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Abstract

Very-long floating bridges represent an innovative marine structure for crossing wide and deep
fjords. During the design of a floating bridge, extreme structural responses at a specified prob-
ability of exceedance are required to be properly evaluated for ultimate limit state (ULS) design
check. This study addresses the estimation of extreme structural responses due to wind and wave
loads and associated uncertainties. An end-anchored floating bridge, about 4600 m, is considered
in a case study. The long-term extreme responses are estimated by using a simplified engineering
approach, in which the long-term extreme response is approximated by the one-hour short-term
extreme responses at a high fractile (90% in this study) for selected short-term sea states. The
extreme responses are expressed as µ + κ · σ, where µ and σ are the ensemble mean and standard
deviation, and κ is a multiplying factor. Statistical analyses indicate that the structural responses,
including axial force , strong and weak axis bending moment of the bridge girder, are close to
follow a Gaussian distribution. A simplified analytical method, the Gumbel method and the mean
upcrossing rate (MUR) method are employed to estimate the multiplying factor κ and extremes.
The κ estimated by these three methods are generally close, varying in the vicinity of 4. The κ and
extremes estimated by the simplified method have a much smaller variation than the Gumbel and
MUR methods. Statistical uncertainties and model uncertainties in the extreme value prediction
are also addressed. Based on the results of 10 sets of 10 1-h ensembles, the mean and coefficient
of variation (CoV) of µ, κ, σ and extremes of structural responses of 10 1-h simulations under two
selected sea states are evaluated. The CoV of σ is less than 0.045, but the CoV of κ is relatively
large, mainly between 3.5×10−2 and 6.5×10−2. The CoV of extremes estimated by the simplified
analytical method is fairly small, less than 0.035. While the CoV of extremes estimated by the
Gumbel and MUR methods are much larger and can reach 0.137 and 0.158, respectively. In prac-
tical design of floating bridge, only a limited number of simulations (e.g. 10 1-h) are conducted to
predict the extreme structural responses. This will introduce statistical uncertainties and should be
corrected by a factor for a conservative estimate. A simplified procedure to derive the correction
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factor is presented in this study. For the floating bridge considered with 10 1-h simulations, the
correction factor is recommended to be 1.1 when the absolute value of mean µ is smaller than
σ, and be 1.2 when the absolute value of mean µ is larger than σ, in order to achieve a 90%
conservative estimation of extreme.

Keywords: floating bridges, extreme responses, uncertainties, environmental contour method,
correction factor

1. Introduction

Upgrading of the Coastal-Highway Route E39 project is presently being planned by the Nor-
wegian Public Roads Administration (NPRA). This includes replacement of ferry transport across
8 fjords by bridges or tunnels. The width of the fjord crossings is up to 6 kilometers and the water
depth is up to 1300 m. Due to the large width, traditional free span for bridges with towers on land5

will have excessive and very expensive spans. Moreover, because of the large water depth, bridges
with bottom-fixed foundations in the fjords are not economical. Therefore a promising alternative
is to employ floating bridges. Currently several floating bridge concepts have been proposed for
crossing deep and wide fjords, including an end-anchored curved floating bridge, an side-anchored
straight floating bridge, etc. [1]10

Compared to floating offshore structures, floating bridges are relatively flexible with a large
number of eigen-modes. These eigen-modes may be excited by environmental loads, which can
cause large structural responses. Characteristics of dynamic behavior of extra-long floating bridges
have been studied under homogeneous [2, 3, 4] and inhomogeneous [5] environmental conditions.

During the design of offshore structures, characteristic values of long-term extreme load effects15

are required to carry out ultimate limit state (ULS) design checks [6]. To predict the long-term
extreme load effects due to environmental loads, a full long-term approach should in principle be
used to account for the variation of environmental conditions. The long-term variation in wind and
wave conditions is usually considered by assuming sequential stationary short-term conditions.
Since wind in 10 minutes and waves in 3 hours are normally considered as stationary, a duration20

of one hour is commonly employed as a alternative for short-term wind and wave conditions. The
full long-term approach should account for all possible combination of short-term environmental
conditions and their probability of occurrence. This implies that a very large number of short-term
simulations have to be carried out. For complex structures like extra-long floating bridges, each
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short-term simulation is commonly very time consuming. The full long-term approach is often25

considered infeasible in engineering design.
Approximate methods are thus proposed for predicting the long-term extreme load effects.

A commonly used approach is the environmental contour method [7, 8], in which the long-term
extreme response for a return period of N-year is approximated by the extreme from few short-term
analyses. In this approach, the N-year contour surface (or contour line when two environmental30

variables are considered) should be first constructed based on the long-term joint distribution of
environmental parameters, such as mean wind speed, significant wave height and peak period. The
most severe sea state that cause the largest short-term extreme responses is then identified from
the N-year contour surface. Compared to a full long-term approach, the environmental contour
method requires only a few short-term simulations, making it very efficient and suitable for use in35

the practical design of offshore structures. However, the variability of short-term extremes should
be taken into account when using the environmental contour method. This is usually achieved by
multiplying a correction factor (1.1-1.3) [9] or by determining the short-term extreme responses
at a higher quantile (75-90%) [10, 11]. The exact value of the correction factor or the quantile is
required to be calibrated by a full long-term analysis.40

Many studies have been conducted to estimate extreme responses of floating platforms [12, 13],
bottom-fixed offshore wind turbines [14] and floating wind turbines [15]. However, to date, there
are few studies on the estimation of extreme responses for floating bridges. Øiseth et al. [16] esti-
mated the extreme response of a floating bridge by using Monte Carlo simulations. The extreme
value was extrapolated by using the average conditional exceedance rate method, in which a high45

quantile of 85% was assumed and used. Giske et al. [17] demonstrated a framework for full long-
term extreme response analysis for a long-span pontoon bridge subjected to wave loads, by using
inverse first- and second-order reliability methods (IFORM and ISORM). Xu et al. [18] introduced
a computationally efficient approach utilizing the environmental contour method and the IFORM
to determine the long-term extreme responses of a cable-supported bridges with floating pylons50

due to wind and wave actions. The quantile used in the environmental contour method was cali-
brated to be 90%. However, the long-term environmental conditions used by Xu et al. [18] were
originally developed for open sea, not for a fjord.

In addition, uncertainties exist in the prediction of extreme responses. These uncertainties
need to be considered when assessing the safety of a structure. Moan et al. [19] investigated the55

statistical uncertainties in the predicted extreme responses of an FPSO and a semi-submersible due
to long-term variation of wave conditions in consecutive 1, 2 and 4-year periods. Saha et al. [14]
evaluated the statistical uncertainties in the predicted 3-hour extreme responses of a jacket-type
offshore wind turbine due to ensemble size, by using different extrapolation methods, including
the Gumbel method, the mean upcrossing rate method and the Weibull tail method.60
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The aim of this paper is to evaluate the extreme structural responses and associated uncertain-
ties of an end-anchored curved floating bridge. The long-term extreme response is estimated by
using a simplified environmental contour method, in which the long-term extreme value is approx-
imated by the short-term extreme value at a high quantile. The short term response is obtained by
time domain simulations and the extreme values are estimated by an approximate analytical ap-65

proach and two methods based on response fitting and extrapolation techniques. The uncertainty
in the predicted extreme responses is also addressed comprehensively.

2. Floating bridge model

An end-anchored floating bridge is considered in this study. It was an early concept for crossing
the Bjørnafjord. An over view of the floating bridge is shown in Fig. 1. The floating bridge, about70

4600m long, is curved in the horizontal plane with a radius of approximately 5000m. It composes
of a cable-stayed high bridge part and a pontoon-supported low bridge part. The high bridge part
is designed for ship navigation and consists of a main span of 490m and a back span of 370m.
The bridge girder is carried by 80 cables in the high bridge part, while in the low bridge part, the
bridge girder is supported by 19 pontoons with a span of about 197m through columns.75
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1 Introduction 
The work presented in this report comprises the design check of the bridge. The report starts with a description of 
the structural parts and how the concept works. In chapter 3 the basis of design is given such as functional 
criteria, motion criteria, characteristic loads and load combinations. For load response regarding wind and waves 
refer to Not-Hyda-018 \.  For more details refer to Design Basis \2\. 

To get an overview of the design and analyses procedure please refer to fig 4-1 in chapter 4. Three different 
analysis program have been used to determine the characteristic load responses. These are Orcaflex to 
determine wave loads (and wind loads) in the time domain, Novaframe to determine wind loads in the frequency 
domain and RM- bridge to determine response from permanent loads, traffic, temperature and tidal loads. In 
design these loads are combined using factors for correlation and load combination factors for the limit state 
design. Design is performed according to Eurocode. 

In chapter 5 the cross section of the construction parts are defined. Required cross section is a results of an 
analysis-design loop where the results from analysis gives required cross-section which again changes the 
analysis results giving new requirements for the geometry. For a project in a preliminary stage where many 
parameter will change it is not practical to complete this loop. It is thus decided for some sectional properties 
when these are updated due to design calculation not to update all the analyses which gives the basis for design 
forces. This is so for the plate thickness of the girder which has been strengthened at some positions. Instead we 
have performed several sensitivity analysis to see the effects of possible changes and in this way assess the 
robustness of the concept. Fex by changing the stiffness of the girder the eigen periods of the system will change 
and the remedial action may then be to change the layout slightly for the pontoons to counteract for this effect 
instead of simply re-running the analysis resulting in less beneficial response. Sensitivity analyses is better suited 
to get an overview of the consequences of such changes.  Thus in this project the geometry given on the final 
drawing will not necessary equal the geometry given in the analysis program. Where this is the case we have 
commented on it.  

