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Abstract 
The objective of this paper is to outline a framework for online risk modelling for autonomous 
ships. There is a clear trend towards increased autonomy and intelligence in ships because it 
enables new functionality, as well as safer and more cost-efficient operations. Nevertheless, 
emerging risks are involved, related to lack of knowledge and operational experience with the 
autonomous systems, the dependency on complex software-based control systems, as well as a 
limited ability to verify the safe performance of such systems. The framework presented in the 
paper is the first step towards supervisory risk control, i.e., developing control systems for 
autonomous systems with risk management capabilities to improve the decision-making and 
intelligence of such systems.  The framework consists of two main phases, (i) hazard 
identification and analysis through the systems theoretic process analysis (STPA), and (ii) 
generating risk models represented by Bayesian Belief Networks (BBN) based on the outcomes 
of the STPA. The application in the paper is aimed at autonomous ships, but the results of the 
paper have a general relevance for both manned and unmanned systems with different levels of 
autonomy, complexity, and major hazard potential.  
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STPA – Systems Theoretic Process Analysis 
UAV – Unmanned Arieal Vehicle 
UCA – Unsafe Control Action 

1 Introduction 
The development towards maritime autonomous surface ships (MASS) is currently an 
important technolocial trend due to the potential for increased safety and efficiency, and 
optimized ship performance (DNVGL, 2018; DMA, 2017; LR, 2015). Autonomous ships are 
expected to become a cost-efficient alternative to conventional ships and improve safety and 
environmental impact at sea. It is expected that the introduction of autonomy will reduce the 
number of human injuries and fatalities (Department of Transport, 2019; Wrobel et al., 2017), 
which globally amounted to 8000 fatalities from 2008-2012 (IMO, 2016). Nevertheless, it is 
essential to ensure that autonomous ships have the desired level of reliability, availability, 
maintainability and safety to be acceptable for widespread use at sea (DNVGL, 2018). Hence, 
risk assessments are necessary to ensure safe operations (NMA, 2018).  
 
An autonomous system includes improved perception, situation awareness, and planning/re-
planning capabilities and may be characterized as deliberative control systems based on the 
feedback loops of sense, model, plan and act. Failures in critical ship functions, such as in the 
automatic sailing system or the dynamic positioning (DP) system, are not viable and may lead 
to loss of position and in the worst case; collision causing severe damage and human fatalities. 
Therefore, supervisory risk control is a dynamic functionality that needs to be designed and 
implemented into an autonomous ship’s control system, providing the ship with the ability and 
system integrity to assess and control risks during the operation.  
 
MASS may have functionality with different levels of autonomy (LoA), impacting the ship’s 
operator dependency, communication structure, human-machine interface (HMI), intelligence, 
planning functionalities, and mission and operation capabilities. The LoA may, for example, be 
divided into: LoA 1: Automatic operation (remote control), LoA 2: Management by consent 
(teleoperation), LoA 3: Semi-autonomous or management by exception, and LoA 4: Highly 
autonomous during a misson or operation (Utne et al., 2017, Ludvigsen and Sørensen, 2016). 
Other catergorizations may distinguish between the LoA differently, depending on the specific 
application (Vagia et al., 2016).  Motivated by NIST (2008), the four-level version used here is 
relatively general and aligned with other mobile robotic applications, such as NFAS (2017).   
 
Conventional manned ships either have low LoA or are approaching with some functionality 
higher LoA. A ship may also have onboard systems with functionality in different LoA, and 
operators may be able manoeuver across different LoA, i.e., move the system from a high LoA 
into a manual mode and take over control (low LoA). Advanced ships in DP operation, for 
example, rely on the operator being onboard to take over control if the ship is in a situation that 
the control system cannot handle. In addition, LoA may change for the different operational 
modes, i.e., from departure, transit/sailing and docking.  
 
Unmanned ships, on the other hand, may be implemented with a high degree of remote control 
and monitoring, and low LoA correspondingly, i.e.; remotely controlled by operators onshore, 
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or performing all operations autonomously (high LoA), but this requires a change in the current 
maritime regulation regime.  
 
For systems with low LoA, situation awareness of both the exterior surroundings, as well as the 
integrity of the system itself are mainly related to relatively simple alarm systems associated 
with the ship control systems and the human operator’s perception and understanding of the 
system and operation. Similarly, the ability for the system itself to plan and replan the mission 
may be limited. For systems with high LoA, situation awareness (SA) is to a large extent 
“transferred" from the operator to the autonomous system, including learning cababilities and 
decision making. To design and utilize systems with an acceptable risk level that cooperate, 
possibly replace, and outperform human capabilities, means that supervisory risk control is 
decisive. 
 
Risk analysis consists of finding out what can go wrong, determine how likely is it, and what 
are the consequences (Rausand, 2011). Risk modeling is used to express risk qualitatively 
and/or quantitatively for a system or activity. Risk analysis employs risk modelling and is 
essential for risk management. Risk control can be defined as a “measure that is modifying risk” 
(ISO31000, 2009). Risk control of an autonomous ship should consider all relevant risk aspects 
to proactively avoid the need for activitating any contingency system. Generally, during 
operation of autonomous systems, risk control should be performed in two different but equally 
important “risk control modes” to support situation awareness and decision making (Utne et al., 
2017): 

i. By the human operator and the organization interacting, supervising and monitoring the 
autonomous system, and/or 

ii. By the autonomous system, which means supervisory risk control. 
 
In low LoA, the prevailing system risk control mode is (i), whereas in high LoA, the risk control 
mode is mode (ii), which we denote supervisory risk control.  Hence, a system may switch 
between risk control performed by the human operator (supervisor) and supervisory risk control 
executed by the autonomous system, depending on the context, phase of operation, and LoA. 
For example, Vinnem et al. (2015) and Thieme & Utne (2017a) addressed mode (i). In this 
paper, the focus is on developing the basis for mode (ii), i.e., supervisory risk control by the 
autonomous system. 
 
In general, the control system is divided into three main layers (Ludvigsen and Sørensen, 2016); 
(i) the control execution layer (the reactive control layer), (ii) the guidance and optimization 
layer, and (iii) the operation or supervisory layer (the deliberate control layer). In the mission 
layer, the mission objective is defined and planned (and possibly replanned). In the guidance 
and optimization level, the waypoints and reference commands to the controller are handled. In 
the control execution level, the plant control and actuator control occur. Risk must be 
considered in all three levels. The supervisory risk control “module”, however, may be 
considered as a contribution to improved artificial intelligence, included in the 
operation/mission layer (iii) in the control architecture, supporting and enabling the 
autonomous system to model and plan its actions; i.e., making deliberate choices.  
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Most work related to safety of autonomous ships have so far focused on hazard identification 
and analysis, but not on risk modelling, even though Bayesian Belief Networks (BBN) have 
been developed for risk related to autonomous underwater vehicles (Hegde et al, 2018; Thieme 
& Utne, 2017; Brito & Griffith, 2016). Rødseth and Tjora (2014) discuss challenges with 
unmanned ships. Utne et al. (2017) clarify, categorize, and classify risk related to autonomous 
marine systems and autonomous ships, and establish a foundation for risk management of such 
systems. Wrobel et al. (2017) determine that the occurrence of navigational accidents may be 
reduced for autonomous ships, but the consequences from fire and structural failure may 
increase. Acanfora et al (2018) propose a method for route planning and execution by an 
autonomous ship, focusing on ship motion. Rokseth et al. (2017; 2018; 2019) demonstrate that 
the system theoretic process analysis (STPA) is feasible for risk analysis of systems with 
complex control functionality, such as DP systems. Montewka et al. (2018) propose research 
directions for safety and risk assessment and concludes that new risk analysis methods are 
needed. Thieme et al. (2018) review 64 existing ship collision and grounding risk models but 
find none directly suitable for risk assessment of MASS. Xiang-yu et al. (2018) present a novel 
ship domain model for autonomous ships, focused on collision risk. Wrobel et al. (2018a) use 
STPA to identify potential means for improving the safety of a remotely controlled merchant 
vessel.  Wrobel et al. (2018b) apply STPA for analysing hazardous scenarios and determining 
design requirements to autonomous ships, and Rokseth et al. (2019) use STPA to derive a safety 
verification program for autonomous ships.  They do not, however, apply STPA as a basis for 
developing online risk models as part of supervisory risk control, as we propose in this paper.  
 
