed to evaluate the performance of these methods. Furthermore,
we discuss and analyze the results to show that our proposed methods can
address the issues raised in our research questions. The following para-
graphs present a brief overview of our contributions with respect to the
corresponding research questions of this study. The main contributions of
this thesis can be summarized as follows:

I. Detection in Streaming Data

C1. We propose a summary utility-list structure to reduce the memory
consumption and speed up the join operation for constructing the infor-
mation of patterns in the detection of high profit patterns. This structure
is integrated into a novel algorithm for efficiently discovering high util-
ity patterns. The proposed method efficiently stores and retrieves these
utility-lists by dynamically allocating memory, and reuses memory dur-
ing the mining process. The memory for the utility-list is organized as
a stream, and is dynamically estimated. Moreover, we introduce a lin-
ear time method for constructing the utility-list segments in a utility-list
buffer. These contributions relate to research questions RQ1 to RQ3, and
are discussed in Chapter 3 of this thesis.
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C2. We introduce an algorithm to detect changes in the utility distri-
butions of itemsets in a stream of quantitative customer transactions.
The proposed algorithm utilizes a fading function to quickly adapt to
changes in a data stream. We propose an approach that uses statisti-
cal testing based on Hoeffding’s inequality with Bonferroni correction to
report significant changes to the user. The proposed method is capable
of discovering both increasing and decreasing trends. In addition, we
propose a new distance measure that generalizes the cosine similarity by
using the distances between pairs of high utility itemsets (HUIs) to detect
changes in the structure of HUIs. These contributions relate to research
questions RQ1, RQ2 and RQ5, and are discussed in Chapter 4.

C3. We propose a new and efficient method of detecting changes in
streaming data by exploring the temporal dependencies of data in the
stream. We introduce a new statistical model to compute the probabil-
ities of finding change points in the stream, using the temporal depen-
dency information or factors between different observed data points in
a stream. The computed probabilities are used to generate a distribu-
tion, which is then used in statistical hypothesis tests to determine the
candidate changes. We also use the proposed model to develop a new
algorithm for detecting change points in linear time, which can therefore
be used in real-time applications. These contributions relate to research
questions RQ2 to RQ5, and are discussed in Chapter 5.

II. Feature Correlations with Concept Drift

C4. We propose a novel robust method for sketching streaming his-
tograms with limited computing resources, based on an ensemble ran-
domization method. We develop an algorithm that uses an evolving
model with adaptive coefficients to obtain the histogram elements. Our
algorithm considers the timestamps of different observations in each co-
efficient, and solves an optimization problem to evolve the values of the
coefficients to optimal values. We use Adaptive Relaxed Alternating Di-
rection Method of Multipliers (ARADMM) [166] as a solver for this opti-
mization problem. These contributions relate to research questions RQ1
and RQ3 to RQ5, and are discussed in Chapter 6.

III. Dense Subregion Detection

C5. We propose novel concrete proofs for the problems of detecting dense
subtensors in a tensor data, and dense subgraphs from a graph. We
introduce a better theoretical density guarantee for both dense subtensor
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and dense subgraph detection for approximation algorithms. The new
boundary is better than in state-of-the-art algorithms, and is not only
dependent on the dimension of data space, but our novel density guarantee
is also constrained to the size of the densest subtensor/subgraph. These
contributions answer research questions RQ1, RQ3, RQ6 and RQ7, and
are discussed in Sections 7.4 and 7.5.

C6. We propose a new technique that can improve the task of dense sub-
tensor detection. The contributions include both theoretical and practi-
cal solutions. We develop concrete theoretical proofs for the estimation
of dense subtensors in a tensor problem, provide a guarantee for a higher
lower bound density for the estimated subtensors, and develop a new the-
oretical foundation to guarantee a high density of multiple subtensors.
Furthermore, we develop a new algorithm that is not only less complex,
but also guarantees the correctness of its effectiveness. This method is
applicable to the detection of dense subtensors, and is more efficient than
existing methods. These contributions relate to research questions RQ1,
RQ3, RQ6 and RQ7, and are discussed in Chapter 7.

1.6 Publications

The contributions described above have been published in several highly
regarded journals and international conferences. This thesis is based on the
content of the following publications:

P1. Quang-Huy Duong, Philippe Fournier-Viger, Heri Ramampiaro, Kjetil
Nørv̊ag, and Thu-Lan Dam, Efficient High Utility Itemset Mining us-
ing Buffered Utility-lists. In Applied Intelligence, Springer, 48(7):1859-
1877, 2018.
Description: This publication introduces an efficient method for
mining high utility patterns [44]. It proposes a novel structure, and
summarizes the memory in the form of a stream. The algorithm ac-
cesses this summary, and dynamically allocates memory on request
to avoid performing costly joins. The content of this publication is
discussed in Chapter 3.

P2. Quang-Huy Duong, Heri Ramampiaro, Kjetil Nørv̊ag, Philippe Fournier-
Viger, and Thu-Lan Dam, High Utility Drift Detection in Quantita-
tive Data Streams. In Knowledge-Based Systems, Elsevier, 157:34-51,
2018.
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Description: This study proposes the use of two types of changes (lo-
cal and global) in change detection within a quantitative data stream [50].
It introduces an efficient algorithm to detect changes of a single item
or changes in the structure of high utility patterns in a stream of data.
The content of this publication is discussed in Chapter 4.

P3. Quang-Huy Duong, Heri Ramampiaro, and Kjetil Nørv̊ag, Applying
Temporal Dependence to Detect Changes in Streaming Data. In Ap-
plied Intelligence, Springer, 48(12):4805-4823, 2018.
Description: In real-world applications, the assumption of identical
and independent distributions of data is not reasonable in many con-
texts. This work studies and investigates the temporal dependence of
data in the context of change detection in streaming data [46]. The
dependence of the data is based on a projection of the last k data
points onto a `1 ball constraints. The content of this publication is
presented in Chapter 5.

P4. Quang-Huy Duong, Heri Ramampiaro, and Kjetil Nørv̊ag, Sketching
Streaming Histogram Elements using Multiple Weighted Factors. In
Proceedings of the 28th ACM International Conference on Informa-
tion and Knowledge Management, CIKM, pages 19–28, 2019.
Description: This publication proposes an evolving model to study
the correlation of data features in an evolving streaming data [47]. It
simulates the transitions of features by optimizing a proposed objec-
tive cost. The proposed method sketches the stream in a compact
presentation, quickly adapts to concept drift, and preserves the sim-
ilarity of data with high accuracy. The content of this publication is
described in Chapter 6.

P5. Quang-Huy Duong, Heri Ramampiaro, and Kjetil Nørv̊ag, Density
Guarantee on Finding Multiple Subgraphs and SubTensors. In ACM
Transactions on Knowledge Discovery from Data, pages 1-32, 2021.
Description: This paper proposes novel concrete proofs for the de-
tection of dense subtensor and dense subgraph problems. In this pub-
lication, we introduce a better theoretical density guarantee for both
dense subtensor and dense subgraph detection, for greedy approximation-
based algorithms. The content of this publication is discussed in Sec-
tions 7.4 and 7.5.

P6. Quang-Huy Duong, Heri Ramampiaro, and Kjetil Nørv̊ag, Multiple
Dense Subtensor Estimation with High Density Guarantee. In Pro-
ceedings of the 36th IEEE International Conference on Data Engi-
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neering, ICDE, pages 637–648, 2020.
Description: This work provides a proof of a higher lower bound
density for the dense estimated subtensors [48]. It also introduces a
novel theoretical foundation to prove that there are multiple dense
subtensors with a density that is guaranteed to be higher than a lower
bound. In this publication, we propose a novel technique for esti-
mating several dense subtensors with a guarantee of the density. The
content of this publication is presented in Chapter 7.

Additional Publications: In addition to the above publications, the
author also contributed to the following publications:

P7. Thu-Lan Dam, Heri Ramampiaro, Kjetil Nørv̊ag, and Quang-Huy
Duong, Towards Efficiently Mining Closed High Utility Itemsets from
Incremental Databases.
In Knowledge-Based Systems, 165:13–29, 2019.

P8. Philippe Fournier-Viger, Peng Yang, Jerry Chun-Wei Lin, Quang-Huy
Duong, Thu-Lan Dam, Jaroslav Frnda, Lukas Sevcik, and Miroslav
Voznak, Discovering Periodic Itemsets using Novel Periodicity Mea-
sures.
In Advances in Electrical and Electronic Engineering, 17(1):33–44,
2019.

P9. Thu-Lan Dam, Sean Chester, Kjetil Nørv̊ag, and Quang-Huy Duong,
Efficient Top-k Recently-Frequent Term Querying over Spatio-Temporal
Textual Streams.
In Information Systems, 97:101687, 2021.

The contents of the above publications are only partly relevant to this the-
sis [39, 58, 35], and were therefore not included in this work. Table 1.1
shows the details of the relationships between each of these publications
and theirs contributions in terms of addressing the research questions.

1.7 Thesis Structure

This thesis is organized into five main parts. Part I introduces the moti-
vation, research context, research questions, and related work on state-of-
the-art methods. In Parts II-IV, we present our proposed approaches for
addressing the challenges of simulating the correlations and transitions of
data features with unknown underlying distributions, and discuss the results
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Table 1.1: Links between contributions and publications.

P1 P2 P3 P4 P5 P6

RQ1 • • • • •
RQ2 • •
RQ3 • • • • •
RQ4 • •
RQ5 • • •
RQ6 • •
RQ7 • •

of the proposed solutions in terms of event detection in changing environ-
ments. Part V summarizes the work in thesis, and discusses possible future
research directions. In more detail, the thesis is organized as follows:

Part I Overview and Preliminaries. This part includes this chapter, and
contains the background and preliminaries related to the research topic
of the thesis.

Chapter 1 introduces the motivation and research context of this PhD
work. It also includes the research questions and the methodologies
used to conduct this research. An overview of the connections between
the contributions of this work and the publications making up this
thesis is presented at the end of this chapter.

Chapter 2 briefly presents the background and preliminaries to the re-
search topic in this thesis. Related work and other state-of-the-art
approaches are also discussed in this chapter.

Part II Pattern Discovery and Change Detection in Evolving Data. This
part focuses on investigating the dependencies of data points and statis-
tical hypotheses to detect changes.

Chapter 3 introduces an approach to solving the problem of detecting
patterns with an unknown distribution.

Chapter 4 describes an efficient algorithm for detecting both local and
global changes in the structure of high utility patterns.

Chapter 5 presents a method of utilizing the temporal dependencies of
data to detect changes in streaming data.

Part III Feature Correlations with Concept Drift. In this part, we focus
on investigating the correlations and transitions of data in an evolving
and changing context, using multiple factors.
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Chapter 6 explains the problem of sketching streaming data. It presents
an evolving model that uses multiple weighted factors to simulate the
correlations between data features when estimating streaming data
with concept drift.

Part IV Dense Subregion Detection. This part emphasizes complex data
structures such as tensors and graphs. We introduce both a theoretical
foundation and practical work to generalize the dense detection problem
and guarantee solutions.

Chapter 7 introduces a better theoretical density guarantee for both
dense subtensor and dense subgraph detection with greedy approximation-
based algorithms. It provides proofs for the higher lower bound density
of the estimated subtensors and subgraphs, and introduces a novel theo-
retical foundation to generalize the problem of multiple dense subtensor
detection with density guarantee.

Part V Conclusions. This part summarizes the contributions of the thesis
and outlines possible topics for future work.

Chapter 8 presents a summary and conclusion for the work in this thesis
and its contributions. It also discusses and identifies potential research
directions for future research.



Chapter 2

Background and Related Work

In this chapter, we briefly review the background to the area of data mining
in general [76], and then specifically focus on related works and state-of-the
art methods in a particular sub-field of data mining research, the issue of
of event detection problems in a dynamic environment with changing and
evolving data.

2.1 Data Mining

Data mining is a step in knowledge discovery from data (KDD), a process
for extracting useful knowledge from data. Given a set of data, mining
aims to find meaningful, interesting information and knowledge from these
data, and provide the discovery to the user. The availability of modern
technology and the proliferation of mobile devices and sensors have resulted
in a tremendous amount of data being generated and stored by applications,
relating to all aspects of everyday life. As a result of this explosive growth in
data volumes, analysis of massive data is emerging as an important task. An
understanding of the vast amounts of data and relevant insightful knowledge
can support important decision making. In turn, this helps in improving
existing approaches, allowing them to quickly adapt to the natural dynamics
of data, and in designing more effective and efficient methods for solving
more complex mining problems.

Nowadays, data mining is one of the major fields that has evolved from
the area of computer science and information technology, and in-depth data
analysis has therefore naturally become an important aspect of the field of
data mining in the current information era, in which huge amounts of data
are maintained in storage devices. For example, to illustrate the need for
in-depth, insightful data analysis, we can use the example of the behavior of

17
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tourists in relation to POI check-ins in several cities at the same time. There
are several underlying factors that can affect user check-ins. In addition to
the types and places of the POIs, changes in the weather conditions, seasons
and times of day can influence changes in user behavior. For instance, a
sightseeing location may normally get more visitors during summer than in
winter, but this could also be affected by (possibly sudden) changes in the
weather conditions. It therefore becomes obvious that analyzing check-in
behaviors without considering both the changes in the dynamic properties
and time-dependent changes would be insufficient to reflect the overall pic-
ture.

In general, advanced data mining needs to consider data from several
different perspectives and views, on different characteristics, in order to be
capable of providing the user with advanced functionalities such as data
classification, clustering, event (outlier/anomaly/fraud) detection, and de-
tection of changes over time in the characteristics of the data.

A Step in the Process of Knowledge Discovery

The KDD process is an infinite cycle of iterative steps, and is illustrated in
Figure 2.1. This process includes three basic components: pre-processing,
mining, and post-processing.

1. Pre-processing component: The functionality of this block is to
prepare the most suitable data for the mining processing block. This
component contains four sequential steps, as follows:

(a) Data cleaning : The purpose of this step is to clean the original
data, i.e., by removing noise and outliers.

(b) Integration: The data input to the process may be from mul-
tiple heterogeneous database sources with different formats or
attributes. This step is therefore necessary to combine the mul-
tiple source data into a consistent, consolidated format.

(c) Selection: This step involves selection of the relevant data and
features for processing. Actions involved in this step include fea-
ture selection, reducing the dimensions of the data (intrinsic),
projection onto a simpler space, or sampling to obtain a repre-
sentative subset of the data.

(d) Transformation: In this step, data are aggregated by performing
a standard or other specific transformation, e.g., summarization,
normalization, randomization, and standardization methods.
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2. Mining component. After the pre-processing stage, the data are
in a good suitable form for mining. At this stage, we need to design
efficient, effective methods and utilize advanced knowledge to extract
interesting patterns from data. This step is typically carried out with
support from domain experts with significant, insightful knowledge of
the field. The result of this step is then used in the evaluation steps
in the next block.

3. Post-processing component. This involves the following steps:

(a) Evaluation: This step evaluates the patterns found in the pre-
vious block using predefined measures. Extensive and thorough
evaluations are conducted using numerous factors and measures
to confirm the true meaning and the correctness of the results.

(b) Visualization: The aim of this step is to simulate the interesting
patterns. The results are visualized and presented to users in an
understandable, readable form.

Pattern Mining
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Event (outlier/fraud) Detection
Change (abrupt, gradual) Detection
User Behavior Analysis 
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Figure 2.1: Overview of the process of knowledge discovery from data.
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The meaningful knowledge extracted via the KDD process is in turn sent
back to the whole process as a new knowledge base to improve the perfor-
mance of the discovery process. A new cycle is then continuously processed,
and a new sequence of steps is used to expand the knowledge base.

Data Mining Techniques

Data can now be stored in many different types of databases and storage
devices. The massive amounts of data generated are too large for the mem-
ory capacity and infrastructure of any isolated system. The generated data
are drawn from various heterogeneous sources, and analyzing these data
therefore plays a significant role in real-world applications. The effective
and efficient analysis of data in such different forms requires the integration
and combination of many different domains, such as information retrieval
(IR), statistics, data mining, computing and so on. An important reason
for the integration of other domains is the need to solve the complex prob-
lems that arise regarding the changing characteristics of data from different
data sources, which is a challenging task. One advantage of data mining
techniques is their capacity to be applied to any type of data. The most
common form for the data that are used in many useful daily applications is
a transactional database, which stores information about user transactions.
Numerous data mining techniques have been proposed to solve problems
related to transactional databases, such as the mining of frequent/closed
itemsets, HUIs, association rules, and sequential patterns, to name only a
few. In addition to transactional data, there are many other flexible, com-
plex types of data structure, such as sequence, spatial, text, multimedia,
tensor, graph and networked data. Traditional or advanced mining tech-
niques can also be used to solve problems using these types of data.

However, despite the flexibility of these data techniques when applied to
many types of data, challenges arise with respect to data preprocessing, the
complexity of integrating highly correlated and transitional features of data
from multiple sources, and the natural complexity of mining methods for
high-dimensional and changing data. The mining of such widely differing,
dynamic data is an advanced and interdisciplinary topic. The methods
involved in a data mining problem are drawn from many domains, allowing
them to address the complex issues that emerge. A flow diagram for a data
mining task starts with a request from a user; based on this request, domain
experts decide how to address the problem, and identify the techniques
involved in solving the problem. We can use the aforementioned example
of an analysis of user activity in social networks to illustrate this. In this
application, given a stream of data consisting of user check-in activities
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Figure 2.2: Examples of techniques used in data mining.

at interesting places, how can we identify at the current moment, what
is the type of a location, does the place change its label, its features or
not? To answer this question, we need to monitor the changes (i.e., labels
and features of POIs) by analyzing the activity and behaviors of users.
This kind of task is helpful in many applications such as recommendation
systems, which recommend places of the same type to a user based on
check-in activities, and in many other applications, such as classification
and clustering.

Database techniques are helpful in handling the huge amounts of data
that arrive in a stream with high volume and high velocity. From another
perspective, the storing and processing of high-volume and high-velocity
streaming data are often infeasible, due to the limitations on memory and
computational infrastructure, and approximation (sketching or sampling)
approaches are therefore commonly used to estimate the whole set of data in
a compact representation. The quality of the sampling process is guaranteed
by algorithmic techniques derived from the domains of probability, statistics,
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and algorithms. On the other hand, in order to adapt to the natural changes
in the data, a robust model needs to automatically turn its coefficients to
optimal values by minimizing a particular measure, for instance the error
rate. In view of this, data are divided into two subsets: a training set and a
testing set. Techniques that involve training the model on a subset of data
by solving an optimization problem, and then utilizing the model on the
rest of the data (testing), are used in the domains of artificial intelligence,
machine learning, and optimization. Computing approaches are often used
to improve the solution by parallel processing over distributed resources to
gain better performance.

In a nutshell, several techniques from other domains are involved in
solving problems in data mining. In particular, a set of mining techniques
is a combination of approaches from many domains, as shown in Figure 2.2.
These domains may include:

1. Databases: Data storage techniques, e.g., data queries, handling of
large, distributed data.

2. Information Retrieval : Extraction of structured information and knowl-
edge from an unstructured data source in the form of text and multi-
media data (documents).

3. Statistics: Provides hypotheses for methodologies.

4. Algorithms: Algorithmic approaches and measurements of their effec-
tiveness, scalability, and complexity.

5. Computing : High-performance infrastructures, including parallel pro-
cessing and GPUs.

6. Other domains: Training and testing the models by optimizing an
objective cost, and then making intelligent decisions in order to rec-
ognize complex patterns using a learning process based on the data,
e.g.

(a) Machine Learning

(b) Pattern Recognition

(c) Optimization

Other Issues and Challenges in Data Mining

In addition to the above-mentioned challenges arising from the dynamic
changes in data and the diversity of database types, a mining technique
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also needs to consider issues relating to uncertainty, noise, and the incom-
pleteness of data. Data mining methods can effectively extract information
from huge amounts of data by carefully applying integrated methods from
other disciplines and domains. The performance of mining methods needs
also to be considered in terms of both their efficiency and their scalability. A
further issue in data mining research is the interaction between the mining
system and the users (domain experts), who play an important role in the
data mining process. Current challenges in data mining include the prob-
lems of how to utilize a knowledge base in a specific data mining context,
how to design efficient methods for the discovery of new knowledge that
work well and are easy to implement, how to visualize these new discoveries
in an easily understandable form, and how to interact with both domain
and non-domain experts.

The work in this thesis is motivated by (i) the diversity in the types of
database in useful real-world data mining applications; (ii) the challenges
arising from the continuously changing and fluctuating characteristics of
data in terms of both internal and external aspects; (iii) the rapidly growing
and changing nature of this topic. In this study, research is carried out to
address the challenges relating to the problem of event detection in data
mining from various types of evolving data.

2.2 Pattern Mining

In the following subsections, we introduce some background, related works
in this area, and preliminaries to the problem of event detection (e.g.,
changes) in dynamic, changing data.

High Utility Pattern Mining

The discovery of HUIs in customer transaction databases is a key task when
studying the behavior of customers. This consists of finding groups of items
that are bought together that yield a high profit. Consider a set of items I
= {i1, i2, . . . , im} representing products sold in a retail store. For each item
ij ∈ I, the external utility of ij is a positive number representing its unit
profit (or more generally, its relative importance to the user). A transaction
database D is a set of transactions denoted as D = {T1, T2, . . . , Tn}, where
for each transaction Td ∈ D, the relationship Td ∈ I holds. For each trans-
action Td ∈ D, d is a unique integer that is said to be the TID (transaction
identifier) of Td. The internal utility of an item ij in a transaction Td is
denoted as q(i, Td). This is a positive number representing the purchase
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quantity of the item ij in Td. A set of items X = {i1, i2, . . . , il} ⊆ I
containing l items is said to be an itemset of length l, or alternatively, an
l -itemset. In the remainder of this thesis, the notation xy will be used to
indicate an itemset obtained by concatenating two items x and y. The no-
tation XY will be used to refer to the union of two itemsets X and Y , i.e.,
X∪Y.

Example 1. Consider the transaction database depicted in Table 2.1, which
comprises five transactions denoted as T1, T2, T3, T4, and T5. This database
will be used as a running example in this thesis. It contains seven items
denoted by the letters a to g, that is, I = {a, b, c, d, e, f, g}. Table 2.2 shows
the external utility of each item (e.g., the unit profit). The external utilities
of items a, b, c, d, e, f, and g are 5, 2, 1, 2, 3, 1, and 1, respectively. Itemset
bc is a 2-itemset appearing in transactions T3, T4, and T5. In transaction
T4, items b, c, d, and e have internal utilities (purchase quantities) of 4, 3,
3, and 1, respectively.

Table 2.1: A transaction database

TID Transaction Transaction Utility

T1 (a,1), (c,1), (d,1) 8
T2 (a,2), (c,6), (e,2), (g,5) 27
T3 (a,1), (b,2), (c,1), (d,6),(e,1),(f,5) 30
T4 (b,4), (c,3), (d,3), (e,1) 20
T5 (b,2), (c,2), (e,1), (g,2) 11

Table 2.2: External utility values of items in the transaction database

Item a b c d e f g
External utility 5 2 1 2 3 1 1

Given a minimum utility threshold value minutil and a database D,
the problem of HUI mining involves enumerating all HUIs appearing in D,
which has a utility no less than minutil. The utility of an itemset X in D
is defined as:

u(X) =
∑

X⊆Td∧Td∈D
u(X,Td), (2.1)
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where u(X,Td) is the utility of X in Td. This is a positive number defined
as:

u(X,Td) =
∑
i∈X

u(i, Td) = q(i, Td)× p(i) (2.2)

In high utility itemset mining (HUIM), the utility measure is used to
assess how important (e.g., how profitable) a pattern is rather than solely
frequent [6, 75, 54, 36]. Finding profitable patterns is more useful for busi-
nesses than finding frequent patterns. Many algorithms have been designed
to discover HUIs [57, 56, 45, 55, 37, 38]. To reduce the search space and
mine HUIs efficiently, these algorithms have included various methods to
overestimate the utility of itemsets. The solution to this issue, adopted by
most HUIM algorithms, has been to rely on upper-bounds on the utility of
itemsets that are anti-monotonic to prune the search space without missing
any high utility itemsets. Several high utility itemset mining algorithms
discover high utility itemsets using the TWU measure and a two-phase ap-
proach.

Transaction-Weighted Utilization

Consider an itemset X and a database D. The transaction-weighted uti-
lization (TWU) [112] of X in D is denoted as TWU(X), and is defined
as:

TWU(X) =
∑

Td∈D∧X⊆Td

TU(Td), (2.3)

where TU(Td) = u(Td, Td).

The Transaction-Weighted Utilization is the first introduced upper-bounds
measure of the utility of itemsets, which was introduced in the Two-Phase al-
gorithm [112], such that it is anti-monotonic to prune the search space with-
out missing any high utility itemsets. Because the TWU is anti-monotonic,
and can therefore be used to reduce the search space, while ensuring that
no HUIs are missed. The important properties of the TWU measure are
described below.

Property 1 (Overestimation [112]). The utility of an itemset X is less than
or equal to its TWU, that is, TWU(X) ≥ u(X).

For example, consider the transactions T1, T2, and T3 in the database of
the running example. Their TWU values are 8, 27, and 30, respectively. The
TWU of the item a is calculated as TWU(a) = TU(T1)+TU(T2)+TU(T3)
= 8 + 27 + 30 = 65.
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Property 2 (Search space reduction using the TWU [112]). For an itemset
X, if TWU(X) < minutil, it follows that X and its supersets are low utility
itemsets.

This property means that if an itemset has a TWU lower than the
minutil threshold, all its supersets can be ignored. Although this property
has been used by several HUIM algorithms to reduce the search space, one
problem that remains is that the TWU is a loose upper bound on the utility
of the itemsets. For this reason, many itemsets still need to be considered
by algorithms that rely on the TWU measure to extract the set of HUIs.
This can result in long execution times and high memory usage.

Two-Phase Approach

The two-phase approach is a method that discovers HUIs using a process
with two stages. In the first phase, the algorithms overestimate the utility
of the itemsets to obtain a set of candidate HUIs using the TWU measure
and other strategies. Then, in the second phase, they scan the database
again to calculate the utility of these candidates and filter out those that
are not HUIs. Although these algorithms are complete, since they can find
the whole set of HUIs, the two-phase approach may require considering and
maintaining in memory a very large number of candidate itemsets. In the
second phase, the cost of scanning the database for each itemset to calculate
its utility is also very high. As a result, these algorithms can be slow and
consume huge amounts of memory. This includes algorithms such as Two-
Phase [112], UP-Growth+ [157], PB [98] and BAHUI [152].

One-Phase Approach

In order to avoid the drawbacks of the two-phase approach, algorithms
have been proposed to mine HUIs using a single phase [110, 57]. These
algorithms can directly calculate the utility of an itemset in memory with-
out having to repeatedly scan the database or retain candidates in memory.
The concept of a single-phase algorithm was introduced in the HUI-Miner
algorithm [110], which used a novel structure called a utility-list. This struc-
ture stores all the information needed to calculate the utility of each itemset
and reduce the search space, without repeatedly scanning the database. It
also utilizes tighter upper-bounds and more efficient strategies to reduce the
search space than two-phase algorithms.

The Utility-List Structure

The utility-list structure was proposed in HUI-Miner [110] to discover HUIs
in a single phase, and hence avoid the drawbacks of two-phase algorithms,
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which require the storage of a large number of candidates in memory and
repeated scanning of the database to calculate the utilities of itemsets.

Let � be any total order on items from I, and let X be an itemset
appearing in a database D. The utility-list of X is denoted as ul(X). It
contains a tuple (tid, iutil, rutil) for each transaction Ttid in which X ap-
pears (X ⊆ Ttid). The iutil element of a tuple for a transaction Ttid stores
the utility ofX in the transaction Ttid, i.e., u(X,Ttid). The rutil element of a
tuple stores the value

∑
i∈Ttid∧i�x∀x∈X u(i, Ttid), and is called the remaining

utility of X [110].
HUI-Miner uses utility-lists to store information about the utilities of

itemsets in transactions. This information allows the algorithm to quickly
derive the utility of any itemset and to calculate the upper-bounds on the
utilities of its supersets to reduce the search space. To discover HUIs, HUI-
Miner scans the database to create a utility-list for each item. It then
performs a depth-first search to explore the search space of all itemsets
containing more than one item. During this search, the utility-list is con-
structed for each itemset by joining the utility-lists of some of its subsets,
that is, without scanning the database. Two important properties of utility-
lists can be used to determine the utility of an itemset and to reduce the
search space, and these are defined below [110].

Property 3 (Calculating the utility using the sum of iutil values [110]). The
utility of an itemset X (denoted as u(X)) can be calculated by summing the
iutil values in the utility-list ul(X). If this sum is less than the minutil
threshold, X is a low utility itemset. Otherwise, it is an HUI [110].

Property 4 (Pruning using the iutil and rutil values of a utility-list [110]).
Let X and Y be two itemsets. It is said that Y is an extension of X if Y
can be obtained by adding an item c to X, where c � i, ∀i ∈ X. The sum
of the iutil and rutil values in the utility-list ul(X) is an upper-bound on
the utility of Y and any other transitive extension of X. As a consequence,
if this sum is less than the minutil threshold, it follows that any itemset
that is a transitive extension of X must be a low utility itemset, and should
therefore be pruned.

Creating the utility-lists for itemsets using this join operation is costly,
and requires a significant amount of memory since an algorithm has to main-
tain many utility-lists in memory during the search for HUIs. In terms of the
execution time, the complexity of building a utility-list is also high [57], as
it generally requires the joining of three utility-lists of smaller itemsets. Re-
cently, improved versions of the HUI-Miner algorithm called HUP-Miner [93]
and FHM [57] have been proposed, which introduce additional strategies and
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optimizations for search space pruning. FHM applies a strategy to elimi-
nate low utility itemsets using information about item co-occurrences. For
each itemset eliminated using this strategy, a join operation does not need
to be applied, thus reducing the execution time. It has been shown that
this pruning strategy can greatly reduce the number of join operations.

2.2.1 Dynamic Databases in Data Mining

The goal of HUIM is to discover patterns that generate high profits in
static customer transaction databases. The utility-list structure can be
used to mine HUIs in a single phase, i.e., without maintaining candidates
in memory. The utility of each itemset can be directly calculated using
its utility-list without scanning the database again. The simplicity of the
utility-list structure has led to the development of numerous utility-list-
based algorithms [110, 45, 37], and these generally outperform alternative
techniques. Although several studies of HUIM have been conducted [112,
55], most of the existing approaches are suitable for pattern discovery in
a static database. With increasing amounts of data being generated as
streams, including customer transactions, HUIM must also support pattern
discovery in dynamic databases.

2.2.2 Mining in Streaming Data

Consider a data stream S that is an open-ended sequence of values {v1,
v2, . . . , vi, . . . }. We assume that our observation Vi of vi in the data
stream is drawn from a Gaussian model with an unknown distribution,
Vi ∼ N (µ, σ2I), where µ is the (unknown) mean and is used as the measure
of interest in our method, and σ2 is the variance in the error. At each
observation time i, the observed mean is µi. Hence, for a data stream S,
we have a sequence of observed means µ1, µ2, . . . , µi, . . . corresponding to
observation times 1, 2, . . . , i, . . . .

Customer transactions in retail stores can be treated as a stream of data,
since customers continuously purchase products in stores. This also means
that the data are not static, and are often impossible to store in memory
due to the large volumes involved.

Streaming Transactional Data

Similarly to general data streams, streaming transactional data are gen-
erally infinite and changes continuously. Consider an infinite sequence of
increasing positive integers 1 ≤ x1 < x2 < x3 . . . . A streaming quan-
titative transactional database D is an infinite sequence of transactions
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D = {Tx1, Tx2, Tx3, . . . }, where for each transaction Td ∈ D, the relation-
ship Td ∈ I holds. Moreover, for each transaction Td ∈ D, d is a unique
integer that is said to be the TID of Td, and represents its observation
time. Thus, for two transactions Ta and Tb, if a < b, this indicates that
transaction Ta occurred before Tb. We assume that the stream D does not
contain two transactions with the same observation time1. For two obser-
vation times a and b, a data window Wab is a finite sub-sequence of D
containing all transactions from observation time a to observation time b.
Formally, Wab = {Ty1, Ty2, . . . , Tyn}, for all integers y1, y2, . . . , yn such
that a ≤ y1 < y2 < · · · < yn ≤ b, and Ty1, Ty2, . . . , Tyn appear in D.

For a window W in a stream D and an itemset X, the utility of X
in W is defined as u(X,W ) =

∑
X⊆Td∧Td∈W u(X,Td). Let the minimum

utility threshold minutil be a positive number specified by the user such
that 0 < minutil. Then, an itemset X is said to be an HUI in W if its
utility is no less than minutil, u(X,W ) ≥ minutil. Otherwise, X is said to
be a low utility itemset in W .

Combined with the high speed of data generation, this makes mining
a stream of transactional data to discover patterns more challenging than
mining a static database. The development of efficient methods and algo-
rithms to analyze transaction streams is therefore an important research
problem [29, 114]. Several algorithms have been proposed to discover high
utility patterns in data streams [173, 102, 40], and these studies generally
extend traditional HUIM methods to increase their efficiency in a streaming
context. On the whole, most studies on this topic, including [103, 173], have
focused on adapting traditional data mining techniques to streams and on
improving their efficiency to deal with streaming data.

It should be noted, however, that the underlying distribution of data
objects in a stream generally changes over time [15], thus making such ap-
proaches unsuitable. At the same time, the detection of changes (concept
drift) is crucial, as it allows us to discover the latest trends in a stream.
A concept drift mainly refers to a significant decrease or increase in the
distribution of data objects in a data stream with respect to a given mea-
sure [66]. Important challenges in terms of analyzing data streams arise
because trends may emerge or remain steady over time, and streams often
contain noise. In other words, in order to allow decision makers to react
quickly to changes, it is necessary to design efficient algorithms that can
detect and monitor these changes in real time.

1If two transactions are simultaneous, a total order on these transactions can be ob-
tained by incrementing the observation time of one of those transactions by a small value.
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2.3 Detection of Concept Drift

Central problems when analyzing data streams include the extraction of
interesting events (such as patterns, changes, fraud, and network attacks),
and understanding these activity trends. In the context of event detection
in streaming data, due to the large volumes of data and the fact that the
data are dynamic and continuously arrive at a high speed, online learning
approaches are necessary to be able to meet the challenges arising from
the different characteristics and the evolution over time of the underlying
distribution.

2.3.1 The Problem of Change Detection in Streaming Data

Change detection methods in streaming data consider the difference between
adjacent means µi and µi+1, where adjacent means are not necessarily equal.
A change detection method is designed to detect all points of change i
between two observed adjacent means µi and µi+1, for any i and µi 6=
µi+1. We assume that t1, t2, . . . tj , . . . are the true points of change in a
distribution of means. The change detector verifies a change point tj by
testing the following statistical hypotheses:

H0 : µtj−1 ' · · · ' µtj−1 ' µtj ' µtj+1 ' · · · ' µtj+1−1

against

H1 : µtj−1 ' · · · ' µtj−1 6= µtj ' µtj+1 ' · · · ' µtj+1−1

Given a significance confidence ρ, hypothesis H1 is accepted if an objective
measure of interest for the mean, i.e., f(.), satisfies:

f(µtj ) /∈ [v ρ
2
, v1− ρ

2
], (2.4)

where f(.) is an objective function, v ρ
2
and v1− ρ

2
are values such that:

Pr(f(µtj ) < v ρ
2
) =

ρ

2
(2.5)

Pr(f(µtj ) > v1− ρ
2
) = 1− ρ

2
(2.6)

A change is said to occur at observation time tj if the population of the
sample at time tj is significantly different from that at the preceding obser-
vation time, and the null hypothesis H0 is rejected. In this case, tj is said
to be a drift point. This means that the task of detecting change points in-
volves finding all observation times at which there are significant differences
in the data distribution for a given measure.
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Types of Drift

As mentioned above, the main challenge associated with the mining of
streaming data is that data in a stream are inherently dynamic, and the
underlying distribution can change and evolve over time, leading to what is
referred to as concept drift [141]. For example, data on customer purchasing
behavior over time may be influenced by the strength of the economy. In
this case, the concept is the strength of the economy, which may drift. Con-
cept drift can be either real or virtual, and changes in the distribution can
have four different forms [63]: abrupt, reoccurring, incremental, and gradual,
as illustrated in Figure 2.3. In streaming data, we may also have mixtures
of these types.

3. Incremental

2. Re-Occurring

4. Gradual

Time

Estimate

1. Abrupt/Sudden

Estimate

Estimate

Time

Time

Estimate

Time

Figure 2.3: The four different types of concept drift.

2.3.2 Approaches to Change Detection

Techniques for change detection are generally based on one of the following
approaches [63] (see also Table 2.3 for a summary):

1. Sequential Analysis: The cumulative sum (CUSUM) algorithm and
its variant, the Page-Hinkley (PH) method [124], are the representa-
tive algorithms in this category. The main idea of this approach is
to estimate a probability distribution value and to update this value
when new data arrive. Concept drift occurs if there is a significant
change in the values of the estimated parameters. The main advan-
tage of sequential analysis algorithms is that they generally have low
memory consumption. One of the disadvantages, however, is that the
performance depends on the choice of parameters.
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2. Statistical Process Control: The idea underlying this method is to
estimate statistical information such as the error and standard devi-
ation. By monitoring this error rate, detectors can determine that a
concept drift has occurred if the error increases above a pre-specified
threshold value. Examples of methods in this group are DDM [64],
EDDM [13], ECDD [134], and AFF [22]. The main advantage of the
methods in this category is that in addition to their efficiency and
low memory consumption, they generally work well on streams with
abrupt changes. On the other hand, slow, gradual change detection is
a significant weakness of these approaches.

3. Monitoring of Distributions using Two Different Time Windows: In
this approach, statistical tests are applied to the distributions of two
windows in a stream. The first window is a fixed reference window
used to summarize the information from past data, while the second
is a sliding window used to summarize the information on the most
recent data. Examples of representative algorithms in this category
are ADWIN [18], HDDM [61], and SEQDRIFT2 [127]. The main ad-
vantage of the window-based methods is that they are able to identify
more precise locations for change points. Their disadvantages are their
high memory cost and the space requirements for processing the two
windows.

4. Contextual-Based: The approaches in this category maintain a balance
between incremental learning and weighting schema in the detection
of concept drift with respect to the time of an estimated window. An
example of a contextual approach is SPLICE [77]. The main advan-
tages of methods in this category are that they can detect gradual
and abrupt drift, and can control the number of errors. However,
contextual-based methods are generally complex and have long execu-
tion times, thus making them less suitable for the mining of streaming
data.

Hoeffding’s Inequality for the Significance of Drift Assessment

The Hoeffding inequality [80] is derived from probability theory, and has
been used in various studies to analyze data streams. Given a set of in-
dependent random variables, the Hoeffding inequality provides an upper
bound on the probability that their sum deviates from an expected value.
In a change detection problem, the Hoeffding inequality is used as a basis for
assessing whether changes in a set of independent random values arriving in
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Table 2.3: Summary of change detection methods

Category Algorithms Advantages Disadvantages

Sequential
analysis

CUSUM [124], PAGE-
HINKLEY [124]

Low memory
consumption.

Depends on the
choice of
parameters.

Statistical
process
control

DDM [64],
EDDM [13],
ECDD [134],
AFF [22], RDDM [16]

Low memory
consumption, work
well on abrupt
changes, and fast
execution time.

Slow gradual
changes.

Windows-
based
methods

Kifer et al. [88],
ADWIN [18],
HDDM [61],
SEQDRIFT2 [127],
ACWM [142]

Precise localization of
change points.

Memory and
space
requirements
for processing
two windows.

Contextual
approaches

SPLICE [77] Gradual and abrupt
drift, and control of
the number of errors.

Complex and
difficult to
implement and
long execution
time.

a data stream are statistically significant. If the probability of a predefined
condition is greater than a user-specified threshold, then a change is con-
sidered to have occurred in the data at this observation point. Hoeffding’s
inequality theorem is stated as follows [80].

Theorem 1 (Hoeffding’s Inequality). Let U1; U2; . . . ; Un be a set of
independent random variables bounded by the interval [0, 1], that is, 0 ≤
Ui ≤ 1, where i ∈ {1; . . . ;n}. Let U denote the average of these random
variables, that is, U = 1

n

∑n
i=1(Ui). We have:

Pr(U − E[U ] ≥ ε) ≤ e−2nε2 , (2.7)

where E[X] is the expected value of X.

The inequality states that the probability of the estimation and true
values differing by more than ε is bounded by e−2nε2 . In a symmetrical way,
the inequality is also applied to the other side of the difference: Pr(−U +
E[U ] ≥ ε) ≤ e−2nε2 . As a result, a two-sided variant of the inequality is
obtained:

Pr(|U − E[U ]| ≥ ε) ≤ 2e−2nε2 (2.8)
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This inequality is true if all variables are bounded by the interval [0, 1].
More generally, if a variable Ui is bounded by an interval [xi, yi], Hoeffding’s
inequality is generalized as follows:

Pr(|U − E[U ]| ≥ ε) ≤ 2e
−2n2ε2∑n

i=1
(yi−xi)

2
(2.9)

This inequality (Theorem 2) can be used to assess the significance of changes
in a stream of values, based on the following proposition.

Proposition 1. Let U1;U2; . . . ;Un1+n2 be a set of independent random vari-
ables bounded by the interval [0, 1]. These variables can be split into two
windows using an index n1 as the splitting point. This results in two win-
dows, {U1; . . . ;Un1} and {Un1+1; . . . ;Un1+n2}. Then, for an error ε > 0,
the following inequality holds:

Pr(U − V − (E[U ]− E[V ]) ≥ ε) ≤ e
−2n1×n2ε

2

n1+n2 , (2.10)

where U = 1
n1

∑n1
i=1(Ui) and V = 1

n2

∑n1+n2
i=n1+1(Ui).

If the two-sided variant of the inequality is considered:

Pr(|(U − E[U ])− (V − E[V ])| ≥ ε) ≤ 2e
−2n1×n2ε

2

n1+n2 (2.11)

Consider a significant confidence level α (i.e., the probability of making
an error), which controls the maximum false positive rate. The error ε can
be estimated with respect to α as follows:

ε =

√
n1 + n2

2n1 × n2
ln

2

α
(2.12)

Bonferroni Correction

The Bonferroni correction prevents an increase in the probability of incor-
rectly rejecting the null hypothesis when multiple hypotheses are tested [144].
In the context of the change detection problem, the Bonferroni correction
is widely used with Hoeffding’s inequality. Rather than using Eq. 2.12, the
following formula is used:

εα =

√
2mσ2 ln

2 ln(n)

α
+

2m

3
ln

2 ln(n)

α
(2.13)

where n = n1 + n2, m = n−1
1 + n−1

2 , and the variance σ2 is defined as the
sum of the squared distances of each sample in the distribution from the
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mean, divided by the number of samples in the distribution. An efficient
way of calculating the standard deviation for a set of numbers (xi)

N
i=1 is as

follows:

σ2 =
1

N

N∑
i=1

x2i − (

∑N
i=1 xi
N

)2 (2.14)

2.3.3 Distance and Similarity

This section presents some metrics that are commonly used to measure
the similarity between objects. The change detector is used to evaluate
whether there is a significant difference between the similarities; based on
this evaluation, a decision is made on whether or not a change has occurred.

Cosine Similarity

Consider two vectors x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn). The cosine
similarity between x and y is defined by:

Scos(x,y) =
x× y

‖x‖ × ‖y‖
=

∑n
i=1(xi × yi)√∑n

i=1 xi
2
√∑n

i=1 yi
2

(2.15)

The cosine similarity is a standard measure for calculating the similarity
between vectors. However, a drawback of this approach is that it only
considers the difference in the orientation of two vectors, while ignoring the
difference in terms of the magnitude [79]. For example, a cosine similarity
of 1 indicates that two vectors have the same orientation, although these
vectors may or may not have the same magnitude. The magnitude of an
itemset vector represents its utility. In order to take into account both the
difference in the orientation and the magnitude, an efficient approach needs
to calculate the similarity between two vectors x and y using an improved
similarity measure that considers both the magnitude and orientation of
two vectors.

