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A B S T R A C T

This paper introduces a novel co-simulation framework running on the Java Virtual Machine
built on a software architecture known as the Entity-Component-System. Popularised by games,
this architecture favours composition over inheritance, allowing for greater flexibility. Rather
than using a fixed inheritance tree, an entity is defined by its traits, which can be seamlessly
changed during simulation. The framework supports the Functional Mock-up Interface standard
for co-simulation, as well as the System Structure and Parameterisation standard for defining the
system structure. Furthermore, the employed architecture allows users to seamlessly integrate
physics engines, plotting, 3D visualisation, co-simulation masters and other types of systems
into the framework in a modular way. To show its effectiveness, this paper compares the
framework to four similar open-source co-simulation frameworks by simulating a quarter-truck
system defined using the System Structure and Parameterisation standard.

. Introduction

This paper introduces Vico, a novel high-level co-simulation framework, which is founded on a software architecture based on
he Entity-Component-System (ECS) architecture [1–4]. The ECS, and variations of it, has roots from the gaming world [5] and
ollows the composition over inheritance principle, which allows for greater flexibility in terms of defining simulation objects than
raditional alternatives afford. Rather than having objects inheriting data and functionality from a parent object (object-oriented
rogramming), the object (entity) is composed of data (components). Every entity consists of one or more components which contains
ata. Therefore, the behaviour of an entity can be changed during run-time by systems that add, remove, or mutate components.
his eliminates the ambiguity problems of deep and wide inheritance hierarchies that are difficult to understand, maintain and/or
xtend. In an inheritance-based architecture, for example, an instance of class Breakable will always be of type Breakable, while
ithin an ECS the Breakable component in an entity can be removed or replaced with other components, seamlessly changing the
ntity’s characterisation. The ECS architecture should not be confused with the entity-component (EC) architecture employed by
ainstream game engines like Unreal Engine and Unity3D. While similar, the EC architecture does not split behaviour and data

etween systems and components. Rather, the component takes the role of both. In the employed ECS architecture, illustrated by
ig. 1, every object taking part in the simulation is known as an entity. An entity is basically just a container for components. A
omponent is just state, with no behaviour. Behaviour is added to the simulation through systems that acts on entities within a
ertain family. A family is a set of entities with a certain set of components attached. These systems are responsible for acting
pon and/or mutating the state of these components, which then drives the simulation forward. Entities, components, and systems
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Fig. 1. High level overview of the ECS architecture.

may be added or removed from the engine at any time; thus family relationships, what an entity represents, and which entities a
given system acts on are all highly dynamic. Achieving flexibility in terms of how objects in a simulation behaves and what they
represent has always been a key driver for Vico, which was originally developed to support research activities related to virtual
prototyping at NTNU Ålesund. Being able to change the fidelity of a running simulation is beneficial here, for example to intuitively
enable the transformation of a virtual prototype purposed for a real-time training scenario into a more accurate engineering oriented
simulation. In order to accommodate changing the fidelity of a running simulation like this, it is necessary to retain state. The ECS
architecture solves this in a natural way by logically keeping state and behaviour separate. While the related EC architecture allows
flexibility in terms of what an object represents, through adding/removing components just like with ECS, it does not accommodate
state preservation.

Vico focuses on co-simulation and naturally supports the Functional Mock-up Interface (FMI) standard [6], which aims to improve
the exchange of simulation models between suppliers and original equipment manufacturers. Currently at version 2.x, the FMI is a
tool-independent standard that supports both model exchange (ME) and co-simulation (CS) of dynamic models. The key difference
between these two variants is that CS models embed a solver, making them easier to deploy at the cost of flexibility. A model
implementing the standard is called a Functional Mock-up Unit (FMU), and is distributed as a zip-file with the extension .fmu. This
archive contains:

• An XML-file that contains meta-data about the model, named modelDescription.xml.
• C-code implementing a set of functions defined by the FMI standard.
• Other optional resources required by the model implementation.