In chapter 7 the capacity check of the construction parts are performed. For girder the focus is on the Von-Mises 
stresses in ULS condition. In Bilag A the characteristic loads and typical displacements are given for construction 
parts. In Bilag B the structural analysis model used for RM-Bridge is defined. The Orcaflex model and Nova frame 
model are defined in Not_hyda-018. In Bilag C design check of the girder is enclosed. 

1.1 Nomenclature and Coordinate System 

 
Figure 1-1: Nomenclature overview of whole bridge 

Figure 1: Overview of the end anchored curved floating bridge concept [20].

A numerical model of the floating bridge, as demonstrated in Fig. 2, was established by
using the codes SIMO/RIFLEX developed by SINTEF OCEAN (formerly MARINTEK). The
SIMO/RIFLEX has been widely used in the offshore oil & gas and wind industries. The structural
modeling of the floating bridge is briefly introduced here, while the external load models are dis-
cussed in the next section. In this study, the girder, tower, and columns were modeled as nonlinear80

beam elements. The cables were represented as nonlinear bar elements, while the pontoons were
modeled as floating rigid bodies with 6 degree of freedom (DOF) each. For the mesh size, the
element length varies from 10 m to 15 m for the girder, from 5 m to 8 m for the columns, and from
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Figure 2: The end anchored curved floating bridge model including a cable stayed high bridge and a pontoon supported
low bridge [2].

30 m to 40 m for the cables, depending on the locations. The dynamic equilibrium equations are
solved in the time domain using the Newmark-β numerical integration, in which the required ac-85

curacy measured by energy norm is 10−6. The structural properties of typical sections of the bridge
girder are given in Table 2, in which the location of typical sections are indicated in Table 1. Here
the detailed properties of the columns, cables and tower are not presented, but they are described
in the report [20], which is publicly available online.

Table 1: Location of different cross-sectional properties for the bridge girder [20]. Here H1, H2, H3, S1 and F1
represent different cross sections, and the corresponding properties are given in Table 2.

Cross-section Roadline
Stiff bridge (abutment) S=0m to S=60m

H1 S=60m to S=220m
H2 S=220m to S=345m
H3 S=345m to S=395m
H2 S=395m to S=520m
H1 S=520m to S=850m
S1 S=850m to S=860m

S1(24.62m) - F1(147.74m) - S1(24.62m) S=860m to S=4602.74m

In the numerical model, the tower bottom and two ends of the bridge are fixed. The bridge90

girder and the tower are connected by a point with fixed degree of freedom in transverse direction
(i.e. Y direction as shown in Fig. 4). Master-slave rigid connection is applied between pontoons
and columns, between girder and cable lower ends, and between girder and columns. Moreover,
the pretension in each cable is accounted for in the numerical model. It should be noted that in
the numerical model, the bridge girder that is composed of two parallel steel boxes connected by95
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Table 2: Structural properties of the bridge girder [20]
High bridge Floating bridge

H1 H2 H3 S1 F1
Mass [ton/m] 23.96 29.05 33.13 31.8 26.71
EA [kN] 3.07E+08 4.41E+08 5.52E+08 5.25E+08 3.89E+08
EIz [kNm2] 1.16E+11 1.70E+11 2.12E+11 2.18E+11 1.55E+11
EIy [kNm2] 1.28E+09 1.97E+09 2.46E+09 3.85E+09 2.76E+09
GIx [kNm2] 1.42E+09 1.98E+09 2.48E+09 3.70E+09 2.90E+09

Note that Iy and Iz represent the second area moment about the strong axis and weak axis of the girder, respectively.
Ix denotes the torsion constant.

crossbeams in the original design is simplified as an equivalent beam.
The floating bridge is relatively flexible, with a large number of eigen-modes. The eigen-

periods and eigen-modes of the floating bridge was studied by Cheng et al. [2], as demonstrated in
Fig. 3. The first four eigen-periods are given in Table 3. The global coordinate system is defined
in Fig. 4. X is positive in the north direction, and Y is positive in the west direction. and Z is100

positive upward. The origin is located at the water plane and is 2250m North of the south end.
The incoming directions of wind, wave and current are also marked in Fig. 4.

Table 3: The first four eigen periods of the floating bridge model.
Mode Period [20] Frequency [20] Dominant Period [2] Error

[s] [rad/s] motion [s] [%]
1 56.72 0.111 H 55.52 2.12
2 31.69 0.199 H 31.81 -0.38
3 22.68 0.277 H 23.07 -1.72
4 18.62 0.337 H 19.04 -2.26

3. Methodology

3.1. Fully coupled analysis method

Fully coupled aero-hydro-elastic time-domain simulations are conducted to investigate the dy-105

namic behavior of the floating bridge in this study. The hydrodynamic loads on the pontoons and
the aerodynamic loads on the structures as well as the structural dynamics are accounted for.

The structural dynamics are modeled in RIFLEX [21]. RIFLEX is a nonlinear finite element
solver. It represents the cables by nonlinear bar elements, models the bridge girder, tower and
columns by nonlinear beam element, and represents the pontoons as floating rigid bodies.110

The aerodynamic loads acting on structures, including the bridge girder, columns, tower and
cables, are also modeled in RIFLEX. The aerodynamic loads are estimated based on the relative
velocity between wind and structures. The aerodynamic loads on columns, tower, and cables
are mainly viscous drag forces. However, the aerodynamic loads on the bridge girder consist of

6



Top view Side view

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

Mode 7

Mode 17

Mode 18

Figure 3: Selected eigen-modes of the floating bridge model [2].

three parts: the mean force due to mean wind velocity, the buffeting force due to fluctuating wind115

velocity, and the frequency-dependent force induced by girder motion [22]. In the present study,
the aerodynamic loads on the bridge girder are estimated by employing the nonlinear quasi-static
airfoil theory. This theory considers both aerodynamic lift and drag forces and moment; however,
the frequency-dependent forces induced by structure motions are neglected. This nonlinear quasi-
static airfoil theory has been used, e.g. by Cheng et al. [3], in analyses of floating bridge design120

for the Bjørnafjord crossing.
Regarding the hydrodynamic loads on the pontoons, they are considered in SIMO [23] based

on a combination of potential flow theory and Morison’s equation. Since pontoons are large vol-
ume structures, the potential flow theory is thus employed to calculate the frequency-domain hy-
drodynamic coefficients, such as added masses, radiation dampings, and transfer functions of wave125
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Figure 4: Definition of the global coordinate system and incoming directions of wind, wave and current. Note that the
fjord boundary condition is not plotted here.

excitation forces, etc. These hydrodynamic coefficients are then transfered into time domain by
using the convolution technique [24]. In the present study, not only first-order wave loads but also
second-order wave loads are incorporated. The second-order wave loads are considered by using
Newman’s approximation. Because of large spacing between adjacent pontoons, the hydrody-
namic interactions between adjacent pontoons are not taken into account yet. In addition, viscous130

drag forces on the pontoons are also accounted for through Morison’s equation by including only
the quadratic viscous drag term.

3.2. Extreme value estimation

In this study, the long-term extreme response is estimated by the environmental contour method,
in which the extreme response is approximated by the short-term extreme responses at a high frac-135

tile value. In this approach, the short-term condition considered should be especially selected to
be the one that causes the largest short-term extreme responses. The fractile is used to determine
the extrapolated extreme responses and is usually determined by comparison with full long-term
results. For simplicity in this study, the long-term extreme value of response X(t) is assumed to be
expressed as140

Xmax = µ + κ · σ (1)

where µ and σ are the ensemble mean and standard deviation of the time series of short-term
responses considered, and κ is a multiplying factor and depends on the selection of the fractile.
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The extreme value is the maximum in a set of a finite number of independent and identically
distributed random variables. Considering a stochastic process X(t) over a duration [0,T ], the
extreme value of the stochastic process is defined as M(T ) = max{X(t); 0 ≤ t ≤ T } and the145

extreme value distribution for large values of y is expressed as

F(y) = Prob (M(T ) ≤ y) (2)

Extreme values are commonly evaluated by using extrapolation methods. Besides, if X(t) is
a stationary Gaussian process, the extreme value can be approximated by a simplified analytical
method. In this section, a simplified analytical method and two extrapolation methods including
the Gumbel method and the mean upcrossing rate (MUR) method are briefly described.150

3.2.1. Gumbel method

In this method, the cumulative distribution is estimated based on the simulated maxima data.
The type I asymptotic extreme value distribution, i.e., the Gumbel distribution, is applied to esti-
mate the extreme value by fitting the simulated cumulative distribution. The extreme value distri-
bution is expressed by155

F(y) = GX(y) (3)

where GX(x) is the Gumbel distribution given by:

GX(x) = exp
{
− exp

[
−

( x − β
α

)]}
(4)

where α and β are scale and location parameters. These two parameters can be estimated by, e.g.,
least square fitting of the empirical cumulative distribution in a probability paper.