Levenshtein Distance

The Levenshtein distance [101] is a metric used to measure the difference
between two strings. Given two strings x = x1x2 . . . xn, and y = y1y2 . . . ym,
the Levenshtein distance between x and y is denoted as levx,y, and is com-
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puted as levx,y(n,m), where:

levx,y(i, j) =


max(i, j) if min(i, j) = 0

min


levx,y(i− 1, j) + 1

levx,y(i, j − 1) + 1

levx,y(i− 1, j − 1) + 1{xi 6=yj}

otherwise.

(2.16)
1{z} is binary indicator function. In other words, 1{z} is equal to 1 if z is
TRUE; otherwise, 1{z} is equal to 0.

1{z} =

{
1 if z is TRUE

0 otherwise.
(2.17)

Euclidean Norm

Given a vector x = (x1, . . . , xN ) in a Euclidean space D of N dimensions
RN , the Euclidean norm of x in D is computed by:

‖ x ‖2=
√

x21 + x22 + · · ·+ x2N =

√√√√ N∑
i=1

x2i (2.18)

Let p be a real number, p ≥ 1. The p-norm of x is:

‖ x ‖p=
p√|x1|p + |x2|p + · · ·+ |xN |p = p

√√√√ N∑
i=1

|xi|p = (
N∑
i=1

|xi|p)
1
p (2.19)

The Euclidean norm is the p-norm when p = 2.

2.3.4 State of the Art in Change Detection

In the field of traditional frequent itemset mining, several algorithms have
been proposed to identify concept drift in data streams [121, 90]. Ng et
al. [121] proposed a test paradigm called the Algorithm for Change Detec-
tion (ACD) that detected changes in transactional data streams by con-
sidering the frequency of itemsets for its reservoir sampling process. ACD
evaluates drift by performing reservoir sampling and applying three statis-
tical tests. This method employs a bound based on Hoeffding’s inequality
to determine the number of transactions to be kept in each reservoir, and
selects the transactions to fill each reservoir using a distance measure that
is a function of the frequency of single items. A major limitation of this
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approach is that high frequency items have more probability of being sam-
pled. Recently, Koh [90] proposed the CD-TDS algorithm, which considers
two types of changes in transactional data streams for frequent pattern min-
ing. This method uses a graph to represent the relationships between items
in transactions, and applies the Levenshtein distance to calculate the sim-
ilarities between groups of frequent itemsets found at different times. A
limitation of CD-TDS is that it detects local drifts for single items, rather
than for itemsets. Although CD-TDS uses itemsets to detect global drifts,
it does not provide information about which itemsets contribute the most
to these global drifts.

Hoeffding’s inequality [80] is one of the most common inequalities, and
has been used to design several upper bounds for drift detection [61]. These
upper bounds have been used in algorithms such as the Drift Detection
Method Based on Hoeffding’s Bounds (HDDM) [61], the Fast Hoeffding
Drift Detection Method for Evolving Data Streams (FHDDM) [129], Ho-
effding Adaptive Tree (HAT) [19], and the HAT + DDM + ADWIN [4]
algorithm which extends the ADaptive sliding WINdow (ADWIN) algo-
rithm [18], the Drift Detection Method (DDM) [64], and the Reactive Drift
Detection Method (RDDM) [16], a recent drift detection algorithm based on
DDM. Hoeffding’s inequality has also been used to design several efficient
approaches to determining the upper bounds for drift detection. However,
the Hoeffding inequality has the disadvantage that the dependence on the
underlying distribution is eliminated [161]. Although these algorithms are
useful for detecting changes in streaming data, most of them assume that the
data are independent and identically distributed. This assumption rarely
holds in real-world streaming environments.

Independent and Identical Distribution

Consider a set of random generated data D, and two random variables x
and y. x and y are independent, meaning that the probability of observing
both x and y is simply the product of the probability of observing each
event individually.

Pr(x, y) = Pr(x)× Pr(y), (2.20)

where the Pr(z) notation is used to indicate the probability of observing
z. An independent distribution also implies conditional independence: the
probability of observing x does not depend on y.

Pr(x|y) = Pr(x) (2.21)

Two random variables x, y are identically distributed if Pr(x ≤ z) = Pr(y ≤
z),∀z. Most existing work is based on an assumption of an identical and
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independent distribution (IID) for the data; however, as mentioned earlier,
this assumption is too restrictive. Real-world streaming data are inherently
dynamic, and are not identically and independently distributed [21, 178].
Temporal dependencies are also very common in data streams [178], and
should therefore be considered when addressing this issue. Several learning
algorithms that focus on non-stationary environments have been proposed
to overcome the limitations of the IID assumption [104, 92], although the
majority of existing approaches have assumed that data in a stream are
independently but not identically distributed [21, 178]. Adaptive estimation
is one such technique for handling the temporal dependencies of data. For
example, the studies in [124, 132, 22, 8] employed an adaptive estimation
methodology by introducing a so-called ‘forgetting factor’ [67, 130].

Simplex and the `1 Ball Projection

Consider a data space D of N dimensions, D = RN . Let y be a vector
in the data space D, y = (y1, y2, . . . , yN ) = (yi)

N
i=1 ∈ D = RN . SCS is

a convex set, and
∏

is a projection. A vector x is called an image of y
after the projection

∏
subject to the constraint of SCS , and is denoted by:

x =
∏

SCS
(y).

Given a real value r, the simplex projection of a vector y is defined as
follows: ∏

∆

(y) = argmin
x∈∆

1

2
‖ x− y ‖, (2.22)

where ‖ . ‖ is the Euclidean norm, and ∆ is the simplex of the data space
D with respect to r. ∆ ⊂ D, and is defined by:

∆ = {(x1, x2, . . . , xN ) ∈ RN

∣∣∣∣ N∑
i=1

xi = r ∧ xi ≥ 0,∀i = 1, . . . , N} (2.23)

When the value of r is 1, the simplex ∆ is called the standard or probability
simplex. If the conditional constraints on the simplex ∆ change to

∑N
i=1 |

xi |≤ r, we have a new sub space:

B = {(x1, x2, . . . , xN ) ∈ RN

∣∣∣∣ N∑
i=1

| xi |≤ r} (2.24)

B is called the `1 ball sub space of D, and the `1 ball projection is as follows:∏
B
(y) = argmin

x∈B

1

2
‖ x− y ‖, (2.25)
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2.4 Event Detection in Complex Data

In many real-world applications, generated data are commonly represented
using a more complex structure such as a graph or multidimensional array,
often referred to as a tensor [31]. Tensors and graphs have been used in
several important domains, including geometry, physics, biology and com-
puter science [176, 81, 145]. As a result of the growth in the number of
applications involving tensors and graphs, combined with the increase in
the range of interests of researchers in this field, numerous tensor- and
graph-related approaches have been proposed, including tensor decompo-
sition [150, 107], tensor factorization [171, 123, 126], and dense subgraph
detection [95, 68, 99]. Some effective algorithms have used the greedy
method [12] with a guarantee on the density of dense subgraphs, and have
been applied in specific fields such as fraud detection, event detection, and
genetics [52, 159, 82, 148, 138], among others. Dense subgraph detection
and dense subtensor detection are core tasks in a wide-range of real-life
applications [60, 136, 174, 143].

2.4.1 Dense Detection in Graph and Tensor Data

In this subsection, we introduce the background to the problem of dense
subgraph and dense subtensor detection.

Dense Subgraph Detection

Definition 1 (Graph). Let G be an undirected graph that is composed of
a pair (V ;E) of sets of vertices V and edges E. We denote the graph as
G(V ;E). There is a weight ai at each vertex vi, and a weight cij on each
edge eij between two vertices vi and vj in G.

Definition 2 (Density of Graph). The density of G is denoted by ρ(G) and
is defined by:

ρ(G) =

∑
ai +

∑
cij

|V |
=

f(G)

|V |
, (2.26)

where |V | is the number of vertices of G, and f(G) =
∑

ai +
∑

cij, f(G)
is called the mass of graph G.

Definition 3 (Subgraph). Let G be an undirected graph that is composed
of a pair (V ;E) of sets of vertices V and edges E. S is a subgraph of G if
S is induced by a subset of the vertices of V and edges in E.
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Definition 4 (Weight of Vertex in Graph). Given a graph G(V,E) with a
weight ai at vertex vi, and a weight cij at the edge between 2 vertices vi, vj.
The weight of vertex vi in graph G is denoted by wi(G), and is defined by:

wi(G) = ai +
∑

vj∈G∧eij∈E
cij . (2.27)

Dense Subgraph Detection

Given an undirected graph G = (V ;E) and a density measure df, the prob-
lem of dense subgraph detection involves finding the subgraphs S induced
by a subset of the vertices of V and edges in G to maximize the density of
S.

Density Measures

To measure the density of a region S in a data D, four density measures
are commonly used in benchmark evaluations for dense region detection, as
follows:

1. Arithmetic average mass [27]: This density function is simply com-
puted as follows:

df(S) =
mass of S

size of S
(2.28)

2. Geometric average mass [27]: This metric was introduced under an
observation from the problem in the context of sparse space [86].

df(S) =
mass of S

volume of S
=

mass of S
N
√∏N

i=1 Si

, (2.29)

where N is the number of dimensions of S, and Si is the size along
the i-th dimension of S.

3. Entry surplus [159]: This metric uses a parameter α to control the
probability of each edge in S, to get better results in terms of a smaller
diameter and higher density.

dfα(S) = mass of S − α×
(
size of S

2

)
(2.30)

The underlying idea of this metric is to express the edge surplus and
then maximize the density with a smaller region.
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4. Suspiciousness [85]: This metric was used in [85] in place of the arith-
metic density. It is the negative log likelihood of the mass under
an Erdös–Rényi model [51]. This metric is useful in fraud detection
problems, and is computed by:

dfSusp(S over D) = (

N∏
i=1

Si)×DKL(df(S) ‖ df(D)), (2.31)

where DKL(x ‖ y) is the Kullback-Leibler(KL) divergence [94] of
Poisson(x) from Poisson(y) [73]. The Kullback–Leibler divergence of
two given probability distributions P from Q on a space X is the ex-
pectation of the logarithmic difference between the probabilities, and
is defined by:

DKL(P ‖ Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(2.32)

Dense Subtensor Detection

In the following, we present some fundamental preliminaries for the dense
subtensor detection problem, based on [149, 147].

Definition 5 (Tensor). A tensor T is a multidimensional array data. The
order of T is the number of its ways. Given a N -way tensor, there are
multiple spaces on each way, each of which is called a slice.

Definition 6 (SubTensor). Given an N-way tensor T , Q is a subtensor of
T if it is composed of a subset s of the set of slices S of T , and there is at
least one slice on each way of T . Intuitively, Q is the part of T that remains
after we remove all slices in S but not in s.

Definition 7 (Entry of a Tensor). E is an entry of an N-way (sub)tensor
T if it is a subtensor of T and is composed of exactly N slices.

Definition 8 (Size of a (Sub)Tensor). Given a (sub)Tensor Q, the size of
Q is the number of slices making up Q.

Definition 9 (Density). Given a (sub)tensor Q, the density of Q, denoted

by ρ(Q), is computed as: ρ(Q) = f(Q)
size of Q , where f(Q) is the mass of the

(sub)tensor Q, and is calculated as the sum of every entry value of Q.

Definition 10 (Weight of a Slice in a Tensor). Given a tensor T , the weight
of a slice q in T is denoted by wq(T ), and is defined as the sum of the entry
values composing the intersection of T and q.
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Definition 11 (D-Ordering). An ordering π on a (sub)tensor Q is a D-
Ordering if

∀q ∈ Q, q = argmin
p∈Q∧π−1(p)≥π−1(q)

wp(πq), (2.33)

where

πq = {x ∈ Q|π−1(x) ≥ π−1(q)}, (2.34)

π−1(q) indicates the index of the slice q in ordering π, and wp(πq) is the
weight of p in πq. Intuitively, the D-Ordering is the order in which we select
and remove the minimum slice sum at each step.

Mining of Dense Subtensors

Given a tensor T , the problem of dense subtensor detection involves finding
subtensors Q ∈ T that maximize the density of Q.

Several methods of dense subtensor detection have been proposed using
the same min-cut mechanism as for dense subgraph detection [148, 147,
174]. These methods adapt the theoretical results from dense (sub)graph
detection, i.e., [10, 9, 159], to tensor data by considering more than two
dimensions. The algorithms utilize a greedy approach to guarantee the
density of the estimated subtensors, and this has been shown to yield high
levels of accuracy in practice [85]. However, the same guarantee as in the
original work was employed, with no improvement in density guarantee.

2.4.2 Related Work on Dense Region (Subtensor, Subgraph)
Detection

Finding the densest subtensor or subgraph is generally an NP-complete or
NP-hard problem [70, 11], and the hardness of this problem varies with the
choice of constraints. Due to the complexity of the exact algorithm, it is in-
feasible for use with big data or in dynamic environments such as streaming.
Approximation methods are therefore commonly used to detect the dens-
est regions [12, 27, 14]. GREEDY is an efficient approximation algorithm
that finds the optimal solution in a weighted graph [12]. A further analysis
of the GREEDY algorithm [27] has shown that the problem can be solved
using a linear programming technique. The authors proposed a greedy 2-
approximation for this optimization problem with a density guarantee of the
dense subgraph greater than half of the maximum density in the graph. The
process used by the greedy approximation algorithm is as follows [12, 27].
The vertex with the minimum weighted degree is iteratively removed from
the currently remaining graph until all vertices have been removed. Finally,
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the subgraph with the highest density is chosen from among the estimated
subgraphs.

Several algorithms using this method have been applied in fields such
as fraud detection, event detection, and genetics applications [159, 136, 82,
148, 138], among others. The common aspect connecting these works is that
they use the greedy 2-approximation to find a dense subgraph to optimize an
objective density for an interest density measure. Inspired by the theoreti-
cal solutions for graphs, numerous approaches have been proposed to detect
dense subtensors by using the same min-cut mechanism [149, 147]. Various
algorithms have been proposed that extend prior work on dense (sub)graph
detection to tensor data for use in the areas of network attack detection and
fraud detection [85, 148, 147]. However, the density guarantee in these ap-
proaches is the same as in the original work, with no improvement, and this
also applies to recent algorithms such as ISG+D-Spot [174] and BFF [143].
For an N -way tensor, the guarantee is a fraction of the highest density with
the number of ways of the tensor N . Although ISG+D-Spot converts an
input tensor to a form of graph to reduce the number of ways, it drops all
edges with weights less than a certain threshold, meaning that the density
guarantee is lost.

The greedy 2-approximation has been utilized in many algorithms with
both graph and tensor data [154, 138, 137, 143]. Despite this, most current
works, including [82, 120, 138, 147, 174] can only roughly provide a guar-
antee of half (or 1

N for a subtensor) the density of the densest subregion.
None of the existing approximation schemes provides a better guarantee
than the baseline algorithms [12, 27], and such schemes can only provide a
loose theoretical density detection guarantee.

2.4.3 Multiple Dense Subtensor Estimation and RelatedWork

Dense subtensor detection is a well-studied area with a wide range of appli-
cations, and numerous efficient approaches and algorithms have been pro-
posed. Existing algorithms for dense subtensor detection are generally ef-
ficient, and can perform well in many applications. However, the main
drawback of these algorithms is that most can estimate only one subtensor
at a time, with a low guarantee of the density of the suntensor. Although
some methods can estimate multiple subtensors, they can only give a guar-
antee on the density with respect to the input tensor for the first estimated
subtensor. M-Zoom [146] and M-Biz [147] are among the current state-of-
the-art dense subtensor detection algorithms. They extend approaches for
dense (sub)graph detection, such as in [27, 62], to tensors by considering
more dimensions for a specific problem to obtain highly accurate algorithms.
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They also utilize a greedy approach to provide a local guarantee of the den-
sity of the estimated subtensors. M-Zoom and M-Biz are able of maintaining
k subtensors at a time. Each time a search is performed, a snapshot of the
original tensor is created, and the density of the estimated subtensor in each
single search is guaranteed locally on the snapshot. Hence, M-Zoom and
M-Biz provide only a density guarantee for the current intermediate tensor,
rather than the original input tensor. A newer approach called DenseAl-
ert [149] was developed to detect an incremental dense subtensor for stream-
ing data. Despite its efficiency, DenseAlert can estimate only one subtensor
at a time, and can only provide a low density guarantee for the estimated
subtensor. It may therefore miss a very large number of other interesting
subtensors in the stream. Extensive studies have shown that DenseAlert,
M-Zoom, and M-Biz generally outperform most other tensor decomposition
methods [91, 177] in terms of efficiency and accuracy. Nevertheless, an im-
portant drawback of these methods is that they can provide only a loose
theoretical guarantee of density detection, and the results and efficiency are
primarily based on heuristics and empirical observations. More importantly,
these methods do not provide any analysis of the properties of the multiple
estimated subtensors.

2.5 Sketching Using Multiple Weighted Factors
with Concept Drift

The storage and processing of high volumes of streaming data with high
velocity are often infeasible, due to limitations on memory and compu-
tational infrastructure. Normally, data in a stream can be accessed only
once, thus making efficient processing of streams a challenging but crucial
task. A possible solution involves sketching of the streaming data. Sketch-
ing is an effective approximation method that maps a stream to a main-
tainable form, while still retaining the characteristics of the stream with a
high level of accuracy. The development of efficient sketching techniques
has attracted much research attention over recent decades [165, 167, 164].
In addition to being used to visualize statistical information for the data,
histogram estimation is a technique that is commonly used to sketch the
underlying distribution of the data [142]. An important limitation of most
existing histogram-based methods is that they were developed based on the
assumption that histograms were drawn from a non-changing or static data
distribution [72, 153]. In practice, streaming data are inherently dynamic
and evolve over time, resulting in dynamic changes in the underlying data
distribution, i.e., concept drift [63].
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To address issues related to concept drift, the concept of forgetting factor
has been introduced to determine the significance of data based on the time
at which they occur in the stream [142, 168, 140]. However, most of the
current work (e.g., [142] and [168]) assumes that the forgetting factor is
constant at each point of observation and over the whole process. This is
too restrictive, since in many real-world applications, we cannot use the
same factor for each previous data item at a given observation point. In
the following, we present fundamental definitions for terms related to the
consistent weighted sampling [113, 84, 105] used in our solution involving
sketching of data stream with concept drift. We assume two data vectors
(weighted sets) of k elements X, Y ∈ Rk, and present definitions as follows.

Definition 12 (Uniformity [113, 84, 105]). Let (i, Si) be a sample of X,
where 1 ≤ i ≤ k and 0 ≤ Si ≤ Xi. A process is known as uniformity
sampling if the sample is distributed uniformly over the pairs.

Definition 13 (Consistency [113, 84, 105]). Assume that X dominates Y ,
i.e., Yi ≤ Xi, for all i and 1 ≤ i ≤ k. If a sample (i, Si) is sampled from X
and satisfies Si ≤ Yi, then (i, Si) is also sampled from Y .

Definition 14 (Consistent weighted sampling [113, 84, 105]). Consistent
weighted sampling is a sampling process that satisfies the properties of both
the uniformity and consistency.

The min-max similarity between X, Y is defined by [84, 105]:

SIMmin−max(X,Y ) =
∑

min(Xi,Yi)∑
max(Xi,Yi)

Let SE(X) and SE(Y ) denote the samples of data vectors X and Y , respec-
tively, using a consistent weighted sampling schema. The collision probabil-
ity between the two vectors X, Y is exactly its min-max similarity [84, 105]:

Pr(SE(X) = SE(Y )) = SIMmin−max(X,Y ).

Assume SE(X) = {i∗x, s∗x}, and SE(Y ) = {i∗y, s∗y} are two CWS samples of
X and Y , respectively. Theoretical results for consistent weighted sampling
show that:

Pr(i∗x = i∗y) ' Pr({i∗x, s∗x} = {i∗y, s∗y}) (2.35)

Given a data stream S, let t be the current time point, vt the current
incoming item at an instant in time (order) t with timestamp Tt, and Vt =
(v1, v2, . . . , vt) the current sub-stream. The task of sketching a stream S at
a point of time t involves maintaining a parameter sketch SK (s elements)
such that SK is a compact representation of the current sub-stream Vt, and
SK preserves the interest (similarity) measure of Vt.
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2.5.1 Histograms

For a data stream, a histogram is a data summarization method, in which
data are hashed into a set of buckets. Each bucket maintains the frequency
of the hashed data. One common method for estimating the histogram of a
data stream uses count-min sketching, originally proposed in [33], due to its
efficiency and simplicity. A histogram of a data stream using a count-min
sketch is created using a matrix Θ ∈ Rn×m, where n is the number of random
hash functions hi, i = 1, 2, . . . , n, and m is the number of ranges such that
each hash function hk maps an incoming data item v in the stream to a
range from 1 to m. When a new data item v arrives in the stream, n hash

Θ11 . . . Θ1j . . . Θ1m
...

. . .
...

...
...

Θi1 . . . Θij . . . Θim
...

...
...

. . .
...

Θn1 . . . Θnj . . . Θnm





+1

Figure 2.4: Example of an Rn×m histogram.

functions hi, i = 1, 2, . . . , n, are used to hash the value v to a corresponding
range (a set of m columns of matrix Θ). The value of the corresponding cell
of matrix Θ is then incremented, i.e., Θ(i, hi(v)) = Θ(i, hi(v)) + 1.

2.5.2 Forgetting Factor and Elastic-Based Models

In this subsection, we first briefly introduce the forgetting factor, which is
commonly used in weighting the importance of data in streaming data, then
we present an elastic-based statistical model which we use in our studying
of highly correlated features of evolving data.

Forgetting Factor

A forgetting factor [67, 130] was proposed to reduce the impact of noise in
streaming data and weigh the importance of the data in the stream [168,
142, 140]. Given a factor λ, 0 ≤ λ ≤ 1, and two observations at time t and
t− 1, the importance of a data item at these observation points is denoted
as W (t) and W (t− 1), and is given by:

W (t− 1) = W (t)× f(λ,∆(t)), (2.36)
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where ∆(t) is the timespan between observations, and f is a weight function
of the variables λ and ∆(t) that is normally less than one.

Elastic Net

Elastic net regularization [179] is an improvement on the Lasso regulariza-
tion scheme [155]. Lasso regularization was formulated for the least squares
model, and utilized the `1-norm to minimize the least squares loss function
to enhance the prediction accuracy of a statistical model. However, using
only the `1 norm tends to select one variable from a group of highly corre-
lated variables, and to set less important coefficients to zero. To overcome
this drawback in the context of highly correlated variables, another term of
2-norm is added to enforce the hierarchy constraint, which helps to force
the coefficients closer to the average value rather than to zero. The problem
involves solving the following expression for x:

min
x

(
1

2
‖Mx− C ‖22 +λ ‖ x ‖1 +

1

2
β ‖ x ‖22), (2.37)

where M , C, λ and β are parameters, and ‖ . ‖ is the Euclidean norm.

2.5.3 k-NN Classification and the Hamming Distance

When sketching a data stream, one important task is to maintain a huge
amount of data using a compact representation that is able to preserve the
similarities between data points. The following paragraphs describe the use
of the Hamming distance to measure the distance between data points, and
discuss methods for classifying data into the corresponding bucket (classifi-
cation) using distance measures.

Hamming Distance

The Hamming distance is a metric for computing the distance between two
strings [74]. It is used in information theory, and is computed based on the
number of positions with the same symbol in two strings. It is only defined
for strings of the same length, and is different from the Levenshtein distance
in that the latter is normally used to compare strings of different lengths.

k-Nearest Neighbors

k-nearest neighbors (k-NN) is a method of classifying a data point based on
information on its k nearest neighbors. The k-NN classifier relies on a dis-
tance metric to compute the similarities between data points. This method
selects the k nearest neighbors of a data point based on a predefined simi-
larity. In the classification problem, the label for a data point is predicted
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based on votes from its k nearest neighbors (e.g., the most frequent class).
The value of k (the number of nearest neighbors) depends on the application
and the data, and the value of k can be selected using heuristic methods.

2.5.4 Related Work

Sketching is a hashing technique [30] that has been extensively studied and
widely applied to represent a dataset using an approximate compact repre-
sentation. Numerous algorithms for sketching have been proposed, including
Count-Min (CM) [33], Count-Min with conservative update (CM-CU) [71],
and Augmented sketching [135]. However, due to the skewness and the dy-
namic nature of data in a stream, these sketching methods are inefficient
when applied to real data streams [34, 172], since there is often a need to
estimate the frequency when considering the weight of data in a stream.

In order to preserve the characteristics of the data, a sketch needs to
simulate the data distribution of a given dataset in a form that is as close as
possible to the real distribution. Several algorithms have been proposed for
sketching datasets [25, 83, 139, 84], one of the most well-known of which is
locality-sensitive hashing (LSH) [83], a data-independent method that can
guarantee the collision probability between similar data points. Examples
of LSH-based methods are SimHash [139] and MinHash [25], which differ in
terms of method of computing similarities. SimHash [139] uses the cosine
distance to measure the similarity between data files, while in MinHash (or
minwise hashing) [25], the Jaccard similarity is used to estimate the similar-
ity between two sets. MinHash-based algorithms are generally efficient, and
are more efficient than SimHash when the cosine similarity is used, although
one drawback is that they consume a great deal of memory. Furthermore,
minwise hashing uses a large number of permutations of the data, which
in turn degrades the performance of the algorithm since minwise hashing
is normally adopted in the context of binary or high-dimensional data. To
address the issue of the cost of processing data, Weighted Minwise Hash-
ing (WMH) [84] was developed, inspired by the idea of using densification
and one permutation [106]. WMH uses a “rotation” scheme to densify the
estimated sparse sketches using one permutation hashing that assigns new
values to all the empty buckets. As a result, WMH greatly reduces the
computational cost compared to MinHash-based schemes. It is also much
simpler, significantly faster, and more memory efficient than the original
approach, especially for very sparse datasets [30].

Histograms have long been seen as one of the most important statistical
tools for providing information about a data distribution [131]. There are
various algorithms for estimating the histograms generated from streaming
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data. A few of these algorithms use a dynamic forgetting factor, including
the most recent one, HistoSketch [168], which applies a Weighted Sampling
method [84, 105] and the Hamming distance. Every time a new data item
arrives in the stream, HistoSketch uses a constant decay factor to decrease
the importance of outdated data in order to handle the issue of concept
drift. Although several adaptive estimation approaches have been proposed
for the efficient detection of concept drift [22, 142], a drawback of all of these
algorithms is that they compute a decay factor at every observation, and
consider data independently. This means that they decrease the importance
of all outdated data by that constant factor, and then use the same factor
on all data.
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Part II

Pattern Discovery and
Change Detection in

Evolving Data
This part presents a study investigating the dependencies of data and

proposes statistical hypotheses to detect changes. We explore the impact of
data structures, correlations and dependencies between data features on the
performance of various methods of event detection. The first chapter in this
part introduces a new approach to solve the problem of detecting patterns
from an unknown distribution. The next chapter describes an efficient al-
gorithm for detecting both local and global changes in the structure of high
utility patterns. Global changes are determined based on a statistical hy-
pothesis of a distance measure between single patterns. The last chapter
presents a method that utilizes the temporal dependencies between data in
a statistical hypothesis model to detect changes in streaming data.
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Chapter 3

Summarizing a Stream for High
Utility Pattern Detection

The efficiency of an algorithm (e.g., for pattern detection) depends strongly
on the characteristics of the data. Efficient methods are normally designed
to work well with certain specific characteristics; however, in some cases,
the characteristics of the data are unknown beforehand, and a robust solu-
tion needs to take into account the different and unknown distribution of
data for avoiding bias. The work presented in this chapter addresses re-
search questions RQ1 to RQ3 [44], i.e., How can we design efficient methods
to work well with a variety of different characteristics of data? How can
we avoid bias in the dense and sparse characteristics of data? How can
we construct efficient structures and simpler models with limited computing
resources (i.e., memory)?

3.1 Motivation

Utility-lists were introduced in the HUI-Miner [110] algorithm to discover
high utility itemsets. HUI-Miner was shown to be up to 100 times faster
than several state-of-the-art algorithms. In this approach, a utility-list is
associated to each itemset, and utility-lists of itemsets are built without
scanning the database by joining the utility-lists of some of their subsets.
The algorithm can directly calculate the utility of itemsets and reduce the
search space without having to maintain a set of candidates in memory or to
repeatedly scan the database. The simplicity of the utility-list structure and
the high performance of utility-list based algorithms have led to the devel-
opment of numerous utility-list based algorithms for HUIM and variations
of the HUIM problem such as closed high utility itemset mining [162, 38],
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top-k high utility itemset mining [158, 100, 45], high utility sequential pat-
tern mining [160], and on-shelf high utility itemset mining [59, 37], among
others [57, 175, 56]. Although the introduction of the utility-list structure
has been a breakthrough in the field of HUIM, the utility-list structure still
has to be improved. In particular, it can be observed that the amount of
memory required by utility-lists can be quite large.

Contributions

The main contributions of this chapter are fourfold as follows.

• A novel Utility-List Buffer structure is proposed. It is based on the
principle of buffering utility-lists to decrease memory consumption. A
Utility-List Buffer consists of multiple segments, which are reused to
store utility-list information.

• An efficient join operation is designed to create utility-lists segments
in a Utility-List Buffer in linear time, to decrease the time required
for utility-list construction.

• An efficient algorithm named ULB-Miner (Utility-List Buffer Miner)
is proposed to mine HUIs efficiently using the designed Utility-List
Buffer structure and several implementation optimizations.

• An extensive experimental study is conducted in order to evaluate
the efficiency of the proposed utility-list buffer structure and ULB-
Miner algorithm on both sparse and dense datasets having various
characteristics. In these experiments, the performance of ULB-Miner
is compared with state-of-the-art algorithms with or without the novel
utility-list buffer structure. Our results show that the proposed ULB-
Miner algorithm outperforms the previous state-of-the-art utility-list
based HUIM algorithms. Moreover, our experiments show that al-
gorithms employing the novel structure are up to 10 time faster than
when using standard utility-lists and consumes up to 6 times less mem-
ory. Also, the proposed technique performs quite well on both dense
and sparse datasets.

Organization

The rest of this chapter is organized as follows. In Section 3.2, we briefly
review the related literature. We define the problem of mining high utility
itemsets and introduce the preliminaries of this problem in Section 3.3. In
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Section 3.4, we present the novel utility-list buffer structure, its construction
and join operations, and the ULB-Miner algorithm. In Section 3.5, we report
on and discuss the experimental results. Finally, in Section 3.6, we conclude
the chapter.

3.2 Related Work

Many algorithms have been designed to discover HUIs [112, 7, 110, 157, 57,
152]. To reduce the search space and mine HUIs efficiently, these algorithms
have included various methods to overestimate the utility of itemsets. Sev-
eral high utility itemset mining algorithms discover high utility itemsets us-
ing the TWU measure and a two-phase approach. This includes algorithms
such as Two-Phase [112], UP-Growth+ [157], PB [98] and BAHUI [152]. In
the first phase, the algorithms overestimate the utility of itemsets to obtain
a set of candidate HUIs using the TWU measure and other strategies. Then,
in the second phase, they scan the database again to calculate the utility of
these candidates and filter those that are not HUIs. Although these algo-
rithms are complete as they can find the whole set of HUIs, the two-phase
approach can lead to considering and maintaining a very large number of
candidate itemsets in memory. The cost of scanning the database for each
itemset in the second phase to calculate their utility is also very costly. As a
result, these algorithms can be slow and consume a huge amount of memory.

In recent years, to avoid the drawbacks of the two-phase approach, algo-
rithms have been proposed to mine high utility itemsets using a single phase.
These algorithms can directly calculate the utility of itemsets in memory
without having to repeatedly scan the database or maintain candidates in
memory. Moreover, they utilize tighter upper-bounds and more efficient
strategies to reduce the search space, compared to two-phase algorithms.
The concept of single phase algorithm was introduced in the HUI-Miner
algorithm [110] by using a novel structure called utility-list. This struc-
ture stores all the information needed to calculate the utility of itemsets
and reduce the search space, without repeatedly scanning the database. To
discover HUIs, the HUI-Miner algorithm first constructs a utility-list for
each item by scanning the database. Then, HUI-Miner recursively builds
utility-lists of larger itemsets by joining the utility-lists of some of their sub-
sets, i.e., without scanning the database again. The HUI-Miner algorithm
is a complete algorithm as it can enumerate all high utility itemsets with
their utility values using the utility-list structure. In terms of performance,
it was shown that HUI-Miner outperforms the state-of-the-art two-phase
HUIM algorithms [110]. Nonetheless, the performance of HUI-Miner can
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still be improved. An important observation is that the join operation for
obtaining the utility-lists of itemsets is costly in terms of runtime. To reduce
the number of join operations performed by HUI-Miner, Fournier et al. de-
signed the Faster High-Utility Itemset Mining (FHM) algorithm [57]. FHM
applies a strategy to eliminate low utility itemsets using information about
item co-occurrences. For each itemset eliminated using this strategy, the
join operation does not need to be applied, thus reducing the execution
time. It was shown that this pruning strategy can greatly reduce the num-
ber of join operations, and that FHM [57] can be up to six times faster than
HUI-Miner.

Creating the utility-lists of itemsets using the join is costly. It requires
a significant amount of memory, since an algorithm has to maintain many
utility-lists in memory during the search for HUIs. Moreover, in terms of
execution time, the complexity of building a utility-list is also high [57]. In
general, it requires to join three utility-lists of smaller itemsets. Recently,
improved versions of the HUI-Miner algorithm called HUP-Miner [93] and
FHM [57] have been proposed by introducing additional search space prun-
ing strategies and optimizations. It was shown that these algorithms can be
up to 6 times faster than HUI-Miner and are the state-of-the-art algorithms
for HUIM. Although some algorithms [57, 162, 158, 45] have introduced
strategies to reduce the number of join operations, this operation is re-
peatedly performed to mine high utility itemsets, and this high cost has a
negative impact on the performance, especially when the number of items
is huge or a database contains long transactions. Hence, joining utility-lists
remains the main performance bottleneck in terms of execution time, and
storing utility-lists remains the main issue in terms of memory consump-
tion [57].

3.3 Preliminaries

Definition 15 (Utility of an item in a transaction). Let there be an item i
and a transaction Td such that i ∈ Td. The utility of i in Td is the product
of the internal utility (purchase quantity) of item i in Td by the external
utility (unit profit) of i, that is u(i, Td) = q(i, Td)× p(i).

For example, in the database of Table 2.1, u(a, T1) = 1 × 5 = 1, and
u(c, T1) = 1× 1 = 1.

Definition 16 (Utility of an itemset in a transaction). For an itemset X
and a transaction Td, the utility of X in Td is a positive number defined as
u(X,Td) =

∑
i∈X u(i, Td).
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For instance, consider the utility of itemset ac in transaction T3 for the
database of Table 2.1. The utility of ac in T3 is calculated as u(ac, T3) =
1× 5 + 2× 2 = 9. Similarly, the utility of bc in transaction T2 is calculated
as u(bc, T2) = 4× 2+ 1× 3 = 11.

Definition 17 (Transaction utility and total utility). The utility of a trans-
action Td is the sum of the utilities of items appearing in that transaction,
that is TU(Td) = u(Td, Td). The total utility of a database D is the sum of
the utilities of all transactions, that is TUD(D) =

∑
Td∈D TU(Td, Td).

For example, in Table 2.1, TU(T1) = 8, TU(T2) = 27, TU(T3) = 30,
TU(T4) = 20, TU(T5) = 11. The total utility of database D is TUD(D) =
(TU(T1) + TU(T2) + TU(T3) + TU(T4) + TU(T5)) = 8 + 27 + 30 + 20
+ 11 = 96.

Definition 18 (Utility and relative utility of an itemset). Let there be a
database D and an itemset X. The utility of X in D is defined as u(X) =∑

X⊆Td∧Td∈D u(X,Td). The relative utility of X in D is defined as ru(X) =
u(X)/TUD(D).

For instance, the utility of the itemset ac in the database of Table 2.1 is
u(ac) = u(ac, T1)+u(ac, T2)+u(ac, T3) = 6+16+6 = 28, while the relative
utility of ac in that database is ru(ac) = 28/96 = 0.29.

Definition 19 (Low utility itemset and high utility itemset). Let the mini-
mum utility threshold (abbreviated as minutil) be a positive number specified
by the user such that 0 < minutil < TUD(D). Consider an itemset X. It is
said to be a high utility itemset (HUI) if its utility is no less than minutil.
Otherwise, X is said to be a low utility itemset.

Definition 20 (High utility itemset mining). Given a minimum utility
threshold minutil and a database D, the problem of high utility itemset
mining is to enumerate all high utility itemsets appearing in D.

Note that the problem of high utility itemset mining can also be defined
in terms of the relative utility of itemsets. Given a relative minimum utility
threshold r minutil = minutil/TUD(D), an itemset X is a high utility
itemset if and only if ru(X) ≥ r minutil.

The TWU measure was introduced and used as an upper-bound on
the utility. The TWU measure is defined as follows and has the following
important properties [112].
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Definition 21 (Transaction-weighted Utilization). Let there be an itemset
X and a database D. The Transaction-weighted Utilization(TWU) [112] of
X in D is denoted as TWU(X) and defined as:

TWU(X) =
∑

Td∈D∧X⊆Td

TU(Td). (3.1)

Property 5 (Overestimation [112]). The utility of an itemset X is less than
or equal to its TWU, that is TWU(X) ≥ u(X).

For instance, consider the transactions T1, T2, and T3 in the database of
the running example. Their TWU values are 8, 27, and 30, respectively. The
TWU of the item a is calculated as TWU(a) = TU(T1)+TU(T2)+TU(T3)
= 8 + 27 + 30 = 65. The following property has been used by several HUIM
algorithms to reduce the search space.

Property 6 (Search space reduction using the TWU [112]). For an itemset
X, if TWU(X) < minutil, it follows that X and its supersets are low utility
itemsets.

For example, the transaction-weighted utilization of item f is TWU(f) =
TU(T3) = 5 + 4 + 1 + 12 + 3 + 5 = 30. Table 3.1 shows the transaction
utilities of all transactions in D and the TWU values of each item.

Table 3.1: The TU and TWU values of transactions for the running ex-
ample

Item Name a b c d e f g
TWU 65 61 96 58 88 30 38

TID T1 T2 T3 T4 T5

TU 8 27 30 20 11

The proposed algorithm relies on the novel utility-list buffer structure
inspired by the utility-list structure [110] to mine high utility itemsets in
a single phase. The next paragraphs present definition of the utility-list
structure and its key properties [110].

Definition 22 (Utility-list). Let � be a total order on items from I, and X
be an itemset appearing in a database D. The utility-list of X is denoted as
ul(X). It contains a tuple (tid, iutil, rutil) for each transaction Ttid where
X appears (X ⊆ Ttid). The iutil element of a tuple for a transaction Ttid

stores the utility of X in the transaction Ttid, i.e., u(X,Ttid). The rutil
element of a tuple stores the value

∑
i∈Ttid∧i�x∀x∈X u(i, Ttid), which is called

the remaining utility of X [110].
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Example 2. In the running example, the utility-list of the item a is {(T1,
5, 3)(T2, 10, 17)(T3, 5, 25)}. The utility-list of the item e is {(T2, 6, 5)(T3,
3, 5)(T4, 3, 0)}. The utility-list of the itemset ae is {(T2, 16, 5),(T3, 8, 5)}.

Two important properties of utility-lists have been proposed to de-
termine the utility of an itemset and to reduce the search space, respec-
tively [110].

Property 7 (Calculating the utility using the sum of iutil values [110]). The
utility of an itemset X (denoted as u(X)) can be calculated by performing
the sum of the iutil values in the utility-list ul(X). If that sum is less than
the minutil threshold, X is a low utility itemset. Otherwise, it is a high
utility itemset [110].

Property 8 (Pruning using an utility list’s iutil and rutil values [110]). Let
X and Y be two itemsets. It is said that Y is an extension of X if Y can
be obtained by adding an item c to X, where c � i, ∀i ∈ X. The sum of
the iutil and rutil values in the utility-list ul(X) is an upper-bound on the
utility of Y and any other transitive extension of X. As a consequence, if
this sum is less than the minutil threshold, it follows that any itemset that
is a transitive extension of X must be a low utility itemset, and thus be
pruned.

3.4 Model and Solution

This section presents our method to address the above discussed drawback
of the state-of-the-art methods.

3.4.1 The Proposed Utility-list Buffer Method

As proposed in the HUI-Miner algorithm [110], the utility-list of an item-
set Pxy can be constructed without accessing the database by joining the
utility-lists of some subsets of Pxy. For instance, consider some itemsets
Px, Py, and Pxy, where Px and Py are extensions of an itemset P ob-
tained by appending an item x and an item y, respectively. To build the
utility-list of the itemset Pxy, Algorithm 1 [110] is applied. The algorithm
first considers each element in the utility-list ul(x). For each such element,
the algorithm verifies if there exists an element having the same transac-
tion identifier in ul(y). If such an element is found, the algorithm applies a
binary search on the utility-list of the itemset P to check if an element in
the utility-list of P has the same transaction identifier. The time complex-
ity of this comparison of utility-lists is O(m log nz), where m, n, and z are
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the number of entries in ul(x), ul(y), and ul(P ), respectively. In terms of
space complexity, a utility-list has a size proportional to O(n) in the worst
case, where n is the number of transactions. The worst case occurs when
a utility-list has an entry for each transaction of the database. The overall
worst-case time complexity is thus roughly O(n3).

Algorithm 1 The traditional utility-list construction procedure

Input:
ul(P) : the utility-list of itemset P ;
ul(Px): the utility-list of itemset Px ;
ul(Py): the utility-list of itemset Py ;

Output: ul(Pxy): the utility-list of itemset Pxy ;

1: ul(Pxy) = NULL;
2: for each (tuple ex ∈ ul(Px)) do
3: if (∃ey ∈ ul(Py) and ex.tid=ey.tid) then
4: if (ul(P) is not empty) then
5: Search element e ∈ ul(P) such that e.tid = ex.tid ;
6: exy ←− (ex.tid; ex.iutil + ey.iutil - e.iutil; ey.rutil);
7: else
8: exy ←− (ex.tid; ex.iutil + ey.iutil; ey.rutil);

9: ul(Pxy) ←− ul(Pxy) ∪ exy ;

10: return ul(Pxy);

The proposed method is based on the following observations. Joining
utility-lists is costly both in terms of runtime and memory consumption.
In utility-list-based algorithms, memory has to be allocated to store each
utility-list. Since millions of itemsets are often considered by HUI (High
Utility Itemset) mining algorithms, the memory used for storing utility-
lists can be quite large. Moreover, because utility-lists can contain many
entries, the time requires for allocating and reusing memory for utility-lists
can be quite important. In addition, a related issue is that a utility-list
can be kept in memory during a long period of time by utility-list-based
algorithms, even if the corresponding itemset is identified as not being a
HUI and/or is not extended by the search procedure to find HUIs. This can
lead to high peaks of memory usage. In conclusion, there is an important
issue with how memory is managed by the state-of-the-art utility-list-based
algorithms. Our experimental evaluation in Section 3.5 will also show this
in more details.

To address this issue, this section proposes a data structure named
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utility-list buffer, designed to both quickly access information stored in
utility-lists and more efficiently manage the memory used for storing the
information of utility-lists. The proposed utility-list buffer structure is
designed for replacing traditional utility-lists in any utility-list-based al-
gorithms. As it will be shown in the experimental evaluation, using the
utility-list buffer structure leads to considerably lower memory usage and
faster execution times for utility-list-based algorithms.

3.4.2 The Utility-list Buffer Structure

The utility-list buffer structure is proposed to tackle the aforementioned
limitations of one-phase utility-list-based algorithms for mining high utility
itemsets. The utility-list buffer structure is introduced by the following
definitions and properties. Then, an example will be given to illustrate the
definitions.