Since the introduction of the FMI standard, a number of libraries and software tools have been created or adapted to support it. At
the time of this writing, the official FMI web page lists over 140 tools, which clearly shows that the standard has been well received.
A recent survey showed that experts consider the FMI standard to be the most promising standards for continuous time, discrete
event, and hybrid co-simulation [7]. Vico supports both version 1.0 & 2.0 of the FMI for CS. ME models are not directly supported
and should be converted to a CS model a priori in some appropriate tool. Distributed execution is possible using FMU-proxy [8],
which makes it possible to run otherwise incompatible FMUs due to limitations in the FMU or incompatible system requirements.
The System Structure and Parameterisation (SSP) [9] standard is also supported, which enables a tool-independent way of defining
complete systems consisting of one or more components (such as FMUs), including their parameterisation.

Vico has in various forms been developed internally at the Intelligent Systems Lab with NTNU Ålesund for several years, serving
as a test bed for testing software architectures to support simulation & visualisation of cyber-physical systems, virtual prototyping,
and digital twin systems [10,11]. The current focal point is to act as an enabling technology for the MAROFF KPN Project Digital
Twins for Vessel Life Cycle Service (TwinShip),1 with the purpose of developing digital twins of maritime systems and operations,
which allows for not only configuration of systems and verification of operational performance, but also the provision of early
warning, life cycle service support, and system behaviour prediction. As illustrated in Fig. 2, the use of co-simulation together with
data-related optimisation, like data purification, and machine learning methods will be seamlessly combined from the design phase
to the maintenance phase to achieve heterogeneous simulation, data analytics and behavioural prediction of maritime systems.

The rest of the paper is organised as follows. Firstly, some related work is presented in Section 2, followed by a description of the
software architecture in Section 3. Case-studies are presented in Section 4, and some concluding remarks and future works appear
in Section 5.

1 https://org.ntnu.no/intelligentsystemslab/project/twinship.html.
2
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Fig. 2. A plausible development procedure of digital twins system for the marine industry.

2. Related work

The following presents existing open-source FMI based co-simulation frameworks, which also support the SSP standard. While
the FMI standard enables the same model to be simulated in different tools, the SSP standard enables the same system to be simulated
in different tools. This seems attractive, but in practice there are only a few tools that actually support the SSP standard. These are
as follows:

FMIGo! [12] is a software infrastructure to perform distributed simulations with FMI-compatible components that run on all
major platforms. Both CS and ME FMUs are supported, where ME FMUs are wrapped into CS FMUs. FMI Go! uses a client–server
architecture, where a server hosts an individual FMU. The server and clients components are implemented using C++. The software
supports a draft version of the SSP standard. Unfortunately, the development of FMIGo! is currently stagnant and pre-built binaries
are not available. On the plus side, FMIGo! provides some quite advanced co-simulation algorithms that could provide better
accuracy and/or performance than other frameworks.

FMPy [13] is a free Python library from Catia Systems for simulating FMUs. FMPy supports both FMI 1.0 and 2.0 for ME and
CS. Using solvers from the Sundials package, FMPy can be used to solve ME FMUs. It also features both a command line utility and
a graphical user interface for running and presenting simulation results. Like FMIGo! the software support the SSP standard, but
only a draft version.

libcosim [14] is a cross-platform C++ library for performing co-simulation. The library was open-sourced in 2020 and ships with
support for FMI 1.0 & 2.0 for CS as well as basic SSP 1.0 support. Additionally, libcosim provides a reference implementation of
the OSP-IS [15], a newly introduced standard for defining the co-simulation structure. Furthermore, libcosim provides a C interface
for easier integration with other languages, as well as a Java wrapper (cosim4j), command line interface (CLI) tool (cosim), and a
client/server demo application (cosim-demo-app) provides a basic web interface and plotting capabilities.

OMSimulator [16] is an FMI-based co-simulation tool that supports ordinary (i.e., non-delayed) and Transmission Line Modelling
connections. It provides a C-API and language wrappers for this API in Lua and Python. The OMSimulator is available both as a
standalone and through OpenModelica [17], which also provides it with a user interface. Additionally a CLI is available.

Other open-source co-simulation tools worth mentioning here are DACCOSIM [18], Maestro [19], Coral [20] and MasterSim [21].
However, these tools does not provide a standardised way of defining the system to be simulated as the SSP standard provides.

It should be noted that neither FMPy nor FMIGo! support version 1.0 of the SSP standard. Rather, they support an older draft
version of the standard, which is no longer publicly available and that is not compatible with the released version. This makes the
SSP feature quite complicated to use and defeats some of the purpose of the SSP as no other tool can load the system.

