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Abstract Full Waveform Inversion (FWI) is a procedure used to determine the elastic pa-
rameters of the Earth by reducing the misfit between observed elastodynamic wavefields and
their numerically modeled counterparts. The numerical solution of the elastodynamic wave
equation is computationally expensive and its performance is typically bandwidth bound.
Computing the gradient of the FWI misfit functional adds further complexity as it involves
computing the zero-lag cross-correlation of two wavefields propagating in opposite tem-
poral directions. In this paper, we utilize graphics processing units (GPUs) for their high
memory bandwidth and combine two principal optimizations in order to compute FWI gra-
dients on large models and for long simulation times. Wavefield reconstruction methods
allow efficient gradient computations with minimal memory requirements and interconnec-
tion transfers. Time-space tiling techniques permit us to transcend the limited amount of
GPU memory while avoiding dramatic slowdowns due to the low interconnection band-
width. The implementation considers a task-oriented, hybrid usage of explicitly managed
and Unified Memory in order to satisfy the requirements. Benchmarks demonstrate that the
proposed approach is able to preserve 78 − 90% of the original performance, when over-
subscribing the amount of physical memory available on GPUs. Comparison with existing
methods highlights the benefits of the method.
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1 Introduction

Full waveform inversion (FWI) is a modern seismic inversion procedure used for quantita-
tive estimation of subsurface parameters, such as wavefield velocities or elastic parameters.
The method can be considered a non-linear optimization method that minimizes the misfit
between observed seismic data and the data computed by numerical solution of a suitable
wave equation [56]. From its original mathematical framework introduced by Lailly [20] and
Tarantola [49], FWI has attracted significant interest within geophysics and has been widely
adopted by both academia and the hydrocarbon exploration industry. Several excellent re-
sources on the theory and practical applications of FWI exist in present literature. The work
in [51] presents important aspects such as the conventional FWI workflow, along with suc-
cesful applications ranging from offshore exploration settings to regional and global scale
earthquake seismology. An overview of the main technical aspects of FWI can be found
in [57]. Similarly, [9] constitutes an in-depth resource on FWI and numerical modelling of
seismic waves. The high computational demand of FWI, induced by solving the wave equa-
tion on large grids in three dimensions and for many independent shots, currently limit the
resolution and robustness achievable with present compute capabilities[40, 51].

Popular time-domain solvers, including finite-difference (FD) methods and the spectral
element method, are iterative stencil operations with achievable performances typically
bounded by the memory bandwidth of the hardware system [58]. The last decade has wit-
nessed a widescale adoption of graphics cards for this type of computations, largely due to
their advantage in memory bandwidth. Specifically, the seismic community has seen for-
ward modelling implementations such as Michéa and Komatitsch [23] and Komatitsch et al.
[19] for the elastodynamic wave equation.

Beyond wave equation simulation capability, many local and certain global optimization
methods require computation of the gradient of the misfit functional with respect to the
subsurface parameters. Even with the adjoint state method [38], this is computationally
challenging to perform with time-domain wave equation solvers, as the gradient is com-
puted by a zero-lag crosscorrelation between two wavefields propagating in opposite direc-
tions in time. Implementations on graphics processing units (GPUs) are even more affected
than central processing units (CPUs), primarily due to the limited size of device memory
and slow interconnection bandwidth to system memory. Streaming entire wavefield states
across the interconnection at each timestep can be avoided with the use of wavefield recon-
struction methods [41], at the cost of one extra wave equation simulation. Fabien-Ouellet et
al. [8] utilized a direct stencil reconstruction method [43, 62] for wavefield reconstruction in
elastodynamic finite-difference simulations on GPUs. They furthermore provided an open
source implementation for heterogenous compute systems written in OpenCL. As the name
suggests, stencil based reconstruction methods record and inject the direct dependenden-
cies of the stencil scheme. This leads, however, to the undesirable property that the inherent
memory requirements scale linearly with the half-length of the stencil operator. In contrast,
the memory size and interconnection transfers required by wavefield reconstruction meth-
ods formulated from conservation of elastodynamic power [25, 52, 1] are constant across
discretization accuracies. For realistic half-lengths of the stencil operator, such as the inter-
val four to sixteen, considering the latter reconstruction method can decrease the memory
requirements for wavefield reconstruction by an order of magnitude, compared to stencil
based reconstruction methods.
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Even so, the limited memory capacitites of graphics cards can present challenges for per-
forming FWI in scenarios such as wide aperture aquisition and high resolution simulation
grids. The low bandwidth of the interconnection to system memory then represents a per-
formance bottleneck. Iteration-space tiling techniques like time-space tiling [60, 61] can
alleviate the slowdown in these out-of-core scenarios. Time-space tiling increases the tem-
poral locality of values loaded to the device by partitioning the iteration space, consisting
of nested loops over time and space, into tiles that optimally exploit the dependency dia-
gram of the numerical algorithm. The work of Strzodka et al. [48] utilized this technique on
various iterative stencil computations for optimal cache utilization. Nguyen et al. [27] com-
bined it with classical blocking techniques for improved cache friendliness, a concept which
Yount et al. [63] utilized in order to exploit the HBM present on Xeon Phi coprocessors.
Specifically, seismic finite-difference modelling has seen the time-space tiled out-of-core
implementation presented in [53].

We consider the combined application of the reconstruction method in [1] in conjuction
with time-space tiling for a fast FWI implementation on GPUs, also beyond the device
memory size. A key feature is that the memory-efficient reconstruction method significantly
reduces the working set, whilst tiling allows efficient computations even when the (reduced)
working set oversubscribes GPU memory. In order to realize this, we utilize the Compute
Unified Device Architecture (CUDA) [34, 47, 6] application programming interface (API)
for implementation on Nvidia-based graphics cards. Modern Nvidia GPUs support Unified
Memory (UM), allowing one to implement CUDA compute kernels with data in the same
address space as on the CPU. Along with a page migration engine that enables memory
oversubscription and on-demand page migration, UM significantly reduces the implemen-
tational effort required to develop CUDA code. The results of paper [18] demonstrate that
the success of UM, in terms of performance, depends on the combination of the compu-
tational algorithm, the exact GPU hardware and, optionally, the usage of UM prefetching
instructions. Particularly interesting to our case, the usage of UM shows comparable perfor-
mance to explicitly managed memory for an iterative stencil computation, as long as copying
across the interconnection is kept at a minimum [18]. With this in mind, we designed our
implementation to utilize a hybrid of Unified Memory and explicitly managed memory for
a suitable balance between readability, maintanability and performance. Throughout this ar-
ticle, we consistently utilize the nomenclature used for Nvidia GPUs.