3.2.2. Mean upcrossing rate method

The mean upcrossing rate is a key parameter for extreme response statistics [6]. The upcrossing160

rate of a process at a defined level is the average frequency of the positive slope crossings of that
level. At high response levels, with the assumption of statistically independent upcrossing, it is
reasonable to assume that the random number of upcrossing in an arbitrary time interval of length
T is approximately Poisson distributed. If the response process is not too narrow banded, this is a
reasonable assumption. Then the extreme value distribution is given by165

F (y) = exp
(
−

∫ T

0
ν+(y; t)dt

)
= exp

(
−ν̄+(y)T

)
(5)
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where ν+(y; t) is the upcrossing rate of the level y. ν̄+(y) = 1
T

∫ T

0
ν+(y; t)dt is the mean upcrossing

rate and can be directly estimated from simulated time series.
For high response levels, the up-crossing rate is low and extrapolation of ν+(y) is usually re-

quired. In this study, the extrapolation strategy proposed by Naess [12] is employed. The mean
up-crossing is extrapolated based on a set of stochastic realizations and is assumed to be in the170

form of
ν̄+(y) = q(y) exp {−a (y − b)c

} , y ≥ y0 (6)

in which a, b, c are parameters. For a wide range of dynamic systems, the function q(y) varies
slowly compared to the exponential function exp {−a (y − b)c

} for tail values of y, it is thus usu-
ally replaced by a constant. The optimal values for a, b, c and q are determined by applying the
Levenberg-Marquardt least squares optimization method, which is described in detail by Naess [12,175

13].

3.2.3. Simplified analytical method

For a stationary Gaussian process X(t) over a duration of T with zero mean, the cumulative
distribution of the extreme value is given by Eq. 5, in which the mean up-crossing rate of level y
can be approximated by [6]180

ν̄+(y) = ν̄+(0) exp
(
−

y2

2σ2

)
(7)

where ν̄+(0) is the mean zero up-crossing rate given by

ν̄+(0) =
1

2π

√
m2

m0
(8)

and mi (i = 0, 1, 2) is the mth moment of the spectral density function of the Gaussian process.
σ =

√
m0 is the standard deviation of the Gaussian process. Assuming that a fractile of the

extreme value distribution is denoted by ξ, the corresponding level is given by

yξ (T ) = σ

√
2 ln

(
ν̄+(0)T
ln(1/ξ)

)
(9)

The derived approximation is a Poisson model that is asymptotically exact for large duration T .185

However, convergence to the Poisson model becomes slow for too narrow-banded processes. To
account for the effect of bandwidth, Vanmarcke [25] developed a more accurate model, in which
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the up-crossing rate of level y is approximated by multiplying a correction factor [26]

p(y) =

(
1 − exp

[
−

(
1 − α2

b

)0.6 √
2π

y
σ

]) (
1 − exp

(
−

y2

2σ2

))−1

(10)

where αb = m1/
√

m0m2 is the bandwidth parameter which tends to one for a narrow-band process.
In this case, the extreme value distribution is written as190

F (y) = exp
(
−ν̄+(0) exp

(
−

y2

2σ2

)
· p(y) · T

)
(11)

In Eq. 11, the level corresponding to a fractile of ξ and a duration T , i.e., yξ, cannot be solved
directly, an iterative procedure is required. Fig. 5 presents the κ, which is defined as κ = yξ/σ, at
a fractile of 90% and for a duration of 1 hour. It is a function of bandwidth parameter αb and zero
up-crossing period ( Tz = 1/ν̄+(0)). It can be found that the correction factor p(y) mainly adjust
the value of κ when the bandwidth parameter is close to one, in particular αb > 0.9. When αb is195

smaller than 0.9, the correction factor has a negligible effect.
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Figure 5: κ as a function of bandwidth parameter αb and zero crossing period Tz for a fractile of 90% and a duration
of 1 hour for the extreme value distribution.
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4. Environmental conditions

The short-term environmental conditions should be specially chosen to be the one that leads
to the largest extreme responses, i.e., according to the environmental contour method. In this
study, these short-term environmental conditions are determined according to an early draft of the200

metocean design basis for the Bjørnafjord [27], in which wind and wave conditions with a return
period of 100 years were defined. The environmental conditions (ECs) as given in Table 4 are
considered. EC2 with a combination of 100-year wind and 100-year wave condition is likely to
be the worst combined wind and wave condition and is thus selected as the short-term condition
for evaluation of long-term extremes. Cheng et al. [28] studied the long-term joint distribution of205

environmental conditions in the Bjørnafjord and found that the worst condition on the 100-year
contour surface of significant wave height Hs, peak period Tp and mean wind speed Uw is fairly
close to the 100-year wind condition and the 100-year wave condition. Besides, EC1 with 100-
year wave condition is the worst wave only condition. It is also studied to investigate the effect of
wave on long-term extremes.210

Table 4: Environmental conditions (ECs) for numerical simulations

Dir. [◦]
Wave Wind

Hs [m] Tp [s] Spreading (n) Uw [m/s] TI

EC1 270 2.4 5.9 4 0 0
EC2 270 2.4 5.9 4 29.5 0.14

The wind and waves are assumed to be directionally aligned, and only one direction (270◦) is
considered to demonstrate the methodology. The waves are short-crested and are described by the
directional wave spectrum, which is given by

S ζ(ω, θ) = S (ω)D(θ) (12)

where the wave spectrum S (ω) is modeled by the JONSWAP spectrum and the directional distri-
bution D(θ) takes the cos-n distribution as follows:215

D(θ) =
Γ(1 + n/2)

√
πΓ(1/2 + n/2)

cosn
(
θ − θp

)
(13)

where n is the spreading exponent, and is set to be 4 for short-crested waves [27] in this study. θp

is the principal wave direction and
∣∣∣θ − θp

∣∣∣ ≤ π/2.
The wind field consists of wind shear and turbulence. The power law formulation of wind

shear is applied to describe the vertical distribution of mean wind speed. For wind coming from
west (270◦), the power law exponent is approximately 0.12. The turbulence intensity for wind220

12



coming from west (270◦) is about 0.14. In the numerical simulation, the 3D turbulent wind field
is generated by the TurbSim [29] based on the N400 Kaimal spectral model [30].

5. Evaluation of extreme responses

In the ULS design check of marine structures, the characteristic long-term extreme response
can be approximated as a given fractile of a representative short-term extreme value, based on225

the environmental contour method. This fractile is used to determine the extrapolated extreme
responses and is usually determined by comparison with full long-term results. In this study, a
90% fractile is used, as recommended by the NPRA [27].

The Monte Carlo simulation method is used to generate a set of responses for prediction of
extreme responses. A total of 100 1-hour simulations were made for each EC. To investigate the230

accuracy of a limited ensemble number on the extrapolated extreme responses, the total ensemble
is grouped into 2 sets with 50 ensembles, 5 sets with 20 ensembles and 10 sets with 10 ensembles,
respectively. For each set, the mean values and standard deviations of structural responses are cal-
culated and the extreme responses are extrapolated by using Gumbel method and mean upcrossing
rate (MUR) method, respectively.235

Before presenting the results on extreme structural responses, dynamic behavior of the struc-
tural responses and their statistics are first addressed.

5.1. Characteristics of structural dynamic responses

The structural dynamic responses of the floating bridge subjected to environmental loads have
been extensively studied by Cheng et al. [2, 3]. The main characteristics of structural responses240

along the bridge girder are briefly summarized here. In general, the structural dynamic responses
are mainly dominated by wave- or wind-induced resonant responses as well as wave frequency
responses.

To elaborate on this, the dynamic responses of the bridge girder at A6 under EC1 with wave
only and EC2 with combined wind and waves are further analyzed here. Fig. 6 presents the power245

spectra of axial force Fx, strong axis bending moment Mz, and weak axis bending moment My at
A6 under EC1 and EC2. These power spectra are based on the average of 100 ensembles. The
corresponding contributions from dominant modes to the power spectra are also demonstrated in
Fig. 7. It is found that under EC1, variation in the axial force is dominated by wave frequency
responses and high-frequency resonant responses, while under EC2, the third-mode resonant re-250

sponse plays a more important role. Regarding the strong axis bending moment, its power spec-
trum is mainly dominated by wave-frequency responses and high-frequency resonant responses
under EC1, but under EC2 it is mainly dominated by the first-mode resonant responses. With
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Figure 6: Power spectra of axial force Fx, strong axis bending moment Mz, and weak axis bending moment My at A6
under EC1 with wave only and EC2 with combined wind and waves. The power spectra are averaged spectra from
100 ensembles.

respect to the weak axis bending moment, its power spectrum is dominated by wave-frequency
responses and high-frequency resonant responses under both EC1 and EC2.255

While there are potential non-linearities relating to loads and structural features that make the
response non-Gaussian, it is found that the dominance of linear wave frequency loading and the
occurrence of resonances make it. This is further analyzed in the next subsection by investigating
the statistics of the structural responses.