The objective of this paper is to outline a framework for developing online risk models as part 
of the deliberative layer of a control system for MASS. The framework is the first step towards 
supervisory risk control. The paper uses STPA for identifying hazardous events and 
corresponding scenarios, which provide direct input to the development of online risk models 
represented by BBN. The main focus of the paper is on the process of transforming the results 
from STPA into nodes and structure of a BBN. Constructing a BBN is usually performed using 
either subjective knowledge, the knowledge representation approach, or a machine learning 
approach (Darwiche, 2009). For risk analysis, typically the subjective approach is used. Hence, 
a systematic and structured approach bridging results from hazard identification into risk 
modelling is missing, and the framework proposed in this paper is an attempt to do so. 
 
The main scientific contribution of the paper is related to how the outcome of STPA directly 
enhances the development of the BBN in two ways; (i) in the identification of nodes, and (ii) 
in the structuring of arcs connecting the nodes. A case study illustrates the proposed framework 
for an autonomous ship. The results of the paper create a basis for implementing built-in 
intelligent risk assessment during operation of complex software-based systems, such as 
MASS.  
 
Fault tolerant control (Blanke et al., 2015) mainly aims at reducing the consequences of internal 
faults and includes methods for diagnosing on the control excecution level. Supervisory risk 
control, on the other hand, includes more than fault-tolerant control, related to the the capability 
of the autonomous systems to learn, adapt and improve.  
 
The paper is structured as follows: Section 2 presents the methodological approach, Section 3 
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focuses on the case study, Section 4 includes the discussion, and Section 5 states the 
conclusions.  

2 Methodology – the framework 
 
2.1 Background and needs 

A traditional risk model is typically represented by a bow tie, as shown in Figure 1. The left 
side represents the causes to the critical event, and the right side represents the consequences. 
A critical event may be caused by several different causes and lead to different consequences, 
which can be analyzed by fault trees, event trees, BBN, or a combination of these. The entire 
bow tie model represents an accident scenario.  
 

 
Figure 1. Bow tie model. Causes to the critical/hazardous event are represented to the left, and 
potential consequences to the right. 
 
Risk may be defined as the “effect of uncertainty on objectives” (ISO 31000 (2018)). An effect 
can be either positive or negative. Further, the standard states that “risk is often expressed in 
terms of the consequences of an event and the associated likelihood of occurrence”. During 
operation of a ship, the focus is to prevent and reduce the likelihood of critical events and their 
causes and maximize the operational efficiency and output. Regarding “effect” in the above 
definition, safety would then refer to avoiding negative effects, whereas operational efficiency 
and cost optimization might include both positive and negative effects. Daily operation has 
usually a large focus on production efficiency and maintenance activities to prevent downtime 
that may follow from failures of critical technical equipment. If a critical event should occur, 
emergency response is activated and implemented to prevent and reduce the likelihood of 
serious consequences. 
 
The framework in this paper focuses on avoiding hazardous events and their causes that may 
lead to negative effects. The main purpose is to enable the autonomous system to make 
decisions that mitigate or reduce the likelihood of critical events, i.e., the left side of the Figure 
1. The term risk in a risk management context usually refers to ‘major accident risk’ because 
hazards like a fall [by an operator] on present or to a lower level deck or a minute excursion 
from an ideal route normally may be controlled by far less rigorous assessments and control 
actions. Thus, risk in this paper refers to major accident risks, including scenarios which are 
caused by sources on the ship itself (such as rudder failure or engine room fire), or from external 
causes, like a vessel on a collision course. This implies that control of major accident risks may 
be common with controls to optimize navigational efficiency. 
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In the industry, most current risk analysis methods are used during the design phase of systems, 
and not as tools for online risk control during operation, even though dynamic approaches to 
risk analysis have been developed in recent years. A dynamic risk assessment can be defined 
as a “method that updates estimated risk of a deteriorating process according to the performance 
of the control system, safety barriers, inspection and maintenance activities, the human factor, 
and procedures” (Khan et al., 2016). Generally, the increased availability of sensor data and 
improved computational capability provide enhanced opportunities for dynamic risk 
assessments (Zio, 2018). Examples of dynamic risk assessments using BBN that updates the 
risk when new information becomes available have been developed, for example, by (Li et al., 
2019; Adedigba et al., 2018; Barua et al., 2016; Paltrinieri et al., 2014; Khakzad et al., 2013). 
Zheng and Zio (2018) present a dynamic risk assessment method, combining a hierarchical 
bayesian model with simulations and event trees, that allows for estimation of risk based on 
data collection during operation. This is more in line with the concept of “online risk 
management” which builds on data from different sources, such as historical data, sensors and 
measurements, and experience data (Vinnem et al, 2015). Neither of these approaches, even 
though they may be useful, are developed for supervisory risk control in general, nor for 
autonomous ships. 
 
Autonomous systems depend to a large extent on software, which is highly complex for 
advanced systems. Physical separation and segregation of components, such as redundancy in 
ship machinery systems, may be overruled by software and control systems that operate across 
physical boundaries and separated systems. Several of the current risk analysis methods focus 
on decomposition of the system into components, which is challenging with complex systems, 
such as the DP system (Rokseth et al., 2017). According to Rasmussen (1997), risk management 
should be considered as a control function implemented to maintain system processes within 
the safe operation envelope. Leveson (2011) has proposed STPA, based on these ideas, in which 
safety is controlled by enforcing constraints on the system behavior, and accidents occur due to 
inadequate control or inadequate enforcement of safety constraints. STPA has been used in 
several applications (Leveson & Thomas, 2018), including for hazard identification of 
autonomous ships (Wrobel et al., 2018a; b), but not for generating risk models and BBN.  
 
To establish supervisory risk control as part of the intelligence of a control system, the following 
aspects need to be adressed: 

i. We need to know which hazardous events should be prevented and their causal factors 
in the system´s operation.  

ii. We must be able to observe and verify the presence of the causal factors during 
operation (cf. left side of bow tie in Figure 1).  

iii. We must know which combinations of causal factors that may lead to the hazardous or 
critical event. Hence, we need to structure the causal factors and create a foundation for 
gathering and assessing information and observations related to the causal factors in 
real-time. Such information may be of a qualitative, semi-quantitative, and quantitative 
nature, and must be collected during operation or from databases with historical and/or 
experience data. 

iv. We must determine the effect of different combinations of causal factors on system level 
risk.  If there is a high risk of safety constraints being violated, the system itself (or an 
operator when in low LoA) needs early warnings of a potential hazardous event.  
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These aspects, and in particular i. and iii, are focused on in the presented framework in this 
paper. 

 

2.2 The phases and steps of the framework 

To address the above-mentioned needs, we propose a two-phase process, combining: 
(i) Hazard analysis through STPA.  
(ii) Development of the risk model represented by a BBN.  
 
In the first phase, STPA (based on Rokseth et al. (2017; 2018)) is used to identify and analyze 
the hazardous events, define unsafe control actions, scenarios and hazardous combinations of 
causal factors. The scenarios and causal factors form the basis for the structure and content of 
the risk model and BBN, developed in phase 2.  
 
Figure 2 gives an overview over the phases and steps of the proposed framework, and how they 
are related to each other. Each phase and step are explained closer in the following Subsections. 
 

 
Figure 2: Overview of phases and steps in the proposed framework. UCA is unsafe control 
actions and RIF is risk influencing factor.  

Phase 1 – Hazard identification and analysis - STPA 
In this phase, the system accidents (major accident risks) and the system-level hazardous events 
are identified and analyzed. These are used to define corresponding system-level safety 
constraints that must be enforced to ensure that the system accidents do not occur. Next, we 
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identify how inadequate control may result in a transition into these hazardous states through 
violation of the system-level safety constraints (UCA-unsafe control actions) and scenarios in 
which the UCA may occur. Finally, causal factors (i.e., factors that are prerequisites or 
facilitators for the scenarios, or that makes the scenarios more likely to occur), are identified. 
Summarized, the process consists of the following steps: 
 

• Step S1: Define the system with system boundaries and describe it as an autonomous 
control system. This includes identifying controller responsibilities and process 
variables.  

• Step S2: Identify hazardous events at system level and safety constraints. 
• Step S3: Identify unsafe control actions (UCA) that violate the safety constraints. 
• Step S4: Develop scenarios in which the unsafe control actions may occur and 

identify their causes. 
 

The first step is obviously important for achieving a feasible result of the analysis. In step S2, 
the system level hazardous events are identified, with safety constraints and process variables. 
Process variables are a set of variables that represent a controller’s perception or belief 
regarding the relevant system states and are useful for identifying and specifying the hazardous 
context for UCA, scenarios and causal factors (for example, in which context is it hazardous 
not to provide a certain control action). In step S3, UCA that violate the safety constraints are 
determined, and these may occur in four different ways: a necessary control action is not 
provided/followed/executed, it is provided too early or too late, it is applied too long or too 
short, or an unsafe control action is provided (Leveson, 2011). In step S4, scenarios in which 
the UCA can occur and relevant causes to these are specified.  
 