The frameworks mentioned above use traditional software architectures centred around a master algorithm and FMI-compatible
models. The ECS architecture applied to military simulators are considered in [5,22]. What differentiates the framework introduced
in this paper from any of the systems mentioned above is how it integrates co-simulation with an ECS architecture. It allows
integration of components handled by different systems to be connected in a co-simulation fashion, with data transfer occurring at
discrete communication steps. A system could be generic or represented by more tangible concepts like an FMI master or a physics
engine. By adding or removing systems and components the nature of simulation can be changed seamlessly during execution. As
behaviour and state are logically separated between systems and components, state is retained even if the behaviour changes.

However, with great flexibility comes great responsibility. Vico does not define any sort of ontology [23]. Thus, there are no
pre-defined set of rules related to how a simulation is designed or what a certain set of components represent. In [2] the authors
3
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Fig. 3. Anatomy of an entity. An entity is a collection of components. Components can be seamlessly added and removed, which effectively changes what the
entity represents.

and allow functionality changes during run-time. Similarly, using the family concept described later, Vico handles run-time detection
of entity types without the need of pre-declaring an ontology. As Vico puts no restraint on the type of objects created, it is the users
responsibility to avoid ill-formed simulations. However, much of this responsibility can be delegated using a standardised format
like the SSP. Another related standard is the ontology based OSP-IS, which provides the means of adding semantic meaning to model
interface variables. Ontology is also applied in [24] to describe simulation model parameters in a simulation system independent
way.

3. Software architecture

This section introduces Vico, a high-level co-simulation framework based on the ECS software architecture. Implementing Vico
around an ECS architecture provides a number of benefits, such as a clear separation between state and behaviour, flexibility, and
extensibility. The framework is designed so that physics engines and other types of systems that are not FMUs can be integrated into
a co-simulation setting. Many students at NTNU Ålesund are also exposed to the related EC architecture from using Unity3D, which
should make the concept of ECS easier to reason with. Vico is written in Kotlin/JVM, a strongly typed language 100% interoperable
with Java, which in turn allows it to be used as a library by any JVM language. The fact that Vico runs on the JVM makes it
very accessible and easy to extend with the vast amount of high quality libraries covering most needs imaginable. It also makes
the system more approachable to students at NTNU Ålesund, which has a long history of teaching Java in their courses. Building
and developing software is generally easier on the JVM, especially for many students, compared to a native tool-chain, which is
often employed by simulators. Not only that, but with the recent developments of GraalVM [25], a JVM run-time with support for
polyglot programming, it is possible to extend or embed Vico using JavaScript, R, or Python code without any additional run-time
overhead.

Some of the main features of Vico are as follows:

1. ECS-based software architecture that allows discrete connections between components.
2. Support for FMI 1.0 & 2.0 for co-simulation.
3. Support for SSP 1.0.
4. A CLI for simulating single FMUs and systems of FMUs described using SSP.
5. 3D visualisation and 2D plotting capabilities.
6. Modular, easy to extend framework.
7. Implemented in Kotlin, 100% interoperable with other JVM languages like Java.

A description of some of the core elements used within the context of Vico is given below.

3.1. Entity

An entity is basically just a collection of components as illustrated by Fig. 3. By adding the correct components to an entity,
any type of simulation object can be created. In a pure ECS, entities may be represented simply by an integer. In Vico, however, an
entity is an object with a (unique) name and an optional tag. This makes it possible to look up an entity once it has been added to
the simulation. An entity is a concrete class and cannot be extended.

3.2. Component

A component contains data. Additionally, a Vico component can define so-called properties, which can be used in connections
between components. While the data within a component can be of any type, properties can only be of type integer, double, boolean
or strings. This ensures compatibility with the FMI standard. Only data that are meant to be plotted, exported to file, or used in
connections need to be mapped to a property.
4
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3.3. Family

In naive ECS implementations, every system iterates through the complete list of all entities, and selects only those entities that
hould be processed. This work is repetitive and cumbersome for the user. Furthermore, it makes systems difficult to reason about as
heir ontology is not explicit. The concept of families found in ECS implementations such as Ahsley [26] are a way to mitigate this.

family is a list of entities that all contain or exclude a specific set of component types. As components are added or removed from
n entity, its family changes. Subsequently, this triggers an add/remove event that is pushed to subscribers, e.g. systems, which
ct accordingly. This process ensures that a system only iterates through the relevant entities. This might increase performance,
specially when component changes are infrequent. However, the main reason for incorporating this feature is to improve usability.
amilies provides an ontology to systems that ensures that the entities available are limited to those it has explicitly asked for. This
elps reducing code-bloat as certain assertions are made superfluous and enables self-documenting code.