5.2. Statistics of structural responses260

The statistics of structural responses are calculated to show the effect of statistical uncertainty
and Gaussianity. The statistical moments for nodes along the bridge girder are calculated for each
time series, and then ensemble averaging is conducted. The Gaussian distributed responses are
characterized by a skewness of 0 and a kurtosis of 3.
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Figure 7: Comparison of power spectra contributions from dominant modes for axial force Fx, strong axis bending
moment Mz, and weak axis bending moment My at A6 under EC1 with wave only and EC2 with combined wind and
waves. The power spectra are averaged spectra from 100 ensembles. The dominant eigen-frequencies are given in
Table 3.

Statistical analyses indicate that the skewness of axial force Fx, strong axis bending moment265

Mz, and weak axis bending moment My along the bridge girder is all close to zero, varying mainly
within [-0.1, 0.1]. The ensemble average of skewness of Fx, Mz and My is also very close to zero.
That implies that the distribution of Fx, Mz and My is symmetric.

Regarding the kurtosis, Fx, Mz and My along the bridge girder in general have a larger variation
in kurtosis than in skewness, as shown in Fig. 8. Fig. 8 shows the kurtosis of Mz along the bridge270

girder. Under EC1 with wave only condition, the kurtosis varies mainly within [2.7, 3.3]. The
average kurtosis is almost constant along the bridge girder, close to 3. However, under EC2 with
combined wind and wave condition, kurtosis varies within [2.5, 3.5]. The average kurtosis changes
along the bridge girder and in general, the average kurtosis is slightly smaller than 3. This implies
that the non-Gaussianity in EC2 is slightly stronger than that in EC1. Nevertheless, the non-275

Gaussianity is generally weak and the stochastic process of structural responses is close to be
Gaussian.

In addition, the statistics of structural responses at A6 is presented in details for further anal-
yses. Table 5 gives the ensemble averages of statistical moments of Fx, Mz and My of the bridge
girder at A6 under EC1 and EC2 based on 100 ensembles. The mean values and standard devia-280

tions for different sets of Fx and Mz with different ensemble numbers at A6 are shown in Figs. 9-
10. The mean values and standard deviations are normalized by corresponding values with 100
ensembles given in Table 5. It can be found that both the normalized mean value and standard
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Figure 8: Kurtosis of strong axis bending moment Mz along the bridge girder under EC1 with wave only condition
and EC2 with combined wind and wave condition. 100 ensemble samples are considered.

deviation have relatively large variation, especially when fewer ensembles (e.g. 10 ensembles) are
considered. For instance under EC2, the normalized standard deviation of Fx ranges from 0.94 to285

1.05 for different sets of 10 ensembles. Moreover, because of wind-induced load effects, variation
in the normalized standard deviation under EC2 is larger than that under EC1.

5.3. Extreme response estimation by a simplified analytical method

Since the structural responses are likely to have a Gaussian distribution, the extreme responses
can thus be roughly estimated by the analytical method existing for Gaussian processes, as de-290

scribed in Section 3.2.3. The structural responses of the floating bridge can be simulated by fully
coupled time-domain simulations. Accordingly, we can estimate the zero up-crossing period and
bandwidth based on the spectral moments. If the structural responses are not wide-banded, the
multiplying factor, i.e. for a fractile of 90%, can be approximated according to Fig. 5. It should be
noted that this is a simplified approach because it is based on the assumption that the response pro-295
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Table 5: Ensemble averages of statistical properties of axial force Fx, strong axis bending moment Mz and weak axis
bending moment My at A6 for the floating bridge under EC1 and EC2 based on 100 ensembles. SD denotes standard
deviation.

Response EC
Average statistics

Mean [kN or kN·m] SD [kN or kN·m] Skewness Kurtosis

Fx at A6
EC1 2.69E+02 3.19E+03 -0.01 2.98
EC2 -1.60E+04 8.55E+03 0.00 2.89

Mz at A6
EC1 3.44E+04 2.47E+05 0.00 2.98
EC2 1.22E+05 4.26E+05 0.01 2.88

My at A6
EC1 -9.04E+05 3.30E+04 0.00 3.00
EC2 -9.08E+05 3.42E+04 0.00 3.00
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Figure 9: Normalized mean values and standard deviations of axial force Fx at A6 under EC1 with wave only condition
and EC2 with combined wind and wave condition. Various set of ensemble numbers are considered. The values are
normalized by corresponding values with 100 ensembles given in Table 5.

cess is Gaussian. The estimated multiplying factor can give a rough estimation of extreme value
together with the mean value and standard deviation for the set considered, but a more accurate
extreme value is required to be estimated by extrapolation methods.
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Figure 10: Normalized mean values and standard deviations of strong axis bending moment Mz at A6 under EC1
with wave only condition and EC2 with combined wind and wave condition. Various set of ensemble numbers are
considered. The values are normalized by corresponding values with 100 ensembles given in Table 5.

5.4. Extreme response estimation by extrapolation methods

In this section, the extrapolation method is applied to estimate the long-term extreme response300

that corresponds to a 90% fractile of short-term extreme responses. Both the Gumbel method and
the mean upcrossing rate (MUR) method are employed to extrapolate the extreme response at the
90% fractile. The predicted extreme response is denoted as R.

5.4.1. Gumbel method

The Gumbel method is first employed. According to Eqs. 3 and 4, the response X is plotted ver-305

sus − log(− log(F)) based on N samples. Least square fitting of X as a function of − log(− log(F))
is then used to determine the parameters of the Gumbel distribution. Knowing the fitted Gumbel
distribution, the extreme value R can thus be determined at the 90% fractile level.

The 95% confidence interval (CI) is commonly used to represent the uncertainty associated
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with the estimated extreme value. The bootstrapping method can be used to evaluate the CI [6]. A310

large number of bootstrap samples of size N are first randomly generated from the fitted Gumbel
distribution. For each sample, a new Gumbel distribution would be fitted and predicts an estimate
R∗ of R. In the present study, 10000 samples are employed to create the distribution of R∗. The
95% CI of R can be therefore determined from the distribution of R∗.

Two examples are shown in Figs. 11 to demonstrate the extreme value estimation by Gumbel315

method. The extreme axial force at A6 under EC1 is predicted based on 10 ensembles and 100
ensembles, respectively. It is found that using 100 ensembles leads to an estimated multiplying
factor κ of about 4.08 with 95% CI (3.94, 4.24), while using 10 ensembles gives an estimated κ of
about 4.14 with 95% CI (3.63, 4.75). Although the estimated κ between the two different ensemble
numbers are fairly close, their 95% CIs differ significantly.320

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

y [kN] 10
4

-2

-1

0

1

2

3

4

-l
o

g
(-

lo
g

(F
))

Original

Fitting

90% fractile

(a) Gumbel fitting

1 1.2 1.4 1.6 1.8 2 2.2

Level estimate [kN] 10
4

0

1

2

3

4

5

P
D

F

10
-4

Empirical PDF

CI
0.95

(b) Empirical PDF of predicted extreme value

Figure 11: Estimation of extreme axial force at A6 under EC1 based on 10 ensembles by using the Gumbel method. (a)
Gumbel fitting of the sample data. (b) empirical PDF of predicted extreme value. Extreme load = µ + κσ, µ = 266.67
kN, σ = 3269.77 kN, κ = 4.14 and CIκ0.95 = (3.63, 4.75)

5.4.2. Mean upcrossing rate method

In the mean upcrossing rate method, the mean upcrossing rate and its 95% CI of a sample of
size N are first estimated based on a number of realizations [6]. Extrapolation method by Eq. 6
is then employed to fit the mean upcrossing rate as well as the corresponding 95% CI. According
to Eq. 5, the target upcrossing rate level corresponding to 90% fractile in a period of 1 hour is325

determined to be 2.93 × 10−5. The extreme value and its 95% CI can thus be determined from
fitted mean upcrossing rate and 95% CI at the target upcrossing level.

Fig. 13 is shown as an example of estimation of extreme axial force at A6 under EC1 based on
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Figure 12: Estimation of extreme axial force at A6 under EC1 based on 100 ensembles by using the Gumbel method.
(a) Gumbel fitting of the sample data. (b) empirical PDF of predicted extreme value. Extreme load = µ + κσ,
µ = 269.24 kN, σ = 3193.83 kN, κ = 4.08 and CIκ0.95 = (3.94, 4.24)

10 ensembles and 100 ensembles. It can be observed that the estimated factor κ for 100 ensembles
is about 4.08 with a 95% CI (3.92, 4.21). For 10 ensembles, the estimated factor κ is about 4.08330

with a 95% CI (3.75, 4.36).
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Figure 13: The mean upcrossing rate of axial force at A6 under EC1. CI denotes the empirical 95% confidence
interval. (a) based on 10 ensembles. Extreme load = µ + κσ, , µ = 268.01kN, σ = 3293.6kN, κ = 4.08 and
CIκ0.95 = (3.75, 4.36) (b) based on 100 ensembles. Extreme load = µ + κσ, µ = 268.92kN, σ = 3194.6kN, κ = 4.08
and CIκ0.95 = (3.92, 4.21)
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5.5. Multiplying Factor

5.5.1. Simplified method vs. extrapolation method

In this section, the simplified method is verified by comparison the multiplying factor κ to
that estimated by the Gumbel method. Table 6 compares the multiplying factor of axial force Fx,335

strong axis bending moment Mz and weak axis bending moment My of the bridge girder at A6,
A11, and A15 estimated by these two methods. For the simplified method, the zero up-crossing
periods and bandwidth parameters are calculated based on the averages spectra of 100 ensembles.
The same ensembles are also considered for the Gumbel method.

