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There is an ongoing transition in the power system towards an increasing amount of flexible resources and gen-
eration technologies at the distribution system level. An appealing alternative to facilitate efficient utilization of
such decentralized energy resources is to coordinate the power at the neighbourhood level. This paper proposes a
game-theoretic framework to analyze a local tradingmechanism and its feedback effect on grid tariffs under cost
recovery conditions for the distribution system operator. The novelty of the proposed framework is to consider
both long-term and short-term aspects to evaluate the socio-economic value of establishing a local tradingmech-
anism.Under our assumptions, themainfinding is that the establishment of local electricitymarkets can decrease
the total costs by facilitating coordination of resources and thus create higher socio-economic value than the un-
coordinated solution. Furthermore, a sensitivity analysis on the tariff levels reveals that there are two equilibrium
solutions, one where the grid costs are exactly balanced by tariff income and one where the neighbourhood de-
cides to disconnect from the larger power system. These results indicate that although a local tradingmechanism
can reduce the need for grid capacity, it may not be cost optimal for neighbourhoods to become completely self-
sufficient.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

One of the fundamental issues in power system economics is the po-
tential of market failure due to a lack of demand-side elasticity (Stoft,
2002). At the distribution grid level, inelastic demand means that real-
time control problems have traditionally been resolved at the grid infra-
structure planning stage so that capacity is robustly adequate to cover
the peak load (Strbac, 2008). However, there is an ongoing transition
within power systemdevelopment due to an increasing amount of flex-
ible resources at the distribution grid level (Eid et al., 2016).

The price-responsiveness from end-users increase because of two
fundamental drivers: (1) the information available to the end-users is
s; DSO, Distribution System
tric Vehicle / ‘Electric vehicle
; LM, ’Local market’ case study;
tical Program with Equilibrium
Peer-to-peer; RB, ’Residential
ndergarten’ agent group; SO,
ghbourhood.
Energy Research, Trondheim,

and).

. This is an open access article under
increasing due to deployment of smart metering technologies, and
(2) increased deployment of electricity as an energy carrier for poten-
tially flexible demand types. Smart meters are currently being deployed
throughout Europe, enabling hourly or sub-hourly billing of electricity
consumption (Zhou and Brown, 2017). Such price variations can induce
a change in consumption patterns if flexible energy resources such as
smart management of heating systems and electric vehicle (EV) charg-
ing are available (Faruqui et al., 2010; Salpakari et al., 2017; Knezović
et al., 2017).

An appealing alternative to facilitate efficient utilization of
decentralized energy resources (DERs) is to balance the power at the
neighbourhood level (Heinisch et al., 2019). However, as described in
Askeland et al. (2019), the current regulatory framework in Norway
and several other countries may not facilitate efficient decentralized
decision-making when multiple stakeholders are involved.

This paper uses a game-theoretic framework to investigate a local
tradingmechanism, and its feedback effect on grid tariffs under cost re-
covering conditions for the distribution system operator (DSO) in a
neighbourhood context. An equilibrium model comprising two levels
is developed to study the efficiency of current and prospective pricing
mechanisms. Also, a system optimization model serves as a
benchmarking tool.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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The remainder of this paper is organized as follows. In section 2 we
provide a survey of related literature. The modeling framework is pre-
sented in section 3. The data used for a case study is presented in section
4. Section 5 presents results from the case study before conclusions are
drawn in section 6.

2. Literature review

An adaptation of electricity grid pricing mechanisms is increasingly
being addressed in the scientific literature. This paper is at the intersec-
tion between two related research topics, namely electricity grid tariff
design and local electricity markets.

Electricity grids are natural monopolies due to economies of scale.
Traditionally, the DSO is the sole owner of the electricity grid in a
given area and passes the costs on to the end-user as fixed and volumet-
ric grid tariffs (Eid et al., 2014). However, the current tariff structures
can create distorted incentives for end-users to invest excessively in
DERs (Eid et al., 2014; Pollitt, 2018). Capacity-based tariffs are being
proposed as a prospective solution since it will be a better representa-
tion of the upstream grid costs and create an incentive to reduce the
peak load (Simshauser, 2016). However, a reduction of individual
peaks may not always be effective at reducing aggregate peak load
(Backe et al., 2020), and several scholars suggest that the potential wel-
fare gains from capacity-based tariffs can be limited (Passey et al., 2017;
Brown and Sappington, 2018). In this context, we contribute to the lit-
erature by investigating how a combination of grid tariffs and localmar-
kets can provide incentives for efficient development and operation of
the distribution grid.

There exists a rather large body of literature related to investigating
the impact of various tariff schemes on specific end-user groups, see e.g.
Kirkerud et al. (2016); Parra and Patel (2016); Bergaentzlé et al. (2019);
Sandberg et al. (2019); Pinel et al. (2019); Backe et al. (2020). These
studies investigate how the business case and decisions of different
types of agents are affected by changes in the tariff structure. Our
paper differs from this line of research becausewe consider the electric-
ity grid tariffs as a modeling result in a bilevel approach rather than an
input to a single level optimization problem.

Our work considers the interaction between the distribution net-
work level and the end-users under cost recovery conditions for the
DSO. In this regard, the approach of this paper is related to the research
summarized in Table 1. However, some distinct differences can be
pointed out since our research also include the interaction between
agents at the local level through a local market mechanism. Besides,
we consider grid investments and operation as a function of the aggre-
gate neighbourhood load.

Interaction between agents at the local level can be achieved
through ‘peer-to-peer’ (P2P) trading or other forms of local market
mechanisms (Sousa et al., 2019). In Zhang et al. (2018) the authors an-
alyze P2P trading for matching inflexible local generation with flexible
demand in a microgrid, and they find that the trading triggers peak
load reduction. Almenning et al. (2019) also analyzes P2P trading in a
neighbourhood focusing on trading in response to a subscribed grid
Table 1
Related research on indirect load control.

Reference Tariff calculation

Zugno et al. (2013) MPEC
Momber et al. (2016) MPEC
Schittekatte et al. (2018) Iterative procedure
Hoarau and Perez (2019) Iterative procedure
Askeland and Korpås (2019) Iterative procedure
Abada et al. (2020) Iterative procedure
Schittekatte and Meeus (2020) MPEC
Askeland et al. (2020) MPEC
This paper Iterative procedure
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tariff, and they also find that P2P trading triggers a reduction of high
loads. Lüth et al. (2018) focuses on the role of batteries in P2P trading,
and their results highlight economic viability from an end-user perspec-
tive. None of these studies (Zhang et al., 2018; Almenning et al., 2019;
Lüth et al., 2018) consider a reaction by the DSO (i.e., adjustment of
the grid capacity) as a consequence of trading in a neighbourhood.