.4. System

A system subscribes to a given family of entities, and is responsible for acting upon or mutating the state of the relevant
omponents belonging to the entities in those families. For example, a PhysicsSystem may subscribe to a family of entities that

hold a Transform, Geometry, and a Rigidbody. Adhering to the laws of physics, this system will then update the position and rotation
of the component during each simulation step. As behaviour and state is separated between systems and components, this allows
use-cases where the physics implementation can be changed on the fly simply by replacing the system. Some ECS architectures let
each system run in a separate thread, continuously updating components. In Vico, however, systems are stepped forward in time
explicitly by the engine to ensure determinism. As systems might potentially act on the same set of components, systems are assigned
a priority, which ensures that changes are performed in a user determined order.

3.5. Engine

The engine is the heartbeat that controls and connects every part of the architecture together. As illustrated by Fig. 4, the
engine consists of an EntityManager, a SystemManager, a ConnectionManager and a InputManager, which, as the naming suggest,
handles aspects related to entities, systems, connections, and peripheral input respectively. The EntityManager also plays a role as
the ComponentManager found in some ECS implementations. Unlike common game engines with an ECS architecture, Vico’s rate of
simulation is not dependent on the variable rendering speed of the graphics processing unit. Rather it may only be stepped using
a user provided step-size. In order to achieve real-time execution of the simulation, the engine provides access to a wrapper class
called EngineRunner that allows the user to control the real-time factor (RTF) of the simulation. By setting the RTF to 1.0, the system
will try to synchronise the wall-clock and simulation-clock—slowing down the simulation if necessary.

3.6. Connections

Component properties can be connected, allowing data transfer between components during discrete communication intervals.
This allows FMI components to be connected with other types of components that are not FMUs, such as rigid bodies. It is possible to
apply modifier functions to connections that will modify the output value before it is applied to the output, for example to convert
a unit or to apply a filter.

3.7. Scenarios

Scenarios in the context of Vico are pre-configured actions to be executed at specific time points or events during the simulation.
Scenarios can be specified to last for a limited time period only, after which any variables that may have changed will be reset
to its original value, e.g. to simulate a fault. Scenarios are written in Kotlin, even when provided as standalone input files, which
are interpreted as scripts. Unlike typical configuration file formats like JSON, XML or YAML, Kotlin allows users to use logical
expressions and otherwise use the full potential of the JVM when writing scenario logic.

3.8. Add-on modules

An overview of the available software modules for Vico are shown in Fig. 5. Much like a game engine, the core Vico module does
not provide much functionality other than providing the infrastructure to develop generic co-simulations. However, a number of
complementary components and systems are provided. The Transform for instance, holds a position and rotation in 3D space. These
components can be parented to another so that when the parent transform changes, the child will move with it. In order to add 3D
representation to an entity, a Geometry is available. Both of these components are required for rendering. A GeometryRenderer is also
available, which transform the data provided by the components to actual objects rendered on the screen. 3D visualisation can be
configured in code or through an XML configuration file, which is especially useful as this allows users to enable 3D visuals when
invoking Vico through the provided CLI, described in more detail later. As the 3D graphics window allows for capturing mouse and
keyboard events, these inputs could potentially be used, for example to interact with the simulation dynamically in order to more
intuitively understand how a system behaves.
5
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Fig. 4. Composition of the various elements found in the Vico ECS implementation.

Fig. 5. Overview of available software modules.

Vico also provides a set of generic physics components, such as rigid bodies and constraints through the physics-api module. For
example, the Rigidbody makes an entity subject to the laws of physics. However, as components have no logic, an entity with a
Rigidbody will not fall to the ground unless some sort of PhysicsSystem is added to the simulation. However, in order for the rigid
body to move, it needs a position (Transform) and in order for it to collide it needs a 3D representation (Collider). A system that
makes use of these physics components, adding behaviour to the entities holding them, have been implemented using the Bullet [27]
physics engine, which is available through a module named bullet-physics.