For all responses considered, the skewness is almost zero. Most responses are associated with340

a kurtosis of very close to 3, while four responses have a kurtosis of about 2.9. The bandwidth
parameter mainly ranges from 0.8 to 0.92; however, several responses have a bandwidth parameter
larger than 0.96, which implies that these responses are extremely narrow-banded.

In general, the simplified method gives an overall good prediction of multiplying factor com-
pared to the Gumbel method, as the difference is within 4%. Relatively large discrepancy is likely345

to occur if the kurtosis deviates a lot from 3 or if the bandwidth parameter is too close to one (i.e.
the responses are too narrow-banded). Although Eq. 10 is employed to account for the effect of
bandwidth, the discrepancy is still slightly large for extremely narrow-banded responses.

5.5.2. Gumbel method vs. mean upcrossing rate method

The two extrapolation methods, i.e. the Gumbel method and MUR method, are compared350

in this section for estimation of the factor κ. As mentioned above, the total 100 ensemble is
grouped into 2 sets with 50 ensembles, 5 sets with 20 ensembles and 10 sets with 10 ensembles,
respectively. For each set, the Gumbel method and MUR method are applied to estimate the
multiplying factor.

Fig. 14 presents the estimated multiplying factor κ of axial force Fx of the bridge girder at355

A6, A11 and A15 under EC1 with wave only condition and under EC2 with combined wind and
wave condition. The factor κ for each response is the average value for different sets with identical
ensemble number. The κ estimated by the Gumbel method and the MUR method are generally
close, with slight discrepancies. Comparing the κ of Fx of the bridge girder at A6, A11 and A15
estimated based on 100 ensembles indicates that the MUR method gives slightly larger prediction360

of κ than the Gumbel method. For the Gumbel method, the set-averaged values of κ of Fx are fairly
close among different ensemble numbers. However, these set-averaged values of κ estimated by
the MUR method exhibit differences, especially for Fx at A15 under EC1, Fx at A6 under EC2.
Similar trends are also observed for the strong axis bending moment Mz of the bridge girder at A6,
A11 and A15.365
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Table 6: Comparison of multiplying factor κ of axial force Fx, strong axis bending moment Mz and weak axis bending
moment My of the bridge girder at A6, A11, and A15 estimated by the simplified method and Gumbel method based
on 100 ensembles. SAM denotes the simplified analytical method.

Location EC Response Skewness Kurtosis Tz αb

κ
Diff [%]SAM Gumbel

A6

EC1
Fx -0.01 2.98 7.15 0.87 4.11 4.08 0.75
Mz 0.00 2.98 6.45 0.89 4.14 4.14 -0.06
My 0.00 3.00 6.36 0.97 4.10 4.23 -2.97

EC2
Fx 0.00 2.89 14.38 0.80 3.94 3.81 3.47
Mz 0.01 2.88 10.68 0.67 4.02 4.10 -1.92
My 0.00 3.00 6.57 0.96 4.11 4.22 -2.49

A11

EC1
Fx -0.01 2.97 8.00 0.84 4.09 4.16 -1.69
Mz 0.00 3.01 6.42 0.94 4.13 4.13 0.00
My 0.00 3.00 6.92 0.97 4.08 4.13 -1.22

EC2
Fx -0.01 2.90 15.84 0.83 3.92 3.81 2.91
Mz 0.00 2.99 7.77 0.85 4.09 4.10 -0.19
My 0.00 2.99 7.01 0.97 4.09 4.12 -0.88

A15

EC1
Fx -0.01 2.98 6.69 0.90 4.13 3.97 3.86
Mz 0.01 2.99 6.58 0.91 4.13 4.06 1.75
My 0.00 3.02 6.38 0.97 4.11 4.24 -3.14

EC2
Fx -0.01 2.94 12.73 0.80 3.97 3.94 0.93
Mz 0.02 2.89 10.56 0.69 4.02 3.92 2.63
My 0.00 3.01 6.46 0.96 4.11 4.16 -1.23

(a) Wave only
A6 A11 A15

0

1

2

3

4

5

 [
-]

(b) Combined wind and wave
A6 A11 A15

0

1

2

3

4

5

 [
-]

Gumbel, 100 ensembles

Gumbel, 50 ensembles

Gumbel, 20 ensembles

Gumbel, 10 ensembles

MUR, 100 ensembles

MUR, 50 ensembles

MUR, 20 ensembles

MUR, 10 ensembles

Figure 14: Comparison of estimated multiplying factor κ for axial force at A6, A11 and A15 by using Gumbel method
and MUR method. κ is the averaged value for sets with identical ensemble number. Extreme load = µ + κσ.

It should be noted that the factor κ presented in Fig. 14 is the average value for sets with
identical ensemble number. Variation of κ among different sets with identical ensemble number is
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addressed in the next section.

6. Uncertainty in extreme response estimation

Uncertainty always exists in the prediction of extreme structural responses for offshore struc-370

tures. The main sources of uncertainties are related to the accuracy of simulated structural re-
sponses, the approach used for prediction of extreme response, and a limited number of numerical
simulations, etc.

The uncertainties addressed in this section mainly focus on the statistical uncertainties due to
a limited number of simulations and related to the predicted statistical parameters, and the model375

uncertainties related to approach for extreme response prediction.

6.1. Statistical uncertainty

In the estimation of extreme responses for a complex structural system like a very-long floating
bridge, each simulation is usually very time-consuming. Therefore, the extreme responses are
desirable to be determined based on a limited number of simulations. This will, unavoidably,380

introduce statistical uncertainties. Besides, in this study, the extreme response is expressed by
Xmax = µ + κ · σ, as given by Eq 1. Statistical uncertainties also exist in the prediction of these
statistical parameters. Both these statistical uncertainties are addressed here. Uncertainties in the
predicted parameters of µ, σ and κ are discussed first.

6.1.1. Uncertainty related to predicted statistical parameters.385

The mean value µ and standard deviation σ are both likely to be affected by the number of
simulations. This has been demonstrated in Figs. 9 and 10. As the number of simulation increases,
the uncertainties in µ and σ decreases. The mean and coefficients of variation (CoV) of the µ and
σ of the axial force Fx and strong axis bending moment Mz of the bridge girder at A6 and A11
are given in Table 7, based on 10 sets of 10 ensembles. Here the CoV is defined as the ratio of390

standard deviation and mean value. Relatively large CoV values are observed in both µ and σ.
The factor κ is estimated by using both the simplified analytical method and extrapolation

methods in the present study. The effect of a limited number of simulations on the prediction of κ
by using the simplified analytical method is first addressed. The simplified method determines the
κ value based on the calculated zero up-crossing period and bandwidth parameter from spectral395

moments. Therefore, the simplified method can predict an estimation of the factor κ even given
only one ensemble. In Table 7, the factor κ is estimated based on 10 sets of 10 ensembles. For
axial force Fx and strong axis bending moment Mz of the bridge girder at A6 and A11, the CoV of
κ estimated are all very small, less than 0.002. This is because small variations in zero up-crossing
period or bandwidth parameter (less than 0.9) do not cause large variation in the estimated κ400
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Table 7: Mean value and coefficient of variation (CoV) of mean value µ, standard deviation σ, factor κ and extremes
of the axial force Fx, strong axis bending moment Mz of the bridge girder at A6 and A11.Among them, mean of µ,
σ, κ, extreme value Xmax,10 and their CoVs are calculated based on 10 sets of 10 ensembles. The mean extreme value
X′max,10 is calculated by X′max = µ + κ · σ. The CoV of X′max,10 is calculated according to Eq. 14. The mean extreme
value Xmax,100 is calculated based on 100 ensembles. SAM denotes the simplified analytical method.