The main novelties of our work can be summarized as: We combine two key optimiza-
tions targeted at the memory system in order to maximize the benefit and applicability of
FWI on GPUs. Within this, we discuss how to accomodate source and receiver functional-
ity, along with wavefield reconstruction methods, within time-space tiling. Furthermore, we
give attention to the efficient implementation of the wavefield reconstruction method in [1]
within staggered-grid FD methods. This type of wavefield representation method is ubiqui-
tous in the seismic community[42], with uses including separation of wavefield constituents
[3] and wavefield redatuming [14, 5]. Minor novelties arise in e.g. the hybrid utilization for
of explicitly managed and Unified Memory in order to solve specific tasks. This work also
presents extensive benchmarks, including a comparative analysis to existing methodologies.

The remainder of the article is organized as follows: We first give a brief introduction to
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modern GPUs and the CUDA programming model. The mathematical background of elas-
todynamic FWI is briefly reviewed, before introducing the corresponding staggered-grid FD
discretization. We provide a brief algorithmic analysis aided by the roofline model [58] in or-
der to motivate our two key optimizations, namely wavefield reconstruction and time-space
tiling. Furthermore, we discuss the code design strategy and common low-level optimiza-
tions for the stencil scheme, certain optimizations required for implementation of the recon-
struction method and the role of UM prefetching. The computational benchmarks assess
the performance of the wavefield reconstruction method and time-space tiled gradient com-
putations and forward modelling. We provide a realistic gradient computation example in
which we benchmark our implementation on several Nvidia graphics cards and compare the
performance to our in house CPU implementation. Finally, we present benchmarks against
a modern, open-source implementation of FWI on GPUs.

2 Background

2.1 Introduction to modern GPU computing

GPUs are massively parallel computational devices originally designed to rapidly create
and manipulate images for output to a display device. The introduction of unified graphics
and compute architectures along with modern parallel computing APIs has enabled a broad
adoption of GPUs in scientific computing [28, 37]. Applications that benefit from mapping
onto GPUs typically exhibit a large computational demand, with substantial parallelism and
where high throughput is more important than low latency [37]. Modern Nvidia GPUs are
built as scalable arrays of streaming multiprocessors (SMs), along with elements such as
device-specific dynamic random-access memory (DRAM), memory controllers and caches
[34, 31, 6]. Communication to system memory is performed through an interconnection,
e.g. PCI-Express[4] or NVLink[30].

Important components of an SM include several functional units for arithmetic and mem-
ory operations, along with an L1 cache, on-chip shared memory and a register file. Certain
architectures such as Kepler, Volta and Turing feature a merged shared memory and L1
cache [6, 32, 33]. Furthermore, recent architectures include special purpose tensor cores
in the SM design, built for deep learning matrix arithmetic [32]. SMs are designed to ex-
ecute hundres of threads concurrently according to the paradigm of the Single Instruction
Multiple Threads (SIMT) execution model [34]. Here, thread management and execution
is performed in scheduled groups of 32 threads, termed warps. The threads within a single
warp are commonly and interchangeably denoted as lanes [34]. Warps execute instructions
in a lockstep fashion, meaning that all lanes must execute the same instruction at any in-
stance. This also entails that divergence due to conditional branches yields serialized exe-
cution of all branches taken. The independent thread scheduling introduced in Volta [32]
assigns per-lane program counters and call-stacks, whereas these resources were previously
shared across the entire warp. The possibility to synchronize and communicate between the
diverged threads of a warp enables the execution of algorithms with even finer parallelism
patterns than previously possible.

The introduction of UM has constituted an important step in simplifying the developer’s
view of memory, and, therefore, the effort to develop applications on Nvidia GPUs. It offers
a single pointer for data and a consistent view of memory across the CPU and GPU, where
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data transfers across the interconnection are automatically managed by the CUDA driver
[6]. The limited form of UM introduced with Kepler [15] was significantly improved in
Pascal [32], enabling oversubscription of Unified Memory and on-demand page migration
[45]. Certain improvements of the page migration for multiple devices were introduced with
Volta [32].

The CUDA programming model commonly refers the GPUs as the device and the CPU as
the host, where programs running on the device are termed kernels [6, 34]. Kernel launches
involve generation of a large number of threads on the device, organized in a two-level hier-
archy. The collective group of threads initiated by a single kernel launch is referred to as a
grid. The grid is composed of many thread blocks, where each block is mapped to a single
SM during execution. All threads of the same grid share the same global memory space,
which physically resides in device DRAM. The threads of a block may cooperate by sharing
data through the shared memory local to each SM. In addition, lanes within a warp may
cooperate by sharing register data through warp shuffle instructions [6, 34].

2.2 Full waveform inversion and gradient computations

Throughout this article, we consider the coordinate system formed by the Cartesian product
between the spatial variable x = (x1, x2, x3)

T , defined on a spatial domain Ω with bound-
ary ∂Ω, and the temporal variable t ∈ [0, T ].

Seismic experiments yield recordings of the induced wavefield response observed at selected
receiver locations, constituting the data d(x, t). Similarly, synthetic wavefield responses can
be numerically computed for an assumed earth model, say m(x), by solving a forward prob-
lem. Solution of the forward problem entails solving a suitable wave equation. The inverse
problem is to determine the earth model which, by solving the forward problem, gives the
synthetic data

−→
ψ (x, t) most closely reproducing the observed data. This particular inverse

formulation is commonly termed full waveform inversion, in which deviations between the
observed and synthetic data are quantified by a misfit functional[9], denoted by χ(

−→
ψ ;d).

The optimal earth model, m̂, minimizes the misfit according to

m̂ = argmin
m

χ(
−→
ψ ;d), (1)

with
−→
ψ (x, t) =

−→
ψ (x, t;m) being the solution to the wave equation for a given model m.