The outcome of the STPA is hazard identification, which provides the qualitative basis for 
developing the online risk model with BBN. The online risk model should enable monitoring, 
calculation of the likelihood of the hazards during operation, early warnings, and hence support 
regarding different action alternatives the control system of an autonomous ship can undertake 
during a voyage or operation. 

Phase 2 – Developing the online risk model - BBN 
BBNs are graphical models illustrating causal relationships consisting of nodes and arcs. The 
main objective of using BBN is to model risk influencing factors (RIFs) that influence a 
hazardous event or on an accident (Rausand, 2011). By monitoring the states of the RIFs, early 
warnings can be provided about possible deviations from the normal operating envelope of a 
system. Further, the likelihood of different hazardous scenarios can be calculated, providing 
decision support to the MASS. A RIF can be defined as “an aspect (event/condition) of a system 
or an activity that affects the risk level of this system or activity” (Øien, 2001).  
 
The nodes in a BBN represent RIFs with states or conditions, and the arcs show the influence 
from a parent node on a child node. Nodes that do not have parents are input or root nodes, and 
the end node determines the outcome of the BBN. Conditional probability tables (CPT) 
determine the states of the child nodes based on the states of the parent nodes. The BBN can be 
updated using the Bayesian reasoning laws (Rausand, 2011). Dynamic BBNs most often consist 
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of a static model, but the information about the states of the nodes are updated at various time 
intervals.   
 
The advantage of BBN is the ability to present causal relationships, and to combine empirical 
data with expert knowledge, which often is necessary in risk analysis. The disadvantage is that 
the combination of 𝑛𝑛 states grows exponentially for each additional node (Rausand, 2011). 
Hence, a BBN may soon encounter the trade-off situation with respect to computation resources 
available and model accuracy and complexity. 
 
The risk model in phase 2 is developed as follows: 

• Step B1: Define end-node and UCA-nodes based on the system-level hazard and the 
UCAs from the STPA. 

• Step B2: Identify high-level RIFs related to the scenarios and the causes and connect 
these to the appropriate UCA nodes in the BBN.  

• Step B3: Identify the input RIFs from the causes to the scenarios and connect these to 
the high-level RIFs. 

• Step B4: Identify states for all nodes and build the CPTs. 
• Step B5: Convert the BBN into an online risk model. 

 
Step B1 consists of collecting the results from the preceding STPA and determining the end 
node of the BBN based on the system level hazard. Further, the UCAs from the STPA are 
defined as UCA nodes to be connected to the end node. In step B2, the high-level RIFs are 
identified from the scenarios and then connected to the UCA-nodes. In step B3, the causal 
factors associated with each scenario is examined to determine the parent nodes or input RIFs, 
which belong to each high-level RIF nodes. Figure 3 illustrates the emerging BBN structure 
based on the results from the STPA.  
 
The result is a top down development of the BBN with relationships between the nodes 
represented by the arcs. The relationship between the system hazardous event represented by 
the end node, the UCAs, high-level RIFs and input RIFs are illustrated in Figure 3. Please also 
note that there may be direct causal relationships among high-level RIFs, and among Input RIFs 
(so that there may, for example, be a direct causal relationship from high level RIF 1 to high-
level RIF 2).  
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Figure 3. The overall structure of the BBN, which shows the link between STPA and BBN. 
 
Both qualitative and quantitative information may have to be used to determine the probabilities 
for the CPT in step 4. We may use the safety constraints of STPA, requirements in regulations 
(if these exist), and sensor measurements, along with expert judgements, as a basis for defining 
states, and determining the probabilities for each state. Step B4 can be quite demanding, 
depending on the number of nodes and arcs in the BBN.  
 
Step B5 consists of determining which nodes of the BBN can be measured in real-time by data 
from sensor systems, and which nodes are dependent on other types of data (historical, expert 
judgements, etc.). The online risk model can be used to calculate the likelihood of a given 
scenario based on real-time measurements, estimations and historical data. In addition, the time 
frame for the regular updates of the BBN must be determined. Some input data may be fed 
continuously, where as others may be available much more infrequently. In practice, the real-
time data need to be stored in a database and fed back into the online risk model. It may also be 
relevant to consider if the CPTs should change with different operational conditions, and 
whether weights of the arcs should be implemented and altered dynamically to enable different 
influences of parents on child nodes. 
 
The proposed process is tested in a case study, presented in the next Section. 

3 Case study: Autonomous ship voyage 

3.1. Introduction 

In this case study, the proposed framework is applied to enhance the safe navigation and 
manoeuvering of an unmanned autonomous ship with a human supervisor in a shore control 
center. It is assumed that the autonomous ship navigates from one location to another, and that 
a preplanned route is provided for the ship. This route can be a set of waypoints with 
corresponding arrival times, which the ship should follow. During the voyage, the ship 
autonomously adapts its route based on information provided through the online risk model, 
with input based on prevailing weather conditions and other types of real-time data. Route 
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adaptation may, for example, include deviation from the planned route to avoid collision or 
grounding if there is an obstacle too close to the planned route, or altering the route or speed to 
avoid sailing into bad weather.  
 
3.2 Phase 1 – STPA 

Step S1: Define the system  
In this step, we define the system and model it as a hierarchical control structure, as shown in 
Figure 4. This includes defining control responsibilities and process model variables. We start 
by defining three main control levels; a remote operator (a human supervisor not situated aboard 
the vessel, but at a shore control center), a guidance system, and the control execution.  
  
The main responsibility of the remote human operator is to plan and supervise the voyage. In 
addition, the remote operator can alter (redefine) and, in an emergency, initiate a fallback 
strategy, such as manoeuvre around the closest waypoint or maintain the current position by 
means of a DP system. The guidance system is responsible for adapting the planned trajectoriy 
according to real-time data. This includes the responsibility of updating the planned trajectory 
to avoid obstacles, such as ships or structures that were not considered when planning the 
trajectory. This responsibility also requires the guidance system to predict the behavior of 
obstacles correctly and sufficiently early to find a trajectory that safely avoids them.  
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Figure 4: Hierarchical control structure for the unmanned autonomous ship. GPS refers to the 
Global Positioning System and AIS is the Automatic indentification System for ships. WPs is 
short for waypoints.  
 
The execution control is the interface between the high-level control on one hand, and the 
actuator system and power system, i.e., low-level control, on the other hand. Execution control 
includes systems, such as an automatic sailing system, DP and the power management system 
(PMS). The main responsibilities are to control the actuator system and to implement 
configurations and reconfigurations in the power system, the actuator system, and various 
sensor systems, as requrested by the guidance system.  
 
In addition to these controllers, the ship is equipped with a sensor package consiting of motion 
sensors, compasses, position reference systems such as global position system (GPS), wind 
sensors, automatioc identification system (AIS), radars, lasers, acoustic bottom tracking 
systems, computer vision systems, and a sensor fusion system (which all together may be 
referred to as the sensor system), as well as a steering and propulsion system, and a power 
system. The sensor system is responsible for: 
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1. Correctly measuring the own ship’s navigational states. The sensor readings are also 
input to a state observer (Kalman filter or other type of observers) used to filter and 
estimate the states necessary to describe the motion, position and orientation, including 
speed of the ship. 

2. Detecting obstacles. 
3. Tracking obstacles (i.e., keeping track of each obstacle and estimating its navigational 

states such as position, heading and speed). 
4. Classifying obstacles (i.e., categorizing obstacles into either ship and type of ship, or 

offshore structure, or a terrain feature including shallow water creating risk for 
grounding). 

 
The steering and propulsion systems are responsible for actuating the vessel motion according 
to commands from the execution control, and the power system is responsible for providing the 
propulsion and steering units (as well as any other consumer of power aboard) with sufficient 
power.  
 
In the rest of this case study, we focus mainly on the guidance system, and proceed by refining 
its control responsibilities as:  

1. Updating the ship’s nominal trajectory based on real-time data. 
2. Configuring the steering, propulsion and power system to suitable modes of operation, 

ensuring sufficient reliability, low emissions, adequate manoeuverability, sustainable 
use of energy storage devices throughout the voyage, etc.  

3. Configuring the sensor system to a suitable mode of operation. 
4. Configuring the power system to a suitable mode of operation. 

 
Due to limited space, the case study will furthermore focus on the first control responsibility 
above. Before proceeding to the next step, we define process model variables (PV) for the 
guidance system that are relevant with respect to the stated control responsibility. These are 
identified based on an assessement on what the guidance system needs to know to satisfy the 
control responsibility. The following variables can be identified:  

• PV-1: Navigational intentions of potential obstacles. An assessment of this is necessary 
to determine whether any given trajectory is safe in an encounter with an obstacle.  