Definition 23 (Utility-list buffer structure). Let I be the set of items
in a database D. Let TidD be the set of transaction identifiers in the
database D. The utility-list buffer structure for the database D is denoted
as UTLBuf. The structure is designed like a memory pipeline to store
information about itemsets that would be normally stored in their utility-
lists. The utility-list buffer of a database stores a set of tuples of the form
(tid ∈ TidD, iutil ∈ R, rutil ∈ R). These tuples called data segments, which
store the tuples normally contained in traditional utility-lists. To quickly ac-
cess the information stored in the utility-list buffer, a set of index segments
are created, where an index segment SUL(X) indicates where the informa-
tion about an itemset X is stored in the utility-buffer. Index segments allow
fast accessibility of the data stored in the utility-buffer and are described
next.

Definition 24 (Summary of Utility-list). The index segment of an itemset
X in a database D, also called the summary of utility-list of itemset X, is
denoted as SUL(X). It is defined as a tuple having the form (X, StartPos,
EndPos, SumIutil, SumRutil). The SumIutil element stores the sum of the
iutil values in ul(X), that is

∑
ul(X).iutil. The SumRutil element stores

the sum of rutil values in the utility-list of X, that is
∑

ul(X).rutil. The
StartPos and EndPos elements respectively indicate the start index and end
index of the data segments in the utility-list buffer structure UTLBuf, where
the information that would be normally contained in the utility-list of X is
stored.

Definition 25 (Summary List). Let I be the set of items in a database D.
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A structure called Summary List is further defined. It is a memory pipeline
denoted as SULsD, and defined as SULsD = {SUL(X), X ⊆ I}.

The proposed utility-list buffer structure is used as follows by the pro-
posed algorithm. When the algorithm considers an itemset X from the
search space as a potential HUI and as an itemset that could be extended
to find other HUIs, the algorithm stores the utility-list of X in the UTL-
Buf structure by temporally inserting its information in the data segments
of UTLBuf from the StartPos to EndPos positions. Then, when needed,
the algorithm accesses this information by reading the values in the UTL-
Buf from the StartPos to EndPos positions. Thanks to the utility-buffer
structure, data can be quickly accessed. For efficient memory management,
the temporary memory that is allocated for an itemset X in the UTLBuf
structure is reused for storing the utility-lists of other itemsets when it is
found that the utility-list of the itemset X is not needed anymore by the
search process. In this case, the memory is recalled and reused for other
candidate itemsets (this idea will be described in more details in Subsection
4.4).

In terms of implementation, we implement the proposed structures as
follows. Four array lists are created, named TIDs, Iutils, Rutils and SULs.
The three first lists store the information of the UTLBuf structure, and the
fourth list is the SULs structure. These lists are initialized as empty and
their size is increased when they are full, and more space is needed. Lists
are used for storing the utility-lists of itemsets, and when the utility-list of
an itemset is not needed, the memory is reused to store other utility-lists.
This reduces the time for allocating memory and the overall memory usage
for mining HUIs.

The proposed algorithm first creates the utility-list of all single items
according to the total order � by performing a database scan. For example,
consider the utility-list of the item f . In transaction T3, we have that
u(f, T3) = 5 and ru(f, T3) = 25. The item f only appears in the transaction
T3. Hence, the summary of f is stored in the SULs list and contains the
following information: the item is f , its start position index in the lists is
0, its information ends at position index 1, the sum of its utilities is 5, and
the sum of its remaining utilities is 25. In the following, we use a notation
SULi to present an item of SULs for short.

SULi =


Item

StartPos
EndPos
SumIutil
SumRutil

 (3.2)
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The state of the utility-list buffer after inserting the item f is depicted in
Figure 3.1. Thereafter, the other items are inserted in the same manner.
The resulting state of the utility-list buffer is depicted in Figure 3.2, the
first three rows are lists of TIDs, Iutils, and Rutils. In this figure, it can be
seen that a utility-list segment is used for each item. Accessing a utility-
list stored in the utility-buffer is efficient thanks to the SULs structure. For
example, assume that the algorithm is currently processing the itemset X =
{a}. To access its utility-list, the summary information of {a} is obtained
from the SULs. After the summary information of {a} is obtained, its
utility-list UL({a}) is read in UTLBuf from the SULs({a}).StartPos to
SULs({a}).EndPos positions (in red color in Figure 3.2).

TIDs = 3
Iutils = 5
Rutils = 25

SULs = SULi =


f
0
1
5
25


Figure 3.1: The utility-list buffer after inserting the item f
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Figure 3.2: The utility-list buffer after inserting all single items

3.4.3 An Efficient Utility-list Segment Construction Method

The previous subsection has explained how the proposed data structures
are used to store the utility-lists of itemsets containing a single item. This
subsection explains the more general case where itemsets can have two or
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more items.

As it has been pointed out in traditional utility-list-based algorithms [110,
57], the utility-list of a 2-itemset xy can be constructed without scanning
the database by joining (intersecting) the utility-lists of its items x and y.
Moreover, the utility-list of any k-itemset {i1 . . . ik−1ik} (k ≥ 3) can be ob-
tained by intersecting the utility-lists of three itemsets: {i1 . . . ik−2ik−1},
{i1 . . . ik−2} and {i1 . . . ik−2ik}. The basic procedure for intersecting utility-
lists was proposed in the HUI-Miner algorithm [110]. This procedure is
given in Algorithm 1, where the utility-list of an itemset Pxy is built by
intersecting the utility-lists of the itemsets Px, Py, and P . P is the prefix
itemset, x and y are items. For each element in the utility list ul(x), the
procedure checks if an element has the same transaction identifier in the
utility-list ul(y). If yes, then a binary search is performed on the utility-list
of P to find an element with the same transaction identifier. Hence, the
time complexity of this procedure is O(sxlog(sy)), where sx and sy are
respectively the number of entries in ul(x) and ul(y).

Although this algorithm is useful for constructing utility-lists, it can-
not be directly applied to utility-lists stored in the proposed utility-buffer
structure. Thus, an adapted utility-list segment construction procedure is
proposed and depicted in Algorithm 2. This procedure constructs a utility-
list in the next free data segments of the utility-list buffer and updates the
Summary List SULs structure to allow the quick retrieval of the utility-list
from the buffer when needed.

Since transaction identifiers (Tids) in utility-lists are ordered in ascend-
ing order, an efficient way of identifying transactions that are common to
two utility-lists ul(x) and ul(y) are to read the two utility-lists at the same
time by reading the Tids sequentially in each utility-list. The complexity
of this search method is O(m + n), which is less than O(mlogn) for the
basic utility-list construction method. Based on this observation, we intro-
duce an improved construction procedure named ULB-Construct, and it is
presented in Algorithm 3.

3.4.4 High Utility Itemset Miner Employing the Utility-list
Buffer

Having presented the proposed utility-buffer structure and how utility-lists
are constructed and stored in that structure, this subsection proposes a
novel algorithm named ULB-Miner for discovering all high utility itemsets
using that structure.

After constructing the initial utility-list buffer from an input database,
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Algorithm 2 The basic utility-list segment construction procedure

Input:
PPosition : the StartPos of itemset P ;
PxPosition: the StartPos of itemset Px ;
PyPosition: the StartPos of itemset Py ;

Output: PxyPosition: the StartPos of itemset Pxy ;

1: PxyPosition = NULL;
2: countX = SULs(Px ).EndPos - SULs(Px ).StartPos;
3: for (i = 0; i < countX ; i++) do
4: if (∃j ∈ [SULs(Py).StartPos, SULs(Py).EndPos] and

TIDs[SULs(Px ).StartPos+i]=TIDs[j]) then
5: if (PPosition ≥ 0) then
6: Search index p ∈ [SULs(P).StartPos, SULs(P).EndPos] such

that TIDs[p] = TIDs[SULs(Px ).StartPos+i];
7: TIDs[PxyPosition + p] = TIDs[PxPosition + i];
8: Iutils[PxyPosition + p] = Iutils[PxPostion + i] + Iu-

tils[PyPostion + j] - Iutils[PPosition + p];
9: Rutils[PxyPosition + p] = Rutils[PyPostion + j];

10: else
11: TIDs[PxyPosition + p] = TIDs[PxPosition + i];
12: Iutils[PxyPosition + p] = Iutils[PxPostion + i] + Iu-

tils[PyPostion + j];
13: Rutils[PxyPosition + p] = Rutils[PyPostion + j];

14: Update SULs of Pxy ;
15: return PxyPosition;

the algorithm can efficiently mine all high utility itemsets by employing
the utility-list buffer. The proposed approach for mining HUIs is inspired
by the HUI-Miner [110] and FHM [57] algorithms, but adapted to work
with the novel utility-buffer structure. In particular, it integrates the novel
ULB-construct procedure, described in the previous subsection, that con-
structs utility-list segments in linear time. The main procedure of ULB-
Miner is shown in Algorithm 4. The input is a transaction database D
and the minutil threshold, and the output is the high utility-itemsets. The
main procedure performs the following steps. The algorithm first scans the
database to calculate the TWU of all items (line 1). Then, based on these
TWU values, the set I∗ is created, which contains all items having a TWU
greater than or equal to the minutil threshold (line 2). The TWU values
of items are used to build a total order � on items, which is the ascending
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Algorithm 3 ULB-Construct: the efficient utility-list segment construction
procedure

Input:
UTLBuf, SULs;
Itemsets P, Px ; Py ;

Output: Updated UTLBuf, SULs with itemset Pxy

1: Let PPnt, PxPnt, PyPnt are three pointers that initially point to
UTLBuf at positions SULs(P).StartPos, SULs(Px ).StartPos, and
SULs(Py).StartPos, respectively.

2: while (PxPnt not reach SULs(Px ).EndPos and PyPnt not reach
SULs(Py).EndPos) do

3: if (TIDs[PxPnt ] < TIDs[PyPnt ]) then
4: Shift PxPnt to the right by 1;
5: else if (TIDs[posX ] > TIDs[posY ]) then
6: Shift PyPnt to the right by 1;
7: else
8: if (SULs[P ] is not NULL) then
9: while (PPnt not reach SULs(P).EndPos and

TIDs[PPnt] 6= TIDs[PxPnt]) do
10: Shift PPnt to the right by 1;

11: UTLBuf.TIDs[TIDs.count++] = TIDs[PxPnt];
12: UTLBuf.Iutils[Iutils.count++] = Iutils[PxPnt] + Iutils[PyPnt]

- Iutils[PPnt];
13: UTLBuf.Rutils[Rutils.count++] = Rutils[PyPnt];
14: Shift both PxPnt and PyPnt to the right by 1;

15: Update SULs[Pxy ];

order of TWU values (line 3). The algorithm then scans the database again
(line 4) to reorder items in transactions according to that total order. At the
same time, the utility-list buffer of all single items i ∈ I and the Estimated
Utility Co-occurrence Structure (EUCS) [57] are built. The EUCS stores
the TWU values of all pairs of items. It will be discussed in more details in
the next subsection. After that the algorithm starts a recursive depth-first
search by invoking the Search procedure (line 5).

The Search procedure is presented in Algorithm 5. It performs the
following operations. For each extension Px of P , if the sum of the iutil
values of Px is no less than minutil, then Px is a high utility itemset based
on Property 7. Hence, the itemset Px is output (lines 2-4). Then, if the
sum of the SumIutil and SumRutil values of Px is greater than or equal
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Algorithm 4 The ULB-Miner algorithm

Input:
D : a transaction database;
minutil : a user-defined threshold;

Output: The set of high utility itemsets;

1: Scan D to calculate the TWU of single items;
2: Let I∗ be the list of single items i such that TWU(i) ≥ minutil ;
3: Let � be the total order of TWU ascending values on I∗;
4: Scan D again to build the initial utility-list buffer UTLBuf, and SULs

of item i ∈ I∗ and build the EUCS ;
5: Search (∅, I∗, minutil, EUCS, UTLBuf, SULs);

Algorithm 5 The Search Procedure

Input:
P : an itemset;
ExtensionsOfP : a set of extensions of P ;
minutil : the user-specified utility threshold;
EUCS : the EUCS structure;
utility-list buffer UTLBuf : the utility-list buffer structure;
SULs: The summary list ;

Output: The set of high utility itemsets;

1: for each itemset Px ∈ ExtensionsOfP do
2: if (SULs(Px ).SumIutil ≥ minutil) then
3: output Px;

4: if (SULs(Px ).SumIutil + SULs(Px ).SumRutil ≥ minutil) then
5: ExtensionsOfPx ← ∅;
6: for (each itemset Py ∈ ExtensionsOfP such that y � x) do
7: if (∃(x, y, c) ∈ EUCS such that c ≥ minutil) then
8: Pxy ← Px ∪ Py;
9: if (ULBReusingMemory-Construct(UTLBuf, SULs,

P , Px, Py) then
10: ExtensionsOfPx ← ExtensionsOfPx ∪Pxy;

11: Search (Px, ExtensionsOfPx, minutil, EUCS, UTLBuf, SULs);

to minutil, the extensions of Px are considered for further exploration (line
5), based on Property 8. This process is done by combining Px with each
extension Py of P such that y � x to produce a larger itemset itemset Pxy
(line 8). The utility-list segment of Pxy is then constructed by calling an
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improved version of the ULB-Construct procedure, which will be presented
in the next subsection (Algorithm 6). This procedure joins the utility-list
segments of P , Px and Py (line 9). Then, a recursive call to the Search
procedure with Pxy is done to calculate the utility of that itemset and
recursively explore its extensions (line 11).

As other utility-list based algorithms for mining high utility itemsets [110,
57], the Search procedure starts from single items and then recursively ex-
plores the search space of itemsets by appending single items, while reducing
the search space using Properties 7 and 8. It thus can be easily seen that
this process is correct and complete to discover all high utility itemsets.

3.4.5 Implementation Optimizations

The Estimated Utility Co-Occurrence Structure (EUCS) [57] is a very useful
structure for pruning the search space. The EUCS has been designed to
avoid performing join operations to construct utility-lists of itemsets when
some specific conditions are met. It was demonstrated that this structure
and the corresponding Estimated Utility Co-occurrence Pruning (EUCP)
strategy can considerably reduce the number of join operations for HUI
mining using utility-lists. Hence in the proposed framework, this structure
and its search space pruning strategy are also used to reduce the search space
and increase the performance of the proposed algorithm. This structure is
used in line 7 of Algorithm 5.

Moreover, to obtain better performance for utility-list construction, an
approach is proposed in [45] for abandoning utility-list construction early
named EA (Early Abandoning) strategy. This strategy and its stopping
criterion are designed and employed during the construction of utility-lists
of all candidate itemsets to avoid completely constructing utility-lists. The
utility-list construction process is immediately stopped if a specific condition
is met. This strategy can reduce the runtime and memory consumption
of the algorithms considerably. Therefore, EA is also implemented in the
UTLBuf framework. Detail of how the EA strategy is implemented in the
UTLBuf framework is shown in Algorithm 6 using the variable EACriterion.

Finally, a novel optimization is proposed to reuse memory in the utility-
buffer. It is based on the following observation. In utility-list based algo-
rithms, the utility-list of an itemset containing more than one item is con-
structed by intersecting the utility-lists of some of its subsets. For instance,
the utility-list of an itemset Pxy, ul(Pxy), can be obtained by intersecting
the utility-lists of itemsets P , Px and Py. However, after constructing the
utility-list of Pxy, it is possible that Pxy is considered to not be a HUI
according to Property 7, and also to not be useful for generating larger
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HUIs according to Property 8. Hence, the memory allocated for storing the
utility-list of Pxy is wasted and could be reused for storing other utility-
list(s). This is a serious problem because the construction of utility-lists is
a process that is repeatedly performed by the search procedure. To save
memory, we propose the following strategy for memory re-utilization. If
an itemset Pxy is not a candidate for exploring the search space, then the
memory allocated for storing its utility-list will be recalled and reused for
the next potential candidates that will be considered by the search proce-
dure. All the memory used for Pxy will be reused and new memory is only
allocated when the utility-buffer is full. The pseudo-code of the improved
ULB-Construct procedure integrating this strategy is shown in Algorithm 6.

3.4.6 An Illustrative Example

To give a better understanding of how the proposed ULB-Miner algorithm
works, and at the same time show the benefits of the designed utility-list
buffer structure, this subsection provides a detailed example. In this ex-
ample, ULB-Miner is applied on the database D shown in Table 2.1 with
minutil = 35 and the external utilities of items are shown in Table 2.2.

Step 1. The database D is scanned to calculate the TWU of single items.
The resulting TWU values of items are shown in Table 3.1. The
set of single items I∗ sorted by ascending TWU values and having
TWU ≥ 35 is {g, d, b, a, e, c}. Item f is dismissed because TWU (f)
= 30 < 35 = minutil.

Step 2. The initial UTLBuf and SULs structures for items in I∗ are con-
structed. The result is shown in Figure 3.3.

Step 3. The Search procedure is invoked to perform the recursive search.

(a) The procedure explores the search space starting from item g.
Because SULs(g).SumIutil = 7 < minutil = 35, g is not a high
utility itemset. But SULs(g).SumIutil + SULs(g).SumRutil
= 7 + 31 = 38 > minutil. Thus, extensions of g should be
considered as potential high utility itemsets.

(b) The algorithm appends each item y to g such that y � g and
y ∈ I∗ to form larger itemsets. The algorithm first considers
appending d to g to form the larger itemset gd. Because g and
d never appear together (an empty utility-list is constructed),
the itemset gd is not further considered.
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Algorithm 6 ULBReusingMemory-Construct: Construction procedure for
reusing memory

Input: UTLBuf, SULs, Itemsets P, Px, and Py ;
Output: Updated UTLBuf, SULs with itemset Pxy

1: Let PPnt, PxPnt, PyPnt are three pointers that initially point to
UTLBuf at positions SULs(P).StartPos, SULs(Px ).StartPos, and
SULs(Py).StartPos, respectively.

2: Let EACriterion = SULs[Px ].SumIutil + SULs[Py ].SumIutil +
SULs[Px ].SumRutil + SULs[Py ].SumRutil

3: Let insertionPosition = SULs.Last.endPos;
4: while (PxPnt not reach SULs(Px ).EndPos and PyPnt not reach

SULs(Py).EndPos) do
5: if (TIDs[PxPnt ] < TIDs[PyPnt ]) then
6: Shift PxPnt to the right by 1;
7: Substract EACriterion by (Iutils[PxPnt] + Rutils[PxPnt])
8: else if (TIDs[posX ] > TIDs[posY ]) then
9: Shift PyPnt to the right by 1;

10: Substract EACriterion by (Iutils[PyPnt] + Rutils[PyPnt])
11: else
12: if (SULs[P ] is not NULL) then
13: while (PPnt not reach SULs(P).EndPos and TIDs[PPnt ]
6= TIDs[PxPnt ]) do Shift PPnt to the right by 1;

14: if (insertionPosition ≥ UTLBuf.TIDs.size()) then
15: UTLBuf.TIDs[TIDs.count++] = TIDs[PxPnt];
16: UTLBuf.Iutils[Iutils.count++] = Iutils[PxPnt] + Iu-

tils[PyPnt] - Iutils[PPnt];
17: UTLBuf.Rutils[Rutils.count++] = Rutils[PyPnt];
18: else
19: insertionPosition++ //Reused Memory

20: UTLBuf.TIDs[insertionPosition] = TIDs[PxPnt];
21: UTLBuf.Iutils[insertionPosition] = Iutils[PxPnt] + Iu-

tils[PyPnt] - Iutils[PPnt];
22: UTLBuf.Rutils[insertionPosition] = Rutils[PyPnt];

23: Shift both PxPnt and PyPnt to the right by 1;

24: if (EACriterion < minutil ) then return false;

25: Update SULs[Pxy ];
26: return true;
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(c) Then, the algorithm considers appending b to g to create the
itemset gb. The utility-list of bd is inserted into the utility-
buffer UTLBuf as shown in Figure 3.4 (cells filled with white
color). The sum of the Iutils and RUtils values of gb is 6 +
5 = 11 < minutil. Hence, the itemset gb is not considered as
a candidate by the search procedure. Note that at this point,
previous utility-list-based algorithms would allocate new mem-
ory for storing the utility-lists of the following candidates. The
proposed method will instead reuse the memory allocated for
the utility-list of gb for storing the utility-lists of the following
candidates.

(d) The algorithm next considers the itemset ga. The state of the
utility-list buffer UTLBuf after inserting the utility-list of ga
is shown in Figure 3.5. The sum of the Iutils and RUtils val-
ues of ga is 15 + 12 = 27 < minutil. Thus, ga will not be
considered by the search procedure to generate further exten-
sions. This memory will be reused for storing the utility-lists
of the following candidates.

(e) The following item e is appended to itemset g to form the
itemset ge. The algorithm inserts the utility-list of ge into
the utility-buffer. The resulting state of the buffer is shown
in Figure 3.6. The itemset ge is not extended by the search
procedure because the sum of the Iutils and RUtils values of
ge is 11 + 5 + 6 + 2 = 24 < minutil. This memory will thus
be reused to store the utility-lists of the following candidates.

(f) Then, the item c is appended to g to create the itemset gc.
The state of the utility-list buffer after inserting the utility-list
of gc is shown in Figure 3.7. The itemset gc is also not a high
utility itemset due to its low utility.

Step 4. The search for high utility itemsets is then continued with other
items until no more itemsets can be generated. The result is the
set of all high utility itemsets found in the dataset D. This set
is {dbec : 40, dbe : 36}, where the number besides each itemset
indicates its utility.

In the above example, the proposed algorithm relying on the novel
utility-list buffer allocates only 2 entries in the utility-buffer for storing
the utility-lists of extensions of the item g. Previous utility-list-based al-
gorithms such as HUI-Miner and FHM would utilize 6 entries to store the
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Figure 3.3: The initial utility-list buffer: TIDs, Iutils, Rutils, and SULs
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Figure 3.4: The utility-list buffer after inserting the utility-list of gb
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Figure 3.5: The utility-list buffer after inserting the utility-list of ga
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Figure 3.6: The utility-list buffer after inserting the utility-list of ge
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Figure 3.7: The utility-list buffer after inserting the utility-list of gc

utility-lists, due to the lack of a mechanism for reusing memory. If we con-
sider the full search space for the previous example, the proposed algorithm
only needs 33 entries in the utility-buffer and reuses 39 times some existing
entries to store utility-lists. This simple example shows that the proposed
utility-list buffer structure is useful for mining high utility itemsets while
reusing memory.



3.5. Evaluation 73

3.5 Evaluation

We performed a series of large scale experiments to evaluate the performance
of the proposed ULB-Miner algorithm employing the designed utility-list
buffer structure.

3.5.1 Experimental Setup

The algorithms were implemented by extending the SPMF open-source Java
data mining library [53]. The source code was compiled using the J2SDK
1.7.0, and the memory measurements were done using the standard Java
API. The experiments were run on a computer equipped with an Intel core
i3 processor 2.4 GHz and 4 GB of RAM, running the Windows 7 operating
system.

Table 3.2: Characteristics of the datasets

Dataset #Transactions #Distinct items Avg. trans. length

Connect 67,557 129 43
Chainstore 1,112,949 46,086 7.2
Chess 3196 75 37
Foodmart 4141 1559 4.4
Kosarak 990,000 41,270 8.1
Retail 88,162 16,470 10.3

Datasets

Both real and synthetic datasets having varied characteristics were used
in the experiments. These datasets are standard benchmark datasets used
to evaluate HUIM algorithms. The characteristics of these datasets are
described in Table 3.2, where #Transactions, #Distinct items and Avg.
trans. length indicate the number of transactions, the number of distinct
items and the average transaction length, respectively. These datasets were
selected because they are standard benchmark datasets and they have varied
characteristics.

We used two real-world customer transaction datasets named Chain-
store1 and Foodmart2. Chainstore is a very large dataset consisting of

1http://cucis.ece.northwestern.edu/projects/DMS/MineBenchDownload.html
2https://www.microsoft.com/en-us/download/details.aspx?id=51958
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transactions from a Californian retail store, while Foodmart is a small
dataset of customer transactions obtained from the Microsoft Food-Mart
2000 database. Retail3 is a sparse dataset containing customer transactions
from a Belgian retail store. Kosarak4 is a very sparse dataset with mod-
erately short transactions. Lastly, two dense datasets named Chess5 and
Connect5 were used. Although these two datasets are not retail data, they
are often used in the pattern mining literature as benchmark datasets to
evaluate the performance on dense data. Chess is especially a quite chal-
lenging dataset for most mining algorithms because it contains many long
itemsets. The Chainstore and Foodmart datasets already contain real unit
profits and purchase quantities. For other datasets, external utilities of
items are generated between 1 and 1000 by using a log-normal distribution
and quantities of items are generated randomly between 1 and 5, as the
settings of previous studies [110, 57].

3.5.2 Running Time

The performance of ULB-Miner is compared with two state-of-the-art HUI
mining algorithms, namely HUI-Miner and FHM. These algorithms were
chosen since they are state-of-the art HUIM algorithms. These algorithms
are also based on the traditional utility-list structure. Moreover, we also pre-
pared two improved versions of HUI-Miner and FHM, named HUI-Miner ULB
and FHM ULB, respectively. These versions employ the proposed utility-
list buffer structure and the basic utility-list segment construction procedure
(Algorithm 2).

We ran the compared algorithms on each dataset while decreasing the
minutil threshold until the algorithms became too long to execute, ran out
of memory or a clear winner was observed. For each dataset, we recorded
the execution time and memory consumption. The comparison of execu-
tion times is shown in Figure 3.8. As presented in these figures, the HUI-
Miner ULB and FHM ULB versions are faster than the original implemen-
tations of these algorithms on all datasets. Especially, when minutil is de-
creased, there is a big gap between the runtimes of the original and improved
versions. The proposed ULB-Miner algorithm is faster than the compared
algorithms when minutil is small on the Kosarak dataset. For the remain-
ing datasets, the proposed algorithm is the fastest for all minutil values.
The compared algorithms are one-phase algorithms employing the tradi-
tional utility-list structure, which perform the costly utility-list intersection

3http://fimi.cs.helsinki.fi/data/
4http://fimi.cs.helsinki.fi/data/
5http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
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Figure 3.8: Runtime comparison on different datasets
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operation. To reduce this cost, ULB-Miner employs the designed efficient
utility-list segment construction method to quickly search for transactions
that are common to two utility-list segments. This considerably reduces its
execution time.

3.5.3 Memory Consumption

Table 3.3 compares the peak memory usage of the algorithms on the six
datasets when the minutil threshold is set to the smallest values used
in the previous experiment. All memory measurements were done using
the standard Java API. By observing these results, it is found that the
proposed utility-list buffer structure reduces the memory consumption of
the HUI-Miner and FHM algorithms on all datasets. The FHM ULB and
ULB-Miner algorithms consume almost the same amount of memory on
the experimental datasets because they employ similar strategies. Both
FHM ULB and ULB-Miner consume less memory than FHM. The best re-
sults are obtained on the Chess and Connect datasets. There, the memory
consumption is reduced by up to 4 and 6 times, respectively. This can be
explained as follows. These datasets are dense with long transaction and
many items. As a result, the algorithms generate a huge amount of candi-
dates. But the proposed ULB-Miner algorithm reuses most of the memory
for storing utility-lists thanks to its utility-buffer structure, and it thus have
a low memory consumption. Similar results are also obtained when com-
paring the HUI-Miner and HUI-Miner ULB algorithms. HUI-Miner ULB
consumes less memory than HUI-Miner on all datasets. The best result is
obtained on the Chess dataset. Here, the gap in terms of memory usage is
clear and large. The gap shrinks a bit due to the EUCS structure. But it
is an acceptable trade-off when considering the runtime performance. On
overall, the results depicted in Table 3.3 show that the proposed utility-list
buffer structure is efficient in terms of memory consumption. In some cases,
the proposed method can reduce memory consumption by up to 6 times.

3.5.4 Comparison on the Number of Utility-lists

To analyze in more details the memory consumption of the proposed algo-
rithm, we performed an experiment to compare the number of utility-lists
created by allocating new memory when using the designed utility-list buffer
structure and when not using that structure. For this experiment, a version
of the proposed ULB-Miner that employ the traditional utility-list struc-
ture [110] was prepared (i.e., that does not use the novel utility-list buffer
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Figure 3.9: Comparison of the number of utility-lists created by allocating
new memory when using or not using the utility-list buffer structure
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Table 3.3: Comparison of peak memory usage (MB)

Dataset HUI-Miner HUI-
Miner ULB

FHM FHM ULB ULB-Miner

Connect 452.6 399.9 1516.9 398.1 368.6
Chainstore 1367.3 1021.1 2792.7 2396.9 2402.7
Chess 752.4 140.1 1319.7 209.7 208.3
Foodmart 423.4 257.2 68.3 40.1 41.3
Kosarak 1060.2 910.1 1270 1030 1015.7
Retail 803.53 442.1 670.22 544.7 544.6

structure). Then, the number of utility-lists generated by allocating new
memory was measured for both versions of the algorithm on each dataset.

Figure 3.9 shows the comparison. As presented in this figure, employing
the designed utility-list buffer structure can greatly reduce the number of
utility-lists created by allocating new memory during the mining process,
especially for dense and long transaction datasets such as Chess. When the
minutil threshold is set to small values, the difference in terms of number of
generated utility-lists becomes clear and large. The reason is that for these
datasets, there are many extensions for each considered itemsets. Hence,
the number of utility-lists generated during the process of itemset extension
is huge if the traditional utility-list structure is used. Fortunately, using
the proposed utility-list buffer reduces the need to allocate new memory
for utility-lists during the search by reusing the memory used for storing
previously generated utility-lists.

3.5.5 Scalability Evaluation

Lastly, we performed experiments to evaluate the scalability of the proposed
algorithm on a synthetic dataset named T10I4NXKDYK, where the number
of transactions Y and the number of items X were varied. The dataset
was generated using the IBM Quest synthetic data generator [5], where
the numbers after T, I, N, and D represent the average transaction size,
average size of maximal potentially frequent patterns, number of items, and
the number of transactions, respectively. For this experiment, the minutil
threshold was set to 0.05%, the number of items was varied from 2K to 10K,
and the number of transactions was varied from 100K to 500K. Results are
shown in Figure 3.10a and Figure 3.10b, respectively. As can be observed
from these figures, the proposed algorithm has almost constant scalability
when the number of items increases, and it has linear scalability when the
number of transactions increases.
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Figure 3.10: Scalability of the compared algorithms for different parameter
values

3.6 Conclusion

This chapter has presented a novel structure named utility-list buffer for
reusing the memory for storing utility-lists. We have proposed an algorithm
for high utility itemset mining named ULB-Miner. This algorithm integrates
the utility-list buffer structure with an efficient method for constructing
utility-list segments to reduce the time and the memory usage required for
mining high utility itemsets.

We have performed an extensive experimental study on six real-life
datasets to compare the performance of ULB-Miner with the state-of-the-
art algorithms HUI-Miner and FHM, which both employ traditional utility-
lists. The results show that the proposed utility-list buffer structure and its
construction method increase the effectiveness of HUI mining both in terms
of execution time and memory consumption. The peak memory usage was
reduced by up to six times, and execution times was reduced by up to 10
times.
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Chapter 4

Detecting High Utility Drift in
Quantitative Data Streams

The underlying distribution of data objects in a stream generally changes
over time. Thus, the development of efficient methods and algorithms for
analyzing transaction streams is an important research problem. An impor-
tant challenge when analyzing data streams involves extracting interesting
events (such as patterns, changes, and network attacks), and understanding
these activity trends. The work presented in this chapter addresses research
questions RQ1, RQ2 and RQ5 [50], i.e., How can we design efficient methods
to work well with a variety of different characteristics of data? How can we
identify hypotheses for changes in the underlying distribution of streaming
data and target concept drift over time? How can we simulate the correla-
tions between single items in the global structure of the distribution?

4.1 Motivation

As with general data streams, streaming transactional data is generally infi-
nite and changes continuously. This combined with the high data generation
speed makes mining of a stream of transactional data to discover patterns
more challenging than mining a static database. Thus, developing efficient
methods and algorithms for analyzing transaction streams is an important
research problem [29, 114]. Nevertheless, most studies on this topic, includ-
ing [103, 173], have focused on adapting traditional data mining techniques
to streams and improving their efficiency to deal with streaming data. Note,
however, that the underlying distribution of data objects in a stream gen-
erally changes over time [15], thus making such approaches unsuitable. At
the same time, detecting changes, called concept drifts, is crucial because

81
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it allows to discover the latest trends in a stream. A concept drift mainly
refers to a significant decrease or increase in the distribution of data objects
in a data stream with respect to a given measure [66].

In recent years, incremental and online learning have attracted the atten-
tion of many researchers to detect changes due to their numerous real-life
applications, including market basket analysis, image processing, outlier
detection, and climate monitoring [42, 116]. An important challenge of
analyzing data streams is that trends may emerge, or remain steady over
time, and that the streams often contain noise. In other words, to allow
decision-makers to quickly react to changes, it is necessary to design efficient
algorithms that can detect and monitor these changes in real-time. Never-
theless, although monitoring changes in data streams is widely recognized as
important, most existing algorithms have mainly focused on discovering fre-
quent patterns with changing frequencies, rather than considering changes
in terms of other meaningful measures, such as the profit generated by the
sale of items. To the best of our knowledge, only few approaches have been
proposed to detect changes in the utility (profit) distribution of itemsets,
where transactions are treated as streaming data. Monitoring such fluctu-
ations in profit is necessary and important in many real-life applications
including online retail stores and monitoring stock exchanges.

The work presented in this chapter is motivated by the need to address
the limitations due to the lack of approaches that fully study the issues
with concept drifts in high utility itemsets in data streams. We propose
an efficient algorithm called HUDD-TDS (High Utility Drift Detection in
Transactional Data Streams), with which we introduce several novel ideas
to detect drifts efficiently.

Contributions

Overall, the main contributions of this chapter can be summarized as fol-
lows:

1. We introduce the task of detecting both local and global drifts by con-
sidering the utility measure and the recency of transactions in streams,
defined as follows:

• A local utility drift is a change in the utility distribution of an
itemset (e.g., the utility of an itemset has recently considerably
increased or decreased).

• A global utility drift is a change in the total utility distribution
of all itemsets (e.g., the sales of products in a retail store have
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globally considerably increased or decreased).

2. We propose an efficient algorithm for the drift detection task in 1).
The proposed algorithm relies on probability theory and statistical
testing to identify changes in the utility distribution of itemsets in a
quantitative data stream. Moreover, our approach takes into account
the evolving behavior of the streams, and we employ a fading function
to identify recent trends. Such a fading function is specifically useful
in weighing the importance of transactions according to their age.

3. We introduce a new distance measure function called Dmo to compare
high utility itemsets for detecting drifts. Although Dmo is based on
the cosine similarity, which is a standard measure for calculating the
similarity between vectors, it is more general in that Dmo not only
considers the difference of vectors in terms of orientation (i.e., vector
angles) but also magnitude. As discussed, this is necessary to address
our problem.

4. We conduct an extensive experiment to evaluate the proposed method
HUDD-TDS, showing the feasibility, effectiveness, and efficiency of our
HUDD-TDS algorithm.

Organization

The remainder of this chapter is organized as follows. Section 4.2 briefly
reviews the related work. Section 4.3 defines the problem of drift detection
and introduces necessary preliminaries. Section 4.4 presents the proposed
approach for detecting changes in the utility distribution of itemsets in
a quantitative transaction data stream. Section 4.5 presents results from
an extensive experimental evaluation to evaluate the performance of the
proposed algorithm. Finally, Section 4.6 concludes the work.

4.2 Related Work

Detecting concept drifts is an important research problem that has appli-
cations in many domains such as flow prediction in industrial systems [128]
and information filtering [89]. Numerous approaches have been proposed to
detect changes in the distribution of data objects in data streams. Tech-
niques for drift detection [63] are generally based on one of the following
approaches: sequential analysis [64], statistical process control [23], compar-
ison of two consecutive time windows [3], and contextual approaches [89].
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The Hoeffding’s Inequality has been used to design several approaches for
determining the upper bounds for drift detection. Such upper bounds
have been used in algorithms such as the Fast Hoeffding Drift Detection
Method for Evolving Data Streams (FHDDM) [129], Hoeffding Adaptive
Tree (HAT) [19], and the HAT+DDM+ADWIN [4] algorithm which ex-
tends ADaptive sliding WINdow (ADWIN) algorithm [18] and the Drift
Detection Method (DDM) [64]. ADWIN is one of the most popular change
detection algorithms, and it uses sliding windows to maintain the distribu-
tion and detect changes, whilst the DDM uses an online learning model to
control the online error-rate and detect changes. Fŕıas-Blanco et al. [61]
proposed online and non-parametric drift detection methods using several
bounds based on Hoeffding’s Inequality. The algorithm can detect concept
drifts based on the movements of distribution averages in streaming data.
The algorithm uses counters to maintain information for detecting drifts.
The time complexity of this approach is constant (O(1) for processing each
data point in the stream).

On one hand, to discover high-utility patterns in data streams, some
algorithms have been proposed [173, 102, 40]. These studies generally ex-
tend traditional HUIM methods to increase their efficiency in a streaming
context. Nevertheless, they are not designed to detect changes or drifts. As
mentioned earlier, customer transactions in retail stores can be seen as a
stream of data, because customers continuously purchase products in the
stores. This also means that the data is not static and is often impossible to
store in memory due to its large volume. Moreover, in a streaming context,
the distribution of data and the transactional behavior of customers can
change and evolve over time. To the best of our knowledge, no work has
been proposed to detect drifts for high utility itemset mining in streams of
quantitative transactions, while considering the importance of utility over
time.

On the other hand, in traditional frequent itemset mining, several algo-
rithms have been proposed to identify concept drifts in data streams [121,
90]. Ng et al. [121] proposed a test paradigm named Algorithm for change
detection (ACD) for detecting changes in transactional data streams by con-
sidering the support of itemsets for reservoir sampling. ACD evaluates drifts
by performing reservoir sampling and applying three statistical tests. The
ACD method employs a bound based on Hoeffding’s Inequality to deter-
mine the number of transactions to be kept in each reservoir. ACD selects
transactions to fill its reservoir using a distance measure that is a function of
the support of single items. A major limitation of this approach is that high
frequency items have more chance of being sampled. However, in terms of
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utility (profit), high frequency items are often low utility itemsets in real-life
customer transactions. Thus, this approach may find many patterns that
are frequent but do not necessarily yield a high profit. Recently, Koh [90]
proposed the CD-TDS algorithm, which considers two types of changes in
transactional data streams for frequent pattern mining. A local drift, is a
change in the frequency of single items, whilst a global change indicates
a major change in the set of discovered frequent itemsets. The CD-TDS
method uses a graph to represent the relationships between items in trans-
actions, and the Levenshtein distance to calculate the similarity between
sets of frequent itemsets found at different times. A limitation of CD-TDS
is that it detects local drifts for single items, and not for itemsets. CD-TDS
consider itemsets to detect global drifts but do not provide information
about which itemsets contribute the most to these global drifts. Moreover,
CD-TDS considers drifts in terms of pattern frequencies, but it does not
take into account changes in terms of utility. In addition, another limita-
tion of the CD-TDS algorithm is that it treats all transactions as equally
important. However, in real-life data streams, the most recent transactions
are generally the most important transactions, as they provide information
about recent trends.

4.3 Preliminaries

This section introduces preliminaries related to high utility itemset mining
and drift detection. In the following paragraphs, we present some basic
definitions that we will use in this chapter. The notations used in this
chapter are summarized in Table 4.1. Let there be a set of items I = {i1, i2,
. . . , im} representing products sold in a retail store. For each item ij ∈ I, the
external utility of ij is a positive number representing its unit profit (or more
generally, its relative importance to the user). The external utility of an item
ij is denoted as p(ij). Let there be an infinite sequence of increasing positive
integers 1 ≤ x1 < x2 < x3 . . . . A streaming quantitative transactional
database D is an infinite sequence of transactions D = {Tx1, Tx2, Tx3, . . . },
where for each transaction Td ∈ D, the relationship Td ∈ I holds. Moreover,
for each transaction Td ∈ D, d is a unique integer that is said to be the TID
(Transaction IDentifier) of Td, and represents its observation time. Thus, for
two transactions Ta and Tb, if a < b, this indicates that transaction Ta has
occurred before Tb. Assume the stream D does not contain two transactions
with the same observation time1. Consider two observation times a and b, a

1If two transactions are simultaneous, a total order on these transactions can be ob-
tained by incrementing the observation time of one of those transactions by a small value.
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data window Wab is the finite sub-sequence of D containing all transactions
from the observation time a to the observation time b. Formally, Wab =
{Ty1, Ty2, . . . , Tyn}, for all integers y1, y2, . . . , yn such that a ≤ y1 <
y2 < · · · < yn ≤ b, and Ty1, Ty2, . . . , Tyn appear in D. The internal utility
of an item ij in a transaction Td is denoted as q(ij , Td). It is a positive
number representing the purchase quantity of item ij in Td. A set of items
X = {i1, i2, . . . , il} ⊆ I containing l items is said to be an itemset of length
l, or alternatively, an l -itemset. For example, Figure 4.1 shows the first four
transactions of a streaming quantitative transactional data stream, which
will be used as running example. In this stream, the set of items I in D is
{a, b, c, d, e, g}. The external utilities of these items are respectively 5, 2,
1, 2, 3, and 1.

TID Transaction Transaction utility

1 (a,1), (c,1), (d,1) 8
2 (a,2), (c,6), (e,2), (g,5) 27
3 (b,4), (c,3), (d,3), (e,1) 20
4 (b,2), (c,3), (e,2), (g,2) 15

Item a b c d e g

External utility 5 2 1 2 3 1

Figure 4.1: Four transactions of a quantitative transactional stream (top)
and the corresponding external utilities of items (bottom).

Example 3. Consider the stream of Figure 4.1. The utility of itemset c in
transaction T1 is u(c, T1) = 1 × 1 = 1. The utility of itemset ac in T1 is
u(ac, T1) = u(a, T1) + u(c, T1) = 1 × 5 + 1 × 1 = 5 + 1 = 6. The utility of
transaction T1 is TU(T1) = u(a, T1) + u(c, T1) + u(d, T1) = 5 + 1 + 2 = 8.
Consider the window W = {T1; T2} and that minutil is set to 22. The
set of high utility itemsets in that window W is {ac:22, ace:22}, where the
number beside each itemset indicates its utility.

Definition 26 (Utility of a transaction in a stream). Let S = (Tx1, Tx2,
. . . , Txn) be a sequence of transactions, where the notation Ti denotes the
transaction that occurred at time i. At the time of observation t, the utility
of a transaction Ti in the stream S is denoted as U(Ti, t, λ) and defined as:
U(Ti, t, λ) = U(Ti, i) ∗ dλ(4T ), where 4T = t − i ≥ 0 and U(Ti, i) is the
utility of transaction Ti at time i, it is equal to TU(Ti).

Detecting drifts [63] in a stream can be done based on the following def-
initions. Generally, let there be a stream S that is a sequence of values {u1;
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u2; . . . ; ut; ut+1; . . . ; un}. Let µ1 and µ2 respectively denote the population
means of two samples of instances U1 and U2, where U1 = {u1;u2; . . . ;ut}
and U2 = {ut+1; . . . ;un}. Detecting drifts using a statistical test can be
done by comparing two hypotheses. The null hypothesis is that the pop-
ulation means of the two samples have the same distribution, that is H0:
µ1 = µ2. The alternative hypothesis H1 is that µ1 6= µ2. A statistical test
is then applied to determine if the null hypothesis holds for a significance
level α. The rule to accept the H1 hypothesis is Pr(|µ1 − µ2| ≥ ε) ≥ α,
where ε is a user-defined positive number. A drift is said to occur at an
observation time t if the population of the sample at time t is significantly
different from that of the preceding observation time. In that case, t is said
to be a drift point.

The problem of detecting drifts is to find the observation times where
there are significant differences in the data distribution for a given mea-
sure (e.g., the support) with respect to the preceding observation times.
Although several papers, e.g., [61, 90] have proposed approaches for drift
detection, none have considered detecting drifts in the utility distribution
of patterns including the utility distribution of items in patterns as well as
the utility distribution of patterns in the whole set of patterns. However,
the utility is a more useful measure compared to the support measure as
it measures the profit generated by patterns, rather than simply measuring
the number of transactions containing the items without considering their
purchase quantities.