The wave equation can be considered a specific example of a state equation, and we refer to
the wavefield

−→
ψ (x, t) as the state wavefield. Furthermore, we consider elastodynamic waves

in lossless isotropic media. The velocity-stress formulation of the elastic wave equation
reads [2]

ρ∂tvi(x, t) =
3∑
j=1

∂jτij(x, t) + fi(x, t), (2a)

∂tτij(x, t) =
3∑

l,k=1

(
λ(x)δijδkl + µ(x)(δilδjk + δikδjl)

)
(∂lvk(x, t)− hkl(x, t)),

(2b)
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where the wavefield variables are the particle velocities vi(x, t) and the stress tensor τij(x, t)
and the medium parameters are described by the mass density ρ(x) and the two Lamé stiff-
ness parameters λ(x) and µ(x). The source functions consist of the sources of body force
and deformation rate, namely fi(x, t) and hkl(x, t). Furthermore, the indices i, j, k, l take
on the values 1, 2, 3, the Kronecker delta is denoted by δ·,· and the operators ∂i and ∂t
are shorthand notations for ∂/∂xi and ∂/∂t, respectively. For completeness, we expand the
elastic wave equation as

ρ∂tv1 = ∂1τ11 + ∂2τ12 + ∂3τ13 + f1, (3a)

ρ∂tv2 = ∂1τ12 + ∂2τ22 + ∂3τ23 + f2, (3b)

ρ∂tv3 = ∂1τ13 + ∂2τ23 + ∂3τ33 + f3, (3c)

∂tτ11 = (λ+ 2µ)(∂1v1 − h11) + λ(∂2v2 + ∂3v3 − h22 − h33), (3d)

∂tτ22 = (λ+ 2µ)(∂2v2 − h22) + λ(∂1v1 + ∂3v3 − h11 − h33), (3e)

∂tτ33 = (λ+ 2µ)(∂3v3 − h33) + λ(∂1v1 + ∂2v2 − h11 − h22), (3f)

∂tτ23 = µ(∂2v3 + ∂3v2 − h23 − h32), (3g)

∂tτ13 = µ(∂1v3 + ∂3v1 − h13 − h31), (3h)

∂tτ12 = µ(∂1v2 + ∂2v1 − h12 − h21), (3i)

in which the stress tensor is uniquely described by six elements rather than nine, due to the
symmetry property τij(x, t) = τji(x, t) [2]. We define the synthetic data to be

−→
ψ (x, t) = (v1, v2, v3, τ11, τ22, τ33, τ23, τ13, τ12)

T (x, t), (4)

and the model parameters we wish to determine by performing FWI are some formulation
of the medium parameters of the earth. For simplicity, we define the model parameters to be

m(x) = (ρ, λ, µ)T (x). (5)

The gradient of the misfit functional with respect to the model parameters is ubiquitous in
local optimization methods used for solving equation 1, see e.g. [29]. In order to utilize these
methods we must hence be able to compute

∂χ(
−→
ψ ;d)

∂m
=
(
∇ρχ(

−→
ψ ;d),∇λχ(

−→
ψ ;d),∇µχ(

−→
ψ ;d)

)T
. (6)

The gradient of the misfit functional is computed with the adjoint state method, in which the
state variables are combined with solutions of the adjoint state equation [38].
Following the approach in Vigh et al. [54], the adjoint state equation reads

ρ∂t′v
†
i (x, t

′) = −
3∑
j=1

∂jτ
†
ij(x, t

′) + f†i (x, t
′), (7a)

∂t′τ
†
ij(x, t

′) = −
3∑

l,k=1

(
λ(x)δijδkl + µ(x)(δilδjk + δikδjl)

)
(∂lv

†
k(x, t

′)− h†kl(x, t
′)),

(7b)

with

t′ = T − t, (8)
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and v†i (x, t
′) and τ†ij(x, t

′) the adjoint particle velocities and the adjoint stress tensor, respec-
tively. The superscript † denotes that the given variable is an adjoint quantity. The adjoint
source functions f†i (x, t

′) and h†kl(x, t
′) depend on the specific choice of the misfit func-

tional. The adjoint sources inject some form of a residual between the true and predicted
data. For the standard least-squares misfit functional we for example have

f†i (x, t
′) =

∑
xr

δ(x− xr)(v
obs
i (xr, t

′)− vi(xr, t′)), (9)

in which is vobs
i (xr, t

′) is the i’th particle velocity observed at receiver position xr of the
seismic experiment and δ(·) is the Dirac delta distribution. The specific form of the adjoint
source in equation 9 therefore represents the arithmetic difference between observed and
modelled particle velocities, to be injected as point sources at the receiver positions. The
adjoint field can be compactly denoted as

←−ϕ (x, t′) = (v†1, v
†
2, v
†
3, τ
†
11, τ

†
22, τ

†
33, τ

†
23, τ

†
13, τ

†
12)

T (x, t′). (10)

The numerical cost of solving the adjoint state equation is the same as one solution of the
state equation.

The gradient with respect to the first Lamé parameter reads [54]

∇λχ(
−→
ψ ;d) = −

∫
Ω

∫ T

0

1

3λ(x) + 2µ(x)

(
τ†11(x, t) + τ†22(x, t) + τ†33(x, t)

)
×
(
∂1v1(x, t) + ∂2v2(x, t) + ∂3v3(x, t)

)
dt d3x, (11)

in which the integration over time has the form of a zero lag cross-correlation, involving
two wavefields propagating in opposite temporal directions. Similar relations hold for the
other model parameters, as shown in e.g. [54, 9]. A graphical overview of the workflow of
gradient-based FWI can be found in e.g. [51].

2.3 Discretization of the state equation

The initial condition of the state field is

−→
ψ (x, t) = 0 t ≤ 0, (12)

and suitable boundary conditions must be prescribed on the boundary ∂Ω. Absorbing bound-
ary conditions are used on one or more boundaries in order to avoid artificial reflections due
to truncating the computational domain. For this purpose, we utilize the Perfectly Matching
Layer (PML) formulation of [39]. It augments equation 2 with two sets of memory vari-
ables acting as energy sinks in a small zone beyond the domain of interest. Equation 2 is
discretized using the explicit FD method of Virieux [55], which involves staggering of wave-
field quantities in both time and space. The particle velocities are updated at half-time steps
by utilizing

∂tv
n
i (x) ≈

v
n+ 1

2

i (x)− vn−
1
2

i (x)

∆t
, (13)
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and the stress tensor is updated at integer time steps

∂tτ
n+ 1

2

ij (x) ≈
τn+1
ij (x)− τnij(x)

∆t
, (14)

where the integer superscript n refers to the the discretized time n∆t and ∆t is the timestep
increment. Staggered forward, D+

i , and backward, D−i , differential operators of order 2L
are used to approximate the spatial derivatives, viz

∂if(xi +
1

2
∆xi) ≈ D+

i f(xi) =
1

∆xi

L−1∑
`=0

α`[f(xi + (`+ 1)∆xi)− f(i− `∆xi)],

(15a)