The properties of the problem addressed in this paper are consistent
with non-cooperative Stackelberg-type games (Von Stackelberg, 2010),
which are characterized by a leader who moves first and one or more
followers acting optimally in response to the leader's decisions. Games
with a Stackelberg structure can be formulated as mathematical pro-
grams with equilibrium constraints (MPECs) (Luo et al., 1996). This is
the case for Zugno et al. (2013), Momber et al. (2016), Schittekatte
and Meeus (2020), and Askeland et al. (2020) who formulate MPECs
to investigate the effect of indirect load control. In this paper, we use
an iterative procedure to solve the set of non-linear equations similar
to Schittekatte et al. (2018), Hoarau and Perez (2019), Askeland and
Korpås (2019), and Abada et al. (2020). The reason for choosing this
procedure instead of an MPEC approach is that an iterative procedure
has computational advantages over an MPEC formulation, which
would severely impact our tractable problem size. Furthermore, there
is no need for an MPEC formulation since the grid tariff structure we
consider can effectively be handled by an iterative procedure based on
cost recovery rules for the DSO. We formulate the neighbourhood equi-
librium as a complementarity problem (Gabriel et al., 2012). A comple-
mentarity problem is the combination of the Karush-Kuhn-Tucker
(KKT) conditions (Kuhn and Tucker, 1951) of all agents, which are
being solved simultaneously to derive the equilibrium. Complementar-
ity modeling is particularly useful for power market modeling since the
introduction of dual variables in the model formulation allows for mar-
ket interactions between agents to be formulated directly. More details
on complementarity modeling for energy modeling purposes can be
found in Gabriel et al. (2012). The complementarity formulation for
the neighbourhood level allows for interaction between agents within
the neighbourhood level and enables an investigation of local electricity
markets without introducing the computational difficulties of an MPEC
formulation.

To summarize, this paper brings together two related bodies of liter-
ature by considering both grid tariff design and a local market mecha-
nism in a consistent modeling approach. Furthermore, the proposed
approach allows for local markets to be coupled to existing market
structures and allow consumers to choose which market to trade in.
No prior works that consider local markets and its feedback effect on
grid development and grid tariffs have been identified, and we aim to
contribute to closing this gap in the literature.

3. Method

This section presents the game-theoretic setup that has been devel-
oped. First, the optimization problems of the agents in the
neighbourhood and theDSO are presented. Thereafter, the solution pro-
cedure for coupling the two levels are described before the input data
Grid costs considered Interaction between agents

No Retailer - consumer
No Aggregator - EV consumer
Sunk DSO - consumer
Sunk DSO - consumer
Prospective DSO - consumer
Sunk DSO - community
Prospective DSO - consumer
Sunk DSO - consumer
Prospective DSO - consumer and between consumers
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for the case study is presented. In the presented model, the following
core assumptions are made:

• Grid charges only apply to electricity purchased from the wholesale
power market and not on locally traded electricity. Since locally
traded electricity is balanced locally at each time step, the local trade
does not contribute to the capacity-based charge.

• We assume that there is sufficient grid capacity within the local sys-
tem. Therefore, only the connection between the neighbourhood
and the larger power system is constrained.

• We assume that the DSO can not choose to curtail load or generation.
Hence, it is necessary to build sufficient capacity to cover the peaknet-
work usage. Although the economics concerning load or generation
curtailment is outside the scope of this paper, this is an aspect that
could be considered in further work.

3.1. Model overview

An outline of the model is presented in Fig. 1. The structure is a
bilevel model where some decisions are made on the DSO level while
others occur on the neighbourhood level. We consider the DSO as the
leader in the Stackelberg game since it sets the grid tariff rates while
the end-user agents responds to the tariff determined by the DSO. Deci-
sion variables at one level are perceived as parameters for the other
level. One example is the level of grid tariffs, which is determined
based on cost recovery criteria on theDSO level but perceived as param-
eters by the agents at the neighbourhood level. The benefit of this
bilevel structure in our modeling framework is the ability to analyze
the feedback effect between neighbourhood response, coordination,
DSOs optimization to 
minimize costs and 

calculate tariffs under 
cost-recovery conditions

Grid tariffs

Aggregat

Physical power flow
Market interaction

DSO level

Network losses
Grid investment costs

Net metering coefficient

Power 
market 
prices

Fig. 1. Outline of the

3

DSO strategy, and regulatory framework. Appendix A provides an over-
view of mathematical symbols and describes how the parameters and
variables relates to each level in the overall model.

3.2. Neighbourhood level

In this section, the problem of the individual agent in the
neighbourhood is described as an optimization problem. The agents
can be of different types: customer with inflexible load, prosumer, EV
charging facility, owner of a power plant and grid storage, or a combina-
tion of these. Themodel formulation presented in this section allows for
all of these types of agents to be represented through different parame-
ter settings.

Since the optimization problems for the agents in the
neighbourhood are linear, their KKT conditions are both necessary and
sufficient for global optimality (Kuhn and Tucker, 1951). Hence, to
allow for the modeling of a local market mechanism, the optimization
problems for the agents in the neighbourhood are represented through
their KKT conditions, which are formulated as amixed complementarity
problem (MCP) in Appendix B. We indicate dual variables associated
with each of the constraints. These dual variables are used in the MCP
formulation of the problem.

3.2.1. Objective function of neighbourhood agents
The objective of the neighbourhood agents is tominimize their indi-

vidual costs according to (1a). Details of the cost components are de-
scribed in (1b) - (1f). These costs consist of investments in storage
and energy resources (CostcN), energy from the power market (CostcP),
energy from the local market (CostcL), electricity taxes (CostcT), and grid
charges (CostcG). The grid charges apply to energy purchased from the
Active prosumersPassive consumers

EV charging facility

Neighbourhood 
node / local 

market

Game theoretic formulation giving equilibria of best 
responses by cost-minimizing agents participating in 

local and centralized power markets

ed network flow

Neighbourhood level

Neighbourhood DER

Consumer and EV load profiles 
Technology costs and characteristics

Resource limits and nominal RES output profiles
Taxes

model structure.
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powermarket, but not to locally traded energy. The actual grid costs are
not considered directly at the building level since these costs are im-
posed indirectly through the grid tariffs (vnt and cnt).

Min : Costc ¼ CostNc þ CostPc þ CostLc þ CostTc þ CostGc ð1aÞ

CostNc ¼ ISc∗c
S
c þ IEc ∗c

E
c ð1bÞ

CostPc ¼ ∑
H

h¼1
Wh∗ impPc,h− exp P

c,h

� �
∗λP

h ð1cÞ

CostLc ¼ ∑
H

h¼1
Wh∗ impLc,h− exp L

c,h

� �
∗λL

h ð1dÞ

CostTc ¼ ∑
H

h¼1
Wh � impPc,h þ impLc,h

� �
� T ð1eÞ

CostGc ¼ ∑
H

h¼1
Wh � impPc,h−NM � exp P

c,h

� �
� vnt þ cGc � cnt ð1fÞ

In these equations, Wh denotes the scaling factor to provide opera-
tional costs on an annual basis. To represent annual costs the scaling fac-
tor takes the valueWh ¼ 8760

H for hourly time-steps.

3.2.2. Energy balance
The energy balance of the agents is described by (2) and states that

energy imports subtracted exports must be equal to fixed and flexible
demand subtracted generation from PV at each agent.

Dc,h þ dΔþc,h − dΔ−c,h − gEc,h

¼ impPc,h − exp P
c,h þ impLc,h − exp L

c,h ∀c, h λEB
c,h

� � ð2Þ

The agents can trade both with the local and centralized electricity
markets to satisfy their energy balance.