To allow discovering more useful patterns and drifts, this work adapts
the concept of drift to the utility measure to propose the problem of drift de-
tection for high utility itemset mining in an evolving data stream. It consists
of finding all observation times where there are significant differences in the
utility distribution of itemsets, while also considering the recency of transac-
tions. Finding such drifts provides information that allows decision-makers
to quickly react to changes in customer behavior that influence profitability.

4.4 Model and Solution

This section introduces the High Utility Drift Detection in Transactional
Data Stream (HUDD-TDS) algorithm to detect changes in the utility dis-
tribution of high utility itemsets in a stream of quantitative customer trans-
actions. HUDD-TDS can detect both local and global changes by consid-
ering the utility measure, the recency of transactions, and the correlative
conjunction of the utility distributions of itemsets in streams.

It gives most importance to the most recent transactions since in prac-
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tice, i.e., customer transaction data streams, recent trends are considered
as the most valuable. In particular, the proposed approach uses a fading
function to assign a weight to each transaction that is inversely proportional
to its age. The next subsections describe the proposed approach in details.

4.4.1 A Fading Function for High Utility Itemset Mining in
a Stream

An important characteristic of customer transaction data streams is that
trends found in a stream change with time, as the behaviors of customers
vary. In a data stream, data points arrive at a high speed. As previously
explained, the importance of data points (transactions) can be viewed as in-
versely proportional to their age. Hence, a transaction that occurred a long
time ago (before the current observation time) should be considered as less
important than a recent transaction. To model the varying importance of
transactions with respect to the observation time, a decay (fading) function
is used in the proposed algorithm. At the time of observation, the utility
values in a transaction that occurred at a time t are multiplied by a decay
factor calculated by a decay function dλ(t). The calculated decay factor is
a value dλ(t) ∈ [0, 1]. The decay function dλ(t) is a user-defined function
that is inversely proportional to the elapsed time. The decay function takes
a positive constant λ as parameter, called the decay constant, which let the
user indicate how fast the importance of transactions should decrease with
respect to time.

Definition 27 (A fading function to consider the recency of transactions).
Let S = (Tx1, Tx2, . . . , Txn) be a sequence of transactions, and dλ(T ) be the
user-defined decay function. The utility of an itemset X in a transaction
Ti at the observation time t ≥ i is denoted as US(X,Ti, t, λ), and defined
as US(X,Ti, t, λ) = US(X,Ti, i, λ) × dλ(4T ) = u(X,Ti) × dλ(4T ), where
US(X,Ti, i, λ) is the utility of itemset X in Ti at observation time i, and
u(X,Ti) is the utility of X in Ti as defined in traditional high utility mining
(without applying the decay function).

Example 4. Consider the stream database of Figure 4.1. Suppose that the

decay function is dλ(4T ) = 2
−4T

2 . The utility of itemset ac in T1 at obser-

vation time t = 2 is US(ac, T1, 2, λ) = 6×2
−1
2 = 4.24. The utility of itemset

ac in T1 at time t = 3 is US(ac, T1, 3, λ) = 6×2
−2
2 = 3. Consider the window

W = {T1; T2}, and that minutil is set to 22. The set of high utility itemsets
in W when considering transaction recency is {ace:22}. The itemset ac is
not high utility because its utility is US(ac, T1, 2, λ)+US(ac, T2, 2, λ) = 4.24
+ 16 = 20.24 < minutil.
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There are two important differences between mining high utility itemsets
in a stream and in a static transaction database. First, not all data points
from a stream can be stored and kept in memory due to the limited amount
of memory of a computer and the infinite nature of a stream. For this reason,
data points can only be read once. Second, an important issue is that the
utility of a transaction should decrease according to a decay function that
is inversely proportional to its age. To consider the decay function when
mining high utility itemsets in a quantitative transactional data stream, we
redefine the problem of HUIM as follows. Let W = (Ty1, Ty2, . . . , Tym) be a
window containing m transactions at the observation time ym of a sequence
of transactions S. Let there be a threshold value θ defined by the user. An
itemset X is a high utility itemset in W if the sum of its utilities in W is
not less than θ, that is:

∑
Ti∈W (US(X,Ti, ym, λ)) ≥ θ. In the following,

the notation HSn,λ
W is used to denote the set of all high utility itemsets

found in a window W of a transactional data stream at observation time n.
Formally, HSn,λ

W = {X,
∑

Ti∈W (US(X,Ti, n, λ)) ≥ θ}.

4.4.2 A Hoeffding Bound to Assess the Significance of Drifts

Having explained how we apply fading, this section proposes a bound to
detect utility drifts. The proposed bound is based on the Hoeffding In-
equality [80] from the probability theory. This inequality has been used
in various studies to analyze data streams [129, 18, 61, 90]. Given some
independent random variables, the Hoeffding Inequality provides an upper
bound on the probability that their sum deviates from its expected value.
In this work, the Hoeffding Inequality is used as the basis for assessing if
changes are statically significant in a flow of independent random transac-
tions arriving in a data stream. If the probability of a predefined condition
is greater than a user-specified threshold, the proposed approach consid-
ers that there is a change in the data. The Hoeffding’s Inequality theorem
states as follows [80].

Theorem 2 (Hoeffding’s Inequality). Let U1; U2; . . . ; Un be independent
random variables bounded by the interval [0, 1], that is 0 ≤ Ui ≤ 1, where
i ∈ {1; . . . ;n}. Let U denote the average of the random variables, that is
U = 1

n

∑n
i=1(Ui). We have:

Pr(U − E[U ] ≥ ε) ≤ e−2nε2 , (4.1)

where E[X] is the expected value of X.
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The inequality states that the probability that the estimation and true
values differ by more than ε is bounded by e−2nε2 . Symmetrically, the
inequality is also valid for the other side of the difference: Pr(−U +E[U ] ≥
ε) ≤ e−2nε2 . As a result, a two-sided variant of the Inequality is obtained:

Pr(|U − E[U ]| ≥ ε) ≤ 2e−2nε2 (4.2)

This Inequality is true if all variables are bounded by the [0, 1] interval. More
generally, if a variable Ui is bounded by an interval [xi, yi], the Hoeffding’s
Inequality is generalized as follows:

Pr(|U − E[U ]| ≥ ε) ≤ 2e
−2n2ε2∑n

i=1
(yi−xi)

2
(4.3)

The Hoeffding’s Inequality (Theorem 2) can be used to assess the signif-
icance of changes in a stream of values, based on the following proposition.

Proposition 2. Let U1;U2; . . . ;Un be independent random variables bounded
by the [0, 1] interval. These variables can be split into two windows using an
index m as splitting point. This results in two windows, W1 = {U1; . . . ;Um}
and W2 = {Um+1; . . . ;Un}, such that 1 ≤ m < n. Then, for an error ε > 0,
the following inequality holds:

Pr(U − V − (E[U ]− E[V ]) ≥ ε) ≤ e
−2ε2|W1|·|W2|

|W1|+|W2| , (4.4)

where |W1| and |W2| are the size of W1 and W2, respectively. Moreover, U
= 1

|W1|
∑m

i=1(Ui) and V = 1
|W2|

∑n
i=m+1(Ui).

If the two-sided variant of the inequality is considered:

Pr(|(U − E[U ])− (V − E[V ])| ≥ ε) ≤ 2e
−2ε2|W1|·|W2|

|W1|+|W2| (4.5)

Based on proposition 2, consider a significant confidence level α (prob-
ability of making an error), that controls the maximum false positive rate.
The error ε can be estimated with respect to α as follows.

α = 2e
−2ε2|W1|·|W2|

|W1|+|W2| ⇒ 2ε2|W1| · |W2|
|W1|+ |W2|

= ln
2

α

⇒ ε =

√
|W1|+ |W2|
2|W1| · |W2|

ln
2

α
(4.6)

To assess the significance of changes in a stream of values, we use Eq. 4.6
to obtain the cut point value εα based on the predefined α threshold. An
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observation time m is said to be a distribution change point if there is a
significant difference between the averages of values in the windows W1

and W2, that is the difference is not less than εα. Furthermore, if that
condition holds, we also say that there is a change and that the windows
W1 and W2 are different. This can be expressed as a statistical test with
bounding probability of errors. Let the null hypothesis be H0: (U−E[U ]) =
(V − E[V ]), stating that the distributions of the two windows are equal
(assuming independent random variables). The H0 hypothesis is compared
with the alternative hypothesis H1: (U − E[U ]) 6= (V − E[V ]) with the
rule |(U − E[U ]) − (V − E[V ])| ≥ ε to reject H0. HDDM [61] proposed
a minor improvement of the Hoeffding’s Inequality by using two counters
instead of three counters for maintaining the left, right and the total mean
at the cut point. The proposed method inherits this improvement to detect
a global drift. This improvement is derived from the Hoeffding’s Inequality
as follows.

Proposition 3. Let U1;U2; ...;Un be independent random variables bounded
by the [0, 1] interval. These variables can be split into two windows at an
index m to obtain W1 = {U1; . . . ;Um} and W2 = {Um+1; . . . ;Un}, such that
1 ≤ m < n. Then, for an error ε > 0, the following inequality is obtained:

Pr(U − V − (E[U ]− E[V ]) ≥ ε) ≤ e
−2nmε2

(n−m) , (4.7)

where U = 1
m

∑m
i=1(Ui) and V = 1

n

∑n
i=1(Ui).

The estimated error ε with respect to α is:

α = 2e
2nmε2

(n−m) ⇒ −2nmε2

(n−m)
= ln

2

α

⇒ ε =

√
n−m

2nm
ln

2

α
(4.8)

4.4.3 Two Mechanisms to Detect Utility Changes

This subsection presents the proposed approach to detect changes in the
distribution of high utility itemsets in a stream of customer transactions. In
general, change detection consists of detecting each observation time where
there is a significant difference in the distribution of the data. In this work,
the object of change analysis is the sets of high utility itemsets mined from
consecutive windows of transactions in a stream. As mentioned above, two
kinds of changes are considered in this work: local and global utility changes.
A local utility change is a drift in the utility distribution of a high utility
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itemset. A global utility change is a drift in the overall utility distribution
of all high utility itemsets. The next paragraphs describe mechanisms to
detect these two types of changes.

Local Utility Change Detection

Let HSx,λ
W1

and HSy,λ
W2

be two sets of high utility itemsets mined at two
different observation times in a transactional data stream. Local utility
change detection consists of comparing the utility of each high utility itemset
X in HSx,λ

W1
and HSy,λ

W2
. For an itemset X, if there is a significant difference

in terms of utility for the two observation times, it is called a local drift of
X at the change point from HSx,λ

W1
to HSy,λ

W2
. The theoretical background

of our method is probability theory, statistical testing and the Hoeffding’s
Inequality. To detect a drift, existing methods such as CD-TDS [90] and
ADWIN [18] apply the Bonferroni correction with the Hoeffding’s Inequality.
The reason is that the Bonferroni correction prevents an increase of the
probability of incorrectly rejecting the null hypothesis when testing multiple
hypotheses.

In this work, the proposed approach applies the Bonferroni correction
with the Hoeffding’s Inequality to detect local drifts for high utility itemsets
in two consecutive windows. For the two sets of high utility itemsets HSx,λ

W1

and HSy,λ
W2

, let n1 and n2 be the number of sampled transactions from the

stream that were used to obtain the setsHSx,λ
W1

andHSy,λ
W2

at their respective
observation times. For the sake of brevity, the notation HS1 and HS2 will
be used to refer to these sets in the following. There is a local change for
an itemset X from HS1 to HS2 if its utility distribution difference in HS1

and HS2 is not less than a cut value:

εα =

√
2(n1 + n2)

n1n2
σ2 ln

ln (n1 + n2)

α

+
2(n1 + n2)

3n1n2
ln

2(n1 + n2)

α

=

√
2mσ2 ln

2 ln (n)

α
+

2m

3
ln

2 ln (n)

α
, (4.9)

where n = n1 + n2, m = n−1
1 + n−1

2 , α is a user-defined confidence level,
and σ2 is the observed variance of the utility of the itemset in the window
W formed by joining W1 and W2.

The variance σ2 is defined and computed as the sum of the squared
distances of each sample in the distribution from the mean, divided by
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the number of samples in the distribution. In the proposed algorithm, an
efficient way of calculating the standard deviation for a set of numbers is
proposed and as follows.

σ2 =
1

N

∑
X2 − (

∑
X

N
)2 (4.10)

Global Utility Change Detection

Global utility change detection aims at detecting changes by comparing
the utility distributions of high utility itemsets mined in two consecutive
windows. For each itemset X, the utility of X is a function of the utility
distributions of the items that it contains. Let I = {i1, i2, . . . , in} be the
set of all items that appear in a customer transaction data stream. A high
utility k -itemset X can be represented as ({ij1 : uj1}, {ij2 : uj2}, . . . , {ijk :
ujk}), where the notation ijx represents an item in X, and the number beside
each item indicates the utility contributed by that item to the utility of X.
Because of differences in the utility distributions of items in high utility
itemsets, this work proposes a custom distance measure to efficiently detect
drifts for high utility itemsets. The distance of each itemset to a reference
point is calculated. Then, the distance of a set of high utility itemsets to
the reference point is calculated as the sum of the distances of high utility
itemsets to that point. The proposed measure is inspired by the observation
that an itemset X with its utility can be presented as a vector, and that the
distance between two itemsets can thus be calculated using vector distance
measures. Formally, the distance between high utility itemsets is computed
based on the following definitions.

Definition 28 (Root vector). Let S = (T1, T2, . . . , Tn, . . . ) be a sequence
of transactions, and I = {i1, i2, . . . , in} be a set of n items in S, such that
ij ≺ ij+1 with 1 ≤ j < n and ≺ be any total order on items from I. The

Root vector in S is denoted as
−−−→
RootS =

−−−−−−→
i1i2 . . . in = {1, 1, . . . , 1}. It is a

vector described with n properties, and the value of each property is equal
to 1 unit.

Definition 29 (Vector of a high utility itemset). Let I = {i1, i2, . . . , in} be
a set of items that appear in a set of transactions. Moreover, let there be a
high utility k-itemset X = {ij1ij2 . . . ijk} such that the utility distribution of
its items is ({ij1 : uj1}, {ij2 : uj2}, . . . , {ijk : ujk}). The vector of the high

utility itemset X is denoted as
−→
X and defined as

−→
X = {U1, U2, . . . , Un},
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where

Uj =

{
0, if ij /∈ X

u(ij), otherwise.
(4.11)

Distance. The first step for calculating the distance in the proposed
approach is to calculate the similarity between two vectors using the cosine
similarity. Consider two vectors for some high utility itemsets X and Y,

defined as
−→
X = {X1, X2, . . . , Xn},

−→
Y = {Y1, Y2, . . . , Yn}, respectively. The

cosine similarity between
−→
X and

−→
Y is:

Scos(
−→
X,
−→
Y ) =

−→
X ·
−→
Y

‖
−→
X‖ · ‖

−→
Y ‖

=

∑n
i=1(Xi · Yi)√∑n

i=1Xi
2
√∑n

i=1 Yi
2

(4.12)

The cosine similarity is a standard measure for calculating the similar-
ity between vectors. However, a drawback of this measure is that it only
considers the difference in orientation of two vectors, while ignoring their
difference in terms of magnitude [79]. For example, a cosine similarity of
1 indicates that two vectors have the same orientation. But these vectors
may or may not have the same magnitude. Meanwhile, magnitude of an
itemset vector represents its utility. To consider not only the difference in
terms of orientation but also in terms of magnitude, the proposed approach

calculates the similarity between two vectors
−→
X and

−→
Y using an improved

similarity measure denoted as Smo(
−→
X,
−→
Y ), and defined as follows.

Smo(
−→
X,
−→
Y ) = Scos(

−→
X,
−→
Y )× (1− abs(‖

−→
X‖ − ‖

−→
Y ‖)

max(‖
−→
X‖, ‖

−→
Y ‖)

(4.13)

Similarly to the cosine similarity, the proposed Smo similarity measure
assigns a value of 1 to two vectors having the same orientation and mag-
nitude. However, in the proposed approach, the distance between vectors
must be calculated rather than the similarity. Thus, based on Smo, a dis-

tance measure Dmo is defined as: Dmo(
−→
X,
−→
Y ) = 1 − Smo(

−→
X,
−→
Y ). In the

following, this measure is called the movement between two vectors. To
check if there is a global drift between two sets of high utility itemsets HS1

and HS2, the proposed approach computes the sum of the movements of
high utility itemsets in the two sets.

DISHS =
∑

X⊆HS

Dmo(
−→
X,
−−→
Root) (4.14)



96 Detecting High Utility Drift in Quantitative Data Streams

Example 5. Consider the stream of Figure 4.1 and the decay function

dλ(4T ) = 2
−4T

2 . Furthermore, suppose that minutil is set to 22 and that
the window size is set to 2. Consider the windows W1 = {T1; T2} and W2 =
{T3; T4}. By taking transaction recency into account, the set of high utility
itemsets in W1 is {ace:22}. The vector of the itemset ace is −→ace = {10, 0,
6, 0, 6, 0}. The set of high utility itemsets in W2 is {bce:22.9}. The utility
of itemset bce is computed as the sum of its utilities in T3 and T4, that is

13 + 7×
√
2 = 22.9. The vector of the itemset bce is

−→
bce = {0, 9.66, 5.12,

0, 8.12, 0}. The distance of the vector of itemset ace to the root vector is
computed as Dmo(

−→ace,−−→root) = 1 - Smo(
−→ace,−−→root) = 1 - 0.128 = 0.872, where

Smo(
−→ace,−−→root) is computed by Eq. 4.13. In a similar way, the distance of

the vector of itemset bce to the root vector is computed as Dmo(
−→
bce,
−−→
root)

= 1 - 0.1234 = 0.8766.

The total distribution is the sum of the distances of all high utility item-
set vectors to the root vector. After that, the algorithm uses a statistical
test (the A-test [61]) with the designed Hoeffding bound to determine if a
global drift occurred at the current observation time. Note that it is also
possible to detect drifts that represent increasing or decreasing trends by
using the one-side or two-side variant of the Hoeffding’s Inequality. We also
consider increasing or decreasing trends and report it in Evaluation section
of this chapter.

4.4.4 The Change Detection Algorithm

In the proposed approach, high utility itemsets are obtained at different
observation times using windows on the stream. A set of high utility itemsets
found at a given time is eventually replaced by a newer set, as time passes.
Another important characteristic of a data stream is that data points arrive
at a very high speed. Thus, an algorithm would be inefficient if it checks for
changes for each new data point in the stream. The solution to this problem
is to let the user set a parameter that determines the frequency of checks.
On one hand, frequently checking for changes decreases the efficiency of
the algorithm. On the other hand, rarely checking for changes results in
higher efficiency but increases the risk of missing drift points as the windows
may be too large. In the proposed method HUDD-TDS (High Utility Drift
Detection in Transactional Data Stream), the checking frequency is a time
interval length, and it is set by the user. The detailed pseudocode of the
proposed method is presented in Algorithm 7.

The Algorithm 7 takes a stream of quantitative customer transactions as
input. When a new transaction Ti is read from the stream, the transaction
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Algorithm 7 HUDD-TDS: High Utility Drift Detection in a Utility Data
Stream
Input: Stream of transactions with utility.
Output: Utility changes in the stream.

1: Init() Initialize variables: minutil, interval, window size, confidence, etc.
2: for (each transaction Ti arriving on a stream Tx1; Tx2; . . . ; Txi; . . . ) do
3: if (Memory is full) then
4: Remove the oldest transactions from memory

5: Add Ti to the limited memory
6: if (Observation time i % check interval = 0) then
7: checkpoints[i ].HUIs ←− HUI-Discovery(i) using utility-list

based mining method
8: checkpoints[i ].distance = sum of the distance of each itemset X

in checkpoints[i ].HUIs
9: if (IsGlobalDrift(checkpoints)) then

10: Update last index where a drift is detected
11: Output global drift

12: if (IsLocalDrift(checkpoints)) then
13: Output local drift

Algorithm 8 HUI-Discovery: Mine all high utility itemsets

Input: Observation time t and transactions.
Output: Set of high utility itemsets.

1: Init() Initialize all variables
2: HUIsSet ← φ
3: Scan transactions in memory to create a window W of a predefined

length, ending at observation time t
4: for (each transaction T in W ) do
5: if (is fading) then
6: T.utility =T.utility × decay function dλ

7: for (each item it in T ) do
8: Update the utility of it in the transaction by multiplying it

with the decay function dλ

9: while (Found high utility itemset X) do

10: X.distance = Distance(
−→
X ,
−−→
Root)

11: HUIsSet.add(X )

12: return HUIsSet
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Algorithm 9 IsGlobalDrift: Check if there is a global change in a utility
stream
Input: List of distance values at checkpoints starting from the last change

index: d1; d2; . . . ; dn.
Output: State with trend.

1: Udrift: average statistic computed from d1; d2; . . . ; ddrift
2: V : average statistic computed from d1; d2; . . . ; dn
3: εUdrift

, εV : error bounds by Hoeffding’s Inequality

4: for (each di in the list of distance values) do
5: Update Udrift, V , εUdrift

, εV
6: if (Udrift + εUdrift

≥ V + εV ) then //This is an increasing trend

7: Update cut point: Udrift = V and εUdrift
= εV

8: if (Udrift - εUdrift
≤ V - εV ) then //This is a decreasing trend

9: Update cut point: Udrift = V and εUdrift
= εV

10: if (The hypothesis H0 is rejected, |Udrift - V | ≥ ε as Eq. 4.8) then
11: Output drift with trend (increasing or decreasing) & return drift
12: else
13: Output Stable State

Algorithm 10 IsLocalDrift: Check if there is a local change in a utility
stream
Input: List of checkpoints.
Output: Drift state with itemset.

1: for (each check point cp in list checkpoints) do
2: for (each itemset X in cp.HUIs) do

3: Split checkpoints into two different observations HSn,λ
W1

and

HSm,λ
W2

at cp

4: Calculate the variance of X, σ2 by Eq. 4.10
5: Calculate the epsilon cut point, εα by Eq. 4.9 with Bonferroni

correction
6: if (The rule to reject the hypothesis H0, |X1 - X2| ≥ εα) then
7: Output local drift of itemset X

is temporarily stored in the limited amount of available memory (line 5). If
the memory is full then the oldest transaction(s) are removed to free space
for new transaction(s) Ti (line 4). To detect drift, the user must indicate
the time interval length at which the algorithm should check for drifts (line
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6). When the drift detection algorithm is called, it applies a procedure
named HUI-Discovery (Algorithm 8) to mine all high utility itemsets in
the window ending at the current observation time (line 7). Then, the
similarity and distance of itemsets and the global distance are calculated
(line 8). Thereafter, global and local checks are performed (lines 9 and 12)
to detect significant changes in the utility distribution.

The HUI-Discovery procedure (Algorithm 8) mines high utility itemsets
in a stream. The procedure first creates the windowW ending at the current
observation time t (line 3). Then, for each transaction in the window W ,
the procedure multiplies the utilities by the decay factor calculated by the
fading function. This decreases the utility of items in the transaction as a
function of its age. Then, the HUI-Discovery procedure applies a traditional
HUI mining algorithm to extract each HUI in the current window (lines 9 to
11). For each itemset found (line 9), the utility distribution of each item is
calculated to construct the itemset’s vector and then calculate its distance
to the root vector (line 10).

The IsGlobalDrift procedure (Algorithm 9) detects global changes in a
stream of values. It is based on probability theory, statistical testing, and
the Hoeffding’s Inequality. Lines 6-7 detect a cut point for an increasing
trend of values, while lines 8-9 detect a cut point for a decreasing trend of
values. If a change in the data distribution rejects the null hypothesis H0

at line 10, a drift is said to occur at the cut point, and it is reported to the
user (line 11).

The IsLocalDrift procedure (Algorithm 10) is an algorithm to detect
local changes in the utilities of itemsets in a stream. Similar to the IsGlob-
alDrift procedure, IsLocalDrift is also based on probability theory, statistical
testing, and the Hoeffding’s Inequality. At line 5, the procedure calculates
the epsilon cut point with Bonferroni correction to prevent increasing of
incorrectly rejecting a null hypothesis when multiple hypotheses are tested.

Complexity. The proposed method uses a time interval length m to
select checkpoints at which drift detection is performed. Thus, the time
complexity of the proposed approach is O( n

m), where n is the space size
of the stream. The HUI-Discovery algorithm is implemented using a tra-
ditional utility-list based algorithm for mining high utilty itemsets. In the
worst case, the time complexity of a utility-list based algorithm is O(2|I∗|),
where I∗ is the set of remaining items in the processing window which
have transaction weighted utilities no less than the threshold value. The
HUI-Discovery procedure requires only to scan each window twice. It em-
ploys an efficient structure EUCS and an improved utility list construction
method [45] with complexity of O(|W |), where |W | is the window size. The
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IsGlobalDrift and IsLocalDrift procedures have O(1) space and time com-
plexity at each checkpoint.

4.5 Evaluation

This section presents an experimental evaluation of the performance of our
approach.

Experimental Setup

The experiments were carried out on a computer running the Windows 10
operating system, having a 64 bit Intel i7 2.6 GHz processor, and 16 GB of
RAM. The algorithms were implemented in Java. In all the experiments,

the exponential decay function 2
−T−t

|W | was used, excepts experiments in Sub-
section 4.5.5 studying influence of the decay function. The window size was
set to the half-life of the decay function (the time needed for the decay
function to decrease a utility value by half). The interval parameter is used
to monitor changes at each checkpoint. If its value is large, the number of
checkpoints is small and the overlap between windows is small. This, in
turn, means that the true positive and accuracy values are high, but it may
miss some changes. Moreover, the global confidence level controls the error
rate. When the value is high, the number of changes will increase with a
high error rate. Setting the interval and confidence level follows the ap-
proach proposed in the literature [80, 20, 16] and is application-dependent.
The utility threshold influences the number of itemsets and is also dataset-
dependent. If the threshold is set to a small value, the number of high
utility itemsets may reach millions. If the threshold is large, few high util-
ity itemsets are obtained. Here, the threshold has been set empirically.

In the following evaluations, we employed several various settings to
show the feasibility of our method. In addition, we carried out experiments
to evaluate the effects of different parameter values.

4.5.1 Datasets

In order to show the generality, feasibility, and applicability of our approach,
we performed the evaluation both on synthetic and real-world datasets.

Real Datasets

For the real-world experiments, we used the datasets named Chainstore,
Accidents, and Kosarak. These datasets are standard benchmark datasets
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for utility mining, which were obtained from the SPMF open-source data
mining library website2. The Chainstore dataset contains real internal and
external utilities. For the two other datasets, the internal and external
utilities have been generated using a Gaussian distribution in the [1,10] and
[1,5] interval, respectively.

Chainstore contains customer transactions from a retail store. The
dataset was transformed from the NU-Mine Bench software, and is provided
on the SPMF website. Chainstore contains 1,112,949 transactions, with an
average transaction length of 7.26 items, and 46,086 distinct items. For
this dataset, the checkpoint interval, utility threshold, and global confidence
level have been set to 10,000, 600,000, and 0.99, respectively.

Accidents is a traffic accident dataset, often used as a benchmark dataset.
It contains 340,183 transactions, 468 distinct items, and having an average
transaction length of 33.8 itemsets. For experiments carried out on this
dataset, the checkpoint interval has been set to 10,000. window size, util-
ity threshold and global confidence level have been initially set to 10,000,
900,000, and 0.99, respectively. These values have then been changed to
15,000, 1,300,000, and 0.8 in the second experiment.

Kosarak is a click-stream dataset of an online Hungarian news portal. It
contains 990,000 transactions with 41,270 items, where transactions contain
8.1 items on average. For the experiments on this dataset, the parameters
were set to: threshold = 200,000, time interval = 20,000, and window size
= 50,000.

Table 4.2: Drift detection in Chainstore

Window size Check points Rise Fall

40,000 108 35 36
50,000 107 38 35

Table 4.3: Drift detection in Accidents

Window size Check points Rise Fall

10,000 34 18 15
15,000 33 14 18

2http://www.philippe-fournier-viger.com/spmf/
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Table 4.4: Drift detection in Kosarak

α Check points Rise Fall

0.9 47 7 6
0.5 47 4 5

Generated Synthetic Datasets

Because of the lack of appropriate datasets with ground truth, we also
performed experiments on synthetic datasets including evaluations influence
of parameters, performance of the proposed methods, and comparison to
other drift detectors. We used the java open source data mining library
SPMF to generated three synthetic datasets, namely StreamT, StreamX,
and StreamY. Each dataset contains 50k transactions. These datasets were
concatenated multiple times to create a long stream. The reason for using
different synthetic datasets and concatenating to form a stream is that the
transition points of the resulting stream are known, and can thus be used to
evaluate the ability to perform drift detection. Characteristics of the three
synthetic datasets are as follows:

StreamT : This dataset contains 50k transactions and 10 distinct items.
The average transaction length is 5.5 items. Internal and external utility
values were generated in the [1,10] and [1,5] intervals, respectively.

StreamX : This dataset has 50k transactions. The number of distinct
items is 15 and the average transaction length is 7.98 items. The [1,15] and
[1,10] intervals were used to generate the internal and external utility values
of items, respectively, using a Gaussian distribution.

StreamY : This dataset also contains 50k transactions. The average
transaction length is 8.02 items, and 20 distinct items are used in this
dataset. The internal and external values are generated with the same
interval as in StreamX.

The stream considered in the following experiments is a concatenation of
these three synthetic datasets, obtained by repeating the following pattern
25 times: StreamT + StreamT + StreamX + StreamY. This results in a
data stream containing 5 million transactions.

Existing Artificial Datasets

Besides our generated synthetic datasets using SPMF library above, three
widely-used synthetic data streams, namely Mixed, Sine, and Circles [129,
61], are used in our evaluation in performance evaluation of our drift detec-



4.5. Evaluation 103

tion method. Each stream dataset contains 100,000 instances. The charac-
teristics of these datasets are as follows [64]:

• Mixed : This dataset contains four attributes, including two Boolean
attributes (v, w) and two numeric attributes (x, y) in the [0, 1] in-
terval. If two of three conditions are satisfied: v, w, y < 0.5 + 0.3 ×
sin(3πx), the instance is classified as positive. The Mixed dataset
contains abrupt concept drifts. Drifts occur at every 20,000 instances
with a transition length ξ = 50.

• Sine1 : There are two attributes x and y that are uniformly distributed
in the [0, 1] interval. If all points are below the piecewise function
y = sin(x), they are classified as positive. The classification is reversed
after a change. The Sine1 dataset contains abrupt concept drifts.
Drifts occur at every 20,000 instances with a transition length ξ = 50.

• Circles: This dataset uses four circles to simulate drift concepts. The
radius of the circles are 0.15, 0.2, 0.25, and 0.3, respectively. Each
instance has two numeric attributes (x, y) on the [0, 1] interval. If an
instance is inside the circles, it is classified as positive. The Circles
dataset contains gradual concepts drifts. Drifts occur at every 25,000
instances with a transition length ξ = 500.

4.5.2 Performance on Real Datasets

Tables 4.2 - 4.4 show the results of drift detection on the Chainstore, Acci-
dents, and Kosarak datasets for various parameter values. In these tables,
the columns indicate the window size, the number of check points, the num-
ber of increasing drifts that has been detected (denoted as Rise), and the
number of decreasing drifts that has been detected (denoted as Fall), re-
spectively. The results show that number of drift points vary slightly as
parameters are changed. The number of detected drifts also varies slightly
when we change the confidence level α, the size of the window, and the util-
ity threshold to monitor the drifts. For the real world datasets, there is no
ground truth to evaluate the detected concept drifts. Therefore, there is no
baseline for testing true positive, false negative and delay detection. In this
evaluation, the number of drift points is reported, as well as the correspond-
ing trend (increasing or decreasing). Figures 4.2 - 4.5 show visualizations
of the utility distribution movements for the three datasets. It can be ob-
served that the utility distribution underlying the data changes gradually
and continuously varies for the Chainstore dataset, as new transactions ar-
rive. When the window size is increased, the number of high utility itemsets
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and the total utility distribution in each window increases. However, the
number of states in the Chainstore stream and the utility have only a slight
change. Hence, the number of hits (change report) is stable. For the Acci-
dents datasets, more abrupt changes occurred. The dataset containing the
largest percentage of stable states is the Kosarak dataset. On this dataset,
we varied the confidence level, which is a probability that influences the
prediction failure rate. The results in Table 4.4 show the impact of varying
the confidence level. As we can observe in this table, when the confidence
value increases, the number of hits increases in both rise and fall states.
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4.5.3 Influence of the Confidence Level

We carried out an experiment on the synthetic datasets to evaluate the
influence of difference confidence level values. The utility threshold was
set to 1,500,000. Both the window size and check point interval were set to
50,000 transactions to ensure that a checkpoint was located at every dataset
transition. The confidence level was varied from 0.55 to 1.0.

Table 4.5 shows results when the confidence level α is varied. The result
shows that the designed drift detector has a high true positive rate, and low
false positive and false negative rates. In particular, when the confidence
level α is increased, the accuracy of the approach increases. Generally, for
the 1,000 tests performed on the synthetic data streams (a test is performed
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Table 4.5: Detection on synthetic datasets

α FP TP FN Rise Fall Time Avg
rate(%) rate(%) rate(%) (s)

0.55 0.0 66.2 49.01 25 24 2.773
0.60 0.0 66.2 49.01 25 24 2.725
0.65 0.0 66.2 49.01 25 24 2.721
0.70 0.0 66.2 49.01 25 24 2.709
0.75 0.0 100.0 0.0 25 49 2.721
0.80 0.0 100.0 0.0 25 49 2.690
0.85 0.0 100.0 0.0 25 49 2.570
0.90 0.0 100.0 0.0 25 49 2.583
0.95 0.0 100.0 0.0 25 49 2.580
1.00 0.0 100.0 0.0 25 49 2.563

Summary Accuracy rate Time Avg
(tests) (%) (s)

1000 0.0% 86.5% 27.7% 89.6% 2.664

every 50k transactions), the true positive, false positive and false negative
rates, and the accuracy are 86.5%, 0.0%, 27.7%, and 89.6%, respectively.
This result can be explained as follows. When the confidence level is high,
at each checkpoint, the detector checks the utility distribution of two suc-
cessive windows and it reports concept drifts more accurately than for lower
confidence levels where the detector probes concept drifts more tightly. In
terms of runtime, the proposed approach is very fast, running in less than
three seconds for processing windows of 50k transactions. Hence, the results
from this experiment show that the detector can be used in an online setting
to detect drifts, and that it can quickly adapt itself to changes.

4.5.4 Influence of the Observation Times

In the preceding subsection, an experiment was performed where the tran-
sition points were known, and where the proposed algorithm was applied
exactly at these transition points, while varying the confidence level α. This
section describes a follow-up experiment where the proposed algorithm is
not applied exactly at the transition points to see the influence of the obser-
vation times. Instead, the checkpoint are gradually moved away from the
transition points in the data stream. For this experiment, the confidence
level was set to 0.9. The observation times where the change detection algo-
rithm applying was shifted 8 times forward by 25 transactions. As a result,
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Table 4.6: Detection on synthetic datasets with shift point

Shift FP TP FN Rise Fall Time Avg
rate(%) rate(%) rate(%) (s)

25 0.0 100.0 0.0 25 49 2.744
50 0.0 100.0 0.0 25 49 2.707
75 0.0 100.0 0.0 25 49 2.733
100 0.0 100.0 0.0 25 49 2.768
125 0.0 100.0 0.0 25 49 2.748
150 0.0 100.0 0.0 25 49 2.771
175 0.0 100.0 0.0 25 49 2.726
200 0.0 100.0 0.0 25 49 2.754

Summary Accuracy rate Time Avg
(tests) (%) (s)

800 0.0% 100.0% 0.0% 100.0% 2.744

windows considered by the algorithm may contain transactions from two
datasets. After each shift, the proposed algorithm was executed 100 times
for 100 checkpoints.

Table 4.6 shows the results of this experiment, where checkpoints are
shifted away from the real transition points of datasets. It is observed that
when the shift is increased from 25 to 200 transactions, the detector can
detect changes in the utility distribution without making any mistakes. The
false positive and false negative rates of the proposed method are in that
case equal to zero. The proposed drift detector has high true positive rate
and accuracy. In a stream, data evolves and changes over time. Detecting
changes within an acceptable delay is crucial. As shown in our experiments,
when the number of shifted transactions was non-zero, our detector was
able to detect exactly all changes in the utility distribution of the datasets
under an acceptable delay, which was defined as 200 transactions for these
experiments.

4.5.5 Influence of the Decay Function

We generated a synthetic stream containing 101 instances. Each instance
in the stream has 50k transactions. Thus the stream has 5.05 million trans-
actions. We use the dataset StreamT as our first seed. Each instance in
the stream was seeded from its previous instance as follows. We randomly
sampled a 10% of transactions in the seed. We added noise to these samples
by increasing utility value to 5%. In the stream, the instances at positions
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of 11, 21, 31, . . . and so on were reset seeded from the StreamT. The utility
threshold was set to 1,200,000. In the previous experiments, the window
size was used as the half-life of the decay function. To evaluate the influence
of the decay function, we multiplied the decay function with a constant λ.
The value of λ was set to 0.01, 0.02, 0.03, 0.04, 0.05, and 0.07, respectively.
We recorded experiment results of the proposed algorithm without using
decay fading and with using different decay values as described above. Fig-
ure 4.6a is the utility distribution of high utility itemsets in the stream.
Figures 4.6b - 4.6c show the accuracy of the proposed algorithm with the
confidence level value set to 0.7 and 0.8 respectively. The results show that
the accuracy is gradually stable, and it is affected by decay value. From
Figure 4.6a, we can observe that the utility changes slightly when we vary
the decay factor. If λ’s value is high, the importance of old transactions
quickly decreases. Therefore, the weights of past transactions have a minor
influence on the utility of itemsets, and the total utility distribution changes
more smoothly than for small λ values. When α=0.7, the best accuracy of
the proposed detector was obtained with λ=0.03 or λ=0.04. While the best
accuracy of the proposed detector was obtained with λ=0.05 if α=0.8. The
value of decay function is application-specific and can be chosen either by
using a heuristic method.

4.5.6 Evaluation on a Random Stream

The synthetic data stream used in the previous experiments is a repeated
concatenation of the following sequence of datasets: StreamT + StreamT
+ StreamX + StreamY. To more extensively evaluate the performance
of the designed method, an additional experiment was performed where
we concatenated several datasets in different ways to generate a synthetic
stream. In this experiment, streams are generated by combining a sequence
of datasets formed as Dataset1−Dataset2−· · ·−Datasetk, where Dataseti
(1 ≤ i ≤ k) is randomly selected among StreamT, StreamX and StreamY.
Each stream includes 100 random instances of datasets and has 5 million
transactions. Four random data streams were generated. The designed al-
gorithm was run with a confidence level set to 0.8 and 0.9, and a minimum
utility threshold set to 1,500,000 and 1,700,000.

Figures 4.7a - 4.7d show drift points detected by our detector for the four
random data streams. In these figures, a red point indicates an observation
time where a change in the utility distribution of high utility itemsets was
found. At each checkpoint, the proposed algorithm examines the movement
in utility distributions in the window consisting of the transactions since
the last estimated change point. If the movement is significantly different,
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Figure 4.6: Influence of the decay function.

the algorithm marks the checkpoint as a drift point. That checkpoint is
then remembered as the last estimated change point. Results have shown
that the proposed algorithm can detect exactly all the drift points at the
checkpoints, where there is a significant change at the transitions between
successive windows.

4.5.7 Evaluation of the Drift Detector for Classification

This subsection presents experiments to evaluate our proposed detector in
terms of detection delay, true positive (TP), true negative (TN), false neg-
ative (FN), and accuracy with a base incremental classifier applied on a
stream. We used Naẗıve Bayes (NB) and Hoeffding Tree (HT) classifiers as
base learners because they are usually used as benchmark classifiers in the
literature [18, 61]. Moreover, we compared the results with several state-
of-the-art drift detectors, namely EDDM [13], ECCD [134], SeqDrift2 [127],
and RDDM [16]. All experiments were performed using the MOA frame-
work [20] with parameters set to the default values for all the compared
algorithms, as recommended in the original papers. Note that our drift de-
tector uses a statistical test [61] as global detector. However, the original
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Figure 4.7: Drift points on Random Streams.

detector tests to reject the null hypothesis with an error bound ε of the
streaming values from the [0; 1] interval. The proposed detector considers
the error bound ε on a real value interval of the streaming data.

In streaming data, to evaluate the measures of concept drift detector,
such as true positive, true negative, false negative, and accuracy, the accept-
able delay length metric [129] is often adopted. Given a threshold ∆, if a
detector can detect a change within a delay ∆ from the true change point,
it is considered as a true positive. Mixed and Sine1 contain abrupt concept
drifts, while Circles contains gradual drifts. Therefore, in this experiment,
smaller values of acceptable delay are set for Mixed and Sine1 than for Cir-
cles. Specifically, the acceptable delay is set to 250 on the Mixed and Sine1
datasets, and 1,000 on the Circles dataset.

Table 4.7 shows the average and standard deviation of classification re-
sults for the proposed detector, EDDM, ECCD, SeqDrift2, and RDDM run-
ning on 100 samples of datasets. We can observe that on the Mixed and
Sine1 datasets, ECCD has the shortest detection delay, with high true pos-
itive (TP) rates with both Naẗıve Bayes (NB) and Hoeffding Tree (HT)
classifiers. This is because ECCD uses a window containing a small num-
ber of instances. However, the false positive (FP) rates are also very high,
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resulting in a low accuracy. For the Sine1 dataset with NB learner, RDDM
discards old instances from the stream and is the most accurate. However,
the difference between RDDM and HUDD-TDS is small, and the FP rate of
RDDM is higher than the FP rate of HUDD-TDS. In almost all other cases,
the proposed detector has the best accuracy and very good flow rates of
detection delay, TP, FP, and false negative (FN). The reason for this is that
for the Mixed and Sine1 datasets, changes are abrupt, and the proposed
detector is an online and non-parametric detector. It estimates precisely
the distribution of the stream. Therefore, it can quickly detect points lying
out of the distribution boundary. For gradual concept drifts such as in the
Circles dataset, SeqDrift2 has the best performance, either using NB or HT
learners. The reason is that SeqDrift2 uses a block of 200 instances for
reservoir sampling. The block is helpful for the Circles dataset since it con-
tains gradual concepts drifts with a transition length of 500. Nevertheless,
FP rate of SeqDrift2 is still high. In most cases, ECCD and EDDM are the
worst detectors.

To summaraze, the average ranks of the algorithms are shown in Ta-
ble 4.7. This shows that the proposed detector is ranked first among the
five compared detectors.

4.5.8 Evaluation of Runtime Performance

This section presents the experimental results of the proposed method in
terms of runtime consumption on both real-world datasets and synthetic
datasets. Figures 4.8 - 4.10 show the runtime of the proposed approach on
the real-world datasets including Chainstore, Accidents, and Kosarak. The
average runtime is very small, and it is just around a second for performing
drift detection and processing windows of 50k transactions at each check-
point. The average runtimes are respectively around 156(ms), 2.5(s), and
494(ms) on the Chainstore, Accidents, and Kosarak datasets.

On the four random data streams, the proposed approach is quite fast.
As presented in Figures 4.11a - 4.11b, it takes around three seconds in
average for performing detection in a window of 50k transactions. Fig-
ure 4.12 shows average runtime performing detection on random streams
while varying window size. At first, window size was set to 50,000 and
then was increased 10 times. Each time we increased the size of window
by 10,000 transactions. We record the average runtime consumption while
utility threshold values are set to 1,500,000 and 1,700,000 respectively, along
with and without using the Dmo distance. The result shows that the aver-
age runtime consumption is small, and it is linear when the size of window
increases.
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In general, our empirical experiments have shown that running time
of the proposed algorithm is very small on both real-world datasets and
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Figure 4.12: Average Runtime on Random Streams.

synthetic datasets under various parameter settings. Furthermore, our de-
tector is online and non-parametric, which makes it suitable for online drift
detection from a stream, where concept drifts are short and the method
must quickly detect changes with high true positive, high accuracy, and low
detection delay.