∂if(xi −
1

2
∆xi) ≈ D−i f(xi) =

1

∆xi

L−1∑
`=0

α`[f(xi + `∆xi)− f(xi − (`− 1)∆xi)],

(15b)

where ∆xi is the spatial grid size in direction i and α` are the differentiator coefficients. In
this notation, f is an arbitrary function and L is commonly denoted as the half-length of the
operatorsD+

i andD−i . The forward operator is used when the output of the differentiation is
required to be on the staggered grid in direction i, and the backward operator is used when
the output is required on the reference grid. The elementary cell of the discretized wave
equation is shown in Fig. 1. For example, the explicit update formula for v2 is

v
n+ 1

2
2 = v

n− 1
2

2 +
∆t

ρ

(
D−1 τ

n
12 +D+

2 τ
n
22 +D−3 τ

n
23

)
, (16)

whereas the update of e.g. τ33 reads

τn+1
33 = τn33 +∆t

(
λD−1 v

n+ 1
2

1 + λD−2 v
n+ 1

2
2 + (λ+ 2µ)D−3 v

n+ 1
2

3

)
. (17)

Injection of source functions can be considered a separate step in the modelling scheme due
to the spatial sparsity of sources. When v2 and τ33 have been updated according to equations
16 and 17, the respective source functions can be injected according to

v
n+ 1

2
2 = v

n+ 1
2

2 +
∆t

ρ
fn2 , (18)

τn+1
33 = τn+1

33 −∆t
(
λh

n+ 1
2

11 + λh
n+ 1

2
22 + (λ+ 2µ)h

n+ 1
2

33

)
. (19)

A complete list of the discretized update scheme can be found in e.g. [13].

2.4 Discretization of the adjoint state equation

The numerical implementation of the adjoint state equation requires only minor modifi-
cations of the implementation of the state equation. The former is a time reversed wave
equation to be solved forward in time, with respect to the variable t′ = T − t. The initial
condition for this field is
←−ϕ (x, t′) = 0 t′ ≤ 0 ⇔ ←−ϕ (x, t) = 0 t ≥ T, (20)

and its boundary conditions are time reversed variants of the boundary conditions of the state
field. The most prominent implementational difference is that the update order between the
particle velocities and the stresses is reversed when simulating backwards in time.
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2.5 Discretization of the gradient kernels

The model parameters of the inverse problem are often discretized on the same grid as
the reference FD grid. The support of each discretized model parameters is then reduced
to one grid node and the spatial integrals in the gradient expressions vanish. The gradient
expression for the first Lamé parameter at location x′ therefore becomes

∇λ(x′)χ(
−→
ψ ;d) = −

Nt−1∑
n=0

1

3λ(x′) + 2µ(x′)

(
τ†,n11 (x′) + τ†,n22 (x′) + τ†,n33 (x′)

)
×
(
D−1 v

n
1 (x
′) +D−2 v

n
2 (x
′) +D−3 v

n
3 (x
′)
)
∆t, (21)

with Nt being the number of timesteps. In similarity to the forward modelling scheme, gra-
dient computations involve calculations of partial derivatives. The implementation of equa-
tion 21 requires the two distinct wavefields to be available on the same timestep. This is
computationally challenging to achieve with time domain solvers, as the adjoint state field
propagates backwards in time. The propagation behaviour of the two fields is shown in Fig.
2. Moreover, the adjoint wavefield can only start its simulation after the state wavefield has
been simulated to the end time t = T . A straightforward solution to this problem is to save
snapshots of the state wavefield during forward propagation, and subsequently read the snap-
shots when simulating the adjoint field. For three-dimensional problems there is typically
not enough memory available to accomodate several thousands of timesteps. Relying on
the low bandwidths of disks and/or interconnections might decrease program performance
dramatically. As a part of the next section, we will introduce the motivation for utilizing
so-called wavefield reconstruction methods to ameliorate this issue.

3 Method

The implementation of the forward modelling scheme is key to achieving sufficiently fast
propagation of the state and adjoint fields separately. A second challenge is to be able to
provide the two wavefields at the same timestep for the gradient computation kernels. We
initiate the analysis and motivation by assuming that all required quantities can be kept
in memory, including the snapshots of the state wavefield. We will underways consider
scenarios in which this assumption can not be met. For our algorithmic analysis, we consider
the performance and bandwidth specifications of a hypothetical, modern graphics card given
by Table 1. These specifications correspond roughly to a mid- or upper-range GPU of the
Turing architecture, with the bidirectional interconnection bandwidth being equivalent to 16
lanes of the PCI Express 4.0 standard [4].

3.1 Algorithmic analysis

Performance models enable inference of achieved performance relative to hardware capa-
bilities, identifying bottlenecks and limitations in both implementations of numerical al-
gorithms and the available hardware. The roofline model [58] is an insightful, yet simple,
performance model which provides intuitive visual description along with accurate perfor-
mance bounds. According to the roofline model, the maximum achievable performance for
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an input of size N is given by

Pmax(N) = min

{
π,

βIO(N),

}
, (22)

in which π is the peak arithmetic performance of the hardware and β is its memory band-
width. IO(N) is the operational intensity of the numerical algorithm at the given input size,
defined as the quotient of the arithmetic instruction count and the memory traffic in bytes.
The algorithm-hardware combination is either memory bound, occuring when βIO(N) < π,
or compute bound, when βIO(N) > π. The crossing at βIO(N) = π is termed the ridge
point of the roofline model, in which the algorithm is equally dependent on memory band-
width and arithmetic performance. The graphical visualization of this model is a plot of
performance againts operational intensity on logarithmic axis scales, and a visualization for
the hypothetical graphics card is shown in Fig. 3. In this display, the two computational
kernels, 1 and 2, are respectively located in the bandwidth-bound and the compute-bound
regions of the roofline model. We now wish to gain insight into which factors may limit the
performance of the two main types of computational kernels in the FWI algorithm. We re-
gard the two kernel types, the FD simulation kernels and the gradient computation kernels,
as separate algorithms.