A module named fmi adds support for FMI 1.0 & 2.0-based co-simulation, and relies on FMI4j [28] for interacting with FMUs.
Since FMI4j was initially released, it has changed the way it interacts with native code, making it the fastest open-source JVM
library for simulating FMUs. The library also supports export of FMUs compatible with FMI 2.0 for co-simulation and provides a
Gradle plugin to simplify the usage of this feature. This allows for a workflow where slaves can be automatically exported to FMUs
during the build process and loaded by Vico within the same project. The fmi module adds a system named SlaveSystem that takes
an instance of MasterAlgorithm, which is an interface, as a constructor parameter. The idea is that users should be free to develop
6
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their own master algorithm. However, the module also provides a ready-to-use implementation of a fixed step-size master algorithm,
which allows users to configure slaves to run at different rates. Now, due to the fact that FMUs comprise both behaviour and state,
they are difficult to fit into an ECS architecture, as they fit into neither a component nor a system. This is solved in Vico by creating
a component that represents the location of an FMU. This component also contains a buffer for variable writes and a cache for
variable reads. The system then loads the FMU from the path specified and continuously updates the cache/buffer. This enables
read and write operations to be performed in bulk and access to variable values are cached, which help maintain performance as
simulations become more complex. This is especially true if the underlying FMU operations are slow due to internal implementation
details such as networking. SSP support is also provided by the fmi module. Currently, there is no up-to-date list of tools that support
he SSP standard, and the authors are only aware of two other non-commercial tools that support version 1.0, namely OMSimulator
nd libcosim. None of these support the entire standard, but they support enough features to support common use-cases. FMPy and
MIGo!, mentioned in the previous section, only supports an out-of date draft version, from which the documentation is no longer
ublicly available. Furthermore the draft version is different between the tools, both of which are incompatible with each other. Like
MSimulator and libcosim, Vico supports a limited set of the SSP 1.0 standard, where additional features might be implemented as
se-cases appear.

Being able to make sense of a simulation while it unfolds or immediately afterwards is quite valuable, which is why Vico offers
upport for plotting time-series and XY charts. The properties of these plots can be defined using an XML input file or configured
n code. The plots can be configured to be shown and updated live or at the end of a simulation run.

.9. Command line interface

To allow non-programmers and to enable easier access to the software in general, Vico ships with a pre-built and cross-platform
LI. The top-level commands are presented in Listing 1. In turn, these takes additional parameters, which may be investigated by

nvoking the command with no arguments provided.

Listing 1: Vico command line interface
Usage : <main c la s s > [−h] [COMMAND]

−h , −−help Display a help message .
−v , −−vers ion P r i n t s the vers ion of t h i s app l i ca t i on .

Commands :
simulate−fmu Simulate a s i ng l e FMU.
simulate−ssp Simulate an SSP co−s imulat ion system .

The simulate-fmu command takes an FMU as input and simulates it. This is mostly useful for testing an FMU that would normally
e used as a building block in a larger system, whereas the simulate-ssp command takes an SSP archive as input and simulates it. In

both cases, the simulation can be decorated with 2D plots, 3D visualisations, and scenarios by specifying additional input files.

3.10. Scripting

Vico itself does not provide scripting, but the implementation language Kotlin does. This makes it natural to use Vico in a
scripting context. A scripting example is provided in Listing 2. This example shows the modularity of Vico, as modules are included
as required. The script file can be executed within the context of IntelliJ IDE or in a shell on any system with a stand-alone Kotlin
compiler. This could be an easier way to develop and distribute use-cases than creating Maven or Gradle projects, as is common
when developing on the JVM. A custom Domain Specific Language (DSL) is also available, aimed at easing the creation of Vico
simulations.

Listing 2: Using Vico with Kotlin scripting.
@file : Reposi tory ( " h t tp s : // dl . b in t ray . com/ntnu−ihb/mvn" )

@fi le : DependsOn ( " no . ntnu . ihb . vico : core : 0 . x . x " )
@fi le : DependsOn ( " no . ntnu . ihb . vico : char t : 0 . x . x " )
@fi le : DependsOn ( " no . ntnu . ihb . vico : jme−render : 0 . x . x " )

import no . ntnu . ihb . vico . core .∗

Engine ( ) . use { engine −>
. . .