4.6 Conclusion

In this chapter we presented an algorithm named High Utility Drift De-
tection in Transactional Data Stream (HUDD-TDS) to detect changes in
the utility distributions of itemsets in a stream of quantitative customer
transactions. The algorithm utilizes a fading function to quickly adapt to
changes in a data stream by placing less importance on older transactions
than the recent ones. To ensure that only significant changes are reported
to the user, we proposed an approach that uses statistical testing based on
the Hoeffding’s inequality with Bonferroni correction. The main advantage
with our algorithm is that it can detect both local and global utility drifts,
i.e., drifts in the utility distribution of single patterns and of multiple high
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utility patterns, respectively, in addition to discovering both increasing and
decreasing trends. To detect global utility drifts, we proposed a new dis-
tance measure, which generalizes the cosine similarity, by also taking the
distance between pairs of high utility itemsets into account. To evaluate
our approach, we carried out extensive experiments both on real and syn-
thetic datasets. The results from the experiments showed the efficiency of
the proposed method. In particular, it can identify both types of changes
in the utility distributions of high utility itemsets in real-time, yielding a
high true positive rate, while keeping both false positive and false negative
at a lowest possible rate.
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Chapter 5

Applying Temporal Dependence to
Change Detection

The detection of changes in streaming data is an important mining task
with a wide range of real-life applications. Numerous algorithms have been
proposed for the efficient detection of changes in streaming data. However,
the main limitation of existing algorithms is the assumption that data have
IID characteristics; these approaches assume that data are generated iden-
tically and independently, an assumption rarely holds in real-life streaming
environments. In particular, the temporal dependencies of data in a stream
have still not been thoroughly studied. This provides the motivation for the
work presented in this chapter, in which we address research questions RQ2
to RQ5 [46], i.e., How can we design efficient models that easily and quickly
adapt to the evolution of data? How can we simulate the dependencies
of data, and specify the correlations/transitions between data points in a
streaming data? What are the mechanisms for the tuning process of these
learning models?

5.1 Motivation

Numerous algorithms have been proposed to detect changes in streaming
data [64, 65]. Still, most existing algorithms have been built based on the
assumption that streaming data have stable flows, and that they are arriving
in the same distribution. In addition, they assume the data to be identically
and independently distributed (IID). However, such an assumption hardly
holds in real-life streaming environments.

Focusing on non-stationary environments, several learning algorithms
have been proposed to overcome the limitation of the IID assumption [104,

117
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92]. The majority of existing approaches have, however, assumed that
data in a stream are independently but not identically distributed [21, 178].
Adaptive estimation is among the proposed techniques for handling tempo-
ral dependencies of data. For example, in [124, 132, 22, 8], the approaches
employed adaptive estimation methodology by considering a so-called for-
getting factor. Here, according to a decay function of the forgetting factor,
the underlying assumption is that the importance of a data in a stream is
inversely proportional to its age. As part of this, cumulative measures of
the underlying distribution and estimators are maintained and monitored
to detect changes, while new data continuously arrive.

Despite their efficiency with respect to detecting changes in data streams,
the underlying assumption of the above methods is that data are generated
independent of other data in the same stream. Meanwhile, several empirical
experiments, e.g., [178, 17], have shown that there are important temporal
dependencies among data points in a stream of data, thus making it crucial
for further studies, especially focusing on change detection. Motivated by
this, the main goal of this work is to investigate the temporal dependencies
of data points in a data stream, and use this to develop a novel method that
enables monitoring changes in the stream while continuously estimating the
underlying data distribution.

Contributions

In this work, we make the following main contributions:

1. We introduce a new model named Candidate Change Point (CCP)
that we use to model high-order temporal dependencies and data dis-
tribution in streaming data.

2. We develop a new concept called CCP trail, which is the path from a
given observed data to another specific data in the observation history.
Our approach uses the mean value of the CCP trail as a measure of
data distribution, and to capture the temporal dependencies among
observed data in the stream.

3. We develop a method that is able to handle the fact that data arrives in
a high-velocity stream by providing continuously updating estimation
factors as part of the CCP model.

4. We propose an efficient real-time algorithm, based on pivotal statistic
tests for change detection named Candidate Change Point Detector
(CCPD).
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5. In order to demonstrate the feasibility, efficiency, and generality of our
method, we conduct a thorough evaluation based on several real-life
datasets and comparison with related approaches.

Organization

The remainder of this chapter is organized as follows. Section 5.2 briefly re-
views the related work. Section 5.3 introduces the problem of change detec-
tion. Section 5.4 presents the proposed model and the adaptive estimation
method for detecting changes in evolving streaming data. Section 5.5 de-
scribes and discusses the results from our experimental evaluation. Finally,
Section 5.6 concludes the work.

5.2 Related Work

Hoeffding’s inequality [80] is one of the most well-known inequalities. It has
been used to design several upper bounds for drift detection [61]. These up-
per bounds have been used in algorithms such as the Drift Detection Method
Based on Hoeffding’s Bounds (HDDM) [61], the Fast Hoeffding Drift Detec-
tion Method for Evolving Data Streams (FHDDM) [129], Hoeffding Adap-
tive Tree (HAT) [19], and the HAT + DDM + ADWIN [4] algorithm which
extends the ADaptive sliding WINdow (ADWIN) algorithm [18], the Drift
Detection Method (DDM) [64], and the Reactive Drift Detection Method
(RDDM) [16], which is a recent drift detection algorithm based on DDM.
Nevertheless, Hoeffding inequalities have the disadvantage of dropping the
dependence on the underlying distribution [161]. Although these algorithms
are useful to detect changes in streaming data, most of them assume that
data is identically and independently distributed. However, as mentioned
earlier, in real-life streaming data, data is inherently dynamic, and is not
identically and independently distributed [21, 178]. Also, temporal depen-
dencies are very common in data streams [178]. Thus, to address this issue,
temporal dependencies in the streams should be considered.

Regarding temporal dependencies in data streams, adaptive models for
detecting changes in the underlying data distribution have been proposed
and extensively studied. The main idea of these approaches has been to es-
timate, maintain some interesting targets in the stream, and then compute
the data distributions. The main method used has been based on statistical
hypothesis tests, where the hypothesis H1 means change has been discov-
ered, whereas the null hypothesis H0 means no change. An example of such
an approach has been suggested by Bodenham et al. [22]. They adopted a so-
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called forgetting factor, originally suggested by Anagnostopoulos et al. [8],
to develop a new approach for continuously monitoring changes in a data
stream, using adaptive estimation. They proposed an exponential forgetting
factor method to decrease the importance of a data according to a decay
function, which is inversely proportional to the age of the observed data.

Although Bodenham’s approach enables monitoring changes in data
streams by applying so-called Adaptive Forgetting Factor (AFF) [22], it
does not address the challenges with temporal dependencies of data. Fur-
ther, while AFF enables detecting multiple data point changes with adaptive
estimation, the approach presented in this chapter focuses on temporal de-
pendencies of data, in addition to supporting online change detection in a
data stream.

5.3 Preliminaries

Formally, we define the problem of change detection in streaming data by the
following definition. Let there be a data stream S, which is an open-ended
sequence of values {v1, v2, . . . , vi, . . . }. Assume that our observation Vi of vi
in the data stream is drawn from a Gaussian model with an unknown distri-
bution, Vi ∼ N (µ, σ2I), where µ is the (unknown) mean and is the interest
measure in our change detection method, and σ2 is the error variance. At
each observation time i, the observed mean is µi. Hence, for a data stream
S, we have a sequence of observed mean µ1, µ2, . . . , µi, . . . corresponding to
observation times 1, 2, . . . , i, . . . . Our change detection method considers
the difference between adjacent means µi and µi+1, where not all adjacent
means are not necessarily equal. The change detection method is designed
to detect all change points i between two observed adjacent means µi and
µi+1, for any i and µi 6= µi+1. Assume that t1, t2, . . . tj , . . . are the true
change points in a distribution of means. Then, the change detector verifies
a change point tj by testing the following statistical hypotheses:

H0 : µtj−1 ' · · · ' µtj−1 ' µtj ' µtj+1 ' · · · ' µtj+1−1

against

H1 : µtj−1 ' · · · ' µtj−1 6= µtj ' µtj+1 ' · · · ' µtj+1−1

Given a significance confidence ρ, the rule to accept the H1 hypothesis is if
an objective interest measure of mean, i.e., f(.), satisfies:

f(µtj ) /∈ [v ρ
2
, v1− ρ

2
], (5.1)
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where v ρ
2
and v1− ρ

2
are values such that Pr(f(µtj ) < v ρ

2
) = ρ

2 and Pr(f(µtj ) >

v1− ρ
2
) = 1− ρ

2 , and f(.) is an objective function. A change point is said to
occur at an observation time tj if H0 is rejected. This means that the task
of detecting change points is to find all the observation times where there
are significant differences in the data distribution for a given measure.
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Figure 5.1: An example a stream of data with two change points.

To illustrate, consider a stream of data shown in Figure 5.1, which can
be modeled using a piece-wise function with different values depending on
the time intervals, [1, 50], [51, 80] and after 81. The estimated mean values
are controlled/computed by the function to be 50 in the first interval, 100 in
the second and then 80. In conclusion, as also can be observed, significant
changes in the stream appear at timestamps 51 and 81.

5.4 Model and Solution

In this section, we propose a new model to represent the temporal depen-
dency of the current observation to its history in the data stream to detect
changes.

5.4.1 The Candidate Change Point (Detection) Approach

Most existing work has assumed the streaming data to be identically and in-
dependently distributed (i.i.d.). However, focusing on real-life applications,
this assumption is too restrictive. In fact, the probability of the current ob-
servation is largely depended on previous data and the history of the stream.
With this in mind, we consider Markov chain [115] as the natural choice for
modeling streaming data, since a Markov process can be used to represent
the probability of transitions between states of data in a stream. However,
note that the space requirement for maintaining parameters with a higher-
order Markov process grows exponentially as functions of the number of pa-
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rameters. Thus, approaches employing higher-order Markov processes have
a cubic space complexity, and are for this reason inefficient. To cope with
this issue, more efficient parameterization approaches, such as the Linear
Additive Markov Process (LAMP [96]) and the Retrospective Higher-Order
Markov Process (RHOMP [163]), have been proposed. In contrast to the
higher-order Markov process, the number of maintained parameters in the
LAMP model and the RHOMP model grow linearly, which makes them
more suitable for streaming data.

In this work, we build on the ideas of these linear Markov process mod-
els to develop an efficient model for temporal dependency in evolving data
streams, and use the developed model for detecting concept drifts. We do
this based on the fact that the probability of a data to appear in a stream
at a specific time is not dependent on the first-order data only. This means
that the appearance of data in specific observations can be assumed to be
a cause of k previous observations. To be more specific, we propose a novel
model, called the candidate change point (CCP) model, for detecting con-
cept drifts. This is done by using the temporal dependency information
from previously observed data in the current observation to compute the
probability of finding changes in the given observation. What this implies
is that with a first-order CCP model, any data that is observed at a spe-
cific time has only temporal dependency from the most recent previously
observed data in the stream. On the other hand, if the current data point
depends on its k previous data points and is a mix of these k data points,
then it has a CCP from k -order ancestors. In such a case, the model that
we apply is the k -order Candidate Change Point (CCP) model, defined as
follows.

Definition 30 (k-order Candidate Change Point). Given a stream of ob-
servations with an open end x1, x2, . . . , xn, . . . , the k-order Candidate
Change Point is denoted as CCPk, and at observation time t, the CCP
model is presented as CCPk(xt) = (C1, C2, . . . , Ck), where 0 ≤ Ci ≤ 1
for i = 1, 2, . . . , k,

∑k
i=1Ci = 1. We call Ci is the probability proportion of

CCP in current descendant obtained from i-th order in its k ancestors.

Definition 31 (k-order Fading Candidate Change Point). Given a stream
of observations with an open end x1, x2, . . . , xn, . . . , the k-order Fading
Candidate Change Point is the k-order Candidate Change Point considering
forgetting factor α of ancestors by order denoted as CCPk,α. At observation
time t, the CCP model is presented as CCPk,α(xt) = (α1 × C1, α2 × C2,

. . . , αk×Ck), where 0 ≤ αi ≤ 1 for i = 1, 2, . . . , k,
∑k

i=1 αi = 1, 0 ≤ Ci ≤ 1

for i = 1, 2, . . . , k,
∑k

i=1Ci = 1.
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We call αi a decaying probability of CCP in current descendant from
i -th ancestor in its k ancestors into the history context. Given a scalar x,
we denote −−−−→xCCPk

as a vector of x projected on its k -order ancestors. We
have −−−−→xCCPk

= (C1, C2, . . . , Ck), it is the k -order Candidate Change Point
of the scalar. In the rest of the chapter, we use a bold face letters (x) to
present the vector for short (−−−−→xCCPk

). Suppose L be a cost function, the
value and option of cost function L will be discussed in the next section.
In this work, our purpose is to solve the minimum of cost function subject
to conditions `1-norm constraint on k -order Candidate Change Point. The
problem is described as:

minimize
CCPk

(L(CCPk)), (5.2)

subject to 0 ≤ Ci ≤ 1, ∀i = 1, 2, . . . , k,
∑k

i=1Ci = 1.

Projected (sub)gradient methods minimize an objective function f(x)
subject to the constraint that x belongs to a convex set CS. The constrained
convex optimization problem is minimizef(x) subject to x ∈ CS.

The projected (sub)gradient method is given by generating the sequence
x(t) via:

x(t+1) =
∏
CS

(x(t) − γt × g(t)), (5.3)

where
∏

CS is a projection on CS, γt is step size, x(t) is the t-th iteration,
and g(t) is any (sub)gradient of f at x(t), and will be denoted as ∂f(x)/∂x(t).

5.4.2 Evolving Data and CCP Parameter Selection

Given a data stream where data evolves over time, i.e., its population dis-
tribution or its structure changes over time, the goal is to maximize the
probability proportion of CCP for current observation in the set of the k
last/previously observed data by solving an optimal problem, using the pro-
jected (sub)gradient method with an optimal function to minimize the diver-
gence of the currently observed data when it is projected onto `1-norm con-
straints of k previous ancestors. Here, the cost function f(x) on Euclidean
projections can be chosen as Euclidean norm (`2 norm) L(x) = 1

2 ‖ x−v ‖2.
The Euclidean projection in this work is to project a streaming data xt

onto a set of k previously observed data, defined as:∏
CCPk

(xt) = argmin
x∈CCPk

1

2
‖ x− xt ‖2, (5.4)
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subject to ‖ x ‖1=
∑k

i=1Ci = 1. The optimal solution for this problem can
be solved in linear time as in [43, 109, 32]. The Lagrangian of Eq. 5.4 with
Karush Kuhn Tucker (KKT) multiplier ζ and µ is:

L(x, ζ) = 1

2
‖ x− xt ‖2 +ζ(‖ x ‖1 −1)− µx (5.5)

Derivation of Lagrangian function at xi with optimal solution x∗ by dimen-
sion i is ∂L

∂xi
(x∗) = (x∗i − xti) + ζ − µi. Because x∗ is an optimal point

then ∂L
∂xi

(x∗) = 0 → x∗i = xti − ζ + µi. The KKT inequalities in the prob-
lem is that xi ≥ 0, then by the complementary slackness, we have µi = 0,
hence x∗i = max (xti − ζ, 0). Moreover, we project our vector using a fast
and linear method as in [32]. In particular, we consider a vector of the
last k data points as the vector of current observation with k elements.
This k elements vector will be projected onto `1 ball constraints by using
(sub)gradient method.

Definition 32 (CCP Heritage). Given a k-order Candidate Change Point
with forgetting factor α, the CCP model is CCPk,α(xt) = (α1×C1, α2×C2,

. . . , αk×Ck), where 0 ≤ αi ≤ 1 for i = 1, 2, . . . , k,
∑k

i=1 αi = 1, 0 ≤ Ci ≤ 1

for i = 1, 2, . . . , k, and
∑k

i=1Ci = 1. The CCP Heritage of the model at

time t is denoted as CHk,α(xt) and computed as CHk,α(xt) =
∑k

i=1 αi×Ci.
This value of the scalar can be used to present the temporal dependency
proportion of the scalar to history. For the sake of brevity, the notation cht
will be used to refer to the CCP heritage value at observation time t in the
rest of this chapter. The sequence of CCP heritage of the stream is denoted
ch1, ch2, . . . , cht, . . . .

In this work, the key idea is to investigate how to exploit the temporal
dependencies of data for detection of changes in a stream. The method we
propose is inspired by the ideas behind linear Markov process models with
which the main principle is to estimate the probability of transition between
states, i.e., to determine the likelihood of each state transition. Neverthe-
less, the main difference between our approach and previous Markov-based
approaches is that our approach considers the temporal dependencies based
on several prior observations. In addition, the proposed model enables es-
timating the dependency measures in a data stream in an online fashion,
thus making it possible to detect changes in the stream in real time.

5.4.3 Adaptive Estimation of Data in Streaming

Adaptive estimation approaches were previously proposed to handle issues
with the uncertainty of data. In streaming data, the importance of historical
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data is weighted using a forgetting function with a decay factor [8, 22, 142].
This means that, in the stream, the most recent data is more important
than the older ones. A decay function is also useful to flush any noise when
detecting concept drifts.

There are several approaches to select the decay factor α. Once the value
can be set to constant, then we can conduct trial experiments and obtain
the optimal value for individual application. The factor can be any function
of exponential family of distribution. In [22], the authors proposed adap-
tive forgetting factor to weigh the importance of historical data by solving
an optimal problem in movement of mean. The estimator is continuously
monitored when new data arrives to detect changes in the data stream. The
principle behind building forgetting factor is to build an exponential decay
function of observation time such that the importance of a data in a stream
is inversely proportional to its age, and the temporal dependencies can be
seen is just 1-order dependency, which is a special case, with k=1 and α = 1.
In the proposed method, we introduce an adaptive estimation for detecting
changes, we use CCP heritage of the CCP model to estimate the CCP mean
distribution of streaming data. This method can be compared to the linear
high order of states based on Markov chain [163, 96].

To adapt the evolving factor in streaming data, we introduce CCP trail
to denote the CCP path from a given observation to another previous ob-
servation in the streaming data. Hence, a CCP trail can be considered as
the probability of finding the heritage from a data stream. This is formally
defined as follows.

Definition 33 (CCP Trail). Given two different observation times t1 and
t2, 0 < t1 ≤ t2, of a streaming data S, which is an open-ended sequence of
values {v1, v2, . . . , vi, . . . }. The CCP trail between two given observations
is the probability of finding the heritage of the data at observation time t1
in the data at observation time t2. A CCP trail is denoted as ct(t2, t1), and
is formally defined as:

ct(t2, t1) =


1 if t2 = t1

cht2 if t2 = t1 + 1

ct(t2, t2 − 1)× ct(t2 − 1, t1) otherwise.

(5.6)

Property 9. The CCP trail can be computed by as the product of CCP
heritages for all t1 ≤ t2 as follows:

ct(t2, t1) =

t2∏
t=t1

(1{t6=t1} × cht + 1{t=t1}), (5.7)
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where 1{x} is binary indicator function. In other words, 1{x} is equal to
1 if x is TRUE, otherwise 1{x} is equal to 0.

1{x} =

{
1 if x is TRUE

0 otherwise.
(5.8)

Proof. This property can be easily proved by induction. When t2 = t1, we
have:

t2∏
t=t1

(1{t6=t1} × cht + 1{t=t1}) = 1{t1 6=t1} × cht1 + 1{t1=t1}

= 0× cht1 + 1 = 1

= ct(t1, t1) = ct(t2, t1).

When t2 = t1 + 1, we have:

t2∏
t=t1

1{t6=t1} × cht + 1{t=t1} =

t1+1∏
t=t1

1{t6=t1} × cht + 1{t=t1}

= cht1+1 = ct(t1 + 1, t1)

= ct(t2, t1).

Assume that Eq. 5.7 is satisfied when t2 = t1 +m, with m ∈ N,m > 0. We
prove that Eq. 5.7 is also satisfied with t2 = t1 +m+ 1. We have:

ct(t2, t1) = ct(t1 +m+ 1, t1)

= ct(t1 +m+ 1, t1 +m)× ct(t1 +m, t1)

= cht1+m+1 ×
t1+m∏
t=t1

(1{t6=t1} × cht + 1{t=t1})

=

t1+m+1∏
t=t1

(1{t6=t1} × cht + 1{t=t1}).

CCP trail mean at observation time t in the data stream is then defined
by:

CCP (t) =
1∑t

i=1 ct(t, i)

t∑
i=1

vi × ct(t, i) =
cp(t)

ctsum(t)
, (5.9)

where cp(t) =
∑t

i=1 vi × ct(t, i), ctsum(t) =
∑t

i=1 ct(t, i).
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cp(t) is the CCP propagation at observation time t looking back into its
history in the data stream. ctsum(t) is the coefficient presenting sum of the
CCP trail at time t.

Proposition 4. Given a data stream, ctsum(t) can be computed by the
following equation:

ctsum(t) = ctsum(t− 1)× cht + ct(t, t). (5.10)

Proof. We have:

ctsum(t− 1)× cht + ct(t, t)

= ct(t, t) + cht ×
t−1∑
i=1

ct(t− 1, i)

= ct(t, t) +
t−1∑
i=1

cht × ct(t− 1, i)

= ct(t, t) +

t−1∑
i=1

ct(t, t− 1)× ct(t− 1, i)

= ct(t, t) +

t−1∑
i=1

ct(t, i) =

t∑
i=1

ct(t, i) = ctsum(t).

Proposition 5. Similar to the coefficient estimation, the CCP propagation
can be estimated by the following sequential updating:

cp(t) = cp(t− 1)× cht + vt. (5.11)

Proof. We have:

cp(t) =
t∑

i=1

vi × ct(t, i) =
t∑

i=1

vi

t∏
j=i

(1{j 6=i} × chj + 1{j=i})

=

t−1∑
i=1

vi

t∏
j=i

(1{j 6=i} × chj + 1{j=i}) + vt

t∏
j=t

(1{j 6=t} × chj + 1{j=t})

= vt +

t−1∑
i=1

vi(1{t6=i} × cht + 1{t=i})×
t−1∏
j=i

(1{j 6=i} × chj + 1{j=i})

= vt + cht

t−1∑
i=1

vi

t−1∏
j=i

(1{j 6=i} × chj + 1{j=i})

= vt + cht × cp(t− 1).
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Eqs. 5.10-5.11 show that we can sequentially update the CCP model,
CCP coefficient, and CCP propagation in the stream at each observation
time, while new data arrives. Hence, the CCP trail mean at the next obser-
vation, CCP (t+ 1), is easily estimated in linear time by Eq. 5.9.

5.4.4 Change Detection

Change point detection relies on the null hypothesis H0 and the alternative
hypothesis H1. The null hypothesis H0 is a hypothesis that assumes the
population means are drawn from the same distribution while the alternative
hypothesis H1 supposes the observations are from the different distribution.
The change detector defines a rule to accept H1 and reject H0. When
H0 is rejected, it means that there is a significant movement in underlying
distribution of data, and change point occurs. In our approach, the detector
monitors the movement in CCP trail mean in an online manner.

Given a random variable v, we consider the Gaussian model with mean
θ, variance σ2, and assume that v ∼ N (θ, τ2 = σ2I). The cumulative
distribution function [156] for a linear contrast pT θ of mean θ is as follows:

D[v1,v2]

pT θ,τ2
(pT v)|Gaussian ∼ Uniform(0, 1), (5.12)

where [v1, v2] is the boundary interval of the Gaussian model andD is pivotal
statistic function. The pivotal statistic function D is defined and computed
as:

D[v1,v2]
µ,τ2

(x) =
CDF ( (x−µ)

τ )− CDF ( (v1−µ)
τ )

CDF ( (v2−µ)
τ )− CDF ( (v1−µ)

τ )
, (5.13)

where CDF(.) is a standard normal cumulative distribution function, and
in our proposed method we use the standard normal right tail probabilities
as in [26] due to its simple form, and it has a very small error. We use
the truncated Gaussian pivot [156] to test hypothesis H0 with an assump-
tion that the population distribution is equal to zero, H0 : pT θ = 0. The
alternative positive hypothesis is H1+ : pT θ > 0. The truncated Gaussian

statistic then is computed by: T = 1 − D[v1,v2]
0,τ2

(pT v). Given a confidence
value 0 ≤ ρ ≤ 1, in our change detector, we find the vρ satisfying

1−D[v1,v2]
vρ,τ2

(pT v) = ρ→ P(pT θ ≥ vρ) = 1− ρ. (5.14)
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Similar to the two-sided test, we compute the confidence interval [v ρ
2
, v1− ρ

2
].

v ρ
2
and v1− ρ

2
are computed based on conditions such that:

1−D[v1,v2]
v ρ
2
,τ2

(pT v) =
ρ

2
, (5.15)

1−D[v1,v2]
v1− ρ

2
,τ2

(pT v) = 1− ρ

2
. (5.16)

Then we have P(v ρ
2
≤ pT θ ≤ v1− ρ

2
) = 1 − ρ. Change is identified with

a confidence ρ if the pivotal population mean does not lie in the interval
[v ρ

2
, v1− ρ

2
].

5.4.5 Choosing Decay Factor

In our method, we consider forgetting factor α of k previous ancestors by
order to the current model. The meaning of α is similar to the decaying
probability of looking back into the history in [163]. To select the parameter
α, we use truncated form of the geometric distribution [28]. The truncated
form of the geometric distribution is presented by parameter η, subject to
0 < η ≤ 1, and k terms (ancestors). The probability density function at

term i, 1 ≤ i ≤ k, is defined by P (i) = η(1−η)i−1

1−(1−η)k
. We set this probability

density at term i as our forgetting factor αi of the i -th ancestor,

α1 =
η

1−(1−η)k
, α2 =

η(1−η)
1−(1−η)k

, . . . , αk = η(1−η)k−1

1−(1−η)k
.

Observe that the truncated form of the geometric distribution subjects to
the condition that sum of probability of k terms equals to 1. In other words,
it subjects to

∑k
i=1 αi = 1.

k∑
i=1

αi =
η

1− (1− η)k
+

η(1− η)

1− (1− η)k
+ · · ·+ η(1− η)k−1

1− (1− η)k

=
η

1− (1− η)k
(1 + (1− η) + · · ·+ (1− η)k−1)

=
(1− (1− η))(1 + (1− η) + · · ·+ (1− η)k−1)

1− (1− η)k

=
1− (1− η)k

1− (1− η)k
= 1.

Furthermore, the condition 0 ≤ αi ≤ 1 is also satisfied. The value of η is
application-specific and can be chosen either by a procedure of polynomial
interpolation or using a heuristic optimal as in [163].
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5.4.6 The Online Change Detection Algorithm

Figure 5.2 gives an overview of the CCPD algorithm, and our method for
change detection is presented in Algorithm 11. The input of the algorithm
is a sequence of open end values v1, v2, . . . , vi, . . . , and a confidence value
ρ. When a new value vi is read from the stream, a linear projection onto
`1 ball constraints is performed to project a vector of the k last data values
to get CCPk of the current observation in line 3 (see [32] for more detailed
information about the projection method). Line 4 computes chi using the
truncated form of the geometric distribution. Line 5 is executed to estimate
ctsum(i) and cp(i). Then CCP trail mean CCP (i) is computed by line
6. In line 7, the boundary interval with confidence ρ is calculated using
the pivotal statistic function. The pivotal truncated Gaussian value of the
current data is specified in line 8. A check is performed in line 9 to determine
there is a change or not. If a change occurs, the estimators are reset and
the algorithm outputs that change.

v(1) v(t)

CH
Ck C2 C1…

v(t-k) v(t-2) v(t-k)

Projection – Euclidean

L1 constraints

k previously observed data

……
CCP mean

ctsum cp
Estimators

CCPD
Detector

Change?

Output

t1 t-k t-2 t-1 t

Obesrvation time

Figure 5.2: Flow diagram of the CCPD algorithm

An illustrative example. Let us consider a sample synthetic data stream
presented in Figure 5.1. The stream contains 100 elements with significant
changes appearing at timestamps 51 and 81. Assume our parameter k = 3.
In this example, we include the last data in the projection. Considering the
observation at timestamp 50, the values of estimated parameters at times-
tamp 50 are as follows: ch=0.487, ct(ctsum)=1.493, cp=75.372, and CCP
is computed as cp

ct = 75.372
1.493 = 50.484. Assume that the incoming element

in the stream at timestamp 50 is 50.45 and the three latest elements in the
stream are sequentially 50.45, 50.66, and 50.08. The processing steps of the
proposed method are the following:

Step 1: Project a vector of the last 3 elements (50.45, 50.66, 50.08) on `1
constraints.
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Algorithm 11 CCPD: Online change detector

Input: Streaming data and a confidence ρ.
Output: Changes in the stream.

1: Init() Initialize all variables
2: for (each data point vi arriving on a stream v1, v2, . . . , vi, . . . ) do
3: Project the k last data points on `1 constraints Projection(vi−1, . . . ,

vi−k) → CCPk(vi) as in [32]
4: Compute chi = CHk,α(vi) =

∑k
i=1 αi × Ci

5: Update estimators ctsum(i) and cp(i) by Eqs. 5.10 and 5.11
6: Update CCP trail mean CCP (i) by Eq. 5.9
7: Compute the confidence interval tailarea = [v ρ

2
, v1− ρ

2
] such that

5.15 - 5.16 satisfy
8: Compute truncated Gaussian pivot of the current observation pval(i)
9: if (pval(i) /∈ tailarea)) then

10: Output change
11: Reset Estimator

The result of this projection is (0.39, 0.59, 0.02).

Step 2: Calculate the value of CCP Heritage, ch.
Assume the parameter η is set to 0.98, the decay factors αi, i =
1, . . . , 3, are computed to be (0.98, 0.0196, 0.0004), and the new
value of ch is 0.39 ∗ 0.98 + 0.59 ∗ 0.0196 + 0.02 ∗ 0.0004 = 0.394.

Step 3: Calculate values of estimators ct and cp.
cp = 75.372 ∗ 0.394 + 50.45 = 80.147,
ct = 1.493 ∗ 0.394 + 1 = 1.588.

Step 4: Update mean CCP = cp
ct = 80.147

1.588 = 50.470.

Step 5: Compute the pivotal truncated Gaussian of the new mean, and the
confidence interval of the old mean with a confidence ρ = 0.01.
We have pval(CCP ) = 1.0, and tailarea = [v ρ

2
, v1− ρ

2
] = [0.0, 1.0].

Step 6: Check condition pval(i) /∈ tailarea.
Because 1.0 ∈ [0.0, 1.0], the detector determines that there is no
change at timestamp 50.

Step 7: A new data in the stream at timestamp 51 can now be processed.
At the timestamp the data value is 100.56, so the last 3 elements
in the stream are (100.56, 50.45, 50.66). Repeat Step 1 to Step 6
to process the rest of the stream.
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When new data comes in the stream, if a change is detected, the values
of the estimators are reset to default. In our example, with the sample
synthetic dataset, the CCPD detects two change points at timestamps 52
and 82 (1 delay in comparison with two true change points at timestamps
51 and 81).

Figure 5.3 and Figure 5.4 depict the visualization of the real values of
the stream and the estimated mean values by the CCPD method, running
on the sample synthetic streaming data shown in Figure 5.1. In particular,
Figure 5.3 plots the real values and the estimated mean values computed
using the CCPD method with two true change points at timestamps 51 and
81, and two detected change points at timestamps 52 and 82. Figure 5.4
shows the estimated mean values while we vary the value of η in the decay
factor. The importance degree of the current data is the combination of
the projection vector (on k latest data) and the decay factors, which are, in
turn, affected by the choice of η. Because we chose decay factors in a form
of geometric distribution, the most effect on the importance of current data
can be derived from the most recent data in the stream. We observe that
when the stream is stable, the value of the estimator is stable with different
values of the decay factor. However, the obtained estimator significantly
changes around the change point.
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Change point

Change point
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Figure 5.3: A stream of data with two detected change points.

Complexity. The procedure of processing each arrival stream data
point has three main parts. The first part is the Euclidean projection of the k
last data points on a `1 ball constraints. This process is a fast projection [32]
and has complexity O(k). Normally, k is small, thus the process can be
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Figure 5.4: Estimated mean while varying η

performed in constant time. The second part is the process of calculating
values of CCP, CCP mean, and updating estimators. The complexity of
this process is constant O(1). The last part is a process which we calculate
tail area and pivotal Gaussian value. We use a fixed number (100) of steps
to search for the boundary of the tail. Hence, this process also has constant
complexity O(1). In summary, the complexity of our method is O(k) +
O(1) + O(1) = O(k), thus the proposed algorithm CCPD has a constant
complexity with constant k, O(k).

5.5 Evaluation

We have performed thorough experiments to evaluate the performance of
our method and compare it to the state-of-the-art algorithms. To make our
experiments as real and generic as possible, we performed our evaluation on
several different real-world datasets, with various characteristics. Besides
that, an extensive experiment was conducted to evaluate the flow rates
of the stream including detection delay, true positive, true negative, false
negative, and accuracy on several artificial datasets with known ground-
truth. We carried out the experiments on a computer running the Windows
10 operating system, having a 64 bit Intel i7 2.6 GHz processor, and 16 GB of
RAM. The proposed algorithm was implemented in Java. All evaluations are
performed using the MOA framework [20]1, with our algorithm integrated.

1Version 4.0.0, June 2017.
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5.5.1 Datasets

For our experiments, we used both real-world datasets and synthetic datasets
to evaluate our proposed method and compare with the state-of-the-art al-
gorithms.

Real Datasets

Eight real-world datasets are used, that are widely-used as benchmark
datasets for change-detection methods [18, 129, 61, 178], consisting of Elec-
tricity, Poker (Hand), Forest Covertype, Spam, Usenet1, Usenet2, Nursery,
and EEG Eye State.

Electricity is an electricity consumption dataset collected from the Aus-
tralian New South Wales Electricity Market. The dataset has 45,312 in-
stances which contains electricity prices from 7 May 1996 to 5 December
1998. The instances were recorded by an interval every 30 minutes.

Poker-Hand is data of a hand consisting of five playing cards drawn from
a standard deck of 52. The dataset contains 829,201 instances.

Forest Covertype is forest cover type for a given observation of 30 x
30 meter cells. The dataset was obtained from US Forest Service (USFS)
Region 2 Resource Information System (RIS) data. The dataset is recorded
in the Roosevelt National Forest of northern Colorado, US. Forest Covertype
contains 581,012 instances.

Spam is a dataset based on the Spam Assassin collection and contains
both spam and legitimate messages. The Spam dataset has 9,324 instances.

Usenet1 and Usenet2 are based on the twenty newsgroups data set, which
consists of 20,000 messages taken from twenty newsgroups. Each of Usenet1
and Usenet2 contains 1,500 instances obtained from twenty newsgroups data
set to present a stream of messages of a user.

Nursery was derived from a hierarchical decision model originally devel-
oped to rank applications for nursery schools in Ljubljana, Slovenia. The
dataset contains 12,960 instances.
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EEG Eye State was originally used to predict eye states by measuring
brain waves with an electroencephalographic (EEG), i.e., finding the cor-
relation between eye states and brain activities [133]. It consists of 14,980
instances with 14 EEG values, where each value indicates the eye state.

Electricity, Forest Covertype and Poker-Hand were obtained from the
most popular open source framework for data stream mining MOA2, while
the remaining datasets were obtained from the UCI Machine Learning Repos-
itory3 (University of California, Irvine)

Synthetic Datasets

There is no ground-truth in real-world datasets. Therefore, in our evaluation
in performance evaluation of our drift detection method, four widely-used
synthetic data streams, namely Mixed, Sine1, Circles and LED [129, 61],
are used with ground-truth of drift point. Each dataset contains 100,000
instances, and 10% noise in class of instances. In brief, the characteristics
of these datasets are as follows:

• Mixed : This dataset contains four attributes, including two Boolean
attributes and two numeric attributes in the [0, 1] interval. The
Mixed dataset contains abrupt concept drifts. The drifts occur at
every 20,000 instances with a transition length ξ = 50.

• Sine1 : In this dataset there are two attributes that are uniformly
distributed in the [0, 1] interval. The Sine1 dataset contains abrupt
concept drifts. The drifts occur at every 20,000 instances with a tran-
sition length ξ = 50.

• Circles: This dataset uses four circles to simulate concept drifts. Each
instance has two numeric attributes on the [0, 1] interval. The Circles
dataset contains gradual concept drifts. The drifts occur at every
25,000 instances with a transition length ξ = 500.

• LED : This dataset is a seven-segment display of digit dataset. The
LED dataset contains gradual concept drifts. The drifts occur at every
25,000 instances with a transition length ξ = 500.

2https://moa.cms.waikato.ac.nz/datasets/
3http://archive.ics.uci.edu/ml/datasets.html
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5.5.2 Performance

This section presents the experimental results of the proposed method com-
pared to the state-of-the-art algorithms. We performed empirical experi-
ments to evaluate our proposed algorithm and compared it against HDDMW ,
HDDMA [61], DDM [64], EDDM [13], SeqDrift2 [127], FHDDM [129]4, and
RDDM5 [16]. These algorithms were chosen because they are the state-of-
the art algorithms in drift detection. Implementation of the algorithms are
provided by the MOA framework. In all our experiments we used Naẗıve
Bayes (NB) and Hoeffding Tree (HT) classifiers as the base learners, which
are frequently used in the literature [18, 129, 61, 127]. In addition, we per-
formed comparison with a baseline method, called “No Change Detection”,
that detects changes with base learners only. The confidence value is set to
0.001, η is set to 0.99. The λ in HDDMW is set to 0.05 as recommendation
by the authors. The sliding window size is set to 25 in FHDDM. Accord-
ing to the authors, it is the optimal value providing the best classification
accuracy. With the other algorithms, in all the tests we use the default
parameters and configuration values as recommended by the authors of the
original work. Accuracy evaluator is computed base on a window with size
100. Frequency of sampling process is every 100 samples. Furthermore, we
prepare two versions, named CCPDk=5 and CCPDk=3. CCPDk=5 is our
proposed method running with a projection on the last five data points in
the stream, while CCPDk=3 runs with a projection on the last three data
points in the stream.

Table 5.1-5.2 show the average (a) and standard deviation (std) accu-
racy of the change detection algorithms with NB and HT classifiers as base
learner, respectively. In case of same accuracy result, we consider the algo-
rithm with the lowest standard deviation to be the best. The results show
that CCPD wins 5 times on total 8 datasets with NB classifiers and 4 times
on total 8 datasets with HT classifiers. Further, Table 5.3 shows that our
proposed method obtains the best accuracy scores with the majority of the
datasets (five out of eight datasets), including Electricity, Spam, Usenet1,
Corvertype, and Poker datasets; while on EEG Eye, Nursery, and Usenet2,
the accuracy ranks are 2, 4, and 6.5 (the same rank with FHDDM), respec-
tively. Another observation from the experiments is that, while varying the
order of temporal dependency k, the accuracy scores on Nursery and User-
net2 change abruptly. This can be explained as follows. On the Usernet2
dataset, the reason is that the concept drift is moderate and the topic shift

4Source code of the FHDDM is provided by the authors of the algorithm
5Source code of the RDDM is obtained from the authors personal website
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on the dataset is blunt and blurred. Moreover, the number of samples in the
dataset is small for the training. On Nursery, on the other hand, the change
behavior may be due to the large number of distinct values of attributes
in the dataset. Thus, the temporal dependency is loose, which has in turn
an impact on detecting the changes. Nevertheless, the difference from the
best accuracy is not significant. Overall, the empirical results show that
CCPD has the best performance in all cases of combinations with NB and
HT classifier.

To further evaluate the performance of the proposed method, and in
order to get a fair comparison among the algorithms, we performed sta-
tistical significance tests based on the average rank of accuracy of the al-
gorithms [41]. Firstly, we select the best accuracy of the algorithms with
NB classifier and HT classifier and then report rank of accuracy of the
algorithms. Secondly, we use Friedman test because it is a nonparametric
analogue of the parametric two-way analysis of variance by ranks. Table 5.3
shows statistical test results using the methodology proposed in [41]. The
number in parentheses at each cell is the rank of accuracy. The bold val-
ues indicate the best results per dataset. Based on the methodology, we
reject the null-hypothesis because FF > Critical F-value. This means that
there are significant differences between the algorithms. Finally, we use the
Nemenyi post-hoc test to present these differences. We set the significance
level at 5%. The critical value for 9 algorithms is 3.10. The critical differ-
ence at level 5% is CD = 4.24. Figure 5.5 shows the results of the Nemenyi
test of the data from Table 5.3. On the figure, the methods on the right
side have lower average rank of accuracy and are better than the methods
on the left.

1234567

CD = 4.24

CCPD

RDDM

EDDM

HDDM_A
DDM

SeqDrift2

No Change

8

HDDM_W

9

FHDDM

Figure 5.5: Nemenyi test with confidence level α = 0.05
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5.5.3 Impact of the k-Order

In this subsection, we run tests to evaluate the dependencies of data points
in the streams in the Electricity, Poker, Forest Covertype, Spam, Usenet1,
Usenet2, Nursery, and EEG Eye State datasets. We record average accuracy
and standard deviation of the CCPD on the datasets with NB classifier while
varying the parameter k from 2 to 7.

Table 5.4 shows the average accuracy and standard deviation of the
CCPD method while varying k from 2 to 7. From the results, we can observe
that the different values of k will affect to the accuracy of the algorithm.
The best accuracy is almost obtained at order k=2 or k=3. On Electricity,
Usenet2, and Covertype datasets, the best performance is obtained when we
project on k=2 data, while on the remaining datasets, the best performance
is at k=3. On the EEG Eye State dataset, when the value of k increases
from 2 to 7, the accuracy also slightly increases. For the sake of comparison,
the table only shows k ∈ [2, 7]. Since we observed that the values were still
increasing, we decided to vary k, until k = 20 to find the optimal value.
The optimal accuracy of 99.55% was found at k = 13. The best accuracy
at different order k also depends on characteristic of the input dataset.
Furthermore, the results show that change in accuracy, abrupt or slight, is
dataset-dependent. On Electricity, Spam, Covertype, and Poker datasets,
when we vary value of order k, the accuracy changes slightly. In contrast,
the accuracy varies abruptly on Usenet1, Usenet2, and Nursery datasets.

As shown in the results in Table 5.4, the best results are usually in 2 or
3 orders of dependency. The reason can be explained as that the proposed
method uses the fixed length for projection of temporal dependencies. In
real life datasets, the order of dependencies may not be fixed length, which
means that each data point in a stream may have temporal dependencies
from different number of its previous data points. For this reason, our
further research will include studying higher-order temporal dependencies.

5.5.4 True Change Point and Delay

One of the disadvantages of some real-world datasets in change detection
problem is that the ground truth of the datasets is unknown. On the other
hand, the performance of a detection method is evaluated base on the ac-
curacy and delay of detected change points to the real change points in the
data. In the above section, we have presented the efficiency of our proposed
method with high accuracy detection. In this section, for a further evalu-
ation of the algorithm, we describe the tests we performed with CCPD on
a real-world dataset for which its ground truth has been known. This is
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the Electricity dataset, which is also widely-used in many methods [21, 178]
for change detection. In this dataset, data are heavily autocorrelated with
frequency peaks in every 48 instances [178].

In this experiment, we performed tests on the first 1,000 instances of the
dataset. We then record change points detected by CCPD and other state-
of-the-art algorithms with respect to true change points that are known as
ground truth. Specifically, we did experiments employing CCPD, HDDMW ,
HDDMA, CUSUM, and PAGE-HINKLEY algorithms. CCPD, HDDMW ,
and HDDMA are here online detection algorithms. PAGE-HINKLEY is a
concept drift detection based on the Page Hinkley Test, while CUSUM is
a drift detection method based on cumulative sum. For the best competi-
tive comparison, CUSUM and PAGE-HINKLEY are executed in an online
manner at every data point in the stream. Here, we set sample frequency
to 1. We adjust the minimal number of instance to 1, and set all the other
parameters to default values as in MOA framework according to prior works.

Table 5.6 shows the change points detected by the algorithms on Electric-
ity dataset. The CCPD detects online and at exact change points. CUSUM
and PAGE-HINKLEY have the same result with a short delay detection
of change, which is 1 data point. HDDMA−test produces the largest delay
with 15 data points in delay. And the last algorithm HDDMW−test detects
change with 4 data points in delay.