The FD method is a stencil type operation, as it involves updating one point of the grid
based on its neighbours’ values. The stencil formulas of our forward modelling scheme are
highly similar to one another, and for brevity the stencil formula of v2 in equation 16 is
considered. The arithmetic instruction count for one timestep of this update formula is given
by

CA[v2](N) = N


3× 2L+ 1 Fused multiplication and addition (FMA) operations,
3 Addition (ADD) operations,
1 Division (DIV) operations,

 ,

(23)

with

N = Nx1 ×Nx2 ×Nx3 , (24)

being the number of spatial grid nodes. We specify the lower bound for the required memory
traffic by assuming that there is no redundancy in loads nor stores. This assumes optimal re-
use of the values used by the numerical differentiation operators, and that these values can
be kept in on-chip resources such as caches or registers. Assuming four byte sized floating
point numbers, the minimum required memory traffic, B(N), reads

B[v2](N) ≥ 4×N × 6 bytes. (25)

Combining the number of arithmetic operations in equation 23 and the lower bound for the
memory traffic in equation 25 gives an operational intensity

IO[v2](N) =
CA[v2](N)

B[v2](N)
=
N(12L+ 5)

N × 24
=
L

2
+

5

24
∝ O(1), (26)

where we for simplicity have grouped the different arithmetic operations together and the
FMA instructions count as two operations each. Equation 26 reveals that the operational
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intensity for our FD scheme is independent of the number of grid cells, under the assump-
tion that the entire working set fits in memory. Along with Fig. 4, we can observe that the
achievable performance of each of the particle velocity kernels on the hypothetical GPU is
bandwidth bound for realistic values of L.

Under the very same assumptions, it can be shown that one timestep of the gradient compu-
tation formula in equation 21 has an arithmetic operations count given by

CA[∇λχ](N) = N(12L+ 8), (27)

and a minimum required memory traffic according to

B[∇λχ](N) ≥ 4×N × 8 bytes. (28)

This gives an upper-bound operational intensity

IO[∇λχ](N) =
N(12L+ 8)

4×N × 8
=

12L

32
+

1

4
∝ O(1), (29)

from which it is deducible that also this computational kernel is bandwidth bound in realistic
scenarios.

The analysis of the FD stencil scheme has thus far assumed that the corresponding working
set fits into device memory. Similarly, the analysis of the gradient computation has assumed
that all snapshots of the state wavefield fit into device memory and are directly available. In
reality, the second assumption is particularly unlikely to be satisfiable. When either of these
conditions can not be met, one must consider the host to device interconnection bandwidth,
in order to accurately predict the upper performance bound.

The roofline model accomodates memory hierarchies by adding separate memory ceilings
for each member of the hierarchy. The attainable performance is dictated by the most limit-
ing roofline, i.e. the lowest roofline in the plot. The roofline model for the particle velocity
stencil formula is given by Fig. 5. The lower bandwidth of the interconnection shifts the
ridge point towards higher operational intensities, thereby extending the bandwidth-bound
region. Moreover, the maximum attainable performance within the bandwidth bound region
is limited by the bandwidth of the interconnection. The roofline model therefore suggests
that an efficient FWI computation minimizes the memory traffic across the interconnection.
The gap between the DRAM and interconnection ceilings is the potential performance re-
ward for such optimizations. Certain optimizations may however increase the computational
load performed, and the runtime is determined by the balance between the computational
load and the achieved arithmetic performance.

We consider the usage of wavefield reconstruction methods in order to eliminate the need for
storing and loading wavefield snapshots of the state wavefield. The state wavefield is then
propagated backwards in time alongside its adjoint counterpart, at the cost of one extra FD
modelling. The working set is thereby reduced to only two wavefield snapshots, along with
terms such as the elastic medium parameters and the misfit gradient terms. In conjuction, we
consider the use of time-space tiling methods in order to maintain the performance of our
FWI implementation when the reduced working set exceeds the device memory capacity.



12 Ole Edvard Aaker et al.

3.2 Wavefield reconstruction

Reconstruction methods allow reverse-time propagation of a wavefield by injecting suitable
source functions that compensate for the energy dissipated through the attenuating bound-
aries. Reconstructing the state wavefield eliminates the need for wavefield snapshots in FWI
gradient computations, thereby significantly reducing the amount of data transferred across
the interconnection.
We employ a wavefield reconstruction method formulated from conservation of elastody-
namic power flux, which utilizes recordings of the modelled wavefield at a boundary en-
closing the medium of interest. In order to perform reconstruction, the recorded wavefield
is represented as body force and deformation rate sources. Respectively, these sources read
[1]

freci (x, t) = ρ(x)

∫
∂V

δ(x− x′)
Ti(x′, t)
ρ(x′)

d2x′, (30)

and

hreckl (x, t) =

∫
∂V

δ(x− x′)vk(x
′, t)nl d

2x′, (31)

with

Ti(x′, t) =
3∑
j=1

τij(x
′, t)nj (32)

being the traction at the boundary ∂V with normal vector n̂ = (n1, n2, n3)
T . Fig. 6 graphi-

cally demonstrates an application of the reconstruction method, in which a simulated wave-
field is reconstructed only inside the subregion bounded by ∂V .

The source functions in equations 30 and 31 require the storage of six unique wavefield
quantities at the boundary surface, which is performed during forward simulation. Inter-
polation is required when the grid nodes of the boundary ∂V do not intersect with the
grid nodes of the required wavefield quantities. Such situations occur when the boundary
is curved and/or one considers the usage of spatially staggered FD schemes. The forward
and backward interpolation operators for an order 2L accuracy read [10, 26]

f(xi + η∆xi) ≈ I+i f(xi) =
L−1∑
`=0

βη` [f(xi + (`+ 1)∆xi) + f(i− `∆xi)], (33a)

f(xi − η∆xi) ≈ I−i f(xi) =
L−1∑
`=0

βη` [f(xi + `∆xi) + f(xi − (`− 1)∆xi)], (33b)

with an interpolation shift −0.5 ≤ η ≤ 0.5 and βη` being the corresponding interpolation
coefficients. The interpolators in equation 33 are stencil operators similar to the forward and
backward differentiation operators of equation 15.

The first step to calculating an FWI gradient is to solve the elastic wave equation with
an injection of sources and recording of receivers determined by the acquisition geometry.
The pseudocode for this step can be written as in Algorithm 1, where we have included the
procedures required for recording the reconstruction sources at the boundary. The physical
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locations of sources and receivers generally do not coincide with the FD grid, and injection
and recording of these quantities require the usage of interpolation operators. The gradient
of the misfit functional can be calculated with Algorithm 2. The latter includes an explicit
call to the first algorithm, providing the wavefield response at the receiver locations and the
required reconstruction sources.