• PV-2: Signalling from potential obstacles. In an encounter with an obstacle that is 
providing signals, it is necessary for the guidance system to know what message the 
obstacle is attempting to convey. 

• PV-3: Classification of potential types of obstacles. To estimate future states (and 
intentions) of an obstacle, it is necessary for the guidance system to know which type 
of obstacle it is. Drift ice may, for example, be assumed to behave differently from a 
sailboat.  

• PV-4: Obstacle´s current navigational states (i.e., position, heading, speed and turn rate 
of the own ship). These are necessary for the guidance system to know to assess whether 
a trajectory will pass too close to the obstacle. 

• PV-5: Presence of obstacles in own ship´s nominal trajectory (or will be shortly). This 
is necessary for the guidance system to know to assess whether a trajectory is safe.  
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• PV-6: Own ship´s navigational states. This is necessary for the guidance system to 
know to assess an obstacle’s relative position and whether execution control 
successfully follows the given trajectory.  

• PV-7: Own ship´s nominal trajectory. This is necessary for the guidance system to 
know to assess whether it will interfere with an obstacle. Here, also COLREG (the 
IMO’s rules for ship collision avoidance) may be considered (IMO, 1972). 

• PV-8: Minimum safe distance to obstacles (ship safety domain). Necessary to know to 
assess what is an appropriate minimum distance to an obstacle. 

 
The PVs are used for establishing the context for UCA, scenarios and causal factors, and have 
been identified in a brainstorming process by asking what the guidance system need to know to 
successfully update the ship’s nominal trajectory based on realtime data. 

Step S2: Identify hazardous events at system level 
The system level hazards and high-level safety constraints need to be identified. The safety 
constraint is used to deteremine the unsafe control actions in the next step. The system accident 
and the relevant hazardous event in this case-study are: 

• System accident: The autonomous ship collides with an obstacle. 
• System level hazard: The autonomous ship does not maintain safe distance to obstacles. 
• Safety constraint (SC): The autonomous ship must maintain a domain about itself (a 

ship safety domain), free of obstacles. 

Step S3: Identify unsafe control actions 
In this section, we identify how the guidance system’s responsibility to update the planned 
trajectory based on real-time data can be executed in an inadequate manner so that the system 
level hazard can occur. This is achieved by considering the control responsibility together with 
the generic four types of UCAs, and different combinations of process model variables (PV1-
8).  
 
Table 1 presents the results, combining the generic types of UCA with the guidance system’s 
control responsibility of updating the nominal trajectory based on real-time data. Applying the 
generic types of too long or too short are not applicable here because updating a trajectory is a 
discrete event. 
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Table 1. Control responsibilities and corresponding unsafe control actions. 
Control 
responsibility 

Provided Not provided Provided too early 
or too late 

Provided too 
long or too 
short 

Update the 
nominal 
trajectory 
based on real-
time data 

UCA-1: A trajectory 
update is provided that, 
if followed, will result 
in obstacle inside the 
ship safety domain 

UCA-3: Trajectory 
update is not provided 
to avoid that an 
obstacle violates ship 
safety domain 

UCA-4: A 
trajectory update 
intended to avoid 
that an obstacle 
violates the ship 
safety domain is 
provided too late 

N/A 

UCA-2: A safe 
trajectory update is 
provided, but the ship 
does not follow the 
trajectory, and instead 
violates minimum 
separation distance of 
an obstacle 

  N/A 

 

Step S4: Develop scenarios  
In this step, we identify scenarios in which the UCAs can occur and the causes to the scenarios. 
Table 2 shows a selection of scenarios and causal factors identified for UCA-1: A trajectory 
update is provided that, if followed, will result in obstacle inside the ship safety domain.  
 
The scenarios and causal factors presented in Table 2 represent the main results of the STPA. 
The scenarios are the conditions in which the UCA under consideration can occur, and the 
causal factors are prerequisites for the occurrence of the scenarios. Scenarios and causal factors 
have been found in this case study by inspecting the hierarchical control structure (Figure 4) 
developed in Step S1, following the process described in Leveson & Thomas (2018). This 
means that the controlled process in Figure 4 and the corresponding PVs are investigated to 
find ways the process can change into a hazardous state.  
 
The first column in Table 2 specifies which PVs have been used to formulate each scenario. 
Anything that may impact the system state from normal to “not normal” can possibly be part of 
a scenario. Examples are failures or degradation of systems and components over time (e.g., 
technical condition of the ships), external disturbances from the operating environment (e.g., 
weather conditions and traffic density), direct inputs and outputs to the controlled process (e.g., 
the ship’s manoeuverability), problems that are related to the controllers (see the execution 
layer in Figure 4, e.g., obstacle detection, sensor fusion problems, sensor reliability), 
operational modes of the ship (e.g., different LoAs), and transmission of information between 
the autonomous ship, other ships/obstacles, and the human operator/supervisor (e.g.,, 
interpretation of intentions and communication). Like other types of hazard identification 
methods and risk analyses, domain experts provide important input to the generation of the 
scenarios and the identification of the relevant causes. Leveson & Thomas (2018) do not 
recommend performing additional analysis, such as the failure mode and effect analysis 
(FMEA), to identify technical failures, but Rokseth et al. (2017) found this combination useful. 
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Table 2. Scenarios (Sc) and causal factors for UCA – 1. 
UCA-1: A trajectory update is provided that, if followed, will result in obstacle inside the ship safety 
domain 
Relevant 
PVs 

Scenario Causal factor 

PV 1, PV 
2, PV 7 

Sc – 1: A trajectory update is based on 
the anticipated navigational behaviors 
(intentions) of nearby obstacles. 
Sudden unanticipated behavior of one 
of the obstacles results in violation of 
ship safety domain. 

Type of obstacle (e.g., fishing vessel, cargo vessel, 
pleasure yacht, small speed boats, terrain feature, 
bank/shallow, offshore structure) 
Traffic density (The more traffic, the more likely 
that another vessel must do some manoeuvering to 
avoid another obstacle hidden from own ship’s 
sensor system) 
Type of traffic situation. (A disorganized traffic 
picture combined with high traffic density will 
result in more uncertainty than a unidirectional 
organized traffic flow with the same density) 
Whether obstacle signals its intentions 
Unclear, inprecise or incorrect signaling by 
obstacle. This may cause misunderstandings and 
result in incorrect anticipation of the obstacle’s 
future behavior 
Technical condition of other vessels (a dead ship 
will not respond as required by COLREGs in most 
situations, a slow oil-tanker is not likely to change 
course quickly) 
Manoeuverability of other vessels (a slow oil-tanker 
is not likely to change course quickly – thus, high 
certainty can be obtained for the next minutes, only 
by estimating current states) 

PV 6 Sc-2: Own ship’s navigational state 
measurements/ estimates are imprecise 
or incorrect. Updating a trajectory 
based on incorrect or imprecise 
navigational states may result in 
violation of ship safety domain 

Reliability of own ship’s navigational state 
reference function (a function in the sensor fusion 
system)  
Weather conditions (In harsh weather, there will be 
more erratic movement of the own ship and the 
process of filtering and estimating the states will be 
more challenging and less precise) 

PV 4 Sc-3: Estimates on navigational states 
of an obstacle are incorrect, resulting in 
incorrect or imprecise estimates on 
future behavior 

Weather conditions and visual conditions 

Reliability of obstacle tracking function (a function 
in the sensor fusion system) 

PV 3, PV 
7, PV 8 

Sc-4: An obstacle is incorrectly 
classified (e.g., iceberg is classified as a 
cargo ship), resulting in incorrect 
estimates on future behavior (e.g., if the 
iceberg is expected to act to avoid 
collison). A trajectory update based on 
incorrect beliefs regarding current and 
future navigational behavior of 
obstacles may result in violation of the 
ship safety domain. 