3.2.3. Battery charge level
A batterymakes it possible to shift energy load temporally. This tem-

poral load shifting is represented in (3),whichdescribes how the charge
level depends on the charge level in the previous time step and on the
battery operation. Converter losses are imposed through the parameter
Lc, while self-discharge of the battery from one time-step to the next is
imposed through the parameter Rc.

sc,h ¼ sc,h�1 � ð1� RcÞ
þ dΔþc,h � ð1� LScÞ � dΔ�c,h � ð1þ LScÞ � DΔ�

c,h ∀c,h>1 ðλS1
c,hÞ

ð3Þ

The battery formulation allows for the representation of both a bidi-
rectional battery which can store electricity for later use and unidirec-
tional EV charging. In the case of EV charging, the parameter Dc, h

Δ−

represents the energy used for EV driving needs.
We specify boundary conditions for the battery charge level as de-

scribed in (4). This means that the charge level in the last time-step is
linked to the first time step. Thereby, we do not need to specify the ini-
tial charge level since the optimization model calculates it.

sc,1 ¼ sc,H � 1−Rcð Þ

þ dΔþc,1 � 1−LSc
� �

−dΔ−c,1 � 1þ LSc
� �

−DΔ−
c,1 ∀c λS1

c,1

� � ð4Þ

Potentially, this formulation can result in simultaneous charge and
discharge during the same time step. However, positive converter losses
and energy costs will prevent this from occurring due to the associated
costs.
4

3.2.4. Storage capacity
The agent decides the storage capacity to be installed, so the case

that the economic benefit of having an additional unit of storage ex-
ceeds the investment costs will trigger additional investments. How-
ever, a maximum limit on battery storage capacity can be imposed
according to (5). In order to represent agents without investment op-
tions, the maximum capacity limit can be set to zero.

cSc ≤ US
c ∀c μS2

c

� � ð5Þ

Furthermore, the amount of energy that can be stored and the
installed storage capacity limits the converter capacities according to
(6)–(8). In the case of unidirectional EV charging, the discharging
power factor (Pcdis) can be set to zero. Note that themodel is also capable
of handling vehicle-to-grid directly, but this is out of the scope of this
paper.

sc,h ≤ cSc ∀ c,h μS3
c,h

� �
ð6Þ

dΔþc,h ≤ cSc∗P
ch
c ∀ c,h μS4

c,h

� �
ð7Þ

dΔ−c,h ≤ cSc∗P
dis
c ∀ c,h μS5

c,h

� �
ð8Þ

3.2.5. Measured peak power
Measured peak power at each end-user is equal to the maximum

power injected to or withdrawn from the wholesale power market ac-
cording to (9). Although the maximum load usually occurs as a result
of an import situation, we also account for situations where the peak
power is defined by exports to the grid. This means that we assume a
grid tariff scheme where the agents have to pay a capacity-based grid
tariff for their measured peak power for the whole period considered.

impPc,h þ exp P
c,h ≤ cGc ∀ c,h μG

c,h

� �
ð9Þ

Note that electricity traded in the local market do not influence the
agent's peak power since any electricity sold locally also has to be con-
sumed by the other agents at the local level.

3.2.6. Energy resource capacity and generation
Similar to energy storage, the agent can invest in energy resources

such as rooftop PV. A limit, for example due to limited rooftop area,
can be imposed according to (10). This value can also be set to zero if
the agent cannot invest in energy resources due to factors outside the
modeling framework.

cEc ≤ UE
c ∀ c μE1

c

� � ð10Þ

Electricity generation, gc, hE , is described by (11) and has the option of
generation curtailment, by generating below the limit given by the re-
source availability. The maximum output is the nominal generation
each time-step multiplied with the installed capacity. Hence, the nomi-
nal generation is specified according to e.g., wind or solar conditions.

gEc,h ≤ cEc ∗G
E
c,h ∀ c,h μE2

c,h

� �
ð11Þ

3.2.7. Local energy market
The local exports must equal the local imports according to (12).We

assume that there are no grid constraints at the local level, making trad-
ing with the neighbours an alternative to purchasing energy from the
grid.
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∑
C

c¼1
impLc,h− exp L

c,h

� �
¼ 0 ∀ h λL

h

� �
ð12Þ

Note that this is the equilibrium condition in the neighbourhood.
The dual value of this constraint becomes the market price in the local
energy market. The local market price is the value of energy at the
local level, considering both short-term operation and long-term
investments.

3.3. DSO level

The DSO level describes the optimization problem of the DSO in a
regulatory context. In this problem, the decisions at the neighbourhood
level regarding investments, operation, and trading in the local and
wholesale markets are perceived as parameters outside the DSOs con-
trol. Based on the aggregate neighbourhood-level decisions, grid capac-
ity investments and tariff levels are optimized.

3.3.1. Objective function of the DSO
The objective of the DSO is to minimize the grid costs, as formulated

in (13a). With the DSO as a perfectly regulated leader, the DSOs goal
would be welfare maximization by reducing the combined costs of the
DSO and all the end-user agents. However, in our modeling framework
the DSO considers the end-user agent decisions as parameters and
therefore only the DSOs costs are considered by the DSO. This has a
close resemblence to how DSOs are currently regulated in Norway1

since the regulator defines a maximum income and the self-interest
pursuing DSO is incentivized to reduce costs in order to increase profits.
The costs faced by the DSO consist of investment costs and variable
costs. Potential sunk costs are assumed to be collected through a fixed
annual fee independent of this optimization problem. Since the DSO
has no decisions related to the sunk costs, these are not included in
the objective function.

Min : CostDSO ¼ CostNDSO þ CostVDSO ð13aÞ

CostDSO
N is the investment cost for additional grid capacity and con-

sists of the amount of capacity multiplied with annualized investment
costs as described in (13b). The DSOs variable costs, CostDSOV , consist of
linear network losses, according to (13c).

CostNDSO ¼ IGDSO∗c
G
DSO ð13bÞ

CostVDSO ¼ ∑
H

h¼1
Wh∗eGh∗L

G∗λP
h ð13cÞ

3.3.2. Neighbourhood load
Given that some neighbourhood agents might export to the power

marketwhile others import from it, these individual flows are aggregated
for each time step to calculate the total net electricity flow in to or out
from the neighbourhood. Therefore, the electricity flow to/from the
neighbourhood is the absolute value of the aggregate trading with the
power market. To maintain the linear properties of the problem, the net-
work imports are represented by (14) while exports are represented by
(15). Only one of these terms will have a nonzero value at each time
step and the total electricity transmission is calculated in (16). This for-
mulation is valid as long as power market prices are non-negative since
the transmission of electricity is penalized in the objective function due
to the associated losses.
1 https://www.nve.no/norwegian-energy-regulatory-authority/

economic-regulation/
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eGIh ≥ ∑
C

c¼1
impPc,h− exp P

c,h

� �
∀h ð14Þ

eGEh ≥ ∑
C

c¼1
exp P

c,h−impPc,h
� �

∀h ð15Þ

eGh ¼ eGIh þ eGEh ∀h ð16Þ

Note that the electricity trade within the local market is not a part of
the DSOs consideration since the supply and demand remainwithin the
neighbourhood level.

3.3.3. Grid capacity
The DSO needs to ensure enough capacity for the transmission of

electricity, as described in (17). The network capacity consists of already
built infrastructure given exogenously, and investments in infrastruc-
ture. We assume that the DSO do not have the option of curtailment
as an alternative to building grid capacity.