Location EC Response Method

Statistics calculated from 10 sets of 10 ensembles Derived statistics 100 ensemles

µ σ κ Xmax,10 X′max,10 Xmax,100

Mean CoV Mean CoV Mean CoV Mean CoV Mean CoV Mean

kN or kNm kN or kNm kN or kNm kN or kNm kN or kNm

A6

EC1

Fx

Gumbel 2.69E+02 0.039 3.19E+03 0.022 4.020 0.059 1.31E+04 0.065 1.31E+04 0.062 1.33E+04

MUR 2.69E+02 0.039 3.19E+03 0.022 4.082 0.027 1.33E+04 0.033 1.33E+04 0.034 1.33E+04

SAM 2.69E+02 0.039 3.19E+03 0.022 4.114 0.001 1.34E+04 0.020 1.34E+04 0.021 1.34E+04

Mz

Gumbel 3.44E+04 0.017 2.47E+05 0.014 4.116 0.048 1.05E+06 0.043 1.05E+06 0.049 1.06E+06

MUR 3.44E+04 0.017 2.47E+05 0.014 4.187 0.055 1.07E+06 0.058 1.07E+06 0.055 1.06E+06

SAM 3.44E+04 0.017 2.47E+05 0.014 4.137 0.001 1.06E+06 0.014 1.06E+06 0.014 1.06E+06

EC2

Fx

Gumbel -1.60E+04 -0.002 8.55E+03 0.042 3.818 0.020 1.67E+04 0.095 1.67E+04 0.091 1.66E+04

MUR -1.60E+04 -0.002 8.55E+03 0.042 3.848 0.052 1.70E+04 0.145 1.69E+04 0.130 1.80E+04

SAM -1.60E+04 -0.002 8.55E+03 0.042 3.942 0.002 1.77E+04 0.078 1.77E+04 0.080 1.77E+04

Mz

Gumbel 1.22E+05 0.009 4.26E+05 0.035 4.029 0.063 1.84E+06 0.081 1.84E+06 0.067 1.87E+06

MUR 1.22E+05 0.009 4.26E+05 0.035 4.106 0.049 1.87E+06 0.056 1.87E+06 0.056 1.88E+06

SAM 1.22E+05 0.009 4.26E+05 0.035 4.018 0.002 1.83E+06 0.031 1.83E+06 0.032 1.83E+06

A11

EC1

Fx

Gumbel -6.93E+02 -0.015 2.74E+03 0.029 4.169 0.055 1.07E+04 0.066 1.07E+04 0.066 1.07E+04

MUR -6.93E+02 -0.015 2.74E+03 0.029 4.150 0.044 1.07E+04 0.056 1.07E+04 0.056 1.09E+04

SAM -6.93E+02 -0.015 2.74E+03 0.029 4.087 0.001 1.05E+04 0.031 1.05E+04 0.031 1.05E+04

Mz

Gumbel 1.08E+05 0.003 2.48E+05 0.012 4.046 0.045 1.11E+06 0.042 1.11E+06 0.042 1.13E+06

MUR 1.08E+05 0.003 2.48E+05 0.012 4.247 0.034 1.16E+06 0.033 1.16E+06 0.033 1.13E+06

SAM 1.08E+05 0.003 2.48E+05 0.012 4.127 0.000 1.13E+06 0.011 1.13E+06 0.011 1.13E+06

EC2

Fx

Gumbel -1.70E+04 -0.002 8.35E+03 0.043 3.822 0.048 1.50E+04 0.137 1.50E+04 0.137 1.48E+04

MUR -1.70E+04 -0.002 8.35E+03 0.043 3.847 0.061 1.52E+04 0.158 1.52E+04 0.158 1.61E+04

SAM -1.70E+04 -0.002 8.35E+03 0.043 3.917 0.002 1.57E+04 0.088 1.57E+04 0.088 1.57E+04

Mz

Gumbel 1.48E+05 0.007 3.18E+05 0.012 4.114 0.054 1.45E+06 0.050 1.45E+06 0.050 1.45E+06

MUR 1.48E+05 0.007 3.18E+05 0.012 4.229 0.032 1.49E+06 0.031 1.49E+06 0.031 1.46E+06

SAM 1.48E+05 0.007 3.18E+05 0.012 4.094 0.000 1.45E+06 0.011 1.45E+06 0.011 1.45E+06

value. This implies that with respect to the simplified analytical method, few ensemble can give a
reasonably good estimation of the factor κ. The estimation of the factor κ by using the simplified
analytical method is not sensitive to the number of simulations.

In terms of extrapolation methods (e.g. the Gumbel method), since the ensemble number can
affect the determination of fitting parameters involved in the extrapolation models, this will of405

course cause statistical uncertainty, especially when the ensemble number is limited. In general,
the larger the ensemble number, the smaller the uncertainties. These uncertainties are often ex-
pressed as 95% confidence interval (CI) of the predicted extreme value. Approaches on estimation
of 95% CI of extreme value by Gumbel method and MUR method have been elaborated in the
previous sections. Comparing Fig. 11 and Fig. 12 indicates that the κ of Fx of the bridge girder at410

A6 estimated by the Gumbel method based on 100 ensembles has a significantly smaller range of
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95% CI, i.e., CI+ − CI− , than that based on 10 ensembles. 10 ensembles gives a 95% CI range of
about 1.12, which is approximately 3.7 times of the value from 100 ensembles. Similar conclu-
sions is also drawn from Fig. 13. Therefore, large uncertainty may exist when only 10 ensembles
are used to predicted the extreme response.415

Moreover, when the extrapolation methods are employed, statistical uncertainties also exist
for a fixed ensemble number, due to the selection of random ensembles. Fig. 14 shows the set-
averaged multiplying factor κ of axial force Fx for different ensemble number, which are more
or less close for both the Gumbel method and the MUR method. However, for a fixed ensemble
number, the estimated κ has great variation, in particular only 10 ensembles are used for extreme420

value estimation. This is clearly illustrated in Figs. 15 and 16.
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Figure 15: Comparison of estimated multiplying factor κ for axial force and strong axis bending moment at A6 by
using the Gumbel method, the MUR method and the simplified analytical method. Two sets of ensemble numbers are
considered.

Figs. 15 and 16 demonstrate the variation in the estimated multiplying factor κ of Fx and Mz of
the bridge girder at A6 and A11, respectively. Two sets of ensembles, i.e. with 10 ensembles and
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Figure 16: Comparison of estimated multiplying factor κ for axial force and strong axis bending moment at A11 by
using the Gumbel method, the MUR method and the simplified analytical method. Two sets of ensemble numbers are
considered.

100 ensembles, are considered for both EC1 with wave only condition and EC2 with combined
wind and wave condition. It can be found that as the ensemble number increases, variations in425

the κ decrease. Both the κ estimated by the Gumbel method and by the MUR method has great
variations when 10 ensembles are used for extreme value prediction. For instance, κ of Fx under
EC1 estimated by the Gumbel method has a largest value of 4.50 and a smallest value of about
3.69 based on 10 ensembles, while the corresponding value κ based on 100 ensembles is about
4.08. This implies that the deviations might be as large as approximately 10%.430

6.1.2. Uncertainty in predicted extreme values caused by statistical parameters.

Based on the above discussions, uncertainties exist in the prediction of mean value µ, the
standard deviation σ and the factor κ. Such uncertainties will affect the evaluation of extreme
responses, resulting in uncertainties. Since the standard deviation σ and the factor κ are usually
statistically independent, the CoV of the extremes Xmax = µ + κ · σ caused by CoVs in µ, σ, κ can435
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be estimated by

CoVXmax =
|σ · κ|

µ + σ · κ

√
(
µ

σ · κ
)2 ·CoV2

µ + CoV2
κ + CoV2

σ (14)

The derivation of Eq. 14 is given in the Appendix. It is found that when the absolute value of
mean µ is smaller than the standard deviation σ, e.g. for the axial force Fx, strong axis bending
moment Mz of the bridge girder, the CoV of Xmax is mainly affected by the CoV of σ and κ.
However, when the absolute value of mean µ is much larger than σ, e.g. for the weak axis bending440

moment My of the bridge girder, the CoV of µ will also make a contribution to the CoV of Xmax,
but the CoV of Xmax is expected to be small.

The uncertainty in the calculated Xmax is demonstrated by considering 10 sets of 10 ensembles.
The mean value and CoV of µ, κ, σ, Xmax and of the axial force Fx, strong axis bending moment
Mz of the bridge girder at A6 and A11 are estimated by using the simplified analytical method445

and two extrapolation methods, as given in Table 7. It can be observed that the extreme value
Xmax has a greater value of CoV than the µ, κ and σ. The CoV of Xmax estimated by the Gumbel
and MUR methods are higher than that by the simplified analytical method. This is because the
simplified analytical method uses the mi spectral moments based on large amount of data, while
the MUR method uses the tail distribution based on limited amount of data. The CoV of Xmax450

by the simplified analytical method is less than 0.035, while the CoV of Xmax estimated by the
Gumbel and MUR methods can reach 0.137 and 0.158, respectively.

The extreme values are also estimated by X′max = µ+ κ ·σ based on the mean values of µ, κ and
σ. The standard error of X′max are calculated by Eq. 14; accordingly, the CoV of X′max is estimated
and given in Table 7. Comparison between Xmax and X′max indicates that their values are fairly close455

for the response and EC considered. So do their CoVs. This implies that Eq. 14 can give a reliable
prediction of standard error of the extreme value. In addition, the CoV of Xmax estimated by the
three methods are strongly affected by the relative values of mean value µ and standard deviation
σ. When the simplified analytical method is used, the CoV of Xmax is mainly affected by the CoV
of σ when the standard deviation σ is larger than the mean value µ. When the standard deviation460

σ is more than two times larger than the absolute value of mean µ, the CoV of Xmax estimated
by the Gumbel and MUR method are both smaller than 0.07 for the cases considered in Table 7.
However, when the standard deviation σ is smaller than the absolute value of mean µ, extremely
large CoV of Xmax are observed, for instance the axial force Fx at A6 and A11 under EC2. It gives
the CoV of Xmax of about 0.158 for the MUR method and 0.137 for the Gumbel method.465

The extreme values estimated by 100 ensembles based on the three approaches are also given
in Table 7. Comparing the extremes predicted by 100 ensembles and 10 ensembles shows that
the averaged extremes by 10 sets of 10 ensembles generally agrees well with the extremes by
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100 ensembles, except that the MUR method might underestimates or overestimates the extremes
under some cases.470

6.1.3. Uncertainty in predicted extreme value due to a limited number of simulations

The accuracy of predicted extreme values due to a limited number of simulations is addressed
in this section. Assuming M sets of time domain simulations are carried out to predict the ex-
treme responses, the predicted extremes are denoted by Xmax,i, i = 1, 2, ...,M, in which Xmax,i are
considered to be statistically independent. The final estimate of this extreme is considered as the475

ensemble average of these extremes. The error in the extreme estimate is a random variable. It has
a zero mean and the root mean square error of the extreme estimate is given by [31]

δ =
1
√

M

σXmax

µXmax

(15)

where µXmax and σXmax are the exact mean value and standard deviation of the extreme. The deriva-
tion of Eq. 15 is given in the Appendix.