Visual conditions 
Reliability of obstacle classification function (a 
function in the sensor fusion system) 

The type of obstacle (some types of obstacles may 
be harder to classify correctly than others) 

PV 5 Sc-5: In a navigation scenario 
involving several obstacles, one 
obstacle is not detected, and the 
trajectory updated to handle the 

Reliability of obstacle detection function (a function 
in the sensor fusion system) 
Traffic density (high density results in more 
chances to not detect an obstacle) 
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scenario brings the undetected 
obstacles inside the ship safety domain 

Speed of own ship (high speed reduces the time 
available to detect obstacles) 
Speed of obstacle (high speed reduces the time 
available to detect obstacles) 

PV 5, PV 
7, PV 8 

Sc-6: A situation where all navigation 
options that the guidance system can 
formulate will result in violation of the 
ship safety domain, is encountered 

Traffic density 
Narrowness of safe navigational area 
Own ship manoeuverability 
Weather conditions (bad weather may narrow down 
the feasible navigational options) 

PV 7, PV 
8 

Sc-7: To avoid another ship, a sharp 
trajectory update is provided. The 
manoeuverability of the own ship is 
insufficient to follow the updated 
trajectory and consequently the ship 
safety domain is violated 

Speed of own ship 
Weather conditions 
Min. turn radius in trajectory 
Own ship manoeuverability 

 
 
3.3 Phase 2 – BBN  

The system hazard, the UCA, the PV and the causal factors for the scenarios constitute the 
qualitative information and basis for developing a risk model represented by a BBN. The 
subsequent sections explain its evolvement in detail. 

Step B1: Define end-node and UCA nodes  
The system hazard and UCA from the STPA develops directly into the top level of the BBN: 
 
System level hazard node: The autonomous ship does not maintain safe distance to obstacle. 
UCA-1: A trajectory update is provided that, if followed, will result in obstacle inside the ship 
safety domain. 

Step B2: Identify high-level RIFs  
To identify the high-level RIFs related to UCA-1, each scenario with associated causes in Table 
2 should be investigated.  Table 3 shows the corresponding high-level RIFs for each scenario 
to be included in the BBN. The occurrence of one scenario can potentially cause the UCA. 
Hence, initially all high–level RIFs should be connected to the UCA node through arcs as a 
starting point for the BBN construction. The analyst, however, should then reconsider the initial 
arcs by assessing whether some scenarios are related or may impact each other, since this may 
influence the structure of the BBN.  
 
In general, the high-level RIFs can be directly or indirectly related in three ways: first, when 
the high-level RIFs are connected to the UCA-node by arcs directed to the UCA-node, they are 
related only indirectly through the UCA-node (for example, that the occurrence of a 
combination of states in two high-level RIFs may cause a particularly high probability of 
occurrence of the UCA). In this case, their indirect relationship is defined in the CPT of the 
UCA-node. Second, a set of high-level RIFs may be related through direct causation. This is 
relevant when the occurrence of one scenario can affect the probability of occurrence of the 
UCA by affecting the probability of occurrence of another scenario. In the BBN this is realized 
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by connecting the high-level RIF for the first scenario to the high-level RIF for the second 
scenario by a directed arc. For example, from Table 3, in Scenario Sc-3, the future navigational 
states of an obstacle are incorrectly estimated. This can, according to the analysis, only cause 
UCA-1 through higher probability of occurrence of Scenario Sc-1 (i.e., through unanticipated 
behavior of the obstacle). Similarly, Scenario Sc-4, in which an obstacle is incorrectly 
classified, can only cause UCA-1 through Scenario Sc-1. Thus, rather than connecting the high-
level RIFs associated to Sc-3 and Sc-4, to the UCA-node, they are connected to the high-level 
RIF for Sc-1, directly affecting the probability of occurrence of Sc-1. Finally, high-level RIFs 
can also be related indirectly through common input RIFs. For example, the input RIF traffic 
density affects the probability of occurrence of high-level RIFs 1, 5 and 6, as can be seen in 
Table 4. 
 
Table 3. The relevant high-level RIFs for each scenario. 

Scenario Relvant high 
level - RIFs 

Remarks 

Sc-1: A trajectory update is based on the anticipated 
navigational behaviors (intentions) of nearby obstacles. 
Sudden unanticipated behavior of one of the obstacles 
results in violation of ship safety domain.  

RIF-1: Prediction 
of obstacle 
intention  

If the obstacle intention is 
correctly anticipated, the 
future behavior of the own 
ship trajectory can be 
updated such as to 
correctly account for 
future obstacle behavior.  

Sc-2: Own ship navigational state measurements/ 
estimates are imprecise of incorrect. Updating a trajectory 
based on incorrect or imprecise navigational states may 
result in violation of ship safety domain 

RIF-2: 
Measurement/ 
estimation of own 
ship’s 
navigational states 

Sc-2 will not take place if 
navigational states are 
correctely measured/ 
estimated.  

Sc-3: Estimates on navigational states of an obstacle are 
incorrect, resulting in incorrect or imprecise estimates on 
future behavior  

RIF-3: Estimation 
of obstacle’s 
navigational states 

This RIF affects the above 
scenario through RIF-1.  

Sc-4: An obstacle is incorrectly classified (e.g., iceberg is 
classified as a cargo ship), resulting in incorrect estimates 
on future behavior (e.g. if the iceberg is expected to take 
action to avoid collison). A trajectory update based on 
incorrect beliefs regarding current and future navigational 
behavior of obstacles may result in violation of the ship 
safety domain.  

RIF-4: Obstacle 
classification 

This RIF affects the above 
scenario through RIF-1  

Sc-5: In a navigation scenario involving several obstacles, 
one obstacle is not detected, and the trajectory updated to 
handle the scenario brings the undetected obstacles inside 
ship safety domain (PV5) 

RIF-5: Obstacle 
detection time 
 

 

Sc-6: A situation where all navigation options that the 
guidance system is able to formulate will result in 
violation of the ship safety domain, is encountered  

RIF-6: Feasible 
navigational 
options 

 

Sc-7: To avoid another ship, a sharp trajectory update is 
provided. The manoeuverability of the own ship is 
insufficient to follow the updated trajectory and as a 
consequence the ship safety domain is violated 

RIF-7: Trajectory 
following 
performance 
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Step B3: Identify the input RIFs  
Finalizing the structure of the BBN is now straight forward, and the top down process of STPA 
directly appears in the structure of the BBN. Since the high-level RIFs in Table 3 represent each 
scenario, Table 2 can be used to find out which causal factors (input nodes) belong to each 
scenario (high-level RIF). Table 4 compiles the information from Table 2 and Table 3 and 
presents all high-level RIFs with corresponding input RIFs. Some input RIFs (causal factors) 
are included for more than one high-level RIF (scenario), which means that the input node needs 
to be connected to all the relevant high-level nodes.  
 
Table 4. Scenarios with corresponding high-level RIFs and input RIFs, representing the 
emerging structure of the BBN. 

Scenario High-level RIFs (nodes) Input RIFs (nodes) 
Sc-1 RIF-1 Obstacle type 

Traffic density 
Type of traffic situation 
Obstacle’s signalling 
Obstacle’s technical condition 
Obstacles manoeuverability 

Sc-2 RIF - 2 Reliability of own ship’s navigational state  
Weather conditions 

Sc-3 RIF - 3 Weather conditions 
Visual conditions 
Reliability of obstacle tracking 

Sc-4 RIF - 4 Visual conditions 
Reliability of obstacle classification 
Obstacle type 

Sc-5 RIF - 5 Reliability of obstacle detection  
Traffic density 
Speed of own ship 
Speed of obstacle 

Sc-6 RIF - 6 Traffic density 
Narrowness of safe navigational area 
Own ship manoeuverability 
Weather conditions 

Sc-7 RIF - 7 Speed of own ship 
Weather conditions 
Min. turn radius in trajectory 
Own ship manoeuverability 

 
The resulting BBN is shown in Figure 5. For example, high-level RIF-1 represents scenario Sc-
1 with the causal factors “obstacle type, traffic density, type of traffic situation, obstacle’s 
signalling, obstacle’s technical condition”, and “obstacle’s manoeuverability”. These causal 
factors are represented as input nodes and linked with arcs to high-level RIF-1 in the BBN. 
Correspondingly, high-level RIF-2 is related to reliability of “own ship’s navigational state 
reference function”, and so on. 
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Figure 5. The risk model and BBN for UCA-1. 
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Step B4: Identify states and build the CPTs 
To quantify the BBN, states and CPTs need to be defined. STPA provides only qualitative 
information, so the quantification of the BBN should follow the typical approach in BBN 
development. The results from the STPA, however, may provide initial input to the definition 
of states for the nodes. The states can be defined by closely considering each node, its 
corresponding scenario and the relevant PVs for that scenario, since these impact the condition 
of the system being studied. In the case study, the system accident is “The autonomous ship 
collides with an obstacle”. Hence, collision risk studies (Chen et al, 2019; Bye & Aalberg, 2018; 
Sotiralis, 2016; Hassel et al, 2014; Kristiansen, 2013) have also been used as basis for further 
refinement of the states, with careful consideration of the difference between conventional ships 
and MASS. Details are provided in Table 5. 
 