CG
DSO þ cNDSO ≥ eGh ∀h ð17Þ

3.3.4. Grid tariff calculation
Based on the optimization, the DSO also calculates the resulting grid

tariffs according to (18) for the volumetric tariff EUR
kWh

� �
and (19) for the

capacity-based tariff EUR
kW

� �
. Here, it is assumed that the DSO will recover

the variable costs through the volumetric tariff and investment costs
through the capacity-based tariff. For simplicity, and since the aim is
to investigate the economic feasibility of substituting grid capacity
with local flexibility, we do not include sunk cost recovery. Sunk cost re-
covery is a topic that has been extensively considered in Schittekatte
et al. (2018) and Hoarau and Perez (2019).

vnt ¼ CostVDSO
∑C

c¼1∑
H
h¼1Wh∗ impPc,h−NM∗ exp P

c,h

� � ð18Þ

cnt ¼ CostNDSO
∑C

c¼1cGc
ð19Þ

Note that with this formulation, all the DSOs costs are recovered
through the tariff income from the neighbourhood agents. Cost recovery
at the DSO level means that cost differences in the resulting cases are
due to the effect of regulations on system costs and not because of
grid tariff avoidance. Therefore, this setup,with all theDSOs costs recov-
ered by the tariff income, enables a holistic investigation of tariff design
in combination with local energy markets.

3.4. Solution approaches

Even though the physical properties of the system are the same, the
different decision-making assumptions require different solution ap-
proaches. Both a centralized optimization and a game-theoretic equilib-
rium is computed to assess the efficiency of various pricing
mechanisms. The main difference between these approaches lies in
the decision-making assumptions. For the system optimization, it is as-
sumed that all investment and operational decisions on both the DSO
and the neighbourhood agent level are made by one entity. Such a sys-
tem optimal solution provide the theoretically best outcome in terms of
total costs, but the assumption that agent decisions (such as DER invest-
ments and operation) can be controlled centrally is not valid in amarket
context since such choices are up to the individual agents. Contrary to
system optimization, the game-theoretic equilibrium approach allows
for decentralized decision-making by the individual agents and the
DSO. Decentralized decision-making requires modeling of the pricing

https://www.nve.no/norwegian-energy-regulatory-authority/economic-regulation/
https://www.nve.no/norwegian-energy-regulatory-authority/economic-regulation/
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mechanism between the agents such as grid tariffs and local market
prices.

3.4.1. Centralized optimization
For the centralized optimization, all the direct costs on both the DSO

andneighbourhood agent levels are combined in oneobjective function,
as described in (20).

Min : CostDSO þ∑
C

c¼1
CostNc þ CostPc þ CostTc

� �
ð20Þ

Furthermore, we include the technical constraints for the
neighbourhood agents in (2)–(12) and for the DSO in (14)–(17). Note
that we include the local market balance since it taxes energy transfer
from one agent to another in the same way as the equilibrium. Further-
more, the grid tariff cost component is not included since theDSOs costs
are considered directly instead.

The centralized optimization forms a single linear programming
problem which is solved directly in GAMS with the CPLEX solver.

3.4.2. Decentralized decision-making
In the case of decentralized decision-making, we assume non-

cooperative behaviour for all the agents in the model. Therefore, each
agent optimizes their individual objective function and interact with
the other agents through pricing mechanisms. Decentralized decisions
require a game-theoretic equilibrium approach with two levels:
(1) The DSO level, and (2) The neighbourhood agent level. The DSO
level is solved by treating the variables of the neighbourhood agents
as parameters and solving the optimization problem in section 3.3.
The neighbourhood agent equilibrium requires a complementarity for-
mulation due to the interaction between the agents in the local market.
Therefore, the neighbourhood agent problem described in section 3.2 is
represented by its KKT conditions formulated as MCP conditions in
Appendix B.

Modeling of two levels requires a solution algorithm to iterate until
convergence is reached. The convergence criterion is that the cost
Fig. 2. Outline of equilibrium solution algorithm.
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recovering grid tariffs do not change from one iteration to the next.
The iterative solution algorithm presented in Fig. 2 is inspired by the
procedure employed in Schittekatte et al. (2018) and can be described
as follows:

1. Initialize the algorithm with starting tariff values (e.g., zero).
2. For the given tariffs, calculate the equilibrium of the

neighbourhood level by solving the complementarity problem pre-
sented in Appendix B.

3. For the resulting grid transmission, solve the DSOs optimization
problem presented in section 3.3.

4. For the given set of cost recovery tariffs, compare to previous tar-
iffs and determine if change is lower than convergence tolerance.

5. If tariff convergence not reached: Update tariffs with decreasing
step size and go to step 2.

6. If tariff convergence is reached: Equilibrium solution with DSO
cost recovery found.

A decreasing step size is employed to ensure stable progress towards
the equilibriumpoint. Aswe change the tariffs, the neighbourhoodhas a
unique equilibrium for each set of grid tariffs since the KKT conditions
are necessary and sufficient for optimality. An increase in grid tariffs
gives the following effects:

• DSO income effect 1: A change in tariff levels will give a positive
change on the tariff income per unit of capacity and electricity con-
sumption.

• DSO income effect 2: A change in tariff levels will have a zero or neg-
ative effect on the contracted capacity and electricity consumption
since grid usage might be substituted by something else.

• DSO cost effect: A change in tariff levels will give a zero or negative
change in DSO costs since the grid usage will stay constant or be de-
creased when the cost of using grid capacity is increased.

Hence, because a change in tariff levelswork in different directions, a
change in tariff levels can give both a positive and negative change in
DSO profits. Therefore, the model can potentially have several equilib-
rium solutions that satisfy the DSO cost recovery constraint. We do a
tariff sensitivity analysis in section 5.4 that demonstrates the existence
of two equilibrium points for the case considered in this paper. How-
ever, it should be noted that the existence of two equilibrium point in
our analysis is not a general result since the DSO profit is a
nonmonotone function of the grid tariffs. More details regarding the
equilibrium tariffs and convergence of the model can be found in
section 5.4.

The decentralizedmodel is also implemented in GAMS and solved as
a linear program with the CPLEX solver for the DSO level. The
neighbourhood equilibrium is calculated by solving the complementar-
ity formulation in Appendix B using the PATH solver. These models are
solved iteratively until convergence is reached (see Fig. 2).

4. Case study

This section describes the input data used for the case study. The sys-
tem we model is inspired by the Zero Emission Neighbourhood (ZEN2)
pilot project called Ydalir.3 Investment costs are represented through
their annual payment costs with an interest rate of 5% and
technology-specific lifetimes.

4.1. Agents and load profiles

Since the focus of this paper is on the interaction between agents
with different characteristics under various regulatory frameworks,
agents are categorized by five agent groups: Combined school and kin-
dergarten (SK), residential buildings (RB), large scale energy resources
2 https://fmezen.no/
3 https://www.ydalirbydel.no/ydalir/

https://fmezen.no/
https://www.ydalirbydel.no/ydalir/


Table 2
Agents represented in the model.

Agent group Load profile Investment options Flexible resources

Combined school and kindergarten (SK) 3000 m2 kindergarten +7000 m2 school N/A N/A
Residential buildings (RB) 20,000 m2 Batteries and PV available Battery operation and PV curtailment
Large scale energy resources (ER) N/A Batteries and PV available at lower cost Battery operation and PV curtailment
EV charging facility (EV) Charging of 200 EVs per day N/A Charging of EVs
Distribution system owner (DSO) Aggregate load of neighbourhood agents Grid capacity N/A

Fig. 3. Load profiles for the neighbourhood agents.
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(ER), EV charging facility (EV), and distribution system operator (DSO).
An overview of the characteristics of each group can be found in Table 2.