The source functions in equations 30 and 31 can be transferred across the interconnection
in a buffered fashion, such that they occupy a minimal amount of device memory at any
instant. The interconnection transfers can be performed simultaneously with e.g. the finite-
difference stencil computations, and can in the optimal case be completely hidden. In the
following, the working set size for gradient computations refers to the size required when
using wavefield reconstruction methods. We consider time-space tiling techniques to main-
tain program performance in the out-of-core scenario, i.e. when the working set exceeds the
physical size of device memory.

3.3 Time-space tiling for out-of-core FWI

At its core, the computations of the FWI method consists of iterative stencils schemes along-
side auxiliary routines. The attainable performance in the out-of-core scenario of any naı̈ve
implementation drops significantly due to the bandwidth preference of the algorithm and the
low interconnection bandwidth, see e.g. Fig. 5. In this notation, naı̈ve refers to the observa-
tion that the loops over the four-dimensional iteration space, consisting of time and space, in
the stencil schemes of Algorithms 1 and 2 are oblivious to data reuse in the form of temporal
locality. In contrast, time-space tiling exploits the dependency diagram of stencil schemes in
order to increase temporal locality [60, 61]. This can be used to improve the caching abili-
ties of multilevel memory hierarchies, which is particularly interesting for bandwidth bound
computations. Our motivation is to utilize this method to maintain program performance
when oversubscribing the GPU memory.

To this end, we tile the four-dimensional iteration space in the temporal direction and the
slowest spatial direction[53]. This amounts to updating the field(s) on a subset of the x3 axis
rather than along the full spatial extent, at any given timestep.
This spatial subset, of length Wx3 , is moved and/or modified according to a transforma-
tion rule when iterating across a fixed number of timesteps, say Wt. The tile transformation
rule, along with the spatial and temporal tile sizes Wx3 and Wt, describes an iteration space
composed into non-overlapping characteristic shapes, termed tiles, that are preferentially
updated in time and space. The preferential update directions permit an improved reuse of
values loaded into a specific memory subsystem, constituting the main attractive property
of time-space tiling. Tiling can therefore help overcome the bandwidth gap between device
DRAM and the interconnection. We first introduce the time-space tiling method to the wave
equation stencil scheme, before we consider a generalization in order to include all relevant
routines required by the FWI implementation.

The wave equation implementation considers iterative stencil updates of the particle ve-
locity, vi, and the stress tensor, τij , on a spatial grid across several timesteps. The spatial
dependency between particle velocity and stress within a given integer timestep is termed
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the wavefront-angle, denoted by Ax3 . In FD schemes, this is equivalent to the differentiator
half-length L. We present the time-space tiled version of the velocity-stress stencil scheme
(present within Algorithm 1) in Algorithm 3. The general form of the iteration space is
shown in Fig. 7, having the shape of sequential parallelograms. The dependencies of a given
tile in parallelogram tiling are provided by either the previous tile or the boundary condi-
tions.

The update range of the stress tensor is shifted by one wavefront angle relative to that of the
particle velocities, and the entire tile is shifted two wavefront angles when both the veloc-
ities and the stress have been updated. The coupled dependency between the two principal
wavefield quantities is hence respected. The wavefield is updated on the entire domain at
every Wt’th timestep, leading to a memory which generally holds wavefield values located
at different timesteps. The time-space tiled algorithm reduces to the naı̈ve algorithm when
specifying Wt = 1 and Wx3 = Nx3 + Ax3 , leading to only one spatial tile which updates
the wavefield on the entire spatial domain by one timestep.

Our FWI implementation requires more functionality than the FD stencil computations. The
routines related to recording of receivers, injection of sources and the gradient computation
kernels interact with the values of the FD scheme, and must therefore respect the dependen-
cies of the tiled iteration space. In addition, the same rules apply to recording and injection of
the sources for wavefield reconstruction. Based on Algorithm 1, we demonstrate the evalua-
tion ranges for source injection and receiver interpolation in Figs. 8 (a) and (b), respectively.
Injection of sources is performed prior to evaluation of the stencil update in Algorithm 1, and
the sources therefore inject to the stencil update ranges of the previous timestep. Receiver
interpolation is performed prior to the stencil kernels but succeeding source injection, and
is therefore shifted by one wavefront angle compared to the source injection update range.
Evidently, the update range for source injection to either vi or τij is shifted by minus two
wavefront angles compared to that of its respective stencil kernel. According to this nota-
tion, the shift for receiver interpolation is minus one wavefront angle. The intra-tile shift
of two wavefront angles across timesteps is preserved, as none of the extra routines have a
coupled dependency with the wavefield quantities. The introduction of negative dependency
shifts requires more tiles to be introduced, as can be seen from the black nodes for source
injection and receiver interpolation in Figs. 8 (a) and (b), respectively. The black nodes can-
not be satisfied by the tiles belonging to the stencil scheme, but introducing an extra, shifted
tile will alleviate the issue. No FD stencil operations are performed in the extra tile of this
specific example, as the wavefield values in its domain of support are completely determined
by the boundary conditions. Recording and interpolation of the reconstruction sources share
the same update range as the receiver interpolation, c.f. Algorithm 1. Injection of the recon-
struction sources in Algorithm 2 is performed succeeding (reverse-time) stencil updates, and
therefore have update ranges shifted by positive multiples of the wavefront angle.

4 Implementation

We utilized object-oriented C++ as our host programming model in order to manage the
codebase with a clear inheritance pattern. The classes of the GPU implementation inherit
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from CPU classses and implement their computational kernels by virtually overriding spe-
cific member functions. The overridden member functions act as wrappers for CUDA-C
compute functions, and all usage of polymorphism is entirely determined at compile time.
The inheritance-oriented design allowed us to minimize code duplication of auxiliary rou-
tines, which constitute a significant amount of code in any FWI implementation. The CPU
code furthermore served as verification of program correctness.

We chose to utilize UM for many variables involved in the forward modelling and gradi-
ent computations. This enabled us to write an out-of-core FWI implementation in the same
address space as on the CPU, without having to write explicit transfers for the UM-allocated
variables. The ability to logically access the main wavefield and model variables the same
way as on the host proved particularly advantageous for the correctness and maintainability
of the implementation when introducing time-space tiling. Explicit memory management
and transfers were however used for the variables stored with an explicit time dependence,
with the respective transfers organized in a buffered fashion. Such quantities include source
and receiver functions, along with the source functions for wavefield reconstruction. Explicit
management of these variables avoided unneccesary allocation of page-locked memory on
the host. Perhaps more importantly, it enabled efficient, intermittent writes and reads of the
reconstruction sources to/from secondary storage for long simulations.