The states in Table 5 need to be further validated, when data are collected for the CPTs, to 
assess that the states produce meaningful results. Probabilities for the CPTs can be derived 
following the traditional methods of quantification of BBN, see, e.g., Fenton & Neil (2013). 
This is outside the scope of this paper. 
 
Table 5. Suggested states for the nodes. 

Type Nodes States Remarks and references 
System 
level 
hazard 

Own ship does 
not maintain 
safe distance to 
obstacle. 

Yes/no A ship domain defines a safe space around the ship (Chen 
et al, 2019), and hence whether the ship performance is 
acceptable or not. Still, even if the MASS does not 
maintain a safe distance to other obstacles, a collision may 
not occur, since the focus here is on the causal side, and 
only one system level hazard and UCA-1 are included in 
the case study. 

UCA-1 Trajectory 
update results 
in obstacle 
inside the ship 
safety domain. 

Yes/no This corresponds to “ship on collision course”, which is a 
factor included in several collision risk models, see e.g., 
(Chen et al, 2019; Hassel et al, 2014). It is assumed that 
either the obstacle is on collision course or not. 

High – 
level 
RIF 1 

Prediction of 
obstacle 
intention  

Incorrect/imprecise
/correct 

This node is somewhat related to what is often referred to 
as collision candidate detection, which is the focus of 
several methods (Chen et al, 2019), here influenced by 
e.g., traffic density, situation, signalling (communication) 
etc. 

High – 
level 
RIF 2 

Measurement/ 
estimation of 
own ship’s 
navigational 
states 

Incorrect/imprecise
/correct 

This would typically relate to the performance of the 
navigator/ bridge management team (BMT) in collision 
risk analysis. For MASS this function will be the 
responsibility of its control system (and technical system 
condition), as well as the performance and responsibilities 
of the shore control center. In addition, weather conditions 
will influence this node. Hence, an additional state is 
proposed here, compared to Sotiralis et al (2016) for 
higher fidelity. 

High – 
level 
RIF 3 

Estimation of 
obstacle’s 
navigational 
states 

Incorrect/imprecise
/correct 

Same as above remark. 
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High – 
level 
RIF 4 

Obstacle 
classification 

Correct/wrong/no 
diagnosis 

This is a function that would typically be performed by a 
ship’s navigator/BMT onboard conventional ships, by use 
of visual observation, radar and. For the MASS itself, the 
technical condition of the sensor and data fusion systems 
will influence the outcome, along with any detection done 
by the shore control center. The route of the MASS will 
influence the potential type of obstacles that can be 
encountered. Kayaks, for example, are not likely to be in 
the middle of the ocean. The state definition here is similar 
to Sotiralis et al (2016). 

High – 
level 
RIF 5 

Obstacle 
detection time 

Too late/late/early  Time available for detection and collision avoidance is 
crucial and is a factor included in other collision risk 
models (Hassel et al, 2014). 

High – 
level 
RIF 6 

Feasible 
navigational 
options 

Yes/no This is related to whether there are available navigational 
options for the MASS that will not result in vilolation of 
the safety domain which can be classified into yes or no.   

High – 
level 
RIF 7 

Trajectory 
following 
performance 

Low/medium/high For a conventional ship this would be related to the 
navigator/BMT’s action. Human error may be divided into 
slips, lapses, mistake and violation (Reason, 1990), which 
cannot be directly transferred to MASS, even though 
human operators/supervisors in the shore control center 
can make errors. In principle, the performance could be 
discretized into an arbritrary number of states. However, 
due to the subjective nature of the variable, it is not seen as 
necessary to use more than three states. 

Input 
RIF 

Obstacle type Cargo/offshore/ 
fishing/ passenger/ 
yacht/stationary  

This RIF affects the “obstacle manoeuverability”. Its states 
represent the type of obstacle, corresponding here to the 
categories in (Bye & Aalberg, 2018), including also 
stationary obstacles. 

Input 
RIF 

Traffic density High/medium/low This RIF is related to geometric collision probability in 
conventional collision risk studies. Traffic density could 
be defined based on the number of vessels in the area. See, 
e.g., (Chen et al, 2019; Kristiansen 2013). 

Input 
RIF 

Type of traffic 
situation 

Overtaking, 
crossing, head on 

The traffic situation could be specified based on the 
relevance of potential accident situations in the area, such 
as crossing, overtake or head on collision. See, e.g., 
Kristiansen (2013). 

Input 
RIF 

Obstacle´s 
signalling 

Adequate/ 
inadequate 

This would correspond to communication with ship or oil 
and gas platforms in conventional risk analysis (see e.g., 
Hassel, 2014; Kristiansen, 2013). 

Input 
RIF 

Obstacle´s 
technical 
condition 

Low/medium/high This RIF affects the “obstacle manoeuverability”. The 
technical condition of the obstacle, given that it is a ship, 
and impact on safety has been explored in Baniela & Rios 
(2011). The definition of technical condition could be 
related to requirements to system availability, e.g., high 
𝐴𝐴 ≥ 0.97. 

Input 
RIF 

Obstacle´s 
manoeuver-
ability 

Low/medium/high This is a child node of obstacle type and obstacle’s 
technical condition. The states would need to be quantified 
based on expected performance by the MASS. 

Input 
RIF 

Reliability of 
own ship’s 
navigational 
states  

Low/medium/high  This node is related to the functioning and performance of 
the sensor fusion system, which consists of software and 
sensor systems. The reliability of this system can be 
represented by a continuos variable 𝑅𝑅𝑑𝑑 which can be 
discretized into an arbritrary number of states. Here, the 
variable is chosen to have three states from low to high. 
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Input 
RIF 

Visual 
conditions 

Low/medium/high This node is related to precipitation and fog. Visibility can 
be defined in different ways, but “low” could correspond 
to dense fog/precipitation, “medium” to mist/fog, and 
“high” to clear conditions (Kristiansen, 2013).  Sotiralis et 
al (2016) divide visibility into distance, i.e., >1 nm and <1 
nm. Bye & Aalberg (2018) combine condition and 
distance and suggest five categories. 

Input 
RIF 

Weather 
conditions 

Good, storm, rain, 
windy, fog 

Weather conditions could be constituted by temperature, 
waves, current, wind etc. Instead of including all these 
nodes with different scales (e.g., Beaufort scale), one node 
for the weather is deemed enough. Possible states are 
good, storm, rain, windy, fog (Sotiralis et al, 2016). 

Input 
RIF 

Reliablity of 
obstacle 
tracking  

Low/medium/high This node is related to the functioning and performance of 
the sensor fusion system, which consists of software and 
sensor systems, meaning that it either performs adequately 
or inadequately. The reliability of this system can be 
represented by a continuos variable 𝑅𝑅𝑑𝑑 which can be 
discretized into an arbritrary number of states. Here, the 
variable is chosen to have three states from low to high. 

Input 
RIF 

Reliablity of 
obstacle 
classification  

Low/medium/high Same remark as above. 

Input 
RIF 

Reliability of 
obstacle 
detection  

Low/medium/high Same remark as above. 

Input 
RIF 

Speed of 
obstacle 

High/medium/low This influences the obstacle detection time available. 
Whether speed can be characteristed as high/medium/low 
depends on type of obstacle. Generally, “low” could be >5 
knots, due to this being a general speed limit in many 
ports. 

Input 
RIF 

Safe navigation 
area narrowness 

Narrow/normal/ 
wide 

This input RIF is related to the geometric collision 
probability in conventional collision risk studies. It could 
be calculated based on the waterway diameter and 
characteristics, and the beam of the MASS. See, e.g., 
Kristiansen (2013). 

Input 
RIF 

Own ship´s 
manoeuver-
ability 

Adequate/ 
inadequate 

This node is related to the technical condition of the 
propulsion and steering systems and type of MASS. Either 
the performance is adequate for the type of ship or some 
systems have a degraded state meaning that 
manoeuverability is limited. In general, ship 
manoueverability influences the collision avoidance 
options available (Chen et al, 2019). 

Input 
RIF 

Speed of own 
ship 

High/medium/low This node influences the obstacle detection time available. 
Whether speed can be characterised as high/medium/low 
depends on type of MASS. Generally, “low” could be >5 
knots, due to this being a general speed limit in many 
ports. 

Input 
RIF 

Min. turn radius 
in trajectory 

Adequate/ 
inadequate 

This node influences the ability of the MASS to follow the 
trajectory provided. Either the turn radius is adequate or 
inadequate. The definition of “adequate is related to the 
type of MASS and its performance characteristics. 
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Step B5: Convert the BBN into an online risk model 
The last step is to convert the BBN into an online risk model. This means to establish real-time 
values, determine the need for empirical data and expert judgements to be included and used as 
a basis for the calculations in the model. Databases need to be created for collecting the relevant 
data and as the storage for updating the online risk model with new information. Bayes theorem 
is used to update the calculations. The dark gray input nodes in Figure 5 shows which nodes 
can be measured in operation. Further, it is necessary to determine how often the model needs 
to be updated. Traffic density for example, need a relative high update frequency.  
 