}

4. Case studies

This section describes two case-studies to show the effectiveness of the Vico framework. The first case-study is used to compare
he accuracy and performance of Vico against other SSP compatible co-simulation frameworks using a simple quarter-truck system.
he second case-study shows a more complex co-simulation of the NTNU owned research vessel Gunnerus, demonstrating parallel
erformance as well as the 3D and plotting capabilities of Vico.
7
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Fig. 6. Illustration of the quarter-truck system.

Table 1
Input and output variables of the quarter-truck models used for connections.

FMU Variable Input/output Description

Chassis 𝐹𝑠𝑢𝑠𝑝 Output Chassis suspension force applied to the wheel.
�̇�𝑤 Input Velocity of the wheel from the wheel model.

Wheel

𝐹𝑠𝑢𝑠𝑝 Input Chassis suspension force from the chassis part.
�̇�𝑤 Output Velocity of the wheel sent to the chassis part.
𝐹𝑡𝑦𝑟𝑒 Output Tyre force applied to the ground.
�̇�𝑔 Input Ground profile, given as vertical velocity variation from the ground model.

Ground 𝐹𝑡𝑦𝑟𝑒 Input Tyre force from the truck wheel.
�̇�𝑔 Output Ground profile, given as vertical velocity variation sent to the wheel.

Table 2
Summary of tools included in the case study.

Tool Main implementation language Platform support FMI version SSP version

FMPy Python Win, Linux, Mac 1.0 & 2.0 for CS Draft20171219
FMIGo! C++ Win, Linux, Mac 2.0 for CS & ME Draft20170606
libcosim C/C++ Win, Linux 1 .0 & 2.0 for CS 1.0
OMSimulator C/C++ Win, Linux, Mac 1 .0 & 2.0 for ME & CS 1.0
Vico Kotlin/JVM Win, Linux 1 .0 & 2.0 for CS 1.0

4.1. Quarter-truck case-study

In the following case study, the tools listed in Table 2 are used to load and simulate the same models representing a simplified
quarter-truck system, also known in the literature as a quarter-car system [29–31]. The system for simulation is defined using the
FMI and SSP standards in order to test performance in terms of accuracy and efficiency [32]. The model for the quarter-truck system
is illustrated in Fig. 6 with 𝑚𝑤 and 𝑚𝑐 representing the mass of wheel and chassis respectively. Both masses have a single vertical
degree of freedom coupled by a linear spring–damper system representing the chassis suspension and wheel tyres. The ground
profile is given as external input. The co-simulation system representing the quarter truck is comprised of three models: the chassis
including the suspension, the wheel including the tyre and the ground. The input and output variables used to connect these models
are given in Table 1.

As a benchmark for the simulation accuracy, the analytical model for the system is derived. The suspension force and the tyre
force are given by Eq. (1), while the equations of motion for the chassis and wheel are given by Eq. (2).

𝐹𝑠𝑢𝑠𝑝 = 𝑘𝑐 (𝑧𝑤 − 𝑧𝑐 ) + 𝑑𝑐 (�̇�𝑤 − �̇�𝑐 )

𝐹𝑡𝑦𝑟𝑒 = 𝑘𝑤(𝑧𝑔 − 𝑧𝑤) + 𝑑𝑤(�̇�𝑔 − �̇�𝑤)
(1)

𝑚𝑐 �̈�𝑐 = 𝐹𝑠𝑢𝑠𝑝 − 𝑚𝑐𝑔

𝑚𝑤�̈�𝑤 = 𝐹𝑠𝑢𝑠𝑝 − 𝐹𝑡𝑦𝑟𝑒 − 𝑚𝑤𝑔
(2)

Vico, OMSimulator, and libcosim load the same .ssp, while FMPy and FMIGo! both require a slightly modified version that is
compatible with the draft version they use. In practice, however, there is no practical difference. The system is simulated using the
default master algorithm for each tool, which in all cases is some form of a fixed-step algorithm. Each tool comes with a CLI, which
is used to run the simulation. A reference solution has been computed by means of Euler method, with the integration time step set
to 0.001 s. Co-simulation results are shown using both a 100 hz and 1000 hz fixed-step-size for the master algorithms. Fig. 7 and
Fig. 8 shows the vertical displacement of the wheel and chassis respectively when simulated at 100 hz. In this case, none of the tools
are very accurate and they highlight one of the inherent weaknesses of co-simulation compared to monolithic simulations. FMPy
also appears to constantly provide output timestamped one time-step earlier than the other tools. libcosim and FMPy both appear
to generate stronger oscillations during the first second of simulation. This response can be seen more in detail through Fig. 9. The
authors of libcosim have been made aware of this issue, and it should be fixed in a later release if it turns out to be some kind of
8
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Fig. 7. Wheel response when simulated at 100 hz. The simulation starts from equilibrium state where 𝑧𝑤 = 0. The ground profile is defined as a step function
excited by a jump of 0.1 m in vertical direction at 1 s.