Electricity load profiles for agents SK and RB have been generated
based on the floor area according to the methodology presented in
Lindberg et al. (2019). We generate four representative weeks for a
year, one for each season. Regarding the demand for EV charging, a
yearly driving distance of 14,000 km per vehicle is assumed.4 Further,
one electric car needs 0.2 kWh per km (Sørensen et al., 2018), so one
car needs about 14, 000

365 ∗0:2 ¼ 8 kWh/day. For 200 EVs, we get a daily
charging need of about 1,600 kWh/day. Based on these assumptions, a
charging need of 70 kWh for each hour is specified for the EV agent.
The load profiles for the neighbourhood agents are presented in Fig. 3.

The energy resource agent (ER) does not have any load profile spec-
ified but can invest in batteries and PV capacity to trade electricity with
4 SSB, Road traffic volumes 2005–2018, https://www.ssb.no/en/statbank/
table/12576/
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other neighbourhood agents or the powermarket. Lastly, the DSOs load
profile is the aggregate load of all the other neighbourhood agent
groups.

4.2. Technology costs and characteristics

In themodeled system, some of the agents can invest in technologies
such as grid capacity, PV systems, and batteries. Also, the EV agent has
inherent flexibility regarding when to charge the EVs.

The DSO is responsible for the grid capacity connecting the
neighbourhood to the transmission network. For the regional grid in
Norway, the transmission fee is approximately 50 €/kW of peak
power measured at the point of the TSOs grid.5 Furthermore, it is as-
sumed that the DSOs costs are approximately equal to the transmission
5 https://www.statnett.no/en/for-stakeholders-in-the-power-

industry/tariffs/this-years-tariff. Accessed: 2020-10-07]

https://www.ssb.no/en/statbank/table/12576/
https://www.ssb.no/en/statbank/table/12576/
https://www.statnett.no/en/for-stakeholders-in-the-power-industry/tariffs/this-years-tariff
https://www.statnett.no/en/for-stakeholders-in-the-power-industry/tariffs/this-years-tariff
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system cost per unit of capacity. This gives an assumed total cost of 100
€/kW of grid capacity, which is used for the case study. In general, grid
costs are lumpy and vary depending on site-specific properties. How-
ever, since our interest is mainly regarding game-theoretic aspects of
pricing mechanisms, this simplification is appropriate for investigating
such fundamental pricing aspects. In our case study, all network capac-
ity needs to be built. In addition to the investments, network losses are
specified to 6%.

The Danish energy agency publish characteristics for a range of tech-
nologies including PV and batteries.6 The technology costs for the ER
agent is based on the general technology cost in 2020 where the
utility-scale PV systems cost is 0.42 M€/MWp. Note that this cost level
is very low in the context of neighbourhood-scale systems, but we use
it to illustrate a situation where it is cost optimal for end-users to invest
in PV systems. It can also be argued that this cost is realistic as a conse-
quence of investment subsidies.7 Using an interest rate of 5% and a life-
time of 20 years, this translates to an annual cost of 34 €/kWp for the ER
agent. Large scale lithium-ion battery costs are currently around 150 €/
kWh. Assuming a lifetime of 10 years for batteries and an interest rate of
5% gives an annual cost of 19 €/kWh for battery capacity.

It is assumed that because of economies of scale, small scale systems
costmore than large scale ones per unit of capacity. A premiumof 20% is
therefore assumed for smaller systems, which in this example applies to
the RB agent. Therefore, the annual PV cost is 40.8€/kWp, while annual
battery costs are 22.8 €/kWh for the RB agent.

Converter losses are assumed to be 5% for batteries in both direc-
tions. Furthermore, the power/energy for batteries is assumed to be
fixed at 0.5 kW/kWh. The self-discharge of batteries is assumed to be
0.1% per hour.

For the EV agent, we assume the flexibility associated with the
charging of EVs is 8 hours by specifying an EV storage capacity of
70 ∗ 8 = 560 kWh. In addition, the charging capacity factor is set to
0.5 to allow for a charging capacity of up to 280 kW. No discharge to
the grid is allowed by setting the discharging capacity factor to zero.
EV charging losses are equal to the bi-directional batteries at 5%.

The nominal PV generation data is obtained from PVGIS8 for the lo-
cation of the Ydalir project. After PV-system losses, the annual PV gener-
ation is 779 kWh/kWp of installed capacity. Nominal PV generation for
the four representative weeks is presented in Fig. 4.
4.3. Market price and regulatory assumptions

End-users can have different contracts ranging from spot price based
contracts varying each time step to fixed price contracts. For simplicity,
and in order to focus on the variability of load profiles and decentralized
generation, the wholesale energy price is set to 0.05€/kWh for all time
steps. For systems with large shares of energy communities, there
might be an effect on the wholesale price, but this aspect is out of the
scope of this work. This means that the time-varying input data is lim-
ited to the load profiles and PV generation.

Electricity consumption is usually subjected to taxes. In this paper, it
is assumed that such a tax applies to power imports from both the
wholesale power market and the local market and is specified to 1.6¢/
kWh according to the current taxes on electric power in Norway.9

The grid tariffs are endogenous to the model, but it is necessary to
specify the net metering coefficient exogenously. In this case study,
the net metering coefficient has been set to zero, which means that
6 https://ens.dk/en/our-services/projections-and-models/

technology-data [Accessed: 2020-02-04]
7 https://www.enova.no/privat/alle-energitiltak/solenergi/el-

produksjon-/
8 https://ec.europa.eu/jrc/en/pvgis
9 https://www.skatteetaten.no/en/business-and-organisation/vat-

and-duties/excise-duties/about-the-excise-duties/electrical-power-

tax/ [Accessed: 2020-10-07.]
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only electricity imports are subject to the volumetric grid tariffs. This
is in line with current practice in several countries, including Norway.

4.4. Regulatory frameworks

The analyses are based on three different cases:
1. Case LM: Assumes decentralized decision-making where the

agents in the neighbourhood optimize their individual objective, but
can trade with each other. The neighbourhood agents can also trade
with the wholesale power market, and the DSO agent sets the grid tar-
iffs for such trades based on cost-recovery conditions.

2. Case NOLM: Similiar to case LM, but local trades are not allowed.
This situation is similar to current regulations in many countries.

3. Case SO: System optimization model used for benchmarking. All
decisions are assumed to be made centrally to minimize the total sys-
tem cost for the neighbourhood and the DSO as a whole. The system
cost incorporates the grid costs directly in addition to costs for all
neighbourhood agents. Grid costs are distributed evenly by dividing
the total grid costs by the number of agents in the neighbourhood.

5. Results and discussion

5.1. Total system costs and resource allocation

First, we focus on the system as a whole under different regulatory
frameworks. Fig. 5 provide information on total system costs and how
these costs are distributed among the neighbourhood agents. The DSO
is not represented explicitly as an agent in these figures since the grid
costs are imposed on the neighbourhood agents through the grid fees.
Since the grid costs are forwarded to the neighbourhood agents through
the grid tariffs, the net costs for the DSO are zero. Furthermore, Table 3
provides more detailed information regarding costs, tariffs, and
investments.