There are different options for using the online risk model for supervisory risk control in an 
autonomous system. These are further discussed in Section 4.3.  
 

4 Results and discussion  

4.1 STPA  

An important prerequisite for supervisory risk control is to know which hazardous events 
should be prevented and their causal factors. The latter is of particular importance for enabling 
early warnings of potential violations of safety constraints. STPA provides a comprehensive 
process to identifying hazards and revealing causal factors, which is beneficial for novel and 
complex systems, such as autonomous ships, for which there is limited experience available 
and lack of empirical data. The results of STPA are system level hazards, safety constraints, 
how unsafe control may cause violations of the system-level safety constraints in scenarios, and 
which causal factors may influence the scenarios.  
 
The safety constraints identified in the STPA may influence the LoA for a given functionality 
in the ship´s operation. If the guidance system in the case study is merely relaying commands 
from the remote operator, the autonomy level may be set to 1 (Automatic operation), while if 
the remote operator only provides a destination for a leg of the voyage, and leaves route 
planning to the guidance system, the autonomy level is 4, or 3 if remote operator (supervisor) 
approval is required.  
 
Please note that at this point, further refinement of the scenarios and causal factors could have 
been performed. An advantage is that we could more closely assess the underlying assumptions 
and factors impacting the states of the input RIF.  For example, the causal factor of scenario Sc-
2: Reliability of own ship’s navigational state (a function in the sensor fusion system) could 
have been analyzed, by developing a separate hierarchical control structure for the sensor 
system and investigating which factors affect the reliability of the own ship’s navigational state. 
How far such refinement should be performed, depends on the objective of the STPA analysis, 
the system definition and boundaries, as well as available data regarding the scenario and its 
causes. In risk analysis, typically only the most critical hazards and hazardous events are 
investigated further in detail (e.g., through fault tree, event tree and/or BBN). A current 
challenge with STPA is that no prioritization of the control actions can be performed. Wrobel 
et al. (2018c) and Gil et al. (2019) investigate this topic and provide some interesting results, 
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but without a conclusive recommendation. Hence, a refinement criterion cannot be provided 
yet, except to leave it up to the analyst to decide. Further exploration of this topic is not within 
the scope of the study in this paper. 
 
Consider, for example, two extreme cases: in the simplest case (i), the input RIF Reliability of 
estimation of own ship’s navigational state is given a static value, perhaps based on a 
verification process or the “quality” of the equipment used to satisfy the function of measuring 
or estimating the ship’s navigational states. A more refined model (ii) would perhaps need to 
monitor signals from each relevant sensor, to assess, for example, noise to signal ratio and the 
frequency of signal wildpoints. In addition to an apriori assessment of the equipment quality, 
the refined model could provide a dynamic assessment of the state of the input RIF, including 
the effect of factors that are relevant only to a specific situation (for example, loss of satellite 
signals). The challenge is, however, that further refinement of scenarios and causal factors, 
always is a trade-off situation between the necessary level of detail, model outcome, and 
computational efforts. 
 
One interesting result of the STPA for the case study is that the need for online risk models for 
autonomous ships is demonstrated. The case study shows, for example, that an error in the 
guidance system may lead to hazardous maneouvering of the ship. An online risk model, 
informing the guidance system of the MASS that the uncertainty related to its own position is 
high, could be useful to avoid such a hazardous maneouver. 
 

4.2 A process for building and structuring the BBN 

The BBN developed in the framework follows a top down approach, which is a natural outcome 
of using STPA since it is a top down process. Currently, there exists no well-defined way of 
structuring a BBN in risk analysis, even though there are different approaches, such as using 
accident investigation reports and accident models to identify nodes and defer relationships 
(Mazaheri et al. 2016). Instead of using such hindsight information, which is lacking for 
autonomous ships (and limited for autonomous systems in general), the proposed framework 
focuses on identifying and analyzing how hazardous events potentially may occur to enable 
early warnings to the control system of the autonomous ship. By using the results and the 
structure appearing in the results from the STPA analysis, the BBN can be systematically 
developed. The initial BBN can then be transformed into a dynamic BBN to be used as an 
online risk model in the mission layer of a control system of an autonomous ship. 
 
One major advantage of a BBN is that, in addition to including the different causal factors that 
may lead to a scenario (and a system level hazard), their combinations and impact on each other 
are possible to monitor in operation. When the online risk model is developed, it is possible to 
identify which information is already gathered and/or used in real-time during operation of the 
system, and which new data needs to be collected. If new data must be gathered, system 
modifications should be considered, including installation of new sensor systems.  
 
In general, sensitivity analysis and validation of the BBN model are important. Sensitivity 
analysis is performed to evaluate how the model responds to changes in the different 
parameters, i.e., to different combinations of states. Model validation means investigating if the 
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model complies with the initial purpose of its development (Mazaheri et al, 2016). In Section 
2.1, four main requirements to the work were stated, of which the STPA and BBN combined 
are able to address.  Since the main purpose of the paper is to demonstrate the link between 
STPA and BBN, sensitivity analysis and model validation have not been performed for the case 
study here. 
 
To assess the overall risk for an autonomous system and/or operation, such as a MASS, means 
that there will be more than one UCA related to a system level hazard, and BBNs for each UCA 
should be developed. Then, the BBNs would have to be merged into one BBN to represent the 
system level hazard (see Figure 3). Several nodes may be relevant for more than one UCA or 
high-level RIF, which means that duplicated nodes must be considered carefully in the 
development of the CPTs and in the calculation process. This is not addressed further in this 
current paper but should be subject to futher work. 
 
 
4.3 Online risk modelling for supervisory risk control 

Integration with control optimization algorithms 
Supervisory risk control for decision making and control under uncertainty could be based on 
optimization to determine policies that ensure that the risk level is acceptable. There are at least 
two ways in which the proposed framework for online risk modelling can be used to support 
such control.  
 
First, online risk models may take inputs from the actual sailing process to provide a real-time 
estimate of the current risk level. In this case, the controller needs a model that tells it how the 
controlled process, including the risk picture, can change state, and how a certain set of control 
inputs may affect the risk picture. Then this information must be used to design a control policy 
that minimizes cost or maximizes a utility function (cost/benefit). This enables a tradeoff 
between the objective of minimizing the output of the online risk model (the risk) and the 
objective of reducing additional costs, such as increased fuel consumption or delays. This trade-
off is necessary since risk cannot be avoided at any cost, as any ship operation is associated 
with some risk. By designing a supervisory risk controller with the control objective of 
minimizing a cost function or maximizing a corresponding utility function, it is possible to 
identify control policies that minimizes the risk as far as possible without incurring 
unreasonable costs. Defining such functions, however, is a major challenge, but the risk model 
ensures a systematic foundation for developing and utlizing these. 
 
A second option, instead of estimating the risk based on the actual sailing process, the online 
risk model may be used to predict the future risk, given a set of expected future control inputs 
and realization of stochastic disturbances. This can be achieved by simulating the sailing 
process using a mathematical model of the ship (digital twin) and the environment with the 
current states of the sailing process as initial states. To assess the effect of the selected set of 
control inputs on the risk picture, the dynamic risk model may run together with the simulation 
model, taking input from the simulated sailing process, and as such; predict the future risk in 
the simulated sailing process.  
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When simulations are utilized by the controller to identify a set of optimal future control inputs 
in the sense that they minimize a cost function, the implementation is usually referred to as 
model predictive control (MPC). MPC is currently a widely used and powerful control 
technology that has been highly successful in the optimization and automatic control of 
advanced industrial systems, see for example Qin & Badgwell (2003 and Johansen (2017). If 
the proposed online risk model is to be used together with simulations to include risk in the cost 
function, risk acceptance criteria, safety constraints and model uncertainty are decisive for 
selecting the parameters describing the cost function and the constraints. The selection of the 
control system parameters and objectives is therefore a very challenging computational task, 
and strongly influence the system functionality and performance. One example of this approach 
has been developed for collision-avoidance for autonomous ships, see (Johansen et al., 2016), 
but risk was not systematically analysed and included in terms of a risk model. 
 