5.5.5 Experiments on Synthetic Datasets

This subsection presents experiments to evaluate detection delay, true pos-
itive (TP), true negative (TN), false negative (FN), and accuracy of our
proposed method. We compared the results with several state-of-the-art
drift detectors, including EDDM [13], ECDD [134], SeqDrift2 [127], and
RDDM [16], on four widely-used synthetic data streams in the literature [61,
129]: Mixed, Sine, Circles, and LED. All experiments on the synthetic
datasets were performed using the MOA framework with parameters set
to the optimal values for all the compared algorithms as recommended in
the original papers. We adopted the acceptable delay length metric [129] to
evaluate the performance of the algorithms. Given a threshold, if a detector
can detect a change within a threshold delay from the true change point, it
is considered as a true positive. In the experiments on the Mixed and Sine1
datasets, the level of temporal dependency k is set to 3 and the acceptable
delay is set to 250. While on the Circles and LED datasets, k is empirically
set to 5 and the acceptable delay is set to 1,000.
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Table 5.6: Change points detected.

Algorithm Detected Points (where i =1, 2, . . . )

CCPD5 (48× i+ 1)± 0
HDDMW−test(0.05) (48× i+ 1)± 4

HDDMA−test (48× i+ 1)± 15
CUSUM (48× i+ 1)± 1
PAGE −HINKLEY (48× i+ 1)± 1

Table 5.5 shows the average and standard deviation of classification re-
sults for the CCPD, EDDM, ECDD, SeqDrift2, and RDDM running on
100 samples of datasets. The results show that, in most cases, ECDD and
EDDM are the worst detectors. On the Circles dataset, SeqDrift2 has the
best performance, while SeqDrift2 has the worst performance on the LED
dataset. This can be explained as follows. SeqDrift2 maintains a fixed size
reservoir sampling for concept drift detection. The reservoir sampling con-
tains 200 instances, and this size is suitable for the Circles dataset since it
contains gradual concept drifts with a transition length of 500. The low ac-
curacy of SeqDrift2 on LED is a result of its very high false positive. On the
Mixed and Sine1 datasets, we observe that, the shortest delay is obtained by
ECDD. The reason is that the number of instances in the estimated window
in ECDD is small. However, with ECDD, both the TP rate and the FP rate
are high, thus resulting in a low accuracy. In almost all cases, CCPD and
RDDM have the best accuracy and very good flow rates of detection delay,
TP, FP, and FN. The CCPD has the most accurate and very low FP, FN
rates on the Mixed and Sine1 datasets; while RDDM has good performance
on the LED dataset. This is because RDDM discards old instances from the
stream, while in CCPD, we weigh the current instance based on a projec-
tion on k latest instances in the stream. Therefore, any concept drifts can
be quickly detected on abrupt concept drift datasets like Mixed and Sine1.
Overall, the CCPD and RDDM have the same rank (1.75).

5.5.6 Runtime Performance

In terms of runtime performance, we performed experiments to evaluate
the classification time and the streaming processing speed of our proposed
method. Table 5.7 presents the evaluations of the method in terms of
running time in streaming on Electricity, Poker, Forest Covertype, Spam,
Usenet1, Usenet2, Nursery, and EEG Eye datasets. It shows number of
learning evaluations, average total running time in second, average time
using for each learning process and number of learning can be processed
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per second. From this table, we can observe that our detector is capable
of processing a streaming at high velocity, up to 204.5 process per second.
Hence, it is feasible to detect changes in an online setting as in streaming
manner.

Table 5.7: Evaluations on running time of the CCPD

Metrics No. of learning
evaluations

Average total
running time

Average
time/learning

Number of
processing

Electricity 454 3.135(s) 6.90(ms) 144.8/(s)

Spam 94 5.401(s) 57.46(ms) 17.4/(s)

Usenet1 15 0.190(s) 12.67(ms) 78.9/(s)

Usenet2 15 0.323(s) 21.53(ms) 46.5/(s)

Covertype 5,812 59.513(s) 10.24(ms) 97.7/(s)

Nursery 130 23.719(s) 182.45(ms) 5.5/(s)

Poker 8,293 40.557(s) 4.89(ms) 204.5/(s)

EEG Eye 150 11.220(s) 74.8(ms) 13.4/(s)

5.6 Conclusion

In this chapter, we presented a new approach for detecting changes in an
open-ended data stream. We proposed a k-order Candidate Change Point
(CCP) Model that builds on linear higher order Markov processes, in order
to exploit the temporal dependency among data in a stream. The main idea
with the model is to compute the probability of finding change points in a
given observation time window, using the temporal dependency information
or factors between different observed data points in a stream. To cope
with the dynamic nature of the stream, we proposed an approach that can
continuously optimize the temporal dependency factors by using a Euclidean
projection on `1 ball constraints. In addition, we introduced a concept called
CCP trail, which refers to the probabilistic path from a specific observed
data point to another previously observed data point. Our approach adapts
the probability of finding change points to continuously estimate the CCP
trail means in streaming data. Using CCP trail mean values, we applied
statistical tests to detect the change points. To evaluate our approach,
we performed extensive experiments using several datasets and compared
our algorithm to the state-of-the-art algorithms. Our evaluation showed
that our k-order Candidate Change Point Model is effective, and that the
Candidate Change Point Detector (CCPD) algorithm outperforms the state-
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of-the-art algorithms on most of the datasets. In addition, our method has a
linear time performance, which enables it to be deployed online in real-world
stream applications.
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Part III

Feature Correlations with
Concept Drift

In this part, we focus on investigating the correlations and transitions
of data in an evolving and changing context using multiple factors to model
user behaviors. We propose a solution to the problem of sketching a stream
of data in which the data are arriving at high volume and with high velocity.
A method is introduced that sketches the stream using a compact represen-
tation, quickly adapts to concept drift, and preserves the similarity of data
with high accuracy. An evolving, auto-tuning coefficient model is presented
that uses multiple weighted factors to simulate the correlations between the
features of data in order to estimate a data stream with concept drift.
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Chapter 6

Sketching Using Multiple
Weighted Factors

To address the issues related to concept drift, the concept of a forgetting
factor has been normally used to determine the significance of data based on
the time at which a data item occurs in a stream. However, most current
studies assume that this forgetting factor is constant, both at each point
of observation and over the whole process. This is too restrictive, since
in many real-world applications, we cannot apply the same factor to each
previous data item at a particular single observation point. The contribu-
tions presented in this chapter represent solutions to research questions RQ1
and RQ3 to RQ5 [47], i.e., How can we maintain high volume and high veloc-
ity streaming data considering the limitations on memory and computation
infrastructure? Are there any correlations/transitions between data points
or the features of data in the data space? How can we design an efficient
algorithm to adapt quickly to concept drift in an evolving set of data?

6.1 Motivation

Normally, data in a stream can be accessed only once, thus making efficient
processing of streams a challenging but crucial task. A possible solution
is sketching of the streaming data. Sketching is an effective approximation
method that maps a stream into a maintainable form, while still retain-
ing the characteristics of the stream with high accuracy. Development of
efficient sketching techniques has attracted much research during the past
decades [165, 167, 164]. In addition to being used to visualize the sta-
tistical information of the data, histogram estimation is among commonly
used techniques to sketch the underlying distribution of data [142]. Still,
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an important limitation of existing histogram-based methods is that most
of these methods were developed with the assumption that histograms are
drawn from a non-changing or static data distribution [72, 153]. In practice,
streaming data are inherently dynamic and evolve over time, which in turn
result in dynamic changes in the underlying data distribution, i.e., concept
drift [63].

To cope with the issues related to concept drift, the concept of forgetting
factor has been introduced to determine the significance of data according
to the time the data occurs in a stream [142, 168, 50, 140]. However, most
of the current work, e.g., [142] and [168], assume that a forgetting factor is
constant at every point of observation and in the whole process, which is
too restrictive. This is because in many real-world applications, we cannot
consider the same factor for every past data at a particular single observation
point. This motivates the need for a model that is capable of dynamically
adapting to changes in a data stream. We refer such a model to as an
evolving model, i.e., a model that can automatically tune its coefficients to
follow any occurring changes.

Contributions

The major contributions of this chapter are as follows.

• We propose an evolving model with adaptive, auto-tuning coefficients
to investigate the correlations of data, and simulate the transition
between features, group of features in dynamic changing data.

• We develop a novel algorithm that can sketch the histograms from
a data stream using multiple weighted factors, while taking into ac-
count the time-sensitive changes in the stream using different adap-
tive weighted factors for different groups of data, at every observation
point.

• We fully evaluate our approach with extensive experiments on both
synthetic and real-life datasets. Our proposed method quickly adapts
with concept drifts. Our algorithm is able to achieve up to 3.99%
higher overall classification accuracy than the baseline algorithms, and
the error rate is 12 times better than the state-of-the-art methods with
concept drift.

Organization

The remainder of this chapter is organized as follows. Section 6.2 reviews the
related work. Section 6.3 briefly introduces the background and formulation
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of sketching a stream of data. Section 6.4 presents the proposed model and
the adaptive estimation method. Section 6.5 describes and discusses the
results from the experimental evaluations. Finally, Section 6.6 concludes
the chapter.

6.2 Related Work

Sketching is a hashing technique [30] that has been extensively studied and
has been widely applied to maintain a dataset in an approximating compact
representation. Numerous algorithms for sketches have been proposed, in-
cluding Count-Min sketch (CM) [33], Count-Min sketch with conservative
update (CM-CU) [71], and Augmented sketch [135]. However, due to skew-
ness and dynamic property of data in a stream, these sketches are inefficient
when applied on real data streams [34, 172], since they often lead to a need
to estimate the frequency while considering the weight of data in a stream.

In order to preserve the characteristics of data, a sketch needs to simulate
the data distributions of a given dataset into a form that is closest possible
to the real distributions. Several algorithms have been proposed to sketch
a given dataset [25, 83, 139, 84]. One of the most well-known algorithms is
locality-sensitive hashing (LSH) [83], which is a data-independent method
that can guarantee the collision probability between similar data points. Ex-
amples of LSH-based methods are SimHash [139] and MinHash [25] which
differ on the ways they compute similarities. SimHash [139] uses cosine
distance to measure the similarity between data files, while in MinHash (or
minwise hashing) [25], Jaccard similarity is used to estimate the similar-
ity between two sets. MinHash-based algorithms are generally efficient and
are more efficient than SimHash when using cosine similarity, but one of
the drawbacks is that they consume much space. Further, minwise hashing
uses large number of permutations on the data, which, in turn, degrades the
performance of the algorithms since minwise hashing is normally adopted in
the context of binary or high-dimensional data. To cope with the costly pro-
cessing of data in minwise hashing, Weighted Minwise Hashing (WMH) [84],
inspired the idea of using densification and one permutation [106]. WMH
uses a “rotation” scheme for densifying the estimated sparse sketches of one
permutation hashing that assigns new values to all the empty buckets. As a
result, WMH greatly reduces computation cost compared to MinHash-based
hashing. The WMH is much simpler, significantly faster, and more memory
efficient than the original ones, especially in very sparse datasets [30].

Histograms has long been seen as one of the most important data statisti-
cal tools for providing information about a data distribution [131]. There ex-
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ist various algorithms for estimation of histograms generated from streaming
data. A few of these algorithms consider dynamic forgetting factor, includ-
ing the most recent one, HistoSketch [168]. HistoSketch adopts Weighted
Sampling method [84, 105] and Hamming distance, which is comparable
with our approach. However, every time a new data arrives in the stream,
to cope with concept drift, HistoSketch uses a constant decay factor to
decrease the importance of outdated data. Several adaptive estimation ap-
proaches have been proposed to efficiently detect concept drifts [22, 142].
An important difference with our approach is that all of these algorithms
compute a decay factor at every observation. This means that they decrease
the importance of all outdated data by that factor and use the same fac-
tor on all data. As mentioned above, the mechanism of applying the same
forgetting factor to all data at different timestamps in the stream is too
restrictive and could be impractical. To be effective, it is necessary that
a sketching approach considers a model that can automatically adapt its
decay factor following the changes in the stream. Moreover, sketching the
histogram of a stream is an approximate solution and is based on randomiza-
tion processes and randomization hashing functions. Single randomization
is usually a weak process, which in general yields poor performance [140].
Our hypothesis is that combining several weak single processes to form an
ensemble component can obtain better performance. Particularly, each sin-
gle component in the ensemble model estimates a sample of the histogram
of the data in a stream, in a sampled sketch. Then, the final sketch is
determined using a scoring function on these estimated sketches in a final
component.

6.3 Preliminaries

In the following, we present fundamental definitions about consistent weighted
sampling [113, 84, 105] that we use in our solution on sketching of a stream-
ing data containing concept drifts. Given two data vectors (weighted sets)
of k elements X, Y ∈ Rk,

Definition 34 (Uniformity [113, 84, 105]). Let (i, Si) be a sample of X,
where 1 ≤ i ≤ k and 0 ≤ Si ≤ Xi. A process is known as uniformity
sampling if the sample is distributed uniformly over the pairs.

Definition 35 (Consistency [113, 84, 105]). Assume that X dominates Y ,
i.e., Yi ≤ Xi, for all i and 1 ≤ i ≤ k. If a sample (i, Si) is sampled from X
and satisfies Si ≤ Yi, then (i, Si) is also sampled from Y .
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Definition 36 (Consistent weighted sampling [113, 84, 105]). Consistent
weighted sampling is a sampling process that satisfies the properties of both
uniformity and consistency.

The min-max similarity between X, Y is defined by [84, 105]:

SIMmin−max(X,Y ) =
∑

min(Xi,Yi)∑
max(Xi,Yi)

Let SE(X) and SE(Y ) denote the samples of data vectors X and Y , respec-
tively, using a consistent weighted sampling schema. The collision probabil-
ity between the two vectors X, Y is exactly its min-max similarity [84, 105]:

Pr[SE(X) = SE(Y )] = SIMmin−max(X,Y ).

Assume SE(X) = {i∗x, s∗x}, and SE(Y ) = {i∗y, s∗y} are two CWS samples of
X and Y , respectively. Theoretical results for consistent weighted sampling
show that:

Pr(i∗x = i∗y) ' Pr({i∗x, s∗x} = {i∗y, s∗y}) (6.1)

Given a data stream S, let t the current time point, vt the current incoming
item at an instant in time (order) t with timestamp Tt, and Vt = (v1, v2,
. . . , vt) the current sub-stream. The task of sketching a stream S at a point
of time t involves maintaining a parameter sketch SK (s elements) such
that SK is a compact representation of the current sub-stream Vt, and SK
preserves the interest (similarity) measure of Vt. In particular, in this work,
the data stream is a stream of histogram elements of many POIs (point
of interest). We estimate an adaptive weighted count-min histogram for
each POI in the stream. Then, a sample is generated by utilizing a consis-
tent weighted sampling schema [113, 84, 105] on each weighted histogram.
Specifically, we utilize 0-bit consistent weighted sampling [104] because of
its simplicity, having the same performance (shown in Eq. 6.1), and i∗ is
bounded by the data. To get s samples, we repeat the process s times using
an independent set of random numbers, and the similarity of two samples
is preserved based on the theoretical guarantee of consistent weighted sam-
pling.

6.4 Model and Solution

This section presents the proposed model and the adaptive estimation method
to sketch the streaming data.
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6.4.1 Histograms

For a data stream, a histogram is a data summarization method, in which
data are hashed into a set of buckets. Each bucket maintains the frequency
of the hashed data. In order to estimate the histogram of a data stream, we
adopt the count-min sketching method originally proposed by [33] because of
its efficiency and simplicity. A histogram of a data stream using a count-min
sketch is created using a matrix Θ ∈ Rn×m, where n is the number of random
hash functions hi, i = 1, 2, . . . , n, and m is the number of ranges, such that
each hash function hk maps an incoming data item v in the stream to a
range from 1 to m. When a new data item v arrives in the stream, n hash
functions hi, i = 1, 2, . . . , n, are used to hash the value v to a corresponding
range (a set of m columns of matrix Θ). The value of the corresponding cell
of matrix Θ is then incremented, i.e., Θ(i, hi(v)) = Θ(i, hi(v)) + 1.

6.4.2 Weighted Sampling

This subsection presents how the proposed method weighs the importance
of histogram element frequencies in a stream. The weighted cumulative
frequencies of histogram elements are used to estimate a compact sketch of
that stream.

Evolving Data and Weight of Histogram

Fading factor, which is used to weigh the elements within a streaming con-
text, was proposed to reduce the impact of noise in streaming data and
weigh the importance of data in the stream [168, 142, 140]. In these works,
at each single observation time, the weight of all the old data is divided
by the same constant factor. In a data stream, however, data evolves over
time, and the evolvement of data might be different with respect to differ-
ent group of elements. Some previously generated elements or groups of
elements might have more importance than other elements. Therefore, it
is crucial not to treat the importance of all past data equally by the divid-
ing with the same constant factor. On top of this, a data point could be
correlated with other data points, which makes this even more important.

Moreover, there might be strong correlation between features of data
during the time they are evolving, such that a feature evolves, this might
affect or impact the evolvement of other features, as well. Intuitively, the
idea of the modeling procedure is as follows. At each observation time,
groups of elements might have different weights and there might exist cor-
relations between some features. We need to model the evolvement data
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features by estimating the variables that determine the weights of the his-
togram elements. These variables are unknown in advance, and they are
continuously updated and estimated from observed data. The model then
automatically performs the variable selection to minimize a loss function,
while considering the variance and sparsity factors of the variables.

Here, to address the correlation of data, we utilize the idea of the elastic
net [179] to simulate the evolvement of data in our proposed method. In
our model, we define an objective function at an observation time t, having
a form of an elastic net, as follows:

L(Θi) = Ω1(Θ
t
i) + Ω2(Θ

t
i) + ∆(Θt

i,Θ
t−1
i ), (6.2)

where Θi are our predicting estimators. The meaning of penalties in the
objective function are the same as in elastic net regularization. The first
term, a penalty term, Ω1(Θ

t
i) = αβΛ(Θt

i) is to control sparsity in the single
solution. To estimate the sparsity, we choose Λ(Θt

i) as `1 column norm
of vector at row i of the matrix Θ at time t, Λ(Θt

i) =‖ Θt
i ‖1, because it

minimizes the less squares loss function [155]. However, using only `1 norm
tends to select one variable from a group of highly correlated variables and
set less important coefficients to zero. To overcome this drawback, the
second term Ω2(Θ

t
i) is used to enforce the hierarchy constraint, and it is

set to a form of 2-norm to force the coefficients close to the average value
rather than zero, Ω2(Θ

t
i) = (1 − α)β ‖ Θt

i ‖22. The parameter α, β in the
first two penalties are tuning parameters, β ∈ [0,∞), and α ∈ [0, 1]. Here,
α controls the relative weight on the first two penalties and is a relaxation
parameter; while parameter β controls the selection of parameters.

The last term ∆(Θt
i,Θ

t−1
i ) is a penalty to minimize the deviation across

different timestamps. The last term in Eq. 6.2 controls this deviation, on
which we target the similarity of Θ at different observation times t and (t-1).
The deviation is estimated by a robust `2 penalty that is useful in concept
drift detection. ∆ has a form of ∆(·) =‖ · ‖2. The objective function in
Eq. 6.2 now can be rewritten as:

L(Θi) = αβ ‖ Θt
i ‖1 +(1− α)β ‖ Θt

i ‖22 + ‖ (Θt
i,Θ

t−1
i ) ‖22 (6.3)

Our evolving model minimizes objective function L(Θi) to obtain its
coefficients at observation time t. Figure 6.1 shows the weighting process of
histogram elements of the current technique and our proposed method.

Time Constraints

Studying current approaches, it seems that most of them assume that the
observations are captured sequentially in time. They only consider the
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Users-Checkins Histogram

(a) Current histogram of
elements

A  Decay Function

(b) An exponential decay
function

New Histogram

(c) Decay histogram of el-
ements

Users-Checkins Histogram

(d) Current histogram of
elements

Evolving Based Elastic Form

(e) An evolving process
bases on an elastic net
model

New Evolving Histogram

(f) Evolving histogram of
elements

From the original histogram (a), the current method applies an exponential
decay function (b), a constant decay, on all the data equally to get a new
weighted histogram of elements (c). Our proposed method utilizes the idea
of elastic net (e) in order to allow us to study the correlation of different
groups of elements in the original histogram (d), and finally get an evolving
histogram (f).

Figure 6.1: How a histogram of elements evolves over time.

order of observations, and do not include the time interval in the study but
consider the timespan between observations to be constant. This means that
∆(t) = Tt − Tt−1 is constant, i.e., intervals between sampling are discretely
framed. However, such an assumption usually does not hold in practice.
To cope with this, we re-define the third term of L(Θi) when considering
the real time of observations of data sampling. We let T t be the time
between two consecutive observations, i.e., the timespan between current
and previous time within which the data are sampled. The intuition is that
we split the frame into T t equal segments. Further, we assume that there
are virtual data sampling observations at each splitting point. Therefore,
the deviation penalty is cumulative deviation via a solution path including
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T t penalties:

Ω3(Θ
t
i,Θ

t−1
i ) = f(T t) ‖ (

Θt
i −Θt−1

i

T t
) ‖22,

where f(.) is an interest function of time. The objective function corre-
sponding to each row of histogram matrix Θ now becomes:

L(Θi) = αβ ‖ Θt
i ‖1 +(1− α)β ‖ Θt

i ‖22 +f(T t) ‖ (
Θt

i −Θt−1
i

T t
) ‖22

Given a histogram matrix Θ of a data stream, the value of Θ at observa-
tion time (t-1) is denoted as Θt−1. Given that Θ evolves over time, at time
point t, Θ becomes Θt such that the objective function L(Θi) is minimum.
Because Θt−1 is known, in the following we use notation A regrading Θt−1

to indicate that it is constant. Our problem is an optimization problem to
minimize the objective function as follows:

L(Z, t) = αβ ‖ Zt ‖1 +(1− α)β ‖ Zt ‖22
+f(T t) ‖ (Zt−Ai

T t ) ‖22,
(6.4)

where Z is used to denote Θi. For the sake of brevity, in the rest of the
chapter, we remove subscript of A and drop the argument t. The proposed
objective function in (6.4) has a form of an elastic net regularization [179].
Numerous works have been extensively studied elastic net regularization in
many applications, such as machine learning and neural networks, but to
the best of our knowledge, using elastic net like in the model in Eq. 6.4 for
sketching a data stream with concept drift is new.

Optimization Solver

To minimize the objective function in Eq. 6.4, we employ the Alternating
Direction Method of Multipliers (ADMM) [24] by controlling each penalty
separately. Firstly, the ADMM breaks the objective function in Eq. 6.4 into
three smaller parts, such that each part is easier to handle. Thereafter, it
solves each part separately while considering the rest as constant. Finally,
the global convex optimization problem is solved when all parts are handled.

We use a consensus variable U = {U1, U2} and scaled dual form variable
V = {V1, V2}. We form the augmented Lagrangian with respect to the
augmented penalty, ρ > 0, which is a penalty parameter of the ADMM.
The augmented Lagrangian is as follows:

Lρ(Z,U, V ) = (1− α)β ‖ Z ‖22 +f(T t) ‖ (U2−A
T t ) ‖22 +

αβ ‖ U1 ‖1 +ρ
2

(
‖ Z − U1 + V1 ‖22 + ‖ Z − U2 + V2 ‖22

)
,
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where U1 = Z,U2 = Z, and Zj ≥ 0, j ∈ [1, . . . ,m].
The objective has a form of mixed norm regularization with a non-

negative constraint on element values of vector Z (weighted histogram sam-
pling). We apply ADMM to our optimization problem. The ADMM alter-
nately estimates (Z, U , V ) which results in iteration steps. The iteration
of individual penalty solving steps in scaled form is as follows:

Z(k+1) = argmin
Z

Lρ(Z, U (k), V (k)) (6.5)

U (k+1) = argmin
U1,U2

Lρ(Z(k+1), U, V (k)) (6.6)

V (k+1) = V (k) + Z(k+1) − U (k+1) (6.7)

Let C be the constraint set of non-negative, C = {Z : Zj ≥ 0, for j =
1, . . . ,m}, and

∏
C be a projection onto C space. The update U step in

Eq. 6.6 involves a projection
∏

C onto set C, rewritten as:

U (k+1) =
∏
C

(Z(k+1) + V (k))

A non-negative projection on C is chosen as:
∏

C(x) = max(x, 0). The
primal and dual residuals which control the convergence of the process are
determined at iteration step k as p(k) and d(k) and are computed by:{

p(k+1) = Z(k+1) − U (k+1)

d(k+1) = ρ
(k)
i × (U (k) − U (k+1))

(6.8)

If the dual residual d(k) approaches zero, then the obtained value of the
objective is nearly close to the optimal solution. Meanwhile, the p(k) ap-
proaches zero when conditional constraints in the objective function are
enforced accurately. We use a maximum number of the iteration steps,
l, and a tolerance value, ε, on the primal and dual residuals as stopping
criteria, given by:{

‖ p(k) ‖2 ≤ ε×max(‖ Z(k) ‖22, ‖ U (k) ‖22)
‖ d(k) ‖2 ≤ ε× ‖ V (k) ‖22

(6.9)

An improvement of ADMM in ρ penalty is a relaxed ADMM approach.
Relaxed ADMM algorithms have a relaxation parameter γ. After Z-update
step in Eq. 6.5, they continue to update Z by: γZ(k+1) + (1− γ)U (k). Like
ADMM, the convergence rate of the relaxed ADMM algorithms depends on
the choice of the relaxation parameter.
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To address the drawback of ADMM and the relaxed variants, an adaptive
method for automatically tuning ρ and γ, called Adaptive Relaxed ADMM
(ARADMM) [166], was proposed. The penalty and relaxation parameters
of ARADMM are continuously updated at each iteration k based on its
safeguarding values. (For details on how to update ρ and γ at every iteration
step k, please refer to [166]). In addition to the ability to automatically
tune its parameters, ARADMM converges fast and is robust. Since it is
also suitable for streaming data, we utilize ARADMM in the solver for our
optimization problem. The optimal values of the histogram Θ are obtained
when the optimization reaches convergence. Thereafter, the value of the
corresponding cell of Θ is increased by 1, i.e., Θi,hi(v) = Θi,hi(v)+1, where 1
is used to indicate that it is the weight of the current data in the stream. Θ
is continuously estimated and updated following the changes in the stream.

6.4.3 Ensemble Sampling

The histogram of a stream is estimated by a matrix Θ ∈ Rn×m. The stream
is sketched by a vector SK of s values (s elements) based on the weighted
values of the histogram elements in Θ. The value of sketch element SKi

(1 ≤ i ≤ s) is computed using a process with three random variables as
in [105, 84]. The process of choosing the sketch values of the stream is done
as follows:

SKi = argmin
j∈(1;m)

ai,j , (6.10)

where

ai,j =
cj

yi,jexp(rj)
,

yi,j = exp(rj(b
ln(Hj)

rj
+ βjc − βj))

rj , cj , and βj are the three random variables that are generated as:

rj ∼ Gamma (2, 1),

cj ∼ Gamma (2, 1),

βj ∼ Uniform (0, 1).

Hj is the weighted histogram of element range j, which is estimated as a
count-min sketch-modeled histogram Θ. It is given by Hj = mini(Θi,hi(j)).
In order to get s samples of SK, we perform this process s times with differ-
ent values of the three random variables rj , cj , and βj . This process corre-
sponds to a single component and can be seen as a weak process [140]. We
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Figure 6.2: Ensemble w components of histograms.

investigate combining several single processes to improve the performance.
The ensemble-centric method is used by w components such that each single
component Cj sketches Θj with a corresponding sketch SKj . Hence, the
estimated sketch will be a w×s matrix: SK = [SK1 SK2 . . . SKw]T .
The ensemble-centric SC of SK is computed based on a scoring function:
SC = Scoring(SK), where Scoring is a metric summarizing a sketch from
the matrix SK, which can be set as the average, min, max, or a random
selection. Figure 6.2 shows an ensemble of w components of histograms of
a stream, where each red square in each row i of the matrix is the corre-
sponding histogram of the incoming stream value vt under hash function hi.
At every observation, a sketch SC of the stream is estimated. Given two
sketches SC1 and SC2, then the similarity of two sketches is computed using
a min-max similarity. The similarity value between the two sketches is used
to classify the histograms. For the classification, we use kNN classifier.

6.4.4 Implementation Details

Figure 6.3 shows a flow diagram of the proposed method. The flow diagram
is processed as follows.

1. Whenever there is a histogram element arriving in the stream, the
corresponding count-min histogram of the element is updated (step
S1).

2. In the eRSS, the coefficients of the histogram matrix evolve to new
optimal values such that they satisfy an objective constraint (Eq. 6.4)
corresponding to each individual row of the matrix (step S2).
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3. After the evolving step, step S3 is processed to update the histogram
with the current element.

4. An ensemble w components is used in step S4.

5. Each single component uses a weighted minwise hashing method with
a different set of random variables to sketch the corresponding his-
togram to a vector of s elements in step S5.

6. The final sketch of the histogram is obtained in step S6 by using a
random selection.

These individual processes are independent. Thus, they can be implemented
in a parallel setting. At the same time, we propose an ensemble method
which combines several single processes to obtain a more efficient result.
The single processes can also be scheduled into tasks in a parallel config-
uration. The implementation detail of the proposed algorithm is shown in
Algorithm 12.

Complexity Note

For each incoming element in the stream, the major time-consuming task
is the UpdateTheta step. The execution time of optimization solver for
matrix Θ is bounded by O(nl), where l is the maximum number of iterations
of ARADMM. In the worst case, the running time to get the count-min
sketch of Θ (n rows) and to produce a k element sketch is O(n + kw). In
summary, the runtime complexity of the proposed framework for processing
each incoming element is O(nl + n+ wk).

In terms of space, a count-min sketch Θ of size n×m takes O(nm) space,
while using k elements for sketching streaming histogram in an ensemble w
components takes O(wk) space. Overall, the space complexity is O(nm +
wk).

6.5 Evaluation

We evaluated the performance of our eRSS algorithm and compared it with
the current state-of-the-art methods, HistoSketch[168] and the POISketch[170]
algorithms. All the experiments were carried out on a personal computer
running the Windows 10, having a 64 bit Intel i7 2.6 GHz processor and
16 GB of RAM, and the algorithms were implemented in Matlab1 version
R2017b.

1http://mathworks.com/products/matlab/
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Algorithm 12 eRSS Algorithm

Input: A stream data S
Output: A sketch SK of S, and change alarm

1: Initialization (α, β, Θ, SK)
2: for each data point vt arriving on a stream S do
3: UpdateTheta(Θ)
4: for i from 1 to n do
5: Increase cell value: Θi,hi(vt) ← Θi,hi(vt) + 1

6: for i from 1 to w do
7: SKi ← SingleRandomization

8: SC ← Scoring(SK)
9: if change detected (labeling using kNN) then

10: Report alarm

11: procedure UpdateTheta(Θ)
12: while not converge by Eq. 6.9 And ++k ≤ maxiter l do
13: Update Θ, U , V by Eqs. 6.5-6.7
14: Update ρ, and γ (refer to [166])
15: Update residuals p and d.

16: function SingleRandomization
17: for k from 1 to s do
18: for l from 1 to m do
19: Random sampling three variables r, c, β

r ∼ Gamma (2, 1),
c ∼ Gamma (2, 1),
β ∼ Uniform (0, 1)

20: yl ← exp(r(b ln(Hl)
r + βc − β))

21: al ← c
ylexp(r)

22: SKk ← argmin
l

al

23: return SK

6.5.1 Datasets

We used both synthetic and real-world datasets. The datasets are user
check-in activity on locations and are simulated as stream of histogram
elements, with the following characteristics:
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Synthetic Dataset

We created a synthetic data set that contains 1,000,000 check-ins. We sim-
ulated the dataset as a stream of histogram elements of 1,000 histograms.
Each histogram has 1,000 elements. The histograms are classified into two
distribution classes, and each class has 500 histograms. The classes are gen-
erated using Gaussian distributions such that the mean and the variance of
the distribution are (10,2) and (11,2), respectively.

Real-world Dataset

We used POI datasets consisting of different user check-in data from Foursquare2.
Specifically, we perform our experiments on user check-ins in America,
Japan, and Turkey, because these places are the most checked places by
Foursquare users. The datasets are based on 18 months of user check-ins
from April 2012 to September 2013, and were provided by [169]. Each POI
in the datasets is classified into hierarchical categories by Foursquare3. We
pre-processed the datasets to remove all POIs that have a small number of
check-ins to prevent skewness and sparsity of data. Particularly, we kept
POIs that have number of check-ins greater than 100, 200 and 400 times
with America, Japan and Turkey dataset, respectively. Considering the
visiting time behaviors for POIs and POI types, previous works [170, 168]
have shown that the visiting time behaviors for different types of POIs are
different. Each kind of POIs might have a specific check-in time. For exam-
ple, the number of check-ins for a bar is highest during the night, while the
check-ins for a park is highest during daytime. Hence, for a fair comparison,
we use fine-grained element as a pair of user and check-in time in a week
in the HistoSketch method [170] as a histogram element to make it get the
best results. In particular, each week is first split into 168 hours (each day
has 24 hours, 7 days a week × 24 = 168 hours). Second, each check-in time
is mapped into a range of 168 hours. A pair of user and time range will
form an element of a histogram. Since the model used in the eRSS algo-
rithm evolves with respect to time, we use coarse-grained elements of user
check-ins. The characteristics of the datasets are summarized in Table 6.1.

2https://developer.foursquare.com/
3https://developer.foursquare.com/docs/resources/categories
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Table 6.1: Dataset characteristics.

Datasets Check-ins No of POIs No of Users

America 303,647 2,555 16,531

Japan 871,646 1,340 14,052

Turkey 780,657 1,783 15,059

Synthetic 1,000,000 1,000 1,000

6.5.2 Baseline Algorithms

We evaluated the performance of the proposed method, eRSS, and com-
pared the classification accuracy and running time against current state-of-
the-art algorithms, POISketch [170] and HistoSketch [168], using the source
code provided by the authors. The POISketch algorithm maintains the
frequency of histogram elements using Count-Min sketch. It does not con-
sider the weight of the elements in streams. Instead, the POISketch treats
the importance of elements in the stream equally. The HistoSketch algo-
rithm considers the weight of the elements by using a constant fading factor.
The HistoSketch uses fine-grained elements for similarity preservation. The
eRSS uses an automatically tuning coefficient model, combining a random
ensemble process to adapt to changes in a stream. We prepared two variants
of the eRSS, namely eRSS-deviation and eRSS-evolving. eRSS-deviation is
a version where selection parameter β is set to 0, so that it only considers
the optimization objective function in the deviation of Θ, and thus fading
is utilized on Θ. eRSS-evolving, on the other hand, considers both tuning
variables α and β.

6.5.3 Configuration Setting of Parameters

We conducted the experiments by varying the number of items in the sketch,
s = 20, 50, 100, 150, and 200. The number of components w was 4, and we
used a random selection in the ensemble components. We used the same
configuration setting of the histogram as in [168], n = 10 hash functions of
range m = 50. The decay factor in the HistoSketch was alternately set to
0.02, and 0.01, as done in the original paper. To classify histograms, we used
a k-nearest neighbors (kNN) algorithm [119] because of its implementation
simplicity, robustness to noise, and immediate adaptation with new training
data. We empirically set k = 5 (i.e., five nearest neighbors) to test the labels
for the streaming histograms, where a weight of a hit is given on its position
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in the k-nearest neighbors having the testing label. Specifically, if a nearest
neighbor at p-th position order in the k-nearest neighbors has a label equal
to the testing label, then the weight of the hit is set to 1/p. Otherwise, the
hit is set to 0.

We split the datasets into 2 subsets, testing set and training set. Then,
we recorded the accuracy of the algorithms when labeling the POIs. The
testing-training sets are randomly selected as 50%-50% and 10%-90% of
POIs, with the synthetic and real-world datasets, respectively. In the ex-
periments with the synthetic dataset, a drift was simulated at point 300K
of the stream, and we evolved 25% of 1000 histograms of the stream ran-
domly during the evaluation. Further, we varied the parameters k, α, and
β to study the impacts of variables α and β on the sparsity and hierar-
chy constraint on the optimization solution of the objective function. On
real-world datasets, we performed the classification at the last check-in time
every month, and the time function in the objective was chosen as square
root of timespan in hour as a unit.

6.5.4 Experimental Results

This subsection presents evaluation results of our proposed model, and we
compare with the state-of-the-art algorithms.

Synthetic Dataset

Figure 6.4 shows the classification accuracy results on the synthetic dataset
when we set the sketch length to 50. As shown in Figure 6.4a, POISketch
adapts to a concept drift slowly. It has the worst performance and very low
accuracy at the drift point. The reason is that POISketch treats all data
in the past equally. Conversely, HistoSketch and eRSS quickly adapt to a
concept drift. The classification accuracy of both HistoSketch and eRSS
are high, with being the best. We observe that the accuracy values of the
algorithms are slightly different at stable points, while the speed of concept
drift adaptations are similar. In summary, the average accuracy of eRSS
is 91.87%, while HistoSketch and POISketch obtain 89.04%, and 74.64%,
respectively.

Furthermore, the results show a large difference in concept drift detec-
tion. At a drift point, HistoSketch classifies histogram with a very high
error rate. The error rates are 96% and 87% with the values of the for-
getting factor λ = 0.01 and 0.02, respectively. In contrast, with eRSS the
error rate is much lower. Specifically, with the eRSS-evolving variant with
β=0.001, the rate is 50%, and 58% with eRSS-deviation. In general, the
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accuracy obtained with eRSS is much better than the previous methods.
eRSS is an order of magnitude accurate higher than the baseline algorithms
with concept drift. Specifically, our experimental results show that at drift
points, eRSS has 12.5x times higher accuracy value than the baseline algo-
rithms (50% versus 4%). This can be explained as follows. In streams, when
using the same factor for the whole data as HistoSketch does, it might be
efficient with stable data, and it can quickly adapt to changes after changes
have occurred. However, around drift points, the data distribution changes
dramatically, in terms of both internal characteristics and the relationship
with other features. This is exactly why considering evolving models with
different factors is useful for detecting concept drifts in streams.
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Figure 6.4: Classification accuracy on synthetic dataset.

Figures 6.4b-6.4d show the classification accuracy of the eRSS when
varying the different parameters, and the timespan was set to a unit. The
experimental results when varying α, β are shown in Figs. 6.4b-6.4c. In the
first test, β was set to 10, and we varied the value of α within [0.9, 0.5, 0.1,
0.05, 0.01, 0.005]. In the second test, α was set to 0.5, and then we varied the
value of β within [1,000, 100, 10, 0.1, 0.01, 0]. We observe that when testing
on synthetic dataset, with time being generated sequentially and equally,
the impact of relaxation parameter is low, and that selecting a small value
of β has significant effect on concept drifts. Further, Figure 6.4d plots the
classification accuracy when we vary the sketch elements s within [20, 50,
100, 150, 200] while α, β are set to 0.5, 1.0. We observe that the adaptive
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speed of eRSS with concept drift is fast. The result shows that, when the
value of s increases, the accuracy at stable points also increases. The lowest
value is obtained when s = 20, and the highest accuracy is obtained when s
= 200. However, we need to make a trade-off between accuracy and space
complexity, i.e., the larger s is, the larger space is consumed.

Table 6.2: Average runtime (second) and velocity (number of elements per
ms).

Datasets America Japan Turkey Synthetic

Histo 24.513 59.512 60.228 60.459

Sketch 12.38 14.64 12.96 16.54

POI 71.329 205.240 168.807 62.711

Sketch 4.26 4.24 4.62 15.95

eRSS 71.411 196.167 169.635 46.815

Deviation 4.25 4.44 4.60 21.36

eRSS 72.816 188.441 175.084 49.055

Evolving 4.17 4.63 4.46 20.39

Real-world POI Datasets

Figure 7.3 shows the classification accuracy of the algorithms on real-world
POI datasets. We set the sketch length to 50 and the forgetting factor
in HistoSketch to 0.02 as suggested in the original paper, which give the
best performance for the HistoSketch algorithm. We empirically set the
value of (α, β) in evolving variant of eRSS to (0.5, 100). We observe that
on the Japan dataset, POISketch performs the worst, while HistoSketch
has the best performance, and both variants of the proposed method have
similar results as HistoSketch. Nevertheless, the gap among all the results
is very small, around 0.6% between HistoSketch and eRSS. On America
and Turkey datasets, on the other hand, the worst accuracy is obtained by
HistoSketch, and the eRSS is the most accurate algorithm. These results can
be analyzed as follows. The Japan dataset is the most dense dataset with
largest number of check-ins and smallest number of users and POIs. This
increases collaboration and feature selectivity between check-ins, users and
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Figure 6.5: Classification accuracy on real datasets.

POIs. Therefore, it might be sufficient to apply the same factor for all data.
However, the America and Turkey datasets are very sparse. Hence, the
correlation between check-ins, users and POIs is loose or even independent,
which, in turn, forms very different check-in behaviors. In the HistoSketch
paper, the authors did not seem to have investigated the correlation of
different characteristics of data.

Although HistoSketch used fine-grained elements, it applied a constant
factor on all the data at different observations. This calls for an evolving
model that takes such correlations in a stream into account. The eRSS
utilizes an auto-tuning model with respect to different kinds/groups of data
to explore the relations between individual check-in behaviors. This’s why
the eRSS is able to obtain good performance on sparse datasets. Figure 6.5d
plots the average accuracy of the algorithms on the experimental datasets.
We learn that the eRSS has a good performance and has the best average
accuracy on three of four test datasets. Importantly, the eRSS quickly
adapts to concept drifts but also preserves the high classification accuracy
when drift occurs.

In terms of running time, Table 6.2 displays the execution time and
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the number of elements can be processed in the streams per millisecond
(ms). Interestingly, it reveals that in [168], HistoSketch traded off accuracy
(3.5%) for speed (7500x speedup as compared to Histogram-Fine-Forgetting,
a variant of POISketch). Note, however, that the efficiency of HistoSketch
in term of running time benefits from kNN classification. The result shows
that eRSS is a bit slower than HistoSketch, around 2.9 times, which is
as we expected. Nevertheless, it is a trade-off between running time and
accuracy and concept drift adaptation speed. In addition, the proposed
method is not only efficient with high accuracy classification (3.99% higher
than HistoSketch for the Turkey and America datasets) and quickly adapts
to changes, it also has a fast execution time (2500x speed up, compared
to Histogram-Fine-Forgetting according to [168]). With our experimental
setup, eRSS is capable of processing streams at high velocity, up to 4000
check-ins per second.

6.6 Conclusion

In this chapter, we proposed a novel robust method for sketching stream-
ing histograms based on an ensemble randomization method. To obtain
the histogram elements, we developed an algorithm called eRSS, which uses
an evolving model with adaptive coefficients. To obtain the values of the
coefficients, the eRSS algorithm considers the timestamps of different ob-
servations in each coefficient and solves an optimization problem. Here, we
studied applying Adaptive Relaxed Alternating Direction Method of Multi-
pliers (ARADMM) as a solver for the optimization problem. To evaluate our
approach, we performed extensive experiments on both real-world datasets
and synthetic dataset. The results from this evaluation showed the effec-
tiveness and the efficiency of the proposed method. More specifically, our
algorithm was able to achieve up to 3.99% higher overall classification accu-
racy than the baseline algorithms. Overall, our evaluation demonstrated our
method’s ability to preserve the similarity of generated sketches, with the
capability to adapt to concept drifts in data streams, in an online fashion.