The error in the extreme estimate follows a Gaussian distribution with zero mean and a stan-480

dard deviation of σXmax√
M

. To achieve a 90% conservative estimate of the extreme due to M sets of
simulations, a correction factor should be multiplied with the extreme estimate, i.e.

µXmax · γ ≥ µXmax + 1.28
σXmax
√

M
(16)

This gives

γ ≥ 1 + 1.28
CoVXmax
√

M
(17)

where CoVXmax is the exact CoV of the extreme.
In the practical design of floating bridges, if only one set of 10 1-h simulations is used and485

simulated to predict the extreme structural responses. Assuming that the exact CoV of the extreme
is approximated by the values estimated in the present study based on 10 sets of 10 1-h simulations,
as given in Table 7, it can be found that a correction factor of 1.1 should be used when the responses
have a standard deviation larger than its absolute mean value, and a correction factor of 1.2 should
be used when the responses have a standard deviation smaller than its absolute mean value.490

6.2. Model uncertainty

In this study, the extreme response or the multiplying factor κ is estimated by three different
approaches, i.e. the simplified method, the Gumbel method and the MUR method. As given in
Tables 6 and 7 and in Figs. 14, 15 and 16, these three methods give different predictions of the
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multiplying factor κ for structural responses at different locations and under EC1 and EC2. This495

implies that model uncertainty exist due to extreme value prediction method used.
To evaluate this model uncertainty, the extreme values estimated by the three approaches are

analyzed and compared against the reference extremes. The reference extremes are taken as the
90% fractile extreme values from the raw data of the 100 ensembles, and are thus independent of
the method used. The results are given in Table 8. Extreme values calculated based on 10 sets500

of 10 ensembles and based on 100 ensembles by using these three approaches are compared and
relative errors are calculated.

Relatively large error are observed in axial force Fx under EC2 at A6 and A11, in which the
absolute mean value is significantly larger than the standard deviation. The relative error can reach
about 10% for the MUR method and 8% for the simplified analytical method. The Gumbel method505

gives a better prediction of extremes than the MUR and simplified analytical method under this
scenario. When the absolute mean value of the response considered is smaller than the standard
deviation, the relative errors predicted by the three methods are generally small, less than 2.5%.

Among these three methods, the κ value and extremes determined by the simplified analytical
method is not sensitive to the ensemble number. This is an prominent advantage of the simplified510

method, compared to the Gumbel method and MUR method that are both sensitive ensemble
numbers. However, the accuracy of the simplified method is strongly affected by the Gaussian
distribution assumption, as well as the bandwidth parameter if the responses are extremely narrow-
banded.

6.3. Recommendation for engineering design515

A very-long floating bridge is a very complex structure. During the design of floating bridges,
characteristic values of long-term extreme responses are required for ULS design check. Predic-
tion of long-term extreme responses requires tremendous time and effort. Properly reducing the
computational time and effort is desirable from engineering design point of view.

The simplified engineering approach based on the environmental contour method, as used in520

the present study, is an efficient method to reduce the computational effort. In this approach, the
long-term extreme responses are approximated by relevant short-term extreme responses at a high
fractile.

The computational effort for prediction of short-term extreme responses can be further reduced
by using a simplified analytical approach when the structural responses are close to have a Gaus-525

sian distribution. This is demonstrated in the present study of a long end-arched floating bridge.
As a matter of fact, the long floating bridges commonly feature a large number of eigen-modes.
Under the action of wind and waves, the structural responses are dominated by resonant responses
at several eigen-modes. Consequently, the structural responses are likely to have a Gaussian dis-
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Table 8: Comparison of extremes of the axial force Fx, strong axis bending moment Mz of the bridge girder at A6
and A11 estimated by the three method. Among them, the mean extreme value Xmax,10 are calculated based on 10
sets of 10 ensembles. The mean extreme value Xmax,100 is calculated based on 100 ensembles. SAM denotes the
simplified analytical method. The 90% fractile extreme value from the raw data based on 100 ensembles are taken as
the characteristic value and used as the reference here.

Location EC Response
Xmax,re f

Method

Xmax,10 Xmax,100

Mean Relative error Mean Relative error

kN or kNm kN or kNm kN or kNm

A6

EC1

Fx 1.33E+04

Gumbel 1.31E+04 -1.60% 1.33E+04 -0.11%

MUR 1.33E+04 0.00% 1.33E+04 0.07%

SAM 1.34E+04 0.62% 1.34E+04 0.62%

Mz 1.04E+06

Gumbel 1.05E+06 0.69% 1.06E+06 1.27%

MUR 1.07E+06 2.48% 1.06E+06 1.84%

SAM 1.06E+06 1.21% 1.06E+06 1.21%

EC2

Fx 1.64E+04

Gumbel 1.67E+04 1.59% 1.66E+04 1.16%

MUR 1.70E+04 3.91% 1.80E+04 10.07%

SAM 1.77E+04 8.06% 1.77E+04 8.06%

Mz 1.84E+06

Gumbel 1.84E+06 -0.25% 1.87E+06 1.21%

MUR 1.87E+06 1.53% 1.88E+06 2.09%

SAM 1.83E+06 -0.61% 1.83E+06 -0.61%

A11

EC1

Fx 1.06E+04

Gumbel 1.07E+04 1.05% 1.07E+04 0.74%

MUR 1.07E+04 0.56% 1.09E+04 2.28%

SAM 1.05E+04 -1.07% 1.05E+04 -1.07%

Mz 1.12E+06

Gumbel 1.11E+06 -0.68% 1.13E+06 1.12%

MUR 1.16E+06 3.76% 1.13E+06 1.20%

SAM 1.13E+06 1.12% 1.13E+06 1.12%

EC2

Fx 1.53E+04

Gumbel 1.50E+04 -1.90% 1.48E+04 -2.81%

MUR 1.52E+04 -0.56% 1.61E+04 5.67%

SAM 1.57E+04 3.27% 1.57E+04 3.25%

Mz 1.45E+06

Gumbel 1.45E+06 0.23% 1.45E+06 -0.04%

MUR 1.49E+06 2.75% 1.46E+06 0.75%

SAM 1.45E+06 -0.21% 1.45E+06 -0.21%

tribution. In the practical design of floating bridges, the Gaussianity of structural responses can530

be evaluated by assessing the skewness and kurtosis. The simplified analytical method is very
efficient and recommended if structural responses are close to have a Gaussian distribution. Oth-
erwise, the Gumbel or MUR methods are more suitable.

Besides, during the evaluation of short-term extreme responses, a limited number of simula-
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tions is usually conducted, which will result in statistical uncertainty in the extreme estimate. A535

correction factor should be used and multiplied with the extreme estimate in order to have a con-
servative prediction when a limited sample is used. A simplified procedure to derive the correction
factor is given in this study. Based on the present study, the extreme structural response can be
expressed by Xmax = µ + κ · σ, in which the µ, κ and σ are found to be statistically independent.
The mean and CoV of µ, κ, σ and extremes are evaluated by considering 10 sets of 10 1-h simula-540

tions. If only 10 1-h simulations is used for extreme response prediction in the practical design of
floating bridges considered, a correction factor 1.1-1.2 is recommended in order to achieve a 90%
conservative estimation of extreme. A correction factor of 1.1 should be used when the responses
have a standard deviation larger than its absolute mean value, and a correction factor of 1.2 should
be used when the responses have a standard deviation smaller than its absolute mean value. It545

should be noted that these correction factors are a proposal that could be further scrutinized, since
they are derived based on numerical simulations for the present case study.

7. Discussion

This study addresses the determination of the extreme response in short-term periods in the
context of long-term extreme structural responses of a very-long floating bridge by using the en-550

vironmental contour method. The relevant short-term extreme value is defined by a high fractile
value. The short-term condition should be properly selected to be the most severe sea state that
cause the largest extreme responses. This approach is an engineering approach that has been
widely used in the design of marine structures. Although the present floating bridge is a very-long
complex infrastructure with a large number of eigen-modes that differs from traditional marine555

structures, the environmental contour method is still expected to be applicable. However, the
contour method is approximate and should be verified by comparison with full long-term method.