In structured and static environments and for relatively simple operations, autonomous systems 
may work efficiently. In most cases, however, the operating environment is unstructured and 
complex. MASS, for example, need to be able to cooperate with human operators and other 
autonomous and conventional ships. Testing and verification of autonomous systems with 
increased intelligence and the ability to learn will be even more challenging, because it is harder 
to predict and simulate everything that may occur and how they will behave in every situation.  
An existing “premature” example of online risk modeling for supervisory control is DP 
consequence analysis. This tool is used for advanced ships in DP operation (DNVGL, 2016; 
Sørensen, 2011). The online consequence analysis calulates the vessel’s cabability to maintain 
position following any single failure in the thruster and power systems and is implemented in 
commercial DP systems as an alarm and advisory system. The current online DP consequence 
analysis assumes static conditions and does not include assessment of risk and the integration 
of risk models. The concept of online DP consequence analysis can be expanded to also 
consider navigation, acoustic, radar and visual sensors evaluating the consequences of the most 
severe failure impacting the ship’s sitation awareness and navigation capabilities. An extension 
of such an online consequence system with risk models for improved online decision making 
(e.g., selecting the right LoA for the prevailing conditions) and verification of safe performance 
is a new and novel concept for autonomous ships. The proposed framework and following case 
study in this paper creates a foundation for such a concept. 
 
Detailed development of the supervisory risk control system is a vast topic and is therefore 
outside the scope of this paper. It will, however, need to be based on the initial step of a 
systematic approach to identifying hazards (STPA) and the development of a risk model (BBN), 
as proposed in this paper. Industry development application and implementation for 
autonomous ships is the main subject of the industry research project ORCAS (IMT, 2018). 

Risk acceptance 
One of the most challenging issues with risk assessment is to determine what risks are 
acceptable. The standard NS 5814 (2008) defines risk acceptance criteria as criteria used as 
basis for decisions about acceptable risk. With MASS, the focus is to ensure high system 
availability, avoid mission abortion or disruption of the voyage, and prevent fatalities, 
environmental and material damage. Nevertheless, risk-based decisions need some criteria or 
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will be a trade-off between the potential loss of the MASS and the gain related to completing 
the mission successfully. For a control system to be able to utilize the results of an online risk 
model in decision making means that the “traditional” risk acceptance criteria need to be 
translated into meaningful safety constraints for the operation, which is highly challenging. 
 
Johansen (2010) states that, based on (UK Health and Safety Executive, 1992; Fischhoff et al., 
1983), the willingness to accept risk depends on the potential benefits, the extent it can be 
controlled (personally or institutionally), and the potential consequences that may follow. 
NORSOK Z-013N (2010) includes generic guidelines for choosing risk criteria, which are 
relevant to different industries, even though they are focused on preventing fatalities and major 
hazard risk. Utility (cost/benefit evaluation), equity (universal and unconditional right to a 
certain level of protection), and technology (use of state-of-the-art control measures) are the 
three “pure” criteria for judging risk acceptability (UK Health and Safety Executive, 2001). 
NORSOK Z-013 (2010) and Johansen (2010) provide four requirements to risk acceptance 
criteria that may be useful for MASS. The criteria need to: 
 
• Support decisions and express the effect of risk reduction measures. 
• Enable communication and understanding between users, operators and non-experts. 
• Be clear and related to precise system and/or operational limits.  
• Be independent of any concept solution through the way risk is expressed 
 
IMO (2018) proposes acceptance criteria for fatality risk of 10−4 per year for crew and 10−5 
for passengers and third parties for new ships. Criteria for cost-effectiveness of safety are also 
suggested. Such criteria do not directly provide meaningful information about the risk level in 
operation. The oil and gas industry use the term “loss of main safety functions” (Vinnem, 2014). 
An advantage is that such types of metrics involve less uncertainties since failures of such 
systems occur earlier in the event sequence. For MASS operation, examples of main safety 
functions are the hull integrity, collision avoidance system, etc. In practice, this means that risk 
acceptance is related to the reliability of the main technical functions of the MASS, as well as 
human reliability. In addition, the operational context, the design envelope of the systems, and 
environmental impact need to be considered. 
 
Averages over time periods are often used to calculate risk metrics, and then assuming similar 
trends in the future (Vinnem, 2014). This might be applicable for risk trending but might not be 
possible to use for risk acceptance and risk measurement during an ongoing operation, in 
particular for MASS, as there is limited experience and data available for such systems. Safety 
integrity level (SIL) describes the amount of risk reduction that is provided by an electrical/- 
electronic/programmable electronic system (Marszal, 2001). IEC 61508 [2010, part 4, p. 19] 
defines safety integrity as: “The probability of a safety related system satisfactorily performing 
the required functions under all stated conditions within a specified period of time”. Safety 
integrity is split into four discrete levels, from SIL 4 to SIL 1. The levels are distinguished by 
maximum tolerable failure frequency and the range of risk reduction required. Each SIL is 
quantitatively expressed by probability of failure on demand (PFD) and a risk reduction factor, 
derived from 1/PFD. To claim achievement of a specific SIL, also qualitative requirements 
must be adhered to (IEC 61508, 2010). SIL levels do not provide a meaningful representation 
of an acceptable risk level during operation. 
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According to DNVGL (2018), the tolerable risk level will most likely have to be defined by the 
International Maritime Organization (IMO) and flag states for specific operations. Further, a 
goal-based code is suggested stating that “autonomous and remote-controlled ships shall be as 
safe as conventional ships of the same type”, but ultimately safety should be much improved. 
Translating the existing different types of acceptance criteria, as mentioned above, into specific 
operational constraints for a control system remain a challenge, but the qualitative safety 
constraints from STPA can be used as a basis. 
 

5 Conclusions 
This paper presents the first step towards supervisory risk control of MASS; namely providing 
a systematic process for identifying and analyzing hazards that directly can be used to develop 
the content and structure of a risk model to be used by the control system of an autonomous 
ship. Supervisory risk control means that the autonomous system is capable of risk 
management, enchancing its intelligence, through the integration of a risk model into the 
supervisory (mission) layer of the autonomous system’s control hierarchy. Even though the 
main focus of the paper is a process for developing online risk models in terms of combining 
STPA and BBN, two general approaches to supervisory risk control are suggested; control 
based on real-time risk estimate feedback, and optimization through model predictive control.  
 
The former means that online risk models may provide risk information that is used in a control 
policy that minimizes risk (cost) or maximizes a utility function (cost/benefit). The latter means 
that the online risk model may be used to predict the future risk by simulating the sailing process 
using a digital twin, i.e., a mathematical model of the ship the environment with the current 
states of the sailing process.  
 
The main result of the paper is the proposed framework consisting of two main phases; i.e., (i) 
identifying and analyzing what and how things can go wrong with STPA, which is a feasible 
method for autonomous systems, and (ii) using the results of the STPA to develop nodes and a 
structure for a BBN that represents an online risk model to be used by the control system of an 
autonomous ship. Online risk models that can provide decision support to control systems of 
autonomous ships, subject to environmental and operational conditions and constraints, both 
proactively and reactively are needed. Proactively means early warnings on possible violations 
of the autonomous ship’s operating envelope constituted by safety constraints. Reactively 
means that human operators and supervisors are given more time for efficient responses and 
crisis intervention through predictions of possible outcomes.  
 
The framework presented in the paper is tested in a case study focusing on the guidance system 
of a MASS and demonstrating the feasibility for generating BBNs based on the qualitative 
results of STPA. Currently, there is no straight forward way of identifying nodes and structuring 
their relationship in a BBN for risk analysis and modeling. The paper presents how the unsafe 
control actions, the scenarios and their causal factors from STPA create a hierarchy that can be 
transformed into a BBN. This simplifies the development process of the BBN and ensures that 
the risk information contained in the model has been systematically derived. Even though the 
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framework focuses on MASS due to the limited operational experience available for such 
systems, the framework may also benefit other types of systems, such as other types of 
autonomous vehicles, conventional ships, etc. Future work should include developing a 
software tool for STPA which from the results also generates a BBN. 
 
To utilize the online risk model based on the BBN in operation, risk acceptance criteria and 
operational safety constraints need to be determined. Qualititative safety constraints are 
developed in STPA but these need to be quantified to enable use by a control system in 
operation. Such constraints need to ensure that the MASS is at least as safe as conventional 
ships, but the aim should be on achieving safer solutions. Work remains to “translate” the 
typical overall risk acceptance criteria related to fatalities and costs per year into operational 
criteria that can be used for a control system of an autonomous ship to make decisions in 
operation. 
 
Future work also includes to investigate the combination of several BBN into one online risk 
model for a control system, i.e., expanding the case study further. Finally, industrial 
implementation is promising for the future developments of control systems and the realization 
of autonomous ships, but there is still a gap from case study application to real practical 
integration that needs to be closed.   
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