We launch two-dimensional grids of two-dimensional threadblocks in order to cover one
x1 − x2 slice of the computational domain. The launched threads are allowed to loop over
the x3 dimension, permitting the time-space tiling implementation to re-use all computa-
tional kernels of the baseline (i.e. non-tiled) implementation. Furthermore, the implemen-
tation uses several CUDA streams in order to overlap computations and data transfers. Sy-
chronization is performed on the thread block level for correct shared memory usage within
kernels, implicitly within CUDA streams and across streams with the usage of CUDA events
[21]. At runtime, the mainly utilized SM units are the memory load and store units along
with the (unified) 32-bit CUDA cores for floating point multiplication, addition, subtraction
and FMA operations. On architectures without dedicated units for integer operations, the
memory address calculations are also performed on the unified 32-bit CUDA cores. In ad-
dition, the special functions units are minorly used for computing floating point reciprocals
[59]. Beyond the higher-level algorithmic optimizations involving the usage of reconstruc-
tion and tiling methods, the GPU code also contains several implementational optimizations.
In the following subsections, we briefly review some of these.

4.1 Shared memory and register pipelining for efficient differentiation

Implementing the numerical differentiations of the finite-difference scheme with low mem-
ory redundancy is of high importance. The approach of Micikevicius [24] aims to reduce the
amount of redundant memory operations in the global memory space, and we briefly review
it here. The implementation of the horizontal derivatives utilizes two-dimensional blocks
of shared memory in the x1 − x2 plane, allowing a greater data reuse on the thread block
level. For realistic differentiator half-lengths, there is not enough shared memory available
per streaming multiprocessor to extend this approach to the vertical derivative, i.e. along
the x3 direction. Instead, a per-thread register pipeline stores the values of the previous
and next x1 − x2 slices that are required for calculating the vertical derivative at a single
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point (x1, x2, x3). One new value is loaded and another is omitted when moving to the next
x1 − x2 slice, giving a re-use of 2L − 1 values in the pipeline. By reducing the memory
operation redundancy, we move the performance of the implementation towards the upper
bound set by the roofline model.

4.2 Prefetching of Unified Memory

Utilization of more Unified Memory than the physical size of device memory leads to fre-
quent page faulting when computational algorithms traverse across the allocated pages. In
order to prevent excessive page faulting and improve data locality, the CUDA driver in-
cludes certain algorithm-oblivious page migration heuristics[45]. Because time-space tiling
is a structured algorithm with a predictable memory access pattern, it is possible to im-
prove on the default behaviour of the driver. Our FWI implementation can therefore over-
ride the heuristics by utilizing the asynchronous prefetching functionality of the runtime
API. Prefetching can potentially reduce the number of warp stalls and hide the latency in-
duced by page faulting. We allow the least recently used (LRU) policy of the page migration
engine to control the eviction of pages from the GPU.

4.3 Wavefield reconstruction

The source functions for wavefield reconstruction can in principle be utilized with an arbi-
trarily shaped boundary ∂V . However, interpolation of wavefield quantities quickly becomes
expensive when the boundary points do not coincide with any finite-difference grid nodes.
In this case, interpolation of one wavefield quantity at a single boundary point requires
(2L)3 ∼ O(L3) FMA and memory operations. For comparison, the FD stencil formulas are
distributed according to O(L) operations at each grid point.
Placing the reconstruction boundary along the grid nodes of the reference FD grid leads to a
reduction in the operation count from O(L3) to O(L) for interpolating staggered wavefield
quantities. Furthermore, the non-staggered wavefield quantities can be serviced by only one
operation. Interpolation is required for both recording and injection of the reconstruction
sources. These interpolation operations are implicit in the operations at lines 4 and 29 of
Algorithms 1 and 2, respectively. In the following, we first consider the interpolation related
to recording of the reconstruction sources before relating this to their injection.

The interpolation of any particle velocity onto ∂V reads

vi(x, t)|x∈∂V = I−i vi(x+ ei
1

2
∆xi, t), (34)

when ∂V is aligned with the reference grid and ei is a unit vector in direction xi. Per defini-
tion, this operation requires 2L FMA and memory operations.

The diagonal terms of the stress tensor, τii, are located on the reference grid and require
no interpolation, only a load operation. The traction in equation 32 furthermore requires
the off-diagonal quantities τij (i 6= j), which are staggered in two spatial dimensions. The
corresponding interpolation onto the boundary ∂V is given by

τij(x, t)|x∈∂V = I−i I
−
j τij(x+ ei

1

2
∆xi + ej

1

2
∆xj , t), (35)
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which in a naı̈ve implementation requires (2L)2 operations for each point on the boundary.
However, the reconstruction boundary is the surface of a cuboid volume when aligned with
the reference FD grid. Such surfaces can be seen as the union of six piecewise continuous
parts, viz ∂V = ∂V1 ∪ ∂V2 ∪ · · · ∪ V6. Each boundary piece is a rectangular region in which
the interpolation of equation 35 can be performed in a two-pass approach

τij(x, t)|x∈∂Vk = I−i
(
I−j τij(x+ ei

1

2
∆xi + ej

1

2
∆xj , t)

)
, (36)

where the wavefield is first interpolated in direction xj on all nodes of ∂Vk, including all
required halo points for the subsequent interpolation in direction xi. The two-pass interpo-
lation of τij requires a number of operations for all N by M grid points on ∂Vk according
to

OPS = 2L× (2NM + 2LN), (37a)

or

OPS = 2L× (2NM + 2LM), (37b)

depending on the exact orientation of the staggering of τij with respect to the orientation
of Vk. According to equation 37, the number of operations for a single point is distributed
according to OPS

NM ∼ O(L), provided that the extents of the boundary is significantly larger
than the interpolation half width. Our proposed rearrangement therefore reduces the number
of operations by a factor L. The two-pass interpolation approach is shown in Fig. 9 for a
staggering parallel to the plane of Vk. The staggering direction orthogonal to the boundary
should always be considered in the first step, if present in a considered wavefield quantity.
Adherence to this rule minimizes the size of the memory buffers required by the two-pass
method, as well as the amount of memory operations. We utilize memory buffers in the
global memory address space, and utilize two separate kernel launches for implementing
the two-step approach.