The short-term environmental conditions used in this study, i.e., EC1 and EC2 given in Table 4,
are determined according to the metocean design basis for the fjord [27]. EC1 is the 100-year
worst wave condition. Nevertheless, EC2 is a combination of 100-year worst wind condition and560

100-year worst wave condition and we assume that EC2 is the worst combined wind and wave
condition with a return period of 100 years. The wave conditions in the fjord considered is mainly
wind-generated and also affected by limited fetch length [28]. According to Tucker and Pitt [32],
the significant wave height for fetch-limited seas in deep water is given by

Hs = 0.0163
√

L f Uw (18)

where L f is the fetch length in km. The calculated fetch length corresponding to EC2 is about565

24.9km, which is reasonable according to the local topology of the Bjørnafjord. This also implies
31



that the combination of 100-year wind and 100-year wave in EC2 is a reasonable approximation
of the worst wind and wave conditions.

A 90% fractile is used in the present study to determine the extreme value. This fractile level
is recommended by metocean design basis [27]. It was proposed according to previous experience570

in the offshore oil and gas industry. However, an accurate fractile value should be calibrated and
determined by carrying out a full or simplified long-term analysis.

This study addresses uncertainties related to prediction of extreme responses, mainly statistical
uncertainties due to a limited number of simulations and model uncertainties due to approaches
for extreme value prediction. However, several other sources of uncertainty also exist, e.g. in575

environmental conditions, environmental load calculation and load effect estimation, etc.
The environmental conditions (EC1, EC2) are derived based on long-term simulated wind and

wave data. These data are not completely validated due to limited field measured data [28]. The
wind and wave conditions are assumed to be homogeneous over the whole floating bridge; how-
ever, the wind and wave conditions in the fjord are actually inhomogeneous due to complex topol-580

ogy and hydrology [33]. Therefore, uncertainties are unavoidably introduced in the environmental
conditions. In the calculation of environmental loads, several simplifications are employed, which
of course cause uncertainties. For instance, hydrodynamic interactions between pontoons were ig-
nored, the viscous drag forces on the pontoons were simulated by empirical drag coefficients, and
the aerodynamic loads on the bridge girder was modeled by using the nonlinear quasi-static airfoil585

theory, in which the frequency-dependent aerodynamic force induced by motion of the structures
was neglected. The environmental load effects are estimated by using fully coupled numerical
models, which might introduce uncertainties as well.

Uncertainty might exist in the fractile level and the determination of short-term environmental
conditions that cause the largest extreme responses. The present study assumes that EC2 is likely590

to cause the most severe response. Although it is a reasonable assumption, uncertainties might
still exist.

8. Conclusions

This study deals with the evaluation of 1-hour short-term extreme response in association with
the use of environmental contour method to determine long-term extreme structural responses and595

associated uncertainties for an end-anchored curved floating bridge. The floating bridge consid-
ered is about 4600 m long and was an early concept for crossing the Bjørnafjord. The long-term
extreme responses are estimated by using the response at a 90% fractile of a representative short
term condition.

The short-term environmental conditions (ECs) that cause the largest extreme responses, i.e.600
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EC2 with combined wind and wave condition, are determined based on an early version of the
metocean design basis for the fjord. EC1 with wave only condition is also studied for the reference.
A total of 100 1h samples are simulated for each EC to predict the extreme responses. The extreme
responses are expressed as µ + κσ, where µ and σ are the ensemble mean and standard deviation,
and κ is a multiplying factor.605

Statistical analyses indicate that the structural responses are likely to be Gaussian distributed.
A simplified analytical method is thus used to predict the factor κ based on the zero up-crossing
periods and bandwidth parameters estimated from ensemble averaged spectral moments. Two ex-
trapolation methods, including the Gumbel method and the mean upcrossing rate (MUR) method,
are also employed to predict the factor κ.610

The multiplying factor κ for axial force Fx, strong axis bending moment Mz and weak axis
bending moment My of the bridge girder are found to be in the vicinity of 4. Compared to the
Gumbel method, the simplified method can give an overall good prediction of multiplying factor
κ for Fx, Mz and My, with a discrepancy less than 4%. However, large discrepancy will occur for
non-Gaussian distributed responses and/or extremely narrow-banded responses. The κ estimated615

by the Gumbel method, the MUR method and the simplified method are generally close but with
discrepancies.

Uncertainties in the extreme value prediction are also addressed in the study, including statisti-
cal uncertainties due to a limited number of simulations and model uncertainties due to approaches
for extreme value prediction, etc. In general, the smaller the ensemble number, the larger the sta-620

tistical uncertainties.
Based on the results of 10 sets of 10 1-h ensembles, the mean and coefficient of variation

(CoV) of µ, κ, σ and extremes of Fx and Mz under EC1 and EC2 are evaluated. The CoV of µ
is fairly small, less than 0.04; while the CoV of σ is less than 0.045. The CoV of κ is relatively
large, mainly between 3.5×10−2 and 6.5×10−2. Moreover, µ, κ and σ are statistically independent,625

the CoV of extreme is a function of the mean and CoV of µ, κ and σ. The CoV of extremes
estimated by the simplified analytical method is fairly small, less than 0.035. While the CoV of
extremes estimated by the Gumbel and MUR methods are much larger and can reach 0.137 and
0.158, respectively.

In the practical design of floating bridges, only a limited number of simulations (e.g. 10) is630

used to predict the extreme structural responses. To account for the statistical uncertainty due
to a limited number of simulations, a correction factor should be employed in order to achieve a
conservative estimation of extreme. A procedure to derive the correction factor is presented in this
study. For the floating bridge considered, if only 10 1-h simulations are simulated for extreme
value prediction, the correction factor is recommended to be 1.1 when the absolute value of mean635

µ is smaller than σ, and be 1.2 when the absolute value of mean µ is larger than σ, in order to
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achieve a 90% conservative estimation of extreme.
As a whole, this study addresses the estimation of long-term extreme responses and associated

uncertainties for an extra-long floating bridge by using an engineering approach, i.e., the envi-
ronmental contour method. It gives insights on the extreme behavior of floating bridges and also640

provides a simplified procedure to deal with statistical uncertainty due to a limited number of sim-
ulations. These approaches are also applicable and useful for other floating bridges, in terms of
prediction of extreme responses for ULS design check. The present study cannot conclude the ac-
curacy of these three methods, since the exact value of long-term extreme response is not known
yet. This can be studied by carrying out a full long-term analysis, but it is not the focus of the645

present study and can be a future work.
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Appendix655

A. Propagation of error

Considering a function that is expressed as

f (a, b, c) = c + a · b (19)

where a, b and c are random variables. Assuming that the mean value of a, b and c are denoted
by µa, µb and µc, and their standard deviation by σa, σb and σc, respectively. Their coefficient of
variations (CoV) are denoted by CoVa, CoVb and CoVc, respectively. Here we have σa = µa ·CoVa,660

σb = µb ·CoVb and σc = µc ·CoVc

The standard error of g = a · b is estimated by

σ2
g = (

∂g
∂a

)2σ2
a + (

∂g
∂b

)2σ2
b + 2(

∂g
∂a

)(
∂g
∂b

)σ2
ab (20)
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where σab is the covariance of a and b. ∂g
∂a and ∂g

∂b are evaluated at the mean value. If a and b are
uncorrelated, σab = 0. This yields

(
σg

µa · µb
)2 = (

σa

µa
)2 + (

σb

µb
)2 (21)

The standard error of function f is then given by665

σ f =

√
σ2

c + σ2
g =

√
σ2

c + µ2
a · σ

2
b + µ2

b · σ
2
a = |µa · µb|

√
(

µc

µa · µb
)2 ·CoV2

c + CoV2
b + CoV2

a (22)

Its coefficient of variation is approximated by

CoV f =
|µa · µb|

µa · µb + µc

√
(

µc

µa · µb
)2 ·CoV2

c + CoV2
b + CoV2

a (23)

B. Accuracy of extremes due to a limited number of simulations
Let the extreme values predicted by M sets of simulations be xi, i = 1, 2, ...,M. The final

estimate of this extreme, say S, will be [31]:

S =
1
M

M∑
i=1

xi (24)

if µ is the exact ensemble average of this extreme, such that µ = E[xi], then the error in the estimate670

S will be:
ε = S − µ (25)

where ε is a random variable. Considering the statistics of the error ε, the average value of ε is
given by:

E[ε] =
1
M

M∑
i=1

E[xi] − µ = 0 (26)

and the mean squared value of ε is:

E[ε2] =
1

M2

M∑
i=1

M∑
j=1

E[xix j]−
2µ
M

M∑
i=1

E[xi]+µ2 =
1

M2

M∑
i=1

E[x2
i ]+

2
M2

M∑
i=1

M∑
j=i+1

E[xix j]−
2µ
M

M∑
i=1

E[xi]+µ2

(27)
Noting that the terms xi are statistically independent, and defining σ such that E[x2

i ] = σ2 + µ2,675

Eq. 27 can be written as

E[ε2] =
1
M

(σ2 + µ2) +
1
M

(M − 1)µ2 − 2µ2 + µ2 =
σ2

M
(28)
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The root mean square error of the estimate S, say δ, will now be written as:

δ =
1
√

M

σ

µ
(29)
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