Part IV

Dense Subregion Detection
This part addresses the problem of event detection from a complex data

structure such as a tensor or graph. The study presented in this part fo-
cuses on an analysis of structured data, that are used to model user activity
behaviors, to identify suspicious behaviors such as fraud, anomalies, and
network attacks. In this part, we introduce both theoretical foundations
and practical work in order to generalize and guarantee solutions to the
dense detection problem; we first address the problem of dense subtensor
detection, and then expand our method on graph data. In particular, we
introduce a better theoretical density guarantee for both dense subtensor
and dense subgraph detection for greedy approximation-based algorithms.
We provide proofs for a higher lower bound density for the estimated sub-
tensors and subgraphs, and also introduce a novel theoretical foundation to
generalize the detection of multiple dense subtensors with guarantee, in an
attempt to answer the following questions: (1) Can the lower bound density
be guaranteed higher? (2) Are there many subtensors or subgraphs with a
density greater than the lower bound? (3) Can we estimate these subtensors
and subgraphs?
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Chapter 7

Density Guarantee For Finding
Multiple Subgraphs and
SubTensors

Extensive studies have shown that an unexpected dense subregion (such
as a subgraph or subtensor) is a strong indicator of anomalous behaviors.
Dense subregion detection is an efficient approach, and is widely used in the
detection of fraudulent behavior. The detection of dense subregions such as
subtensors and subgraphs is a well-studied area with a wide range of applica-
tions, and numerous efficient algorithms have been proposed that generally
perform well in many applications. However, the main drawback of most of
these algorithms is that they can estimate only one instance at a time, with
a low guarantee of the density. Although some methods can estimate mul-
tiple instances, they can give a guarantee of the density with respect to the
input data for the first estimated instance only. We address these drawbacks
by providing both theoretical and practical solutions for estimating multiple
dense subregions in tensor and graph data. We generalize the problem by
maintaining multiple dense subregions (i.e., subtensors), provide a concrete
proof to guarantee a higher lower bound density, and show that they have
a higher density guarantee than solutions in prior works. The contributions
presented in this chapter are solutions to research questions RQ1, RQ3, RQ6
and RQ7 [48, 49], i.e., (i) What are the disadvantages of the state-of-the-art
methods? Is it possible to generalize the problem? (ii) How can we provide
a more theoretical foundation for generalizing the dense subregion detection
problem? (iii) How can we provide both theoretical and practical solutions
to the problem?

175
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7.1 Motivation

In many real-world applications, generated data are commonly represented
in complex structures such as graph data or multidimensional array data,
that can be referred to as tensor [31]. Tensors and graphs have been used
in several important domains, including geometry, physics and biology as
well as computer science [122, 176, 81, 145]. As a result of the growth in
the number of applications involving tensors, graphs, combined with the in-
crease of researchers’ interests, numerous tensor, graph-related approaches
have been proposed, including tensor decomposition [150, 107], tensor fac-
torization [168, 123, 126], and dense subgraph detection [68, 99, 82].

Dense subregion (subtensor and subgraph) detection have been extremely
studied and have attracted much interest due to a wide-range of real-life ap-
plications [159, 136, 174, 143]. Finding the densest subtensor or the densest
subgraph is generally an NP-complete, or an NP-Hard problem [70, 11, 87],
and the hardness of the densest detection problem varies with the choice of
constraint requirements, e.g, the size and the dimension of the data, and
the chosen density measure. Due to the complexity of the exact algorithm,
it is infeasible for large data or in dynamic environments such as streaming.
Therefore, the approximation methods are commonly used for detecting the
densest subregions [12, 27, 14]. GREEDY is an efficient approximation al-
gorithm that proposed to find the optimal solution in a weighted graph [12].
Charikar [27] introduced a further analysis of the GREEDY, and the anal-
ysis showed that the GREEDY method can be solved by using linear pro-
gramming technique. The authors proposed a greedy 2-approximation for
this optimization problem with a density guarantee of the dense subgraph
greater than a half of the maximum density in the graph. Tremendous al-
gorithms have adopted the greedy method with a guarantee on the density
of dense subgraphs in specific applications such as fraud detection, event
detection, and genetics applications [159, 136, 82], among others. Common
for these works is that they use the greedy 2-approximation to find a dense
subgraph to optimize an objective of a given interest density measure.

Besides graph, tensor has gradually attracted much interest of researchers
because the data generated by many sources in real applications can be rep-
resented naturally in the form of a tensor. Various algorithms have been pro-
posed by extending the works in dense (sub)graph detection to tensor data
for network attack detection, change detection in communication networks,
and fraud detection [117, 85, 148, 47], just to name a few. M-Zoom [146]
and M-Biz [147] are among the current state-of-the-art dense subtensor de-
tection algorithms. They extend the approaches on dense (sub)graph detec-
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tion, such as [27, 62], into tensor detection by considering more dimensions
for a specific problem to obtain highly accurate algorithms. Further, they
utilize a greedy approach to provide local guarantee for the density of the
estimated subtensors. However, the adopted density guarantee is the same
as in the original work without any improvement in the density guarantee.
M-Zoom and M-Biz are able of maintaining k subtensors at a time. Each
time a search is performed, a snapshot of the original tensor is created, and
the density of the estimated subtensor in each single search is guaranteed
locally on the snapshot. Hence, M-Zoom and M-Biz only provide a density
guarantee with respect to the current intermediate tensor rather than the
original input tensor. A newer approach, called DenseAlert [149], was devel-
oped to detect an incremental dense subtensor for streaming data. Despite
its efficiency, however, DenseAlert can estimate only one subtensor at a
time, and it can only provide a low density guarantee for the estimated sub-
tensor. Hence, it might miss a huge number of other interesting subtensors
in the stream.

Extensive studies have shown that DenseAlert, M-Zoom, and M-Biz
generally outperform most other tensor decomposition methods, such as
[91, 177], in terms of efficiency and accuracy. Nevertheless, an important
drawback of these methods is that they can only provide a loose theoretical
guarantee for density detection, and that the results and the efficiency are
mostly based on heuristics and empirical observations. More importantly,
these methods do not provide any analysis of the properties of multiple
estimated subtensors.

Contributions

To give an overview of the differences between our proposed method, namely
MUST, and the existing approaches, Table 7.1 compares the characteristics
of MUST against current state-of-the-art algorithms (Approx stands for
Approximation). In summary, the main contributions of this work are:

1. We introduce a foundation to theoretically guarantee a better density of
both estimated subgraph and subtensor in dense subgraph and dense sub-
tensor detection. We provide a new method that is capable of estimating
subtensors with a density guarantee that is higher than those provided
by existing methods. Specifically,

• The new density bound for the dense subtensor is 1
N (1+ N−1

min(a,
√
n)
),

while the current widely-used bound is 1/N . Here, n and a denote
the size of the tensor and the densest subtensor, respectively, and N
is the number of ways of the tensor.
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• For the dense subgraph detection, the new density bound is 1
2(1 +

1
min(y,

√
n)
), where n and y denote the size of the graph and the dens-

est subgraph, respectively.

2. We present a novel theoretical foundation, along with proofs showing that
it is possible to maintain multiple subtensors with a density guarantee.

3. We prove that there exist at least min(1+ n
2N , 1+N(N − 1)) subtensors

that have a density greater than a lower bound in the tensor.
4. We perform an extensive experimental evaluation on real-world datasets
to demonstrate the efficiency of our solution. The proposed method is up
to 6.9 times faster and the resulting subtensors have up to two million
times higher density than state-of-the-art methods.

Organization

The rest of this chapter is organized as follows. Section 7.3 describes the
preliminaries for the method and the related work. Sections 7.4-7.5 elabo-
rate on the theoretical foundation for providing a new density guarantee of
dense subtensors and a better density guarantee of dense subgraphs. Sec-
tion 7.6 presents the solution for detecting multiple dense subtensors with a
density guarantee. Section 7.7 discusses the evaluation of our method and
explains its applicability. Finally, Section 7.8 concludes the chapter.

Reproducibility: The source code and data used in the chapter are
publicly available at https://bitbucket.org/duonghuy/mtensor.

7.2 Related Work

The problem of finding the densest subgraphs is generally NP-complete or
NP-hard [70, 11]. Due to the complexity of the exact algorithm with which
an exponential number of subgraphs must be considered, it is infeasible
for large datasets or data streams. Therefore, approximation methods are
commonly used for detecting the densest subregions [12, 27, 14]. Ashiro
et al. [12] proposed an efficient greedy approximation algorithm to find
the optimal solution for finding the densest subgraph in a weighted graph.
Their idea is to find a k-vertex subgraph of an n-vertex weighted graph with
the maximum weight by iteratively removing a vertex with the minimum
weighted-degree in the currently remaining graph, until there are exactly k
vertices left. Charikar [27] studied the greedy approach (GREEDY) further,
which showed that the approximation can be solved by using linear program-
ming technique. Specifically, the author proposed a greedy 2-approximation
for this optimization problem, with which a density guarantee of the dense
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subgraph is greater than a half of the maximum density in the graph. Many
algorithms have later adopted the greedy method with a guarantee on the
density of dense subgraphs targeting specific applications, such as fraud
detection, event detection, and genetics applications [111, 159, 136, 82].

Inspired by the theoretical solutions in graphs, numerous approaches
have been proposed to detect dense subtensors by using the same min-cut
mechanism [149, 147]. As mentioned earlier, mining the densest subten-
sor in a tensor is hard, and an exact mining approach has a polynomial
time complexity [70], thus making it infeasible for streaming data or very
large datasets. To cope with this, approximate methods/algorithms are
commonly used. Among the proposed algorithms, DenseAlert [149], M-
Zoom [146], and M-Biz [147] are – because of their effectiveness, flexibility,
and efficiency – the current state-of-the-art methods. They are far more
faster than other existing algorithms, such as CPD [91], MAF [117], and
CrossSpot [85]. DenseAlert, M-Zoom, and M-Biz adapt the theoretical re-
sults from dense (sub)graph detection, i.e., [10, 9, 159], to tensor data by
considering more dimensions than two. The algorithms utilize a greedy ap-
proach to guarantee the density of the estimated subtensors, which has also
been shown to yield high accuracy in practice [85]. However, the adopted
density guarantee is the same as in the original work, which also applies
for the more recent algorithm, ISG+D-Spot [174]. This means that with
an N -way tensor, the density guarantee is a fraction of the highest density
with the number of the tensor’s way N . ISG+D-Spot converts an input
tensor to a form of graph to reduce the number of ways, but it drops all
edges having weight less than a threshold. As a result, ISG+D-Spot only
provides a loose density guarantee.

The greedy 2-approximation approach has been utilized in many algo-
rithms with both types of data, graph and tensor [154, 138, 137, 143]. De-
spite of that, most of current works, including [82, 120, 138, 147, 174] can
only roughly provide a guarantee by 1

2 (with graph), and 1
N (with tensor)

density of the densest subregion. To the best of our knowledge, none of the
existing approximation works provides a better guarantee than the baseline
algorithms [12, 27]. They can only provide a loose theoretical density de-
tection guarantee. As discussed in Section 7.1, DenseAlert, M-Zoom, and
M-Biz employed the same guarantee as in the original work without any fur-
ther improvement in the density guarantee. Thus, these methods can only
guarantee low density subtensors. To address the limitations of the previ-
ous approaches, we generalize the problem by maintaining multiple dense
subtensors, with which we provide a concrete proof to guarantee a higher
lower bound density and show that they have a higher density guarantee
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than the solutions in prior works.

7.3 Preliminaries

In the following, we present the fundamental preliminaries of the dense
subtensor, subgraph detection problem, based on [149, 147].

Dense Subgraph Detection

Definition 37 (Graph). Let G be an undirected graph that is composed of
a pair (V ;E) of sets of vertices V and edges E. We denote the graph as
G(V ;E). There is a weight ai at each vertex vi, and a weight cij on each
edge eij between two vertices vi and vj in G.

Definition 38 (Density of Graph). The density of G is denoted by ρ(G)

and is defined by: ρ(G) =
∑

ai+
∑

cij
|V | = f(G)

|V | , where |V | is the number of

vertices of G, and f(G) =
∑

ai +
∑

cij, f(G) is called the mass of graph
G.

Definition 39 (Subgraph). Let G be an undirected graph that is composed
of a pair (V ;E) of sets of vertices V and edges E. S is a subgraph of G if
S is induced by a subset of the vertices of V and edges in E.

Definition 40 (Weight of vertex in Graph). Consider a graph G(V,E) with
a weight ai at vertex vi, and a weight cij on edge between 2 vertices vi, vj.
The weight of vertex vi in graph G is denoted by wi(G), and is defined by:
wi(G) = ai +

∑
vj∈G∧eij∈E cij.

Definition 41 (Dense Subgraph Detection). Given an undirected graph
G = (V ;E) and a density measure df, the problem of dense subgraph detec-
tion involves finding subgraphs S induced by a subset of vertices of V and
edges in G to maximize the density of S.

The processing of the greedy approximation algorithm is as follows [12,
27]. The algorithm iteratively removes a vertex with the minimum weighted-
degree in the currently remaining graph until all vertices are removed. Fi-
nally, it picks the highest density subgraph among the estimated subgraphs.
The algorithm gives a 2-approximation with a density guarantee of a half
of the highest density. Note that, in the original work, the density measure
is average of weighted-degree of the graph. In this chapter, we consider a
general density measure of both weights at vertices and on edges.
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Dense Subtensor Detection

Several dense subtensor detection methods have been proposed by extending
the works in dense (sub)graph detection to tensor data. However, they use
the same min-cut mechanism as in dense subgraph detection [148, 147, 174].
These methods employed the same guarantee as in the original work without
any improvement in density guarantee. In this chapter, we generalize the
problem in both dense subtensor and dense subgraph detection and propose
our new theoretically proofs to give a better approximation guarantee of
the density. In the rest of this chapter, we use subregion to indicate both
subtensor and subgraph.

Definition 42 (Tensor). A tensor T is a multidimensional array data.
The order of T is the number of its ways. Given a N -way tensor, there are
multiple spaces on each way, each of which is called a slice.

Definition 43 (SubTensor). Given an N-way tensor T , Q is a subtensor
of T if it is composed of a subset s of the set of slices S of T , and there
is at least one slice on each way of T . Intuitively, Q is the part of T that
remains after we remove all slices in S but not in s.

Definition 44 (Entry of a Tensor). E is an entry of an N-way (sub)tensor
T if it is a subtensor of T and is composed of exactly N slices.

Definition 45 (Size of a (Sub)Tensor). Given a (sub)Tensor Q, the size of
Q is the number of slices that making up Q.

Definition 46 (Density). Given a (sub)tensor Q, the density of Q, denoted

by ρ(Q), is computed as: ρ(Q) = f(Q)
size of Q , where f(Q) is the mass of the

(sub)tensor Q, and is calculated as the sum of every entry value of Q.

Definition 47 (Weight of a Slice in a Tensor). Given a tensor T , the weight
of a slice q in T is denoted by wq(T ), and is defined as the sum of the entry
values composing the intersection of T and q.

Definition 48 (D-Ordering). An ordering π on a (sub)tensor Q is a D-
Ordering, if

∀q ∈ Q, q = argmin
p∈Q∧π−1(p)≥π−1(q)

wp(πq), (7.1)

where πq = {x ∈ Q|π−1(x) ≥ π−1(q)}, π−1(q) indicates the index of the
slice q in ordering π, and wp(πq) is the weight of p in πq. Intuitively, the
D-Ordering is the order in which we select and remove the minimum slice
sum at each step.
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Figure 7.1: An example of 3-way tensor.

The principal of D-Ordering in tensor data is the similar to the min-cut
mechanism in dense subgraph detection, like GREEDY [12, 27].

Definition 49 (Mining of Dense Subtensors). Given a tensor T , the prob-
lem of dense subtensor detection involves finding subtensors Q ∈ T that
maximize the density of Q.

For readability, the notations used in this chapter are summarized in
Table 7.2. In the rest of this chapter, when specifying a (sub)tensor, we use
its name or set of its slices interchangeably.

Example 6. Let us consider an example of 3-way tensor T as in Figure 7.1.
The value in each cell is the number of visits that a user (mode User) visits
a web page (mode Page) on a date (mode Date). The values of hidden cells
are all zero. The set of slices of tensor T is {(1,1), (1,2), (1,3), (2,1), (2,2),
(2,3), (3,1), (3,2)}. A subtensor Q formed by the following slices {(1,2),
(1,3), (2,1), (2,2), (3,1)} is the densest subtensor (the yellow region) and
the density of Q is (5+5+7+2)/5 = 3.8.

The problem of mining dense subtensors [149, 147] can be presented and
solved as follows. Given a list of n variables dπ(i) (1 ≤ i ≤ n), where dπ(i)
is calculated during the construction of D-Ordering. Its value at each time
is picked by the minimum slice sum of the input (sub)tensor. Then, a Find-
Slices() function finds the index i∗ = argmax

1≤i≤n
ρπ(i), which is the location to

guarantee a subtensor with a density greater than the lower bound. Find-
Slices(), shown in Algorithm 13, is a function that was originally defined
in [146, 149, 147], which is a principal function for estimating a subtensor,
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Table 7.2: Table of notations

Symbols Description

T , Q Tensor data T , Q
Ii The i-th dimension of tensor I
|Ii| Number of slices on way Ii of a tensor I
T ∗ Densest subtensor T ∗

G (Sub)Graph data G.
G∗ Densest Subgraph.
vi, ai Vertex vi, and weight ai at vertex vi.
cij Weight on edge between two vertices vi and vj .
Z, z0 Zero subtensor Z with zero point z0
B Backward subtensor
F Forward subtensor
n,N Size (with tensor, it is number of slices, with graph, it is

number of vertices), and number of ways of data
ρ, ρ∗ Density ρ, highest density ρ∗

ρ(Q) Density of Q
π An ordering π
Q(π, i) A subtensor of Q formed by a set of slices {p ∈ Q, π−1(p) ≥

i}
ρπ(i) Density of subtensor Q(π, i)
q A slice of a tensor
a Size of densest subtensor
b Number of slices in Zero subtensor such that not in densest

subtensor
y Size of densest subgraph
m Size of Zero subtensor Z, m = a+ b
f(Q) Mass of the (sub)tensor Q
wq(Q) Weight of element q (vertex, or slice) in data Q (graph, or

tensor).

such that its density is greater than the lower bound. The density of an
estimated subtensor is guaranteed as follows.

Theorem 3 (Density Guarantee) [149, 147]). The density of the subtensor
returned by the Algorithm 13 is greater than or equal to 1

N ρ∗, where ρ∗ is
the highest density in the input tensor.
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Algorithm 13 Find-Slices

Input: A D-Ordering π on a set of slices Q
Output: An estimated subtensor S
1: S ← ∅, m← 0
2: ρmax ← −∞, qmax ← 0
3: for (j ← |Q|..1) do
4: q ← π(j), S ← S ∪ q
5: m← m+ dπ(q)
6: if m/|S| > ρmax then
7: ρmax ← m/|S|
8: qmax ← q

9: return Q(π, π−1(qmax))

Proof. The proof of this theorem was provided in [149, 147]. For conve-
nience, we recall their proof as follows. Let q∗ ∈ T ∗ be the slice such that
π−1(q∗) ≤ π−1(q), ∀q ∈ T ∗. This means that q∗ is the slice in the densest
subtensor having the smallest index in π. Therefore ρπ(i

∗) ≥ ρπ(π
−1(q∗)) ≥

1
N ρ∗.

7.4 The New Density Guarantee of Subtensor

As can be inferred from the discussion above, the basic principle underlying
DenseAlert, M-Zoom, and M-Biz is Theorem 3. It is worth noting that this
theorem guarantees the lower bound of the density on only one estimated
subtensor from an input tensor. To the best of our knowledge, none of
existing approximation approaches provides a better density guarantee than
GREEDY. Based on this, we can raise the following questions: (1) Can
this lower bound be guaranteed higher? (2) Are there many subtensors
having density greater than the lower bound? (3) Can we estimate these
subtensors?

In this section, we answer question (1) by providing a proof for a new
higher density guarantee. Questions (2) and (3) will be answered in the
next section by providing a novel theoretically sound solution to guarantee
the estimation of multiple dense subtensors that have higher density than
the lower bound.
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7.4.1 A New Bound of Density Guarantee

We prove that the estimated subtensors provided by the proposed methods
have a higher bound than in the state-of-the-art solutions.

In [149, 147], the authors proved that density of the subtensor ρπ(π
−1(q∗)) ≥

1
N ρ∗, hence satisfying Theorem 3. A sensible question is: Can we estimate
several subtensors with a higher density guarantee than the state-of-the-art
algorithms?

In the following subsections, we introduce our new solution to improve
the guarantee in the aforementioned Find-slices() function and show how a
density with higher lower bound than that in [149, 147] can be provided. We
present several theorems and properties to support our solution to estimate
multiple dense subtensors.

Definition 50 (Zero Subtensor). Given a tensor T , T ∗ is the densest sub-
tensor in T with density ρ∗, π is a D-ordering on T , and z0 = min

q∈T ∗
π−1(q) is

the smallest indices in D-Ordering π of all slices in T ∗. A subtensor called
Zero Subtensor of T on π, denoted as Z = T (π, z0), and z0 is called zero
point.

Theorem 4 (Lower Bound Density of the Estimated Subtensor). Given
an N-way tensor T , and a D-ordering π on T . Let Z and z0 be a Zero
Subtensor and a zero point, respectively. Then, there exists a number b ≥ 0
such that the density of the estimated subtensor Z is not less than Na+b

N(a+b)ρ
∗,

where a and ρ∗ are the size and density of the densest subtensor T ∗.

Proof. We denote w0 = wπ(z0)(Z). Further, note that because T ∗ is the
densest subtensor. Then,

∀q ∈ T ∗, wq(T
∗) ≥ ρ∗ ⇒ w0 ≥ ρ∗.

Due to the characteristic of D-Ordering, we have

wq(Z) ≥ wπ(z0)(Z) = w0,∀q ∈ Z.

Consider a way Ii among the N ways of the tensor T . Then,

f(Z) =
∑

q∈T ∗∧q∈Ii

wq(Z) +
∑

q /∈T ∗∧q∈Ii

wq(Z).

Furthermore, regarding the way we choose Z, we have

T ∗ ⊆ Z ⇒
∑

q∈T ∗∧q∈Ii

wq(Z) ≥
∑

q∈T ∗∧q∈Ii

wq(T
∗) = f(T ∗).
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Therefore,

f(Z) ≥ f(T ∗) +
∑

q /∈T ∗∧q∈Ii

wq(Z) ≥ f(T ∗) + bIiw0, (7.2)

where bIi is the number of slices in Z on dimension Ii that are not in T ∗.
Let b =

∑N
i=1 bIi . Applying Eq. 7.2 on N ways, we get

Nf(Z) ≥ Nf(T ∗) + w0

∑
bIi

⇒N(a+ b)ρ(Z) ≥ Naρ∗ + w0b

⇒N(a+ b)ρ(Z) ≥ Naρ∗ + bρ∗

⇒ρ(Z) ≥ Na+ b

N(a+ b)
ρ∗

The equality happens when b = 0 or in the simple case when N = 1.
However, if these conditions hold, the Zero Subtensor becomes the densest
subtensor T ∗. In the next paragraphs, we consider the higher order problem
of tensor with order N > 1.

Property 10. The lower bound density in Theorem 4 is greater than 1
N of

the highest density and this bound is within [ 1N (1 + a(N−1)
n ), 1].

Proof. Let Z be the fraction of the density of the estimated subtensor, and
R denote densest subtensor. We have the following properties about the
lower bound fraction:

1. In the simplest case, when N = 1, the lower bound rate values both in
the previous proof and in this proof are 1. This means that the esti-
mated subtensor Z is the densest subtensor, with the highest density
value. Otherwise,

R ≥ Na+ b

N(a+ b)
=

a+ b

N(a+ b)
+

(N − 1)a

N(a+ b)
>

1

N
,∀N > 1. (7.3)

Moreover, since the size of Z is not greater than n, we have

R ≥ 1

N
(1 +

(N − 1)a

(a+ b)
) ≥ 1

N
(1 +

a(N − 1)

n
) (7.4)

2. In conclusion, we have the following boundary of the density of esti-
mated Zero Subtensor, Z:

ρ(Z) =

{
ρ∗, if N = 1 ∨ b = 0
1
N (1 + a(N−1)

n )ρ∗, if a+ b = n.

In an ideal case, when the value of b goes to zero, the estimated subtensor
becomes the densest subtensor, and its density can be guaranteed to be the
highest.
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7.4.2 A New Higher Density Guarantee

In this subsection, we provide a new proof to give a new higher density
guarantee of dense subtensor.

Theorem 5 (Upper Bound of the Min-Cut Value in Tensor). Given an N-
way tensor T with size n, and a slice q is chosen for the minimum cut, such
that the weight of q in T is minimum. Then, the weight of q in T satisfies
the following inequality:

wq(T ) ≤ Nρ(T ) (7.5)

Proof. Because q is a slice having the minimum cut, we have wq(T ) ≤
wp(T ),∀p ∈ T . Summing all the slices in the tensor gives

|T |wq(T ) ≤
∑
p∈T

wp(T ) = Nf(T )

⇒wq(T ) ≤
Nf(T )

|T |
= Nρ(T )

Let Ti(1 ≤ i ≤ a) be the subtensor right before we remove i-th slice
of T ∗, and qi be the slice of T ∗ having the minimum cut wi at the step of
processing Ti. Since the size of the densest T ∗ is a, we have a indexes from
1 to a. Note that T1 is the Zero subtensor Z. Further, let MIi denote the
index of the last slice in way Ii of T

∗ that will be removed. Then, we have
following property:

Property 11 (Upper Bound of the Last Removed Index). The minimum
index of all MIi , 1 ≤ i ≤ N , denoted by M , is not greater than (a−N +1),
i.e., M = min(MIi) ≤ a−N + 1.

Proof. Let MIi ,MIj be the indexes of the last removed slices of the two
ways Ii and Ij . Further, assume that the difference between MIi , MIj is
∆(MIi ,MIj ) = |MIi −MIj | ≥ 1, and that we have N numbers (N ways)
and the maximum (the last index) is a. Then, we get

max(MIi)−min(MIi) ≥ N − 1

⇒M = min(MIi) ≤ a−N + 1

Theorem 6. The sum of min-cut of all slices from index 1 to M is greater
than the mass of the densest subtensor T ∗:

M∑
i=1

wqi(Ti) ≥ f(T ∗) (7.6)
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Proof. Let E be any entry of the densest subtensor T ∗ and E is composed
by the intersection of N slices, qIx(1 ≤ x ≤ N), qIx is on the way Ix.

Assume that the first removed index of all the slices composing E is at
index i. Since this index cannot be greater than M , the entry E is in Ti,
and its value is counted in wqx(Tx). Therefore, we have:

M∑
i=1

wqi(Ti) ≥ f(T ∗)

Let ρmax be the maximum density among all subtensors Ti, (i ≤ i ≤M).
According to Theorems 5 and 6, we have

f(T ∗) ≤
M∑
i=1

wqi(Ti) ≤
M∑
i=1

Nρ(Ti) ≤MNρmax (7.7)

⇒aρ∗ ≤N(a−N + 1)ρmax (7.8)

⇒ρmax ≥ρ∗

N

a

a−N + 1
. (7.9)

Theorem 7 (Better Density Guarantee of Dense Subtensor). The density
guarantee of dense subtensor mining by min-cut mechanism is greater than
1
N (1 + N−1

min(a,
√
n)
)ρ∗.

Proof. According to Theorem 4 and Property 10, we have

ρmax ≥ ρ(T1) ≥
1

N
(1 +

a(N − 1)

n
)ρ∗ (7.10)

Furthermore, by Inequation 7.9, we also have

ρmax ≥
ρ∗

N

a

a−N + 1
≥ 1

N
(1 +

N − 1

a
)ρ∗ (7.11)

By combining Eq. 7.10 and Eq. 7.11, we get

ρmax ≥
1

N
(1 +

1

2
(
a(N − 1)

n
+

N − 1

a
))ρ∗

⇒ρmax ≥
1

N
(1 +

N − 1√
n

)ρ∗

Note that since ρmax ≥ 1
N (1 + N−1

a )ρ∗, we finally have

ρmax ≥
1

N
(1 +

N − 1

min(a,
√
n)

)ρ∗
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An Illustrated Example

Let’s consider an example of 3-way tensor T as in Figure 7.2. The value
in each cell is the number of requests that a user (probably an attacker, in
mode Attacker) sends to a server (mode Server) in a period of time (mode
Time). The values in the hidden cells are all zeros. Our task is to analyze the
data to detect attackers. The set of slices of tensor T is {(1,1), (1,2), (1,3),
(2,1), (2,2), (2,3), (3,1), (3,2)}. Subtensor Q formed by the following slices
{(1,2), (1,3), (2,1), (2,2), (3,1)} is the densest subtensor (the red region),
and the density of Q is (5+5+7+3)/5 = 4.0. Here the number of ways of T
is 3, and its size (number of slices that composes T ) is 8.

The existing methods can only give a guarantee of the estimated sub-
tensor as a fraction of the highest density. The guarantee in this case is
1
N ρ∗ = 4

3 . However, by using our new proof, we proved that the new
lower bound of density in this example is guaranteed to be greater than
1
N (1 + N−1

min(a,
√
n)
)ρ∗ ≥ 4

3(1 +
3−1√

8
) = 2+

√
2

2
4
3 ≥

1.7×4
3 . In comparison between

two guarantees, our proposed guarantee on the density is 1.7 (' 1 +
√
2
2 )

times greater than the guarantee by the existing methods. So, our proposed
guarantee is more than 70% higher than the current guarantee.
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1
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Time
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Figure 7.2: An illustrated example of high density guarantee.

7.5 The New Density Guarantee of Subgraph

As aforementioned, tremendous algorithms have adopted the greedy method
with a guarantee on the density of dense subgraphs in specific applications



7.5. The New Density Guarantee of Subgraph 191

such as fraud detection, event detection, and genetics applications [159, 136,
82, 148, 138], among others. The common of these works is that they use
the greedy 2-approximation to find a dense subgraph to optimize an ob-
jective of a given interest density measure. Numerous methods have been
proposed later using the same min-cut mechanism as in dense subgraph de-
tection [148, 147, 174] for the dense subtensor detection problem. These
methods employed the same guarantee as in the original work without any
improvement in density guarantee. So these methods can only provide a
loose theoretical guarantee for density detection. In this study, we general-
ize the problem in both dense subtensor and dense subgraph detection. We
propose our new theoretical proofs to give a better approximation guaran-
tee of the density. In Section 7.4, we proved and provided a new bound on
the density in a tensor data. Now we raise the following questions with the
original problem of detecting dense subgraph: (1) Can we provide a higher
guarantee on the density of the dense estimated subgraph in a graph? (2) Is
this bound constrained to any other information rather than the dimension
of the data space? This section answers the question by introducing our
proofs to give a better approximation guarantee on the density of the esti-
mated subgraph in a graph, that is the original foundation for both dense
subgraph and dense subtensor detection problems. Our novel mathematical
proof here is capable of giving a better guarantee for the current state-of-
the-art methods, and shows that the bound is also constrained to the size
of the densest subgraph.

Theorem 8 (Density Guarantee of Dense Subgraph Detection). Given an
undirected graph G(V ;E) with size n = |V |. Let G∗ be the densest subgraph
in G. There exists a number p ≥ 0 such that the lower bound density of
estimated subgraph in the GREEDY [27] is 2y+p

2(y+p)ρ
∗, where ρ∗ is the density

of the densest subgraph G∗, y is the size of G∗, and y ≤ (y + p) ≤ n.

Proof. Let G1 be the subgraph that is right before we pick the first vertex
of the densest subgraph G∗ to be removed, we denote the vertex is vs1. So
definitely we have: G∗ ⊆ G1, and the size of G1 is n1 ≤ n. We have:

2f(G1) = 2
∑
vi∈G1

ai + 2
∑

vi,vj∈G1

cij

=
∑
vi∈G1

ai +
∑
vi∈G1

wi(G1)

=
∑
vi∈G1

ai +
∑

vi∈G1∧vi∈G∗

wi(G1) +
∑

vi∈G1∧vi /∈G∗

wi(G1)
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Let’s denote V (G1\G∗) = {vi, vi ∈ G1 ∧ vi /∈ G∗} and p = |V (G1\G∗)|.
Because vs1 is chosen for the cut, it means that vs1 has the minimum cut
weight, so we get: wj(G1) ≥ ws1(G1),∀vj ∈ G1, and G∗ is the densest
subgraph then ws1(G

∗) ≥ ρ∗. Therefore:∑
vi∈G1∧vi /∈G∗

wi(G1) ≥ p× ws1(G1) ≥ p× ws1(G
∗) ≥ p× ρ∗.

On the other hand, we have:∑
vi∈G1

ai +
∑

vi∈G1∧vi∈G∗

wi(G1) ≥
∑

vi∈G∗

ai +
∑

vi∈G1∧vi∈G∗

wi(G
∗)

≥2(
∑

vi∈G∗

ai +
∑

vi,vj∈G∗

cij)

≥2f(G∗)

Note that, size of G1 is n1 = y + p, finally we have:

2f(G1) ≥ 2f(G∗) + p× ρ∗

⇒ 2(y + p)ρ(G1) ≥ 2yρ∗ + p× ρ∗

⇒ ρ(G1) ≥ 2y + p

2y + 2p
× ρ∗,

where ρ∗ is the highest density and y ≤ n1 = (y + p) ≤ n. The theorem is
proved.

Theorem 9 (Density Guarantee Boundary). The density of the subgraph
G1 as in Theorem 8 is ρ(G1), and this density is in [12(1 +

y
n)ρ

∗, ρ∗], where
ρ∗ is the highest density in G.

Proof. Because ρ∗ is the highest density so ρ(G1) ≤ ρ∗. Moreover, by
Theorem 8, we have (because n1 = y + p ≤ n):

ρ(G1)

ρ∗
≥ 2y + p

2y + 2p
=

1

2
(1 +

y

y + p
) (7.12)

⇒ρ(G1) ≥
1

2
(1 +

y

n
)ρ∗

According to Theorem 9, the density of the subgraph G1 is in the
boundary [12(1 +

y
n)ρ

∗, ρ∗]. We denote G1, G2, . . . , Gm are subgraphs right
before we are going to remove vertex v1, v2, . . . , vy of G∗. Intuitively, Gi is
the subgraph right before we remove i-th vertex of G∗. The corresponding
min-cut at the step of processing Gi is denoted as wi. We have a following
property about the min-cut value.
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Property 12 (Upper Bound Of The Min-Cut Value In Graph). Given an
undirected graph G(V,E) with vertex vi having the minimum cut (its weight
is minimum). The weight of vertex vi in graph G satisfies the following
inequality:

wi(G) ≤ 2ρ(G)− a(G), (7.13)

where a(G) =

∑
vk∈G ak

|V | is the average weight of all vertices in G.

Proof. Because vi is a vertex having the minimum cut, so we have wi(G) ≤
wk(G), ∀vk ∈ G. Sum up of all the vertices in the graph, we get:

|V |wi(G) ≤
∑
vk∈G

wk(G) =
∑
vk∈G

ak + 2
∑

vk,vj∈G
ckj

⇒|V |wi(G) ≤2(
∑
vk∈G

ak +
∑

vk,vj∈G
ckj)−

∑
vk∈G

ak

⇒wi(G) ≤
2(
∑

vk∈G ak +
∑

vk,vj∈G ckj)−
∑

vk∈G ak

|V |
⇒wi(G) ≤2ρ(G)− a(G).

Let ρmax be the maximum density among subgraphs Gi,

ρmax = max(ρ(Gi)) (7.14)

We have:

y−1∑
i=1

wi(Gi) + ay =w1(G1) + w2(G2) + · · ·+ wy−1(Gy−1) + ay

≥
∑

vi∈G∗

ai +
∑

vi,vj∈G∗

cij = f(G∗)

if we assume that an = 0 as in the GREEDY algorithm [27], or in many other
works in the literature, they assume that weight at vertices are zero [82, 174],
so we have:

y−1∑
i=1

wi(Gi) ≥f(G∗) (7.15)

⇒2(y − 1)ρmax ≥yρ∗ (7.16)

⇒ρmax ≥ y

2(y − 1)
ρ∗ (7.17)

⇒ρmax ≥1

2
(1 +

1

y
)ρ∗ (7.18)
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Theorem 10 (Better Density Guarantee of Dense Subgraph). The density
guarantee of dense subgraph mining by the min-cut mechanism is greater
than 1

2(1 +
1

min(y,
√
n)
)ρ∗, where ρ∗ is the highest density value in the graph.

Proof. According to Theorem 8, we have:

ρmax ≥ ρ(G1) ≥
1

2
(1 +

y

n
)ρ∗. (7.19)

Furthermore, note that we have

ρmax ≥
1

2
(1 +

1

y
)ρ∗, by Inequation [7.18]

We combine together two inequations [7.18-7.19], we get:

ρmax ≥
1

2
(1 +

1

2
(
y

n
+

1

y
))ρ∗

⇒ρmax ≥
1

2
(1 +

1√
n
)ρ∗

Note that ρmax ≥ 1
2(1 +

1
y )ρ

∗, so finally we have:

ρmax ≥
1

2
(1 +

1

min(y,
√
n)

)ρ∗

7.6 The Solution For Multiple Dense Subtensors

As shown in Theorem 4, ρ(Z) ≥ Na+b
N(a+b)ρ

∗, where Z = T (π, z0) is the Zero
subtensor. As discussed before, the state-of-the-art algorithm, DenseAlert,
can estimate only one subtensor at a time, and a density guarantee is low,
i.e., 1

N of the highest density. M-Zoom (or M-Biz) is, on the other hand,
able of maintaining k subtensors at a time by repeatedly calling the Find-
Slices() function k times, with the input (sub)tensor being a snapshot of the
whole tensor (i.e., the original one). Recall, however, that such processing
cannot guarantee any density boundary of the estimated subtensors with
respect to the original input tensor. Therefore, the estimated density of the
subtensors is very low. With this, an important question is: How many
subtensors in n subtensors of D-ordering as in Algorithm 13 having density
greater than a lower bound density and what is the guarantee on the lower
bound density with respect to highest density? This section answers this
question.
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7.6.1 Forward Subtensor from Zero Point

Again, given a tensor T , T ∗ is the densest subtensor in T with density ρ∗.
π is a D-ordering on T , and the zero point z0 = min

q∈T ∗
π−1(q) is the smallest

indices in π among all slices in T ∗ (cf. Definition 50).

Definition 51 (Forward Subtensor). A subtensor is called i-Forward sub-
tensor in T on π, denoted by Fi, if Fi = T (π, z0 − i), 0 ≤ i < z0.

Let us consider an i-forward subtensor Fi = T (π, i), i < z0. Because
i < z0, Z ⊆ Fi. This means that f(Fi) ≥ f(Z). As a result of Theorem 4,
we have the following:

Nf(Z) ≥ (Na+ b)ρ∗

⇒ (Na+ b)ρ∗ ≤ Nf(Z) ≤ Nf(Fi)

⇒ (Na+ b)ρ∗ ≤ N(a+ b+ i)ρ(Fi)

⇒ ρ(Fi) ≥ Na+ b

N(a+ b+ i)
ρ∗.

From the above inequality, we get the following theorem.

Theorem 11. The density of every i-Forward subtensor Fi = T (π, i), where
i ≤ N × (N − 1) is greater than or equal to 1/N of the highest density in T ,
ρ∗.

Proof. From the above inequality, ρ(Fi) ≥ Na+b
N(a+b+i)ρ

∗.

If we have i ≤ N(N − 1), then

⇒ a+ b+ i ≤ a+ b+N(N − 1)

⇒ Na+ b

N(a+ b+ i)
ρ∗ ≥ Na+ b

N(a+ b+N(N − 1))
ρ∗

⇒ Na+ b

N(a+ b+ i)
ρ∗ ≥ a+ b+ a(N − 1)

N(a+ b+N(N − 1))
ρ∗

⇒ Na+ b

N(a+ b+ i)
ρ∗ ≥ a+ b+N(N − 1)

N(a+ b+N(N − 1))
ρ∗

⇒ ρ(Fi) ≥ Na+ b

N(a+ b+ i)
ρ∗ ≥ 1

N
ρ∗

Property 13. Among n subtensors T (π, i), 1 ≤ i ≤ n, there is at least
min(z0, 1 + N(N − 1)) subtensors having a density greater than 1

N of the
densest subtensor in T .
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Proof. According to Theorem 11, there is at least min(z0, 1 + N(N − 1))
forward subtensors that have density greater than 1

N of the highest density.

7.6.2 Backward Subtensor from Zero Point

We have considered subtensors formed by adding more slices to Z. Next, we
continue investigating the density of the subtensors by sequentially removing
slices in Z.

Definition 52 (Backward Subtensor). A subtensor is called i-Backward
subtensor in T on π, denoted by Bi, if Bi = T (π, z0 + i), i ≥ 0.

Let us consider an i-backward subtensor Bi. We show that its density
is also greater than the lower bound density.

Property 14. The density of the 1-Backward Subtensor, B1 is greater than
or equal to 1

N ρ∗.

Proof. Due to the limitation of space, we omit the proof and provide it in
an extension supplement upon request.

Theorem 12. Let Bk denote the k-Backward subtensor, Bk = T (π, z0+k).
Density of Bk is greater than or equal to 1/N of the highest density in
T, ∀k ≤ b

N .

Proof. Note that f(Bi) = f(Bi+1) + wπ(z0+i)(Bi). Let B0 = Z, and in the
following we let wi(Bi) = wπ(z0+i)(Bi) for short. Then, we have

Kf(Z) = K(f(B1) + w0(B0))

= K(f(B2) + w0(B0) + w1(B1))

= Kf(Bk) +K

k−1∑
i=0

wi(Bi).

Because T ∗ ⊆ Z, then:

Kf(Z) ≥ Kf(T ∗) +
∑

q∈Z∧q /∈T ∗

wq(Z), (7.20)
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By substitution, we get

Kf(Bk) +K

k−1∑
i=0

wi(Bi) ≥Kf(T ∗) +
∑

q∈Z∧q /∈T ∗

wq(Z)

⇒ Kf(Bk) ≥Kf(T ∗) +
∑

q∈Z∧q /∈T ∗

wq(Z)−K

k−1∑
i=0

wi(Bi).

We denote the set Q = {q| q ∈ Z ∧ q /∈ T ∗} by {q1, q2, . . . , qb}. Note
that Bi ⊆ Z. Thus ∀j, i, wqj (Z) ≥ wqj (Bi) ≥ wi(Bi), and wπ(z0)(Z) ≥
wπ(z0)(T

∗) ≥ ρ∗.

On the other hand, we have the condition of k: b−k×K ≥ b−k×N ≥ 0.
In conclusion, this gives the following inequality:

Kf(Bk)−Kf(T ∗) ≥
∑

q∈Z∧q /∈T ∗

wq(Z)−K
k−1∑
i=0

wi(Bi)

≥
k−1∑
i=0

K∑
j=1

wq(i×K+j)
(Z)−Kwi(Bi) +

b∑
i=k×K+1

wqi(Z)

≥(b− k ×K)× Eπ(z0)(Z)

≥(b− k ×K)ρ∗

⇒ Kρ(Bk)(a+ b− k) ≥Kaρ∗ + (b− k ×K)ρ∗

⇒ ρ(Bk) ≥Ka+ b− k ×K

K(a+ b− k)
ρ∗

⇒ ρ(Bk) ≥K(a− k) + b

K(a+ b− k)
ρ∗

⇒ ρ(Bk) ≥ 1

K
ρ∗ ≥ 1

N
ρ∗.

Theorem 13. Assume that the size of the Zero subtensor Z, (a + b), is
sufficiently big. Let Bk denote the k-Backward subtensor. The density
of Bk is greater than or equal to 1/N of the highest density in T, ∀k ≤
min( a

N , (a+b)(N−1)
N2 ).

Proof. Assume Ix is the way that has the smallest number of slices in T ∗,
with a number of slices s. Then, s ≤ a/N .

Let Q = {q ∈ Z} = {q1, . . . ,qs, . . . , qa, . . . , qa+b}, denote the set of
slices in Z, and (a+ b) be the size of the Zero subtensor.
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Let Bk be a k-Backward Subtensor of T , with 1 ≤ k ≤ (a+b)
N . Then,

Nf(Z) =

s∑
i=1

wqi(Z) +

a+b∑
i=s+1

wqi(Z) ≥ f(T ∗) +

a+b∑
i=s+1

wqi(Z).

Because Nf(Z) = N(f(Bk) +
∑k−1

i=0 wi(Bi)), the above inequality can be
rewritten as

⇒ N(f(Bk) +
k−1∑
i=0

wi(Bi)) ≥ f(T ∗) +
a+b∑

i=s+1

wqi(Z).