The total costs are lowest in the SO case, which provides a bench-
mark for the cases with decentralized decision-making. We use the SO
case as a benchmark since it provides the optimal solution for the sys-
tem as a whole when the aim is to minimize total costs. Hence, from
an efficiency point of view, policies should aim to achieve a solution
close to the SO solution under decentralized decision-making. Com-
pared to the SO solution, we observe a cost increase of 1.2% for the LM
case where local trading is allowed and 4.1% for the NOLM case where
no trading occurs within the neighbourhood. In addition to the total
cost decrease, the LM solution pareto-dominates the NOLM solution
since no agent is worse off and some are better off when the local mar-
ket is included. The grid capacity is the same for the LMand the SO cases,
while it is significantly higher in the NOLM case. The fact that the LM
case provides a system with the same grid capacity as in the SO case
indicates that the combination of decentralized trading and a rather
simple grid tariff scheme can impose the grid costs on end-users in a
cost-reflective way.

In general, the LM solution can not achieve lower total costs than the
SO solution since it is not technically possible to achieve lower costs
than the centralized optimization. Also, if we keep the tariff rates
fixed, the LM solution will never have higher total costs than the
NOLM solution since the neighbourhood agents can always choose to
not trade and achieve the NOLM outcome. Hence, if tariff rates does
not change, the LM solution will always be equal to or between the sys-
tem optimal solution and the NOLM solution. However, since the tariff
rates are designed as a response to the neighbourhood equilibrium,
some agents might be negatively affected by the introduction of such
a market. The composition of the neighbourhood agents will be impor-
tant for the benefits provided by the local market. The market has the
highest value when there are some inflexible and some flexible agents
since such a situation means that we need a mechanism to incentivize
the flexible agents to flatten the coincident peak for the neighbourhood
rather than their individual peak.

https://ens.dk/en/our-services/projections-and-models/technology-data
https://ens.dk/en/our-services/projections-and-models/technology-data
https://www.enova.no/privat/alle-energitiltak/solenergi/el-produksjon-/
https://www.enova.no/privat/alle-energitiltak/solenergi/el-produksjon-/
https://ec.europa.eu/jrc/en/pvgis
https://www.skatteetaten.no/en/business-and-organisation/vat-and-duties/excise-duties/about-the-excise-duties/electrical-power-tax/
https://www.skatteetaten.no/en/business-and-organisation/vat-and-duties/excise-duties/about-the-excise-duties/electrical-power-tax/
https://www.skatteetaten.no/en/business-and-organisation/vat-and-duties/excise-duties/about-the-excise-duties/electrical-power-tax/


Fig. 4. Nominal PV generation in the neighbourhood.
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Comparing the LM and the NOLM cases, it can be observed that a
local market can efficiently allocate the resources in the
neighbourhood since the solution is close to the SO case. In the
LM
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Fig. 5. Total system costs (left) and cost allocation per agent (right) for three cases: Decentraliz
market (NOLM) and centralized decision-making (SO).
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following, we will dig deeper into these findings to explain how
local market mechanisms can benefit both the DSO and other
neighbourhood agents.
Case

NOLM SO

SK ER EV RB SK

Agent

ER EV RB SK

Agent

Centralized market trade
DER investments
Grid fees
Local market trade
Tax

Cost category

ed decision-making with local market (LM), decentralized decision-making without local



Table 3
Overview of key results for three cases: Decentralized decision-making with local market
(LM), decentralized decision-making without local market (NOLM) and centralized deci-
sion-making (SO). Cost data are for one year based on the four weeks condidered in the
analyses.

LM NOLM SO

Total costs [€] 171,148 176,089 169,174
Net costs ER agent [€] 0 0 16,637
Net costs EV agent [€] 48,853 50,834 47,967
Net costs RB agent [€] 64,256 65,119 56,936
Net costs SK agent [€] 58,039 60,136 47,634
Volumetric tariff [¢/kWh] 0.301 0.299 N/A
Capacity-based tariff [€/kW] 100 85.5 N/A
Grid capacity [kW] 271 337 271
Total PV [kW] 663 175 568
ER agent PV [kW] 495 0 395
RB agent PV [kW] 168 175 173
Total battery [kWh] 0 14 0
ER agent battery [kWh] 0 0 0
RB agent battery [kWh] 0 14 0
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5.2. Business case for stakeholders and assets

Now, we focus on the difference between the LM and the NOLM
cases. The NOLM case is most representative of current regulatory
frameworks in Europe.

The ER agent has no load profile but can invest in energy resources if
this turns out to be profitable. Therefore, the ER agent can obtain zero
costs if no investments are made. This happens in the NOLM case,
where all electricity needs to be traded with the wholesale electricity
market. Since the available neighbourhood-scale plants cannot recover
the investment costs by participating in the wholesale market, no in-
vestments are made by the ER agent when there is no local market. In-
stead, despite higher unit costs, neighbourhood investments are
exclusively made by the RB agent, which invests in a PV system with
batteries to decrease the agents' individual costs through behind the
meter optimization.

Fig. 5 also reveal that the investments in a PV system become profit-
able for the ER agent when the local market is introduced. Furthermore,
Table 3 shows that the ER agent has zero costs also in the LM case since
it invests until the point that the income from the local market exactly
balances the investment costs.10

Investments made by the ER agent are exclusively in a PV system in
the LM case, and there are no investments in batteries for the
neighbourhood for neither the LM case nor the SO case (see Table 3).
Consequently, batteries are not able to reduce the total system costs
since no battery investments occur in the SO case. Despite the lack of bi-
directional batteries in the LM and the SO cases, the neighbourhood has
a significant flexibility resource through the EV agent since
neighbourhood load balancing can efficiently be performed by appro-
priate charging of the EVs within certain limits. Additional investments
in batteries are only profitable in the NOLM case for the RB agent (see
Table 3). The battery investments occur in the NOLM case because
each agent optimizes behind their ownmeter and, therefore, can benefit
from investing in resources that limit their interaction with the grid.
However, such individualistic behaviour produces higher total system
costs because the regulatory framework triggers sub-optimal invest-
ments. Sub-optimal investments also induce sub-optimal operations,
which we elaborate on next.

5.3. Pricing mechanisms and operational decisions

One key finding from the previous sections is that the local market
can reduce the required grid capacity to the neighbourhood (see
10 The ER agent does not turn a profit due to the price-taker assumption inherent in the
equilibrium conditions in the model.
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Table 3). This is feasible because the aggregate neighbourhood peak
load is reduced in the LM and the SO cases compared to the NOLM
case. Fig. 6 shows the aggregate load for the week with the highest
load (week 1) along with the local market price. Note that the price
can be very high and such price spikesmight be hard tomonitor in prac-
tice. Price spikes can also give the impression ofmarket power, although
such effects are outside the scope of this paper since we model the
neighbourhood agents as price-takers. The introduction of a local mar-
ket leads to better coordination of the flexible resources in the
neighbourhood, and the aggregate peak load is 20% lower in the LM
and SO cases compared to theNOLMcase.When themarket is not avail-
able, we see load spikes even though the agents are faced with a grid
tariff penalizing high loads. The lacking aggregate neighbourhood
peak load reduction in the NOLM case happens because the agents
with flexible resources are incentivized to reduce their individual peak
load rather than contributing to reducing the aggregate neighbourhood
peak load.

Fig. 7 highlights the importance of coordination within the
neighbourhood. The plot represents 24 h during the winter season
when the original aggregate neighbourhood peak load is the highest
(time steps 25–48), and we will refer to this time period as ‘the critical
winter day’. It is evident that during ‘the critical winter day’, the
neighbourhood agents all employ a flat trading profile seen from the
wholesale power market in the LM case compared to the NOLM case.
Constant power purchase from the centralized power market would
not be possible for the SK agent in particular without the local market
since the SK agent has no flexible resources, and its demand varies
over the day.