Fig. 8. Chassis response when simulated at 100 hz.

Table 3
Root mean square error of the computed vertical displacement
of the wheel.

Tool RMSE

100 hz 1000 hz

FMPy 0.0300358 0.0019367
FMIGo! 0.030062 0.0018814
libcosim 0.030109 0.0018815
OMSimulator 0.030062 0.0018814
Vico 0.030062 0.0018814

initialisation issue. Naturally, simulating the system at 1000 hz shows a clear improvement in accuracy as can be seen in Figs. 10
and 11. In this case there are barely any differences regarding simulation results between the tools and the reference solution. The
improvement with respect to root mean square error (RMSE) can be seen in Table 3. The increase in accuracy comes, however, with
9
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O

Fig. 9. Detailed view of the first second of simulation presented in Fig. 7.

Fig. 10. Wheel response when simulated at 1000 hz.

The results of a performance benchmark appear in Fig. 12 in the form of box-plots. The benchmark is performed on a 64-
bit Windows 10 system equipped with a Intel Core i5-3570 CPU with four logical processors. Each tool has been run 15 times,
simulating the system for 1000 s with a step-size of 0.001 s. FMI Go! and FMPy both exports a handful of variables to CSV. libcosim,

MSimulator and Vico is run both with and without exporting all 121 available variables to CSV. Additionally, OMSimulator also
exports in MATLAB format.

Although Vico is implemented on the JVM, which involves some inherent overhead due to the fact that it must cross the native
bridge when it communicates with FMUs, it is the fastest of the tools participating in the benchmark. OMsimulator is the second
fastest, ahead of FMIGo!. The results of FMIGo! are quite impressive, considering that it is the only one of the tools to run distributed.
Next is libcosim, followed by FMPy. It is not surprising that FMPy is the slowest tool, as Python is not known to be a particularly
fast language. OMSimulator and Vico are configured to run this particular system single-threaded, which libcosim has no option to
do, which may explain its poor performance. As the individual models in the system are computationally inexpensive, it would seem
that the inherent overhead of handling threads/fibers/co-routines is actually degrading performance. Both OMSimulator and Vico
were tested with multiple threads, and Vico in particular showed over a 2x performance increase when running single-threaded. A
couple of things should be noted about OMSimulator. When exporting simulations results to .csv rather than .mat, the performance
deteriorates significantly—going from a mean 19.2 s to about 150 s. Note, however, that the performance indicators presented here
are only valid for this particular system and should not be used as a general pointer to how well the various tools perform.
10
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Fig. 11. Chassis response when simulated at 1000 hz.

Fig. 12. Performance of the various tools when considering the presented quarter-truck system. Simulation time = 1000 s, step-size = 0.001 s, number of runs
= 15.

4.2. Gunnerus case-study

Fig. 13 demonstrates how Vico’s built in 3D graphics and plotting capabilities are used to support ongoing research projects at
NTNU Ålesund, such as the TwinShip KPN project. Here, a model of the research vessel Gunnerus is performing a path following
simulation. The blue line in the 3D visualisation shows the most recent trajectory of the vessel, while the green cylinder shows
the current way-point that the vessel should navigate towards. As the vessel comes within reach of the target way-point, a new
one appears and the process continue. The modelled Gunnerus vessel is an aggregation of eight FMUs, including a hull model,
thrusters, controllers, and power utilities, the structure of which are defined using the standardised SSP format. The properties of the
visualisation and file logging are specified through separate XML configuration files. The SSP along with the run-time configurations
can then be supplied as arguments to the Vico CLI. This example makes use of several Vico features, including FMI, SSP, 3D visuals,
and distributed execution of FMUs. Distributed execution is facilitated using FMU-proxy, which is compatible with any FMI 2.0 based
tools and works by wrapping an existing co-simulation FMU into a new one that internally employs a client/server architecture.
Some FMUs, like the thruster used in this example can only be instantiated once per process. This is clearly an issue as the hull
requires two thrusters. However, FMU-proxy overcomes this by running model instances in separate processes.