The subtensor Bi is a backward subtensor of Z by removing i slices in
Z, i.e., Bi ⊆ Z and ∀j, i, Eqj (Z) ≥ Eqj (Bi) ≥ Eπ(z0+i)(Bi). Hence,

Nf(Bk) ≥f(T ∗) +

a+b∑
i=s+1

wqi(Z)−N

k−1∑
i=0

wi(Bi)

≥ f(T ∗) +
k−1∑
i=0

N∑
j=1

wq(s+i×N+j)
(Z)−Nwi(Bi) +

a+b∑
i=s+k×N+1

wqi(Z)

≥ f(T ∗) + (a+ b− kN − s)wπ(z0)(Z).

Because

a+ b− kN − s ≥ a+ b− kN − a

N

≥ (a+ b)(N − 1) + b

N
− kN

≥ 0, ∀k ≤ (a+ b)(N − 1)

N2
,

we have

Nf(Bk) ≥ aρ∗ + (a+ b− kN − s)ρ∗

Nf(Bk) ≥ (2a+ b− kN − s)ρ∗

⇒ ρ(Bk) ≥
(2a+ b− kN − s)

N(a+ b− k)
ρ∗

⇒ ρ(Bk) ≥
1

N

2a+ b− kN − s

a+ b− k
ρ∗

⇒ ρ(Bk) ≥
1

N

(a+ b− k) + (a− k(N − 1)− a/N)

a+ b− k
ρ∗

⇒ ρ(Bk) ≥
1

N
(1 +

(a− kN)(N − 1)

N(a+ b− k)
)ρ∗

⇒ ρ(Bk) ≥
ρ∗

N
, ∀k ≤ a

N
.
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7.6.3 Multiple Dense Subtensors with High Density Guar-
antee

In this subsection, we show that there exist multiple subtensors that have
density values greater than a lower bound in the tensor.

Theorem 14. Given an N-way tensor T with size n >> N , an order π
is a D-Ordering on T , and Algorithm 13 processes m = (n − N) subten-
sors. Then, there are at least min(1+ n

2N , 1+N(N − 1)) subtensors among
m subtensors, such that they have density greater than 1/N of the highest
density subtensor in T .

Proof. Let Z denote the Zero subtensor of T on π by Algorithm 13, and the
zero index is z0, such that N ≤ n− z0. Then, we have the following:

1. By Theorem 11, there are at least min(N(N − 1), z0) forward subten-
sors F1, F2, . . . , having density higher than 1

N ρ∗.

2. By Theorems 12-13, there are backward subtensors B1, B2, . . . , having
density higher than 1

N ρ∗. The principle of the number of backward
subtensors having density greater than 1

N of the highest density is as
follows: {

b
N , by Theorem 12.

min( a
N , (a+b)(N−1)

N2 ), by Theorem 13.
(7.21)

From Eq. 7.21, there is at least max( b
N ,min( a

N , (a+b)(N−1)
N2 )) backward sub-

tensors having density greater than the lower bound.

If a
N ≤

(a+b)(N−1)
N2 , then number of backward subtensors having density

greater than the lower bound is at least max( a
N , b

N ) ≥ a+b
2N .

Otherwise, we have

min(
a

N
,
(a+ b)(N − 1)

N2
) =

(a+ b)(N − 1)

N2
≥ a+ b

2N
.

Hence, the number of backward subtensors is at least a+b
2N . Further, if we

combine this with the number of forward subtensors, then there is at least
min(1 + n

2N , 1 +N(N − 1)) subtensors in the tensor having density greater
than a lower bound. This can be proved as follows.

According to Theorem 13, we have the number of backward subtensors
having density greater than the lower bound, denoted by bw, and bw ≥
(a+b)
2N . By Theorem 11, we have the number of subtensors having density
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greater than the lower bound, we denote this by fw, and fw ≥ min(N(N−
1), z0).

If z0 ≥ N(N − 1), then the number of subtensors that have density
values greater than a lower bound is 1 + fw+ bw ≥ 1 +N(N − 1), where 1
is used to account for the zero subtensor. Otherwise (i.e., z0 ≤ N(N − 1)),
we have a+ b+ z0 = n, and we get

1 + fw + bw ≥ 1 +
(a+ b)

2N
+ z0

⇒1 + fw + bw ≥ 1 +
(n− z0)

2N
+ z0

⇒1 + fw + bw ≥ 1 +
n

2N
+

z0(2N − 1)

2N

⇒1 + fw + bw ≥ 1 +
n

2N
.

This gives that the number of subtensors having density values greater
than the lower bound is 1 + fw + bw ≥ min(1 + n

2N , 1 +N(N − 1)).
If (a + b) ≤ n − N(N − 1), then we have at least N(N − 1) forward

subtensors having density greater than 1
N of the highest density.

Otherwise, if n >> N such that

(a+ b) ≥ n−N(N − 1) ≥ 2N3

⇒ then we get
(a+ b)

2N
≥ N(N − 1).

In conclusion, we have at least N(N − 1) backward subtensors, each having
density greater than 1

N of the highest density. By adding the zero subten-
sors, we have at least (1+N(N−1)) subtensors having density greater than
1
N of the highest density each.

Our approach described above can be employed to improve the state-
of-the-art algorithms on estimating multiple dense subtensors using Algo-
rithm 14.
Complexity Discussion. In order to estimate k dense subtensors, the
complexity of M-Zoom and M-Biz are high. The worst-case time complexity
of M-Zoom andM-Biz isO(kNnlogn) [147]. Its complexity increases linearly
with respect to the number of estimated subtensors, k.

Focusing on the proposed solution, MUST, the complexity includes the
cost of D-Ordering, which is O(Nnlogn), and the cost of executing Algo-
rithm 14, which utilizes Google Guava ordering1, is O(nlogn), in the worst

1https://opensource.google.com/projects/guava
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Algorithm 14 Multiple Estimated Subtensors

Input: A D-Ordering π on a set of slices Q of tensor T
Output: Multiple estimated subtensors with guarantee on density
1: Initialization()
2: TS← ∅, S ← ∅
3: Number of estimated subtensors: mul← 0
4: mul← min(1 + n

2N , 1 +N(N − 1))
5: for (j ← |Q|..1) do
6: q ← π(j)
7: S ← S ∪ q
8: TS.add (S, ρ(S))

9: Sort TS by descending order of density
10: return top mul subtensors having highest density in TS

case. In total, the complexity MUST is O(Nnlogn), which does not depend
on the number of estimated subtensors k.

7.7 Evaluation

In this section, we present the results from our experimental evaluation,
where we evaluate the performance of our proposed method in terms of
both the execution time (i.e., efficiency) and the accuracy of the density of
the estimated subtensors (i.e., effectiveness).

7.7.1 Experimental Setup

We used four widely-used density measures in our experiments: arithmetic
average mass (ρa) [27]; geometric average mass (ρg) [27]; entry surplus
(ρe) [159], with which the surplus parameter α was set to 1 as default;
and suspiciousness (ρs) [85]. Note that in M-Zoom (M-Biz), Dense-Alert,
and in this work, the density measure used for the proof of guarantee is
arithmetic average mass. Nevertheless, the only difference among the den-
sity measures is the choice of coefficients. Hence, we can utilize the same
proof for other mass measures to get similar results. In this work, we specif-
ically provide theoretical proofs for density guarantee of dense subtensors.
Here, it is worth noting that we can easily extend and apply our proofs of
higher density for dense subgraphs, as well.

We implemented our approach based on the implementation used in
the previous approaches [146, 149, 147]. We compared the performance of
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the proposed solution with the state-of-the-art algorithms, M-Zoom and M-
Biz (where M-Zoom was used as the seed-subtensor). To do this, in our
experiments, we run the algorithms using M-Zoom, M-Biz, and MUST to
get top 10 subtensors that have the highest density. We carried out all
the experiments on a computer running Windows 10 as operating system,
having a 64 bit Intel i7 2.6 GHz processor and 16GB of RAM. All the
algorithms were implemented in Java, including M-Zoom and M-Biz, the
source codes for which were provided by the authors2.

7.7.2 Datasets

In order to evaluate the performance of the proposed solution and compare
it with the state-of-the-art algorithms, we used the following 10 real-world
datasets:

• Air Force, which contains TCP dump data for a typical U.S. Air Force
LAN. The dataset was modified from the KDD Cup 1999 Data and was
provided by Shin et al. [147].
• Android, which contains product reviews and rating metadata of applica-
tions for Android from Amazon [78].
• Darpa, which is a dataset collected by MIT Lincoln Lab to evaluate the
performance of intrusion detection systems (IDSs) in cooperation with
DARPA [108].
• Enron Emails, provided by the Federal Energy Regulatory Commission to

analyze the social network of employees during its investigation of fraud
detection and counter terrorism.
• Enwiki and Kowiki provided by Wikipedia3. Enwiki and Kowiki are

metadata representing the number of user revisions on Wikipedia pages
at given times (in hour) in English Wikipedia and Korean Wikipedia,
respectively.
• LBNL-Network, which consists of internal network traffic captured by
Lawrence Berkeley National Laboratory and ICSI [125]. Each instance
contains the packet size that a source (ip, port) sends to a destination
(ip, port) at a time.
• NIPS Pubs, which contains papers published in NIPS4 from 1987 to
2003 [69].
• StackO, which represents data of users and posts on the Stack Overflow.
Each instance contains the information of a user marked a post as favorite

2https://github.com/kijungs/mzoom
3https://dumps.wikimedia.org/
4https://nips.cc/
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at a timestamp [97].
• YouTube, which consists of the friendship connections between YouTube
users [118].

The Air Force dataset was modified from the KDD Cup 1999 Data5. We
kept fields (features) such that each instance has a structure of (protocol type,
service, flag, src bytes, dst bytes, count, srv count) as described in Ta-
ble 7.3, while other fields were removed. The Android dataset was ob-
tained from Stanford Network Analysis Project at this address6. The Darpa
dataset was provided in the prior work, DenseAlert [149], and we down-
loaded the dataset at this address7. The Enron Emails, NIPS Pubs, and
LBNL-Network were directly downloaded from an open source project, The
Formidable Repository of Open Sparse Tensors and Tools (FROSTT) [151],
at this address8. The StackO and YouTube were directly downloaded from
The Koblenz Network Collection repository [97], and we got the datasets
at this address9. The Kowiki and Enwiki datasets were downloaded from
Wikipedia. We selected these datasets because of their diversity, and be-
cause they are widely used as benchmark datasets in the literature [149, 147].
We selected these datasets because of their diversity, and because they are
widely used as benchmark datasets in the literature [149, 147]. A more
detailed information about the datasets are listed in Table 7.3.

7.7.3 Density of the Estimated Subtensors

Figure 7.3 shows the density of the estimated subtensors obtained with M-
Zoom, M-Biz, and MUST. In the figure, we plot the average (AVG) and
the low boundary (BOUND) density of the top-10 estimated subtensors.
As shown, although the estimated subtensors found by M-Zoom and M-
Biz have guarantee locally on the snapshot, the density of the subtensors
drops dramatically with respect to the increasing number of the estimated
subtensors, k. On all the datasets, the average and the bound density of
the estimated subtensors with MUST are much higher than those obtained
with M-Zoom and M-Biz in all density measures. MUST also outperforms
M-Zoom and M-Biz on density accuracy of estimated subtensors, focus-
ing on both the average and boundary of density of the top ten estimated
subtensors.

5http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data.gz
6http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/ratings

Apps for Android.csv
7http://www.cs.cmu.edu/ kijungs/codes/alert/data/darpa.zip
8http://frostt.io/tensors/
9http://konect.uni-koblenz.de/downloads/tsv
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Figure 7.3: Average and bound of density on datasets
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Figure 7.3: Average and bound of density on datasets (continued)

In particular, on the Air Force dataset, the average density with MUST
is up to 546% higher than with M-Zoom and M-Biz, using the arithmetic
average mass measure, and more than 891% higher on the Darpa dataset
using entry surplus measure. In terms of lower bound of density of the esti-
mated subtensors, there is a huge gap between the proposed algorithm and
the baseline algorithms. For instance, on the Air Force dataset, the lower
bound of density of the estimated subtensors with MUST are more than
360 times and two million times bigger than with both baseline algorithms,
when applying arithmetic average mass and entry surplus measure, respec-
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tively. More specifically, in the top three estimated subtensors by MUST,
M-Zoom, and M-Biz in evaluation of network attack detection on the Air
Force dataset (Section 7.7.5), the density of the second and the third subten-
sors found by the compared methods drops significantly and are much lower
than in our proposed method. The densities of the second and the third es-
timated subtensors found by MUST are 7 times (∼1,930,307/263,295) times
and 29 times (∼1,772,991/60,524) higher than the compared methods. The
explanation for this result is that M-Zoom and M-Biz are not capable of
providing a guarantee on the density of these estimated subtensors with
respect to the original input data.

7.7.4 Diversity and Overlap Analysis

An important difference between MUST and other approaches is its ability
to estimate multiple subtensors. Hence, important aspects worth evalu-
ating and discussing are (1) how much difference it is between estimated
subtensors, and (2) the fractions of overlap among the detected subtensors.
Intuitively, MUST sequentially removes one slice which has a minimum slice
weight at a time. Finally, the algorithm picks the top k highest densities
among estimated subtensors.

In this subsection, we evaluate the diversity of the top three estimated
subtensors by MUST, M-Zoom on the Enwiki, Kowiki, and Air Force datasets
to analyze the overlap fractions of subtensors. We use arithmetic average
mass (ρa) as the density metric and the used diversity measure is the same
as in [146]. The diversity of two subtensors is the average dissimilarity be-
tween pairs of them. Here, we chose the Enwiki, Kowiki, and Air Force
datasets because they contain anomaly and fraud events, and that they
are commonly used for this type of benchmark [146, 149]. Table 7.4 shows
the diversity (divers for short) of the top three estimated subtensors by
MUST and M-Zoom. We observe that the obtained diversities by MUST
are 36.2%, 37.2%, and 20.8% on Enwiki, Kowiki, and Air Force, respec-
tively. The overlap between the subtensors are acceptable and considerable
in many contexts, e.g., anomaly and fraud detection, because groups of
fraudulent users might share some common smaller groups or some fraud-
sters. Another reason is that fraudulent behaviors of users might happen
in just some specific periods of time. Compared to M-Zoom, M-Zoom can
find more diverse subtensors, which can be explained as follows. M-Zoom
is specifically designed to find different subtensors by creating a snapshot
of the data at each detection process, and it mines a block in this interme-
diate tensor. The results of this is, however, that M-Zoom cannot provide
guarantee on the density of the detected subtensors, except on the first sub-
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Table 7.4: Diversity of estimated subtensors

Dataset # Volume* Density Diversity(%)

MUST

Enwiki

1 4 (1 × 2 × 2) 2397.6

36.2%2 20 (1 × 4 × 5) 2375.7

3 9 (1 × 3 × 3) 2355.9

Kowiki

1 8 (2 × 2 × 2) 273.0

37.2%2 80 (4 × 4 × 5) 258.5

3 64 (4 × 4 × 4) 240.5

Air Force

1 2 (X1 × 2 × 1 × 1 × 1) 1,980,948

20.8%2 1 (X1 × 1 × 1 × 1 × 1) 1,930,307

3 8 (X1 × 2 × 1 × 2 × 2) 1,772,991

M-Zoom

Enwiki

1 4 (1 × 2 × 2) 2397.6

96.7%2 6 (1 × 2 × 3) 1961.5

3 18 (2 × 3 × 3) 908.25

Kowiki

1 8 (2 × 2 × 2) 273.0

99.4%2 12 (2 × 2 × 3) 246.0

3 29,520 (16 × 41 × 45) 181.6

Air Force

1 2 (X1 × 2 × 1 × 1 × 1) 1,980,948

70.8%2 1 (X1 × 1 × 1 × 1 × 1) 263,295

3 4,320 (X2 × 5 × 4 × 3 × 3) 60,524

* Where X1 = 1× 1× 1, and X2 = 3× 4× 2.

tensor. This is one of the drawbacks of M-Zoom, and as discussed below
(Section 7.7.5), the effectiveness of M-Zoom on network attack detection
greatly drops with multiple subtensors.

7.7.5 Effectiveness on Network Attack Detection

Extensive studies have shown that unexpected dense subregion (subgraph,
subtensor) is a high sign of anomaly behaviors [82]. So, dense subregion
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detection is one of the efficient approaches and is widely-used in fraudu-
lent behavior detection. In this section, we evaluate the efficiency of dense
subregion detection in Network Attack Detection by performing extensive
experiment on Air Force dataset. Air Force is specifically suitable for evalu-
ating network attack detection ability. As mentioned earlier, it is a dataset
of TCP dump data of a typical U.S. Air Force LAN. It contains the ground
truth labels of connections, including both intrusions (or attacks) connec-
tions, and normal connections. In detail, there are 972,781 connections as
normal, while other connections are attacks. This dataset is widely used for
the task of detecting anomaly and network attacks.

Here, we demonstrate the efficiency, the effectiveness of our proposed
method on anomaly and network attack detection, and compare it with
M-Zoom and M-Biz. We analyze the five highest subtensors returned by
M-Zoom, M-Biz, and MUST on Air Force, and then we compute how many
connections in the estimated subtensors are normal activities or attack10.
Table 7.5 shows the connections in the top five subtensors detected by
MUST, M-Zoom, and M-Biz using arithmetic average mass (ρa) as the
density metric. We observe that all connections in the top five subtensors
found by MUST are attack connections with no false positive. This is be-
cause MUST guarantees the density of all multiple subtensors it finds. With
M-Zoom and M-Biz, they have the same result as MUST in the top two sub-
tensors. However, in the three remaining subtensors, there are many normal
connections that are wrong estimated by M-Zoom and M-Biz. For example,
in the third subtensor estimated by M-Zoom, only 56,433 connections are
attack, and 151,080 other connections are normal among 207,513 connec-
tions. So, the ratio of attack is only 27,2% with M-Zoom, and 26.03% with
M-Biz. In other words, M-Zoom and M-Biz produce a high rate of false pos-
itive, which in turn means that MUST outperforms M-Zoom, M-Biz when
used in the task of network attack detection, using the Air Force dataset.

10We provide the Matlab code to analyze attack connections in the code repository at
https://bitbucket.org/duonghuy/mtensor/src/master/data/.
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7.7.6 Execution Time

In terms of execution time, to evaluate the performance of the algorithms,
we recorded the runtime of the algorithms on real-world datasets using
four measures of the density to return top ten density subtensors. Then,
we calculated the average runtime of the algorithms per each estimated
subtensor. The results from this experiment are shown in Figure 7.4. We
observe that MUST is much faster than M-Zoom and M-Biz on all the
datasets. Specifically, it is up to 6.9 times faster than M-Zoom and M-Biz
to estimate a subtensor. The obtained results fit well with our hypothesis
and or complexity discussion in Section 7.6. The explanation for this is
that in MUST the algorithm needs only a single maintaining process to
get dense subtensors, while in M-Zoom and M-Biz, they repeatedly call the
search function k times to be able to get k dense subtensors. The proposed
method, MUST, runs nearly in constant time independent of the increase
of the number of subtensors; whereas the execution times of both M-Zoom
and M-Biz increase (near)linearly with respect to value of k.

7.7.7 Scalability

We also evaluate the impact of the number of estimated subtensors (k) to
the performance of the algorithms. Here, we performed experiments on the
Enron, YouTube, Air Force, and Enwiki datasets. With arithmetic average
mass, we measured the runtime while varying k within {10, 20, 30, 40, 50}.
Figure 7.5 shows the results of this experiment. On Enwiki dataset, both
M-Zoom and M-Biz run out of memory when the setting value of k ≥ 30.
As shown in the figure, the execution time of M-Zoom and M-Biz increase
linearly with the increasing value of k, while the running time of MUST is
constant with respect to the value of k. These results conform well with our
complexity analysis in Section 7.6.

In conclusion, MUST outperforms the current state-of-the-art algorithms
for solving the dense subtensor detection problem, from both a theoretical
and experimental perspective.

7.8 Conclusion

In this chapter, we proposed a new technique to improve the task of dense
subtensor, dense subgraph detection. As discussed, the contributions are
both theoretical and practical. First, we developed concrete theoretical
proofs for dense subtensors estimation in a tensor problem, as well as the-
oretical proofs for dense subgraph detection. An important purpose of this
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was to provide a guarantee for a higher lower bound density of the esti-
mation in both dense subtensor and subgraph detection. In addition, we
developed a new theoretical foundation to guarantee a high density of multi-
ple subtensors. Second, extending existing dense subtensor detection meth-
ods, we developed a new algorithm called MUST that is less complex and
thus more efficient than existing methods. Our experimental experiments
demonstrated that the proposed method significantly outperformed the cur-
rent state-of-the-art algorithms for dense subtensor detection problem. It
is significantly more efficient and effective than the baseline methods. In
conclusion, the proposed method is not only theoretically sound, but is also
applicable for detecting dense subgraph and dense subtensors.
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Chapter 8

Conclusions and Future Work

This chapter briefly summarizes the contributions of the work in this thesis,
and outlines possible topics for future research.

8.1 Summary

The design of efficient and effective algorithms to detect events in changing
and evolving environments is a difficult problem. One particular challenge
when working with various types of structured data in dynamic environ-
ments is that data are inherently dynamic, changing and evolving over time
with unknown distributions, and the characteristics of these data are not
available. Moreover, these data may be dependent on changing constraints.
During the evolution of the data, there is a certain probability of correlation
and transition between data points and data features.

In the context of high-dimensional streaming data, where data are ar-
riving in a form of a stream with high volume and velocity, the design of
an efficient solution with limitations on memory and computational infras-
tructure is also a challenge. The problem lies not only in the existence of
complex correlations but also in the high level of computational complexity.
Since the task of event detection is generally hard, existing solutions are
often very complex and involve high resource consumption. Furthermore,
most currently existing approaches lack a formal theoretical foundation that
can guarantee the quality of the solution, since the results and efficiency are
mostly based on heuristics and empirical observations.

Motivated by the challenges discussed above, this thesis has addressed
these issues by proposing novel techniques and methods for detecting events
in various types of data in evolving environments. The following studies
were carried out as part of this work:

217
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1. We have presented a method of dynamic memory allocation for avoid-
ing bias when constructing the data characteristics for an unknown
data distribution, e.g., for dense and sparse data.

2. We have introduced temporal dependencies and hypotheses for detect-
ing changes in evolving data.

3. We have discussed and simulated the correlations and transitions of
features in order to sketch a stream with concept drift.

4. We have generalized the problem of multiple dense subregion detection
with a better quality guarantee of the solutions and expanded this to
cover both tensor and graph data.

5. We have presented a well-founded theoretical solution to prove the
efficiency and correctness of our solutions.

8.2 Main Contributions

The contributions of the thesis include novel techniques, approaches and
improvements to current state-of-the-art methods of event detection. The
main contributions of this thesis can be summarized as follows:

1. A summary utility-list structure was proposed to reduce memory con-
sumption and speed up the join operation in pattern detection. This
structure was integrated into a novel algorithm for the efficient dis-
covery of high utility patterns. The proposed method efficiently stores
and retrieves utility-lists by dynamically allocating memory, and reuses
memory during the mining process. The memory used for the utility-
list is organized as a stream and is dynamically estimated. A linear
time method for constructing the utility-list segments in a utility-list
buffer was also introduced. Experiments showed that algorithms em-
ploying the proposed structure were up to 10 times faster than when
standard utility-lists were used, and the memory required was reduced
by a factor of up to six. The proposed technique also performed well
for both dense and sparse datasets.

2. The first study focused on detecting changes in high utility itemsets
by considering both a utility measure and the recency of transactions
in the data stream. We introduced an algorithm to detect changes,
including both local and global drift, in the utility distributions of
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itemsets in a stream of quantitative customer transactions. This algo-
rithm took into account the evolving behavior of the streams by uti-
lizing a fading function to quickly adapt to changes in a data stream.
We proposed an approach that used statistical testing based on Ho-
effding’s inequality and a Bonferroni correction to report significant
changes to the user. The proposed method was capable of discovering
both increasing and decreasing trends. In addition, we proposed a
new distance measure that generalized the cosine similarity by taking
into account the distance between pairs of HUIs, in order to detect
the changes in the structure of HUIs. An extensive experiment was
conducted to evaluate the proposed method, which demonstrated the
feasibility, effectiveness, and efficiency of our algorithm.

3. We proposed a new and efficient method of detecting changes in
streaming data by exploring the temporal dependencies of the data
in the stream. A new statistical model was introduced to compute
the probabilities of finding change points in the stream using the tem-
poral dependency information between different observed data points
in a stream. The computed probabilities were used to generate a dis-
tribution, which was used in statistical hypothesis tests to determine
the candidate changes. We also used the proposed model to develop
a new algorithm to detect change points in linear time, making it
applicable in real-time applications.

• We introduced a new model of the high-order temporal depen-
dencies and data distributions in streaming data.

• We developed a method that was able to handle data arriving in
a high-velocity stream by using continuously updated estimation
factors as part of our model.

• We proposed an efficient real-time algorithm based on pivotal
statistic tests for change detection.

• In order to demonstrate the feasibility, efficiency, and generality
of our method, we conducted a thorough evaluation using several
real-life datasets and a comparison with related approaches.

• Our method showed the best performance of the state-of-the-art
methods compared in the experiment. In addition, our method
had a linear time performance, meaning that it can be deployed
online in real-world stream applications.

4. We performed an initial study of the correlation and transition be-
tween groups of data features to address the main drawback of most
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current approaches, which assume that the forgetting factor is con-
stant at every point of observation and over the whole process, a
constraint that is too restrictive for real-world applications. We pro-
posed a novel robust method for sketching streaming histograms with
limited computing resources, based on an ensemble randomization
method. An algorithm was developed that used an evolving model
with adaptive coefficients to obtain the elements of the histogram.
This algorithm considered the timestamps of different observations
in each coefficient and solved an optimization problem to evolve the
values of the coefficients to optimal values.

• We proposed an evolving model with adaptive, auto-tuned coef-
ficients to investigate the correlations between data, and simu-
lated the transitions between features and groups of features in
dynamically changing data.

• We developed a novel algorithm that could sketch the histograms
for a data stream using multiple weighted factors, while taking
into account the time-sensitive changes in the stream using dif-
ferent adaptive weighted factors for different groups of data, at
each observation point.

• We carefully evaluated our approach through extensive experi-
ments on both synthetic and real-life datasets. Our proposed
method quickly adapted to concept drift. Our algorithm was
able to achieve an overall classification accuracy up to 3.99%
higher than the baseline algorithms, and the error rate was 12
times better than state-of-the-art methods with concept drift.

5. We proposed novel concrete proofs for problems involving the detec-
tion of dense subtensors from tensor data, and dense subgraphs in
a graph. We introduced a better theoretical density guarantee for
both dense subtensor and dense subgraph detection using approxima-
tion algorithms. The new boundary was higher; it did not depend
solely on the dimension of the data space, but was also constrained
to the size of the densest subtensor/subgraph. The contributions of
this stage were threefold, (i) novel proofs: we proposed novel proofs
to guarantee a better density of both dense subgraphs and dense sub-
tensors; (ii) new better guarantee in subgraph: we provided a new
theoretical higher density guarantee for dense subgraphs with a new
bound, 1

2(1 +
1

min(m,
√
n)
); (iii) new better guarantee in subtensor : we

proved a better density guarantee for dense subtensors with a new
higher bound, 1

N (1 + N−1
min(m,

√
n)
).
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6. We proposed a new technique that improved the task of dense subten-
sor detection. The contributions of this stage were both theoretical
and practical solutions. We developed concrete theoretical proofs for
the estimation of dense subtensors in a tensor problem, and provided
a guarantee for a higher lower bound density of the estimated sub-
tensors. In addition, we developed a new theoretical foundation to
guarantee a high density for multiple subtensors. A new algorithm
was proposed that was not only less complex, but also guaranteed the
correctness of its effectiveness. This method can be used to detect
dense subtensors, and thus is more efficient than existing methods.

• We presented a novel theoretical foundation, along with proofs
showing that it is possible to maintain multiple subtensors with
a high density guarantee.

• We provided a new method that was capable of estimating sub-
tensors with a density guarantee that was higher than those pro-
vided by existing methods.

• We proved that there exist at leastmin(1+ n
2N , 1+N(N−1)) sub-

tensors in the tensor with a density greater than a lower bound.

• We performed an extensive experimental evaluation using real-
world datasets to demonstrate the efficiency of our solution. The
proposed method was up to 6.9 times faster than state-of-the-art
methods, and the resulting subtensors had a density up to two
million times higher.

8.3 Future Work

The work presented in this thesis mainly focuses on addressing a set of
research questions related to event detection topic in various types of data
where the characteristics of data evolve over time. An extensive analysis
and evaluation were performed to demonstrate the efficiency of our proposed
methods in terms of overcoming the limitations of event detection algorithms
for dynamic, evolving data. In addition to providing a new approach to
solving the problem, our new insights into the limitations, advantages and
disadvantages of these methods opens up many interesting avenues for future
work.

Sketching with Data Dependencies: In this work, we investigated
ways of exploiting the temporal dependencies of data to detect changes in
a data stream. The method proposed in this thesis was inspired by the
ideas behind linear Markov process models, in which the main principle
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is to estimate the probability of a transition between states. The number
of states k is fixed, and k sequential data points are used to construct the
dependencies in the whole process at each observation point. This limitation
suggests several directions for extending this work. Firstly, it would be
valuable to investigate how the number of different CCPs at different data
points affects the dependency model. At each observation, the temporal
dependency may change such that data items involved in the evolvement
are changing. The number of evolving data can be adaptive at different
observation. Secondly, the involved data for temporal dependence are not
necessarily sequential, and may be discretely distributed in the stream. This
observation suggests another interesting area for future work. Finally, in the
data stream, a large volume of data arrives at a high speed, meaning that
it is infeasible to store information on all of the data. The development of
sketching algorithms combining with data dependencies to detect drift and
outliers is another possible area for further study.

Transition Between Features: Achieving efficient processing of data
streams with limited computing resources is a challenging but crucial task.
The study presented in Chapter 6 is our first study of correlation and tran-
sition between features in an evolving model that adapts quickly to concept
drift. Our proposed method was motivated by the observation that existing
techniques are based on the restrictive assumption that the forgetting factor
is constant at every point of observation and over the whole process. Despite
the efficiency of our method, several challenges arose during this work, and
these gave rise to several directions for future research. Firstly, the time
complexity at evolving steps is high for solving the optimization problem,
and the performance strongly depends on the solver used and its conver-
gence speed. Secondly, the value of the hyper-parameters are dependent on
both the application and the data. Heuristics methods are typically used
to select these parameters. The optimal choice of parameters for a problem
is quite relatively challenging, especially for very sparse, small, or high di-
mensional datasets. Moreover, when performing our extensive evaluation,
we were also aware of a tradeoff between performing the evolving at every
observation point with evolving after a certain period (window). Further-
more, each data point (POI) may have different characteristics, and this
leads to the need for an evolving model for each POI or group of POIs (e.g.,
different time unit). Adapting the window size at each step of the evolution
and time unit factor for each group of data, together with considering above
discussions, are areas that it would be valuable to study further in future
research.

Improving the Quality of a Slice Cut: When developing the method
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for detecting dense subtensors, we observed that existing approaches (in-
cluding ours) treat each tensor slice independently, and that they do not
consider the relationships between the slices of a tensor. However, there
may be connections among these slices when we perform a projection onto
a way of the tensor, in turn, it highly impacts to the density of the remaining
part. As a result, the density obtained for the subtensor may be low. We
therefore need to consider a slice to remove in both its own weight and con-
nections between it and other slices in the tensor when projecting on a way
of the tensor. On the other hand, the density of a subtensor depends also on
a suitable chosen measure. Providing higher density guarantee and propos-
ing an effective measure could be a potential direction for future work. In
addition, we intend to explore the application of our method to graph data
of many different types, such as bipartite, plane, directed and undirected
graphs, and to use it to solve real-world event detection problems such as
change and anomaly detection. The issue of dense subtensor detection still
remains, and is even more challenging for the dense subgraph detection
problems with a more complex structure. This gives rise to further possible
directions for future work in this area.
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[97] Jérôme Kunegis. KONECT: The Koblenz Network Collection. In Pro-
ceedings of the 22nd International Conference on World Wide Web,
WWW, pages 1343–1350, 2013.

[98] Guo-Cheng Lan, Tzung-Pei Hong, and Vincent S. Tseng. An Ef-
ficient Projection-Based Indexing Approach for Mining High Utility
Itemsets. Knowledge and Information Systems, 38(1):85–107, 2014.

[99] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a Team of
Experts in Social Networks. In Proceedings of the 15th International
Conference on Knowledge Discovery and Data Mining, SIGKDD,
pages 467–476, 2009.

[100] S. Lee and J. S. Park. Top-k High Utility Itemset Mining Based on
Utility-list Structures. In International Conference on Big Data and
Smart Computing, BigComp, pages 101–108, 2016.

[101] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions,
Insertions and Reversals. Soviet Physics Doklady, 10:707, 1966.

[102] H. F. Li, H. Y. Huang, Y. C. Chen, Y. J. Liu, and S. Y. Lee. Fast and
Memory Efficient Mining of High Utility Itemsets in Data Streams. In
Proceedings of the 8th IEEE International Conference on Data Min-
ing, ICDM, pages 881–886, 2008.

[103] Hua-Fu Li, Hsin-Yun Huang, and Suh-Yin Lee. Fast and Memory Ef-
ficient Mining of High-utility Itemsets from Data Streams: With and
Without Negative Item Profits. Knowledge and Information Systems,
28(3):495–522, 2011.



REFERENCES 235

[104] Peipei Li, Xindong Wu, and Xuegang Hu. Mining Recurring Concept
Drifts with Limited Labeled Streaming Data. In Proceedings of the
2nd Asian Conference on Machine Learning, PMLR, volume 13, pages
241–252, 2010.

[105] Ping Li. 0-Bit Consistent Weighted Sampling. In Proceedings of
the 21st ACM International Conference on Knowledge Discovery and
Data Mining, SIGKDD, pages 665–674, 2015.

[106] Ping Li, Art B Owen, and Cun-Hui Zhang. One Permutation Hash-
ing. In Proceedings of the 25th International Conference on Neural
Information Processing Systems (NIPS), pages 3113–3121, 2012.
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T. Kärkkäinen. Online Mass Flow Prediction in CFB Boilers with
Explicit Detection of Sudden Concept Drift. SIGKDD Explorations
Newsletter, 11(2):109–116, 2010.

[129] Ali Pesaranghader and Herna L. Viktor. Fast Hoeffding Drift Detec-
tion Method for Evolving Data Streams. In Proceedings of the 2016
Machine Learning and Knowledge Discovery in Databases, ECML
PKDD, pages 96–111, 2016.

[130] Robin L. Plackett. Some Theorems in Least Squares. Biometrika,
37:149–157, 1950.

[131] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J.
Shekita. Improved Histograms for Selectivity Estimation of Range
Predicates. In Proceedings of the 1996 ACM International Conference
on Management of Data, SIGMOD, pages 294–305, 1996.

[132] S. W. Roberts. Control Chart Tests Based on Geometric Moving
Averages. Technometrics, 1(3):239–250, 1959.

[133] Oliver Rösler and David Suendermann. A First Step towards Eye
State Prediction using EEG. In Proceedings of the International Con-
ference on Applied Informatics for Health and Life Sciences, AIHLS,
2013.



238 REFERENCES

[134] Gordon J. Ross, Niall M. Adams, Dimitris K. Tasoulis, and David J.
Hand. Exponentially Weighted Moving Average Charts for Detecting
Concept Drift. Pattern Recognition Letters, 33(2):191–198, 2012.

[135] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented Sketch:
Faster and More Accurate Stream Processing. In Proceedings of the
2016 International Conference on Management of Data, SIGMOD,
pages 1449–1463, 2016.

[136] Polina Rozenshtein, Aris Anagnostopoulos, Aristides Gionis, and
Nikolaj Tatti. Event Detection in Activity Networks. In Proceedings
of the 20th ACM International Conference on Knowledge Discovery
and Data Mining, SIGKDD, pages 1176–1185, 2014.

[137] Polina Rozenshtein, Francesco Bonchi, Aristides Gionis, Mauro Sozio,
and Nikolaj Tatti. Finding Events in Temporal Networks: Segmenta-
tion Meets Densest-Subgraph Discovery. In Proceedings of the IEEE
International Conference on Data Mining, ICDM, pages 397–406,
2018.

[138] Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. Finding Dy-
namic Dense Subgraphs. ACM Transactions on Knowledge Discovery
from Data (TKDD), 11(3):27:1–27:30, 2017.

[139] Caitlin Sadowski and Greg Levin. SimHash: Hash-based Similarity
Detection. Google Technical Report, 2007.

[140] Saket Sathe and Charu C. Aggarwal. Subspace Histograms for Out-
lier Detection in Linear Time. Knowledge and Information Systems,
56(3):691–715, 2018.

[141] Jeffrey C Schlimmer and Richard H Granger. Incremental Learning
from Noisy Data. Machine Learning, 1(3):317–354, 1986.

[142] Raquel Sebastião, João Gama, and Teresa Mendonça. Fading His-
tograms in Detecting Distribution and Concept Changes. Interna-
tional Journal of Data Science and Analytics, 3(3):183–212, 2017.

[143] Konstantinos Semertzidis, Evaggelia Pitoura, Evimaria Terzi, and
Panayiotis Tsaparas. Finding Lasting Dense Subgraphs. Data Mining
and Knowledge Discovery, 33(5):1417–1445, 2019.

[144] J P Shaffer. Multiple Hypothesis Testing. Annual Review of Psychol-
ogy, 46(1):561–584, 1995.



REFERENCES 239

[145] Preya Shah, Arian Ashourvan, Fadi Mikhail, Adam Pines, Lohith
Kini, Kelly Oechsel, Sandhitsu R Das, Joel M Stein, Russell T Shino-
hara, Danielle S Bassett, Brian Litt, and Kathryn A Davis. Charac-
terizing the Role of the Structural Connectome in Seizure Dynamics.
Brain, 142(7):1955–1972, 2019.

[146] Kijung Shin, Bryan Hooi, and Christos Faloutsos. M-Zoom: Fast
Dense-Block Detection in Tensors with Quality Guarantees. In Pro-
ceedings of European Conference on Machine Learning and Knowledge
Discovery in Databases, ECML PKDD, pages 264–280, 2016.

[147] Kijung Shin, Bryan Hooi, and Christos Faloutsos. Fast, Accurate, and
Flexible Algorithms for Dense Subtensor Mining. ACM Transactions
on Knowledge Discovery from Data, 12(3):28:1–28:30, 2018.

[148] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. D-Cube:
Dense-Block Detection in Terabyte-Scale Tensors. In Proceedings of
the 10th ACM International Conference on Web Search and Data
Mining, WSDM, pages 681–689, 2017.

[149] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. DenseAl-
ert: Incremental Dense-Subtensor Detection in Tensor Streams. In
Proceedings of the 23rd ACM International Conference on Knowledge
Discovery and Data Mining, SIGKDD, pages 1057–1066, 2017.

[150] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Pa-
palexakis, and C. Faloutsos. Tensor Decomposition for Signal Process-
ing and Machine Learning. IEEE Transactions on Signal Processing,
65(13):3551–3582, 2017.

[151] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park,
Xing Liu, and George Karypis. FROSTT: The Formidable Repository
of Open Sparse Tensors and Tools, 2017.

[152] Wei Song, Yu Liu, and Jinhong Li. BAHUI: Fast and Memory Effi-
cient Mining of High Utility Itemsets Based on Bitmap. International
Journal of Data Warehousing and Mining, 10(1):1–15, 2014.

[153] Mingwang Tang and Feifei Li. Scalable Histograms on Large Prob-
abilistic Data. In Proceedings of the 20th ACM International Con-
ference on Knowledge Discovery and Data Mining, SIGKDD, pages
631–640, 2014.



240 REFERENCES

[154] Nikolaj Tatti and Aristides Gionis. Density-friendly Graph Decompo-
sition. In Proceedings of the 24th International Conference on World
Wide Web, WWW, pages 1089–1099, 2015.

[155] Robert Tibshirani. Regression Shrinkage and Selection via the Lasso.
Journal of the Royal Statistical Society. Series B (Methodological),
58(1):267–288, 1996.

[156] Ryan J. Tibshirani, Jonathan Taylor, Richard Lockhart, and Robert
Tibshirani. Exact Post-Selection Inference for Sequential Regres-
sion Procedures. Journal of the American Statistical Association,
111(514):600–620, 2016.

[157] V.S. Tseng, Bai-En Shie, Cheng-Wei Wu, and P.S. Yu. Efficient Algo-
rithms for Mining High Utility Itemsets from Transactional Databases.
IEEE Transactions on Knowledge and Data Engineering, 25(8):1772–
1786, 2013.

[158] V.S. Tseng, Cheng-Wei Wu, P. Fournier-Viger, and P.S. Yu. Efficient
Algorithms for Mining Top-K High Utility Itemsets. IEEE Transac-
tions on Knowledge and Data Engineering, 28(1):54–67, 2016.

[159] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis,
Francesco Gullo, and Maria Tsiarli. Denser Than the Densest Sub-
graph: Extracting Optimal Quasi-cliques with Quality Guarantees. In
Proceedings of the 19th ACM International Conference on Knowledge
Discovery and Data Mining, SIGKDD, pages 104–112, 2013.

[160] Jun-Zhe Wang, Jiun-Long Huang, and Yi-Cheng Chen. On Efficiently
Mining High Utility Sequential Patterns. Knowledge and Information
Systems, 49(2):597–627, 2016.

[161] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu,
and Marcelo J Weinberger. Inequalities for the `1 Deviation of the
Empirical Distribution. Technical report, Hewlett-Packard Labs, 2003.

[162] C. W. Wu, P. Fournier-Viger, J. Y. Gu, and V. S. Tseng. Mining
Closed+ High Utility Itemsets without Candidate Generation. In 2015
Conference on Technologies and Applications of Artificial Intelligence,
TAAI, pages 187–194, 2015.

[163] Tao Wu and David F. Gleich. Retrospective Higher-Order Markov
Processes for User Trails. In Proceedings of the 23rd ACM In-



REFERENCES 241

ternational Conference on Knowledge Discovery and Data Mining,
SIGKDD, pages 1185–1194, 2017.

[164] W. Wu, B. Li, L. Chen, C. Zhang, and P. Yu. Improved Consistent
Weighted Sampling Revisited. IEEE Transactions on Knowledge and
Data Engineering, 31(12):2332–2345, 2019.

[165] W. Xie, F. Zhu, J. Jiang, E. P. Lim, and K. Wang. TopicSketch:
Real-Time Bursty Topic Detection from Twitter. IEEE Transactions
on Knowledge and Data Engineering, 28(8):2216–2229, 2016.

[166] Z. Xu, M. A. T. Figueiredo, X. Yuan, C. Studer, and T. Goldstein.
Adaptive Relaxed ADMM: Convergence Theory and Practical Imple-
mentation. In Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7234–7243, 2017.

[167] Bo Yang, Ahmed S. Zamzam, and Nicholas D. Sidiropoulos. ParaS-
ketch: Parallel Tensor Factorization via Sketching. In Proceedings
of the 2018 SIAM International Conference on Data Mining, SDM,
pages 396–404, 2018.

[168] D. Yang, B. Li, L. Rettig, and P. Cudré-Mauroux. HistoSketch: Fast
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[178] Indrė Žliobaitė, Albert Bifet, Jesse Read, Bernhard Pfahringer, and
Geoff Holmes. Evaluation Methods and Decision Theory for Clas-
sification of Streaming Data with Temporal Dependence. Machine
Learning, 98(3):455–482, 2015.

[179] Hui Zou and Trevor Hastie. Regularization and Variable Selection
Via the Elastic Net. Journal of the Royal Statistical Society, Series
B, 67:301–320, 2005.



ISBN 978-82-326-5838-1 (printed ver.)
ISBN 978-82-326-5874-9 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2021:61

Huy Quang Duong

Event Detection in Changing
and Evolving Environments

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2021:61
H

uy Q
uang D

uong

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r S

ci
en

ce


	Blank Page