Since trading with the centralized power market is rather constant
during this day, we can extract some information from how the agents
interact with the local market, as depicted in Fig. 8. For example, the EV
agent buys more than 100 kWh/h during the first 5 h through the SK
and RB agents in the local power market, and the EVs are charged
while the SK and RB agents have unused capacity. Note that the local
trading happens even though the SK and RB agents do not produce en-
ergy, but are forwardingpower bought from the centralized powermar-
ket. The roles are switched during daytime when the EV and RB agents
sell power to the SK agent during the second half of the day.

Note that the EV sales are not due to discharging (vehicle-to-grid)
from the EVs; it is electricity purchased from the centralized power
market by the EV agent that is sold in the local market instead of
being used for EV charging. The forwarding of power from the central-
ized market via neighbourhood agents occurs because of the tariff
scheme in place, where the agents pay for their individual peak load.
When agents have unused capacity (low load), they choose to use this
capacity to buy more power than needed for their own consumption
and sell it to other neighbourhood agents that need it. Forwarding
power to a neighbouring agent is an illustration of how local markets
can facilitate coordination among different stakeholders by creating
appropriate incentives for coordination. The incentives are created be-
cause the grid capacity is free of charge for end-users that are not
close to their peak power while it is expensive for end-users that are
close to their peak power. Hence, since different agents value the
same resource differently, the business case for a localmarket is created.
Consequently, situations where the aggregate neighbourhood load is
high will be signalled to the end-users through high prices in the local
market when all the end-users are close to their peak load.

These findings highlight that with the local market framework,
agent EV charges the EVs during the first part of the day in order to bal-
ance the electricity consumption for the neighbourhood as a whole.
Without the local market, the rational choice for the EV agent is to
spread the EV charging evenly throughout the day to minimize the
agents individual peak load, regardless of the overall load situation
(see Fig. 9). Such individualistic incentives are consistent with the situ-
ation without a local market (NOLM) and result in a higher aggregate
neighbourhood peak load, as depicted in Fig. 6.
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Fig. 7. Trading with the centralized power market during ‘the critical winter day’ when the local market is available (left) and without the local market (right).
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Fig. 8. Trading in local market (left) and corresponding local market price (right) during the critical winter day (hours 25–48).
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Fig. 9. EV charging and battery operation during ‘the critical winter day’ when the local market is available (left) and without the local market (right).
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5.4. Equilibrium tariffs and DSO cost recovery

For completeness,we explorewhat happenswhen the tariffs deviate
from the equilibrium state for the LM case. Fig. 10 presents how the
DSOs profit, and the grid capacity changes when we vary the tariffs
from zero and upwards. The base tariffs, representing a 0% deviation,
are equivalent to case LM. We run analyses using the MCP model
starting from a tariff deviation of −100% and increase the tariffs in
10% intervals. Agent ER and RB invest in increasing amounts of PV and
batteries as the tariffs increase since interaction with the wholesale
market becomes increasingly expensive.

Fig. 10 shows that we have two equilibria that satisfy the DSO cost
recovery criterion of zero profits. The first equilibrium occurs at a tariff
deviation of 0%, which is the LM solution where the DSOs expenses
are exactly balanced by tariff income. The second equilibrium occurs
when the tariffs are increased by more than 42 times (+4,210%) from
the first equilibrium level. The second equilibrium occurs when the tar-
iffs becomes so high that the neighbourhood agents decide to be
completely self-sufficient, and the DSO has no investments and no in-
come. These results indicate that it can be costly to replace the grid en-
tirely with decentralized resources.
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5.5. Impact of tax rate on the results

So far, we have included an electricity tax on imports from both the
wholesale power market and the local market. However, such a tax in-
herently promotes behind the meter optimization in the local market
and therefore we expect the tax rate to limit the trading in the local
market. To investigate the effect of the electricity tax rate on the results,
we compare the results for different tax rates in the LM case.

Table 4 reports the results for three different electricity tax rates:
1) zero taxes, 2) tax as before, 3) double tax rate. The total costs are al-
most equal to the SO case when we remove the electricity tax and the
LM solution becomes more expensive than the SO solution as the elec-
tricity tax is incresed. The reason for the deviation from the system op-
timal solution is mainly that the tax limits the trading in the local
market since the agents need to pay a premium on electricity imports
from the other agents in the local market.

The tax rate makes imports from both the wholesale and local mar-
kets more expensive. An increase in the tax rate mainly affects the PV
capacity in the local system. When there is no tax on electricity, all the
PV capacity is installed at the ER agent since it has the lowest invest-
ment costs. As the tax increases, the PV capacity shifts to the RB agent
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Table 4
Sensitivity to tax change for the LM case.

Tax = 0 Tax = 1.6 Tax = 3.2

Cost change from SO [%] +0.01 +1.17 +1.97
Volumetric tariff [¢/kWh] 0.300 0.301 0.301
Capacity-based tariff [€/kW] 100 100 100
Grid capacity [kW] 271 271 271
Total PV [kW] 610 663 769
ER agent PV [kW] 610 495 460
RB agent PV [kW] 0 168 309
Total Battery [kWh] 0 0 0
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as the cost reduction from self-consumption of energy dominates the
investment cost increase at the RB agent. The ER agent, however, de-
creases investments because it becomes less competitive in the local
market when its product is taxed. In total, the PV capacity increases
with a higher tax rate since the increase at the RB agent is higher than
the decrease at the ER agent.
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6. Conclusion and policy implications

In this paper, we propose a game-theoretic framework to analyze a
local trading mechanism and its feedback effect on grid tariffs under
cost recovering conditions for the DSO. In this game-theoretic model,
we construct a case study which is inspired by regulatory issues that
have been identified in an ongoing pilot project in Norway. Our results
are based on calculations using representative data from four weeks,
where each week represents one season of the year.

Within our assumptions, our main finding is that the establishment
of a local electricity market in a neighbourhood pareto-dominates the
situationwithout a localmarket and could decrease the total costs by fa-
cilitating local coordination of resources and thus create socio-economic
value. The novelty of our analysis is to show how local market activity
does not just save costs for neighbourhood stakeholders, but in fact, im-
pacts the regulated tariff rates as the local market activity defer some of
the DSO costs. When we compare the establishment of a local market
with a regulatory frameworkwithout any localmarket,we observe a re-
duction in total costs including the need for grid capacity for the system
as a whole.

The local market creates value because it is able to coordinate the
flexible assets on the neighbourhood level rather than at the individual
end-user level. The presence of a capacity-based tariff in combination
with a local market mechanism is crucial for these findings since it cre-
ates the appropriate price signal to lower the aggregate peak load for the
neighbourhood. The peak load is reduced because the localmarket price
reflects the scarcity of capacity in the overall neighbourhood.

Two equilibrium solutions satisfy the DSO cost-recovery criterion:
(1) The DSOs costs are exactly balanced by tariff income and a signifi-
cant interaction between the neighbourhood and the larger power sys-
tem and (2) at very high tariffs the neighbourhood decides to
completely disconnect from the larger power system. In the second
equilibrium, the DSO has zero costs and income. These results indicate
that although a local trading mechanism can reduce the need for grid
capacity, it can be costly to disconnect from the system completely.