Fig. 14 shows the performance of Vico compared to libcosim and OMSimulator when simulating the Gunnerus system. FMU-
proxy is used in order to make the system, which originally consisted of both FMI 1.0 & 2.0 FMUs, compatible with OMSimulator.
11
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Fig. 13. Demonstration of a vessel path following simulation running in Vico with 3D visualisation and plotting enabled. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Performance of libcosim and Vico when considering the Gunnerus system. Simulation time = 1000, step-size = 0.05 s, number of runs = 10.

An attempt were made in order to run the system in the same set of tools as for the quarter-truck, but adopting the SSP file to
the obsolete versions used by FMPy and FMIGo! proved difficult and attempts to simulate the system in those frameworks were
unsuccessful. The benchmark is performed on a 64-bit Windows 10 system equipped with a Intel Core i7-8700 CPU with twelve
logical processors. The simulation is run 10 times, simulating the system for 1000 s with a step-size of 0.05 s. Vico and libcosim
performs the simulation both with and without exporting available time-series data, while OMSimulator is configured to not record
time-series data. The system contains a total of 3006 variable values that must be retrieved from the various model instances at
each time-step and later written to disk. Furthermore, the use of FMU-proxy means that networking is involved. Both Vico and
libcosim implements a strategy to optimise variable reads and writes, however, it seems OMSimulator does not. Because of this,
OMSimulator is not able to simulate the system in a timely manner when also set to export time-series data. For example, it took
OMSimulator approx. 250 s to simulate 40 s. To compare, Vico used approx. 58 s to simulate 1000 s. Furthermore, Vico runs the
simulation both single- and multi-threaded. Compared to the quarter-truck system, this simulation benefits from parallel execution
in terms of performance. The difference between Vico and libcosim is less in this case, but Vico still performs better when utilising
multiple threads. Even with the additional overhead of exporting time-series data, both Vico and libcosim perform better than
OMSimulator. This is related to how variable reads and writes are handled by the frameworks. Basically, OMSimulator seems to
perform variable reads and writes on individual variables, while libcosim and Vico execute these operations in bulk. This puts the
performance of OMsimulator, which runs in parallel, in the vicinity of Vico in single-threaded mode.
12
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5. Conclusions and future work

This paper introduced Vico, a novel co-simulation framework based on the ECS software architecture most commonly found in
ames. The proposed architecture provides a number of benefits, such as flexibility, extensibility, and a clear separation between
tate and behaviour. Furthermore, the framework has been designed so that physics engines and other types of systems that are not
MUs can be integrated into a co-simulation setting. Choosing to implement Vico using a JVM language also brings benefits, such
s strong tooling, a simple build process, and a vast number of available libraries. Additionally, NTNU Ålesund has a long history
f teaching Java in their courses, which should make the framework more approachable to students here. Furthermore, many of
hese students are exposed to the related EC architecture from game engines like Unity3D, which should make the concept of ECS
asier to relate to.

The presented case-studies showed that Vico is effective compared to other open-source co-simulation tools and demonstrated
upport for the well established FMI standard for co-simulation, as well as the newer, less established SSP standard for defining the
imulation structure. Moreover, a number of built-in features like support for 3D visualisation, 2D plotting, export of time-series data
s CSV files and distributed execution of FMUs was shown. In the presented quarter-truck case-study Vico was shown to be the fastest
ool and provided no-less of an accuracy than the other co-simulation frameworks using their default solver. The Gunnerus case-study
howed the visual capabilities and parallel performance of Vico, and also demonstrated the importance of efficient variable handling
n larger, more complex co-simulations.

Vico is under continuous development and further work includes:

1. Implementation of additional state-of-the-art co-simulation masters.
2. Adding a web-server plugin that allow web-clients to monitor and modify the simulation.
3. Implementation of additional SSP features as use-cases appear.
4. Integration with additional physics engines available on the JVM.

urthermore, it would be interesting to explore the multi-platform capabilities of the Kotlin language in order to allow the core
ico engine to support not only the JVM, but also JavaScript and native targets. While plausible, this would require some effort
nd should therefore be motivated by a sound use-case, which has not emerged to date.

The source code of Vico is hosted at https://github.com/NTNU-IHB/Vico under a permissive MIT license.
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