Local electricitymarkets are currently prohibited inmost parts of the
world. Although the establishment of a local electricity market shows
promising potential according to our results, there are several consider-
ations to be made upon evaluating the allowance of local electricity
trading. Firstly, the cost of establishing and administrating a local elec-
tricity market cannot exceed its net saving potential. With automation
and smart metering infrastructure, this countervailing cost is hopefully
small enough. Secondly, the saving potential identified in our analysis
is dependent on rational and reliable reactions by distributed market
participants to reduce peak neighbourhood load rather than increasing
the grid capacity. Thirdly, the highest value of establishing a local
13
market is likely to be related to deferring grid development, i.e., defer
upgrading grid capacity in an area where power outtake is increasing.

Whether a DSO iswilling to depend on the rational reactions bymar-
ket participants rather than relying on robust development and dimen-
sioning of grid infrastructure is worth considering. An underlying
assumption in this paper is that the agents are risk-neutral and, there-
fore, purely motivated by reducing their expected costs. However,
since different regulatory frameworks might fundamentally affect the
cost distribution for the involved stakeholders, further research could
go in the direction of including risk preferences in the modeling
framework.
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Appendix A Mathematical symbols

Nomenclature

Sets

∈ [1,…,C]
 Neighbourhood agents

∈ [1,…,H]
 Hours

arameters

h
P
 Power market price in hour h (€/kWh)

G
 Existing transmission capacity (kW)

c, h
 Electricity demand in hour h (kWh/h)

c, h
Δ−
 EV demand in hour h (kWh/h)

c, h
E
 Energy resource availability at agent c in hour h (kW/kWp)

, IcS
 Annualized investment costs at agent c (€/kW/year)
Annualized investment cost for grid capacity (€/kW/year)

G
 Transmission losses (%)

c
S
 Energy storage converter losses at agent c (%)

M
 Net-metering coefficient

c
ch
 Energy storage capacity ratio for charging at agent c (kW/kWh)

c
dis
 Energy storage capacity ratio for discharging at agent c (kW/kWh)

c
 Energy storage self-discharge at agent c (%/h)
Excise tax (€/kWh)

c
E, Uc

S
 Resource limits at agent c (kW)

h
 Weight of hour h (h/h)

pper-level variables

SO
 Investment in interconnection capacity (kW)

t
 Capacity-based network tariff (€/kW)
h
GE
 Neighbourhood exports in hour h (kWh/h)

h
G
 Neighbourhood load in hour h (kWh/h)

h
GI
 Neighbourhood imports in hour h (kWh/h)

nt
 Volumetric network tariff (€/kWh)

ower-level variables

xpc, h

P
 Energy exported to grid at agent c in hour h (kWh/h)

h
L
 Market price in the local market in hour h (€/kWh)
Energy resource capacity at agent c (kW)

Measured peak load at agent c (kW)

Storage capacity at agent c (kWh)
c, h
Δ+, dc, hΔ−
 Battery charge/discharge at agent c in hour h (kWh/h)

xpc, h

L
 Energy exported to local market at agent c in hour h (kWh/h)

c, h
E
 Energy generation at agent c in hour h (kWh/h)

pc, h
P
 Energy imported from grid at agent c in hour h (kWh/h)
pc, h
L
 Energy imported from local market at agent c in hour h (kWh/h)
, h
 Battery state of charge at agent c in hour h (kWh)
sc
Appendix B MCP formulation of local energy system

We derive the KKT conditions of the neighbourhood level based on
the optimization problem described in section 3.2. Since our original
problem is linear and has a convex feasible area, the KKT conditions
are necessary and sufficient.
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ISc þ μS2
c −∑

H

h¼1
μS3
c,h þ Pch

c � μS4
c,h þ Pdis

c � μS5
c,h

� �
≥ 0 ⊥ cSc ≥ 0 ∀c ðB:1Þ

IEc þ μE1
c −∑

H

h¼1
μE2
c,h � GE

c,h ≥ 0 ⊥ cEc ≥ 0 ∀c ðB:2Þ

Wh � λP
h þ T þ vnt

� �

−λEB
c,h þ μG

c,h ≥ 0 ⊥ impPc,h ≥ 0 ∀c,h
ðB:3Þ

−Wh � λP
h þ NM∗vnt

� �

þ λEB
c,h þ μG

c,h ≥ 0 ⊥ exp P
c,h ≥ 0 ∀c, h

ðB:4Þ

Wh � λL
h þ T

� �
−λEB

c,h ≥ 0 ⊥ impLc,h ≥ 0 ∀c,h ðB:5Þ

−Wh � λL
h þ λEB

c,h ≥ 0 ⊥ exp L
c,h ≥ 0 ∀c, h ðB:6Þ

cnt−∑
H

h¼1
μG
c,h ≥ 0 ⊥ cGc ≥ 0 ∀c ðB:7Þ

λEB
c,h− 1−LSc

� �
� λS1

c,h þ μS4
c,h ≥ 0 ⊥ dΔþc,h ≥ 0 ∀c, h ðB:8Þ

1þ LSc
� �

� λS1
c,h−λEB

c,h þ μS5
c,h ≥ 0 ⊥ dΔ−c,h ≥ 0 ∀c,h ðB:9Þ

−λEB
c,h þ μE2

c,h ≥ 0 ⊥ gEc,h ≥ 0 ∀c,h ðB:10Þ

λS1
c,h− 1−Rcð Þ � λS1

c,hþ1

þ μS3
c,h ≥ 0 ⊥ sc,h ≥ 0 ∀c,h<H

ðB:11Þ

λS1
c,H− 1−Rcð Þ � λS1

c,1 þ μS3
c,H ≥ 0 ⊥ sc,H ≥ 0 ∀c ðB:12Þ

impPc,h− exp P
c,h þ impLc,h− exp L

c,h

−Dc,h −dΔþc,h þ dΔ−c,h þ gEc,h ¼ 0 ⊥ λEB
c,h ∀c, h

ðB:13Þ

1−Rcð Þ � sc,h−1 þ 1−Lcð Þ � dΔþc,h
− 1þ Lcð Þ � dΔ−c,h −DΔ−

c,h −sc,h ¼ 0 ⊥ λS1
c,h ∀c,h>1

ðB:14Þ

1−Rcð Þ � sc,H þ 1−Lcð Þ � dΔþc,1
− 1þ Lcð Þ � dΔ−c,1 −DΔ−

c,h −sc,1 ¼ 0 ⊥ λS1
c,1 ∀c

ðB:15Þ

US
c−cSc ≥ 0 ⊥ μS2

c ≥ 0 ∀c ðB:16Þ

cSc−sc,h ≥ 0 ⊥ μS3
c,h ≥ 0 ∀c,h ðB:17Þ

cSc � PS
c−dΔþc,h ≥ 0 ⊥ μS4

c,h ≥ 0 ∀c, h ðB:18Þ

cSc � PS
c−dΔ−c,h ≥ 0 ⊥ μS5

c,h ≥ 0 ∀c,h ðB:19Þ

cGc−impPc,h− exp P
c,h ≥ 0 ⊥ μG

c,h ≥ 0 ∀c,h ðB:20Þ

UE
c−cEc ≥ 0 ⊥ μE1

c ≥ 0 ∀c ðB:21Þ

cEc � GE
c,h−gEc,h ≥ 0 ⊥ μE2

c,h ≥ 0 ∀c,h ðB:22Þ

∑
C

c¼1
exp L

c,h−impLc,h
� �

¼ 0 ⊥ λL
h ∀h ðB:23Þ
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