A two-dimensional grids of two-dimensional threadblocks is launched on all boundary sec-
tions, except the two sections with normal vectors parallel to the x1 direction. This direction
is in memory represented with the fastest varying index. The standard thread setup would
serialize every memory access required by I−1 for all lanes across any warp, leading to a
substantial amount of wasted bandwidth and serialization. Special considerations are there-
fore required in order to maintain an optimal memory access pattern on these boundaries.
We launch one warp per point (x2, x3) on the x1 aligned boundaries in order to utilize the
interpolator I−1 efficiently. All values required for the interpolator are then provided by one
global load instruction on the warp level. The output of the interpolation is implemented
with an intra-warp reduction operation, utilizing warp shuffle instructions [22]. This proce-
dure is demonstrated in Fig. 10. All threads with lane indices greater than 2L−1 are masked
out during the reduction operation, and the number of threads participating is halved after
each step. The proposed approach can be extended to cases where 2L is greater than the
warp size by considering an intra-block reduction operation. Partial reduction would then
be performed within warps prior to distributing partial sums to shared memory, from which
the first warp of the block would perform the final reduction, see e.g. [22].



18 Ole Edvard Aaker et al.

The interpolation routines for injection of the reconstruction-type source functions are highly
reminiscent of those used for recording. The body force source freci must be interpolated
with the operator I+i in order to be injected to the particle velocity vi. The deformation rate
source hreckl (k 6= l) is injected to τij and must be interpolated with I+i and I+j . In similar-
ity with the recording procedure, this is done with a two-pass approach. The minimalistic
memory buffers are herein re-used. Finally, the source functions hreckk are injected to the
elements τii and therefore require no interpolation. The grid and threadblock structure for
injection utilizes the same structure used for recording. An optimal memory access pattern
on all boundary sections is hence provided. Injection of the reconstruction sources is thread
safe due to the highly regular structure of the boundary and by design of the injection proce-
dures. We therefore avoid expensive atomic operations or, even worse, serialization through
the usage of locks.

4.4 Flow chart overview of time-space tiled gradient computations

The flowchart in Fig. 11 demonstrates the higher level overview of our implementation of
the loops in Algorithm 2, yet with time-space tiling. For brevity, there are minor differences
compared to the exact lines of Algorithm 2: The explicit call to Algorithm 1 is assumed
to have been performed and the residual sources have been created. The loop structure in
this figure is exactly the same as that of the tiled velocity-stress stencil scheme, found in
Algorithm 3. In Fig. 11, the outermost loop moves backwards in time from t = T to t = 0
in batches of Wt timesteps. At the start of each batch, the source functions for wavefield
reconstruction and the adjoint sources are copied to the GPU in a buffered fashion, i.e. Wt

timesteps of these quantities are transferred. The implementation then loops over all tiles.
If desired, the variables on the given tile are prefetched with UM prefetching. Otherwise,
the UM page migration system handles all page faults on demand. The forward and adjoint
fields are propagated backwards in time, injected sources to and combined to compute the
gradient contributions at all timesteps within the tile.

5 Results

We consider a selection of benchmarks in order to assess the performances of the wavefield
reconstruction method and the out-of-core performance of both the wave equation simula-
tion and gradient computations. Ultimately, a realistic FWI gradient computation example
is presented, in which we compare the performance of our GPU implementation on a selec-
tion of devices, and compare it to our in-house CPU based implementation. We consider the
hardware selection in Table 2, in which our main development and benchmark platform is
the Geforce GTX 1070. The compilers and main compiler flags used for the benchmarks are
given in Table 3.

The roofline model suggests that the maximum achievable performance in terms of float-
ing point operations is proportional to the differentiator half-length in the bandwidth bound
region. An equivalent observation is that increasing the differentiator half-length permits
running FWI on a coarser grid, which reduces runtime for a fixed differentiation accuracy.
This analysis assumes that all values of L can be met with sufficient on-chip hardware re-
sources, such that the redundancy in memory traffic does not increase. A suitable value
for L in terms of runtime therefore achieves a good balance between numerical accuracy
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and the hardware resources required in the (efficient) implementations of the differentiators.
Obscenely large half-lengths are not desirable as the required spatial grid sampling only
asymptotically approaches the Nyquist sampling criterion for large values of L [16]. We
consistently chose to utilize a half-length L = 8 with coefficients minimizingthe numerical
dispersion error [16] for our benchmarks.

5.1 Wavefield reconstruction performance

We measure the performance of the wavefield reconstruction method by evaluating the
slowdown introduced by recording the reconstruction sources during forward simulation.
Similarly, the time-reversed simulation with injection of the reconstruction sources is com-
pared to to the plain forward simulation. The problem size considered is a cubic domain
of 2563 grid cells, the reconstruction boundary is the union of six quadratic pieces of size
200 × 200 grid cells and 1000 timesteps are performed for each run. The cells outside the
reconstruction region are considered part of a PML and padding zone. The relative perfor-
mances shown in Table 4 demonstrate that the recording and injection procedures induce
performance reductions of slightly more than 3% and 7%, respectively. The differences in
performance across the two procedures is unsurprising as the recording procedure is a re-
duction operation, whereas the injection procedure is a scattering operation. The injection
procedure trades load operations for store operations, which are satisfied by two, rather than
one, memory operations. It should be noted that the two simulations with reconstruction pro-
cedures include the effect of (asynchronous) transfers of the reconstruction sources across
the interconnection. The interconnection transfers are here performed every 10’th timestep.

Extracting snapshots of the state wavefield at each timestep in Algorithm 1 represents a
naı̈ve alternative to the utilization of (wavefield) reconstruction methods. We consider the
effect of writing snapshots of all components of the state field to system memory. Even for
this relatively small example, the size required for the snapshots is 26.82 GiB per 100’th
timestep. In order to comfortably fit the snapshots in memory, the number of timesteps are
reduced to 100, although it should be noted that considering longer simulation times might
require the usage of secondary storage rather than system memory. For a fair comparison,
the snapshots are extracted within a region of the same size as that bounded by the recon-
struction boundary. This region was chosen to be contiguous in memory in order to minimize
any potential bias introduced by the granularity present in UM page migration.
We measure performance in terms of grid cell updates per time and average the results over
three independent runs. The results are shown in Table 5, in which the writing snapshots to
system memory features a slowdown of approximately a factor 12.
No prefetching has been utilized in this example, hence writing snapshots induces page
faults on the host and subsequently on the device when moving to the next timestep.

5.2 Time-space tiling

In this section, we benchmark the effect of time-space tiling for the wave equation discretiza-
tion and FWI gradient computations. We consistently refer to the reference implementation
as the implementation without time-space tiling enabled.
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The first tiling example is concerned with the out-of-core performance of the wave equation
discretization. Successive simulations were performed on a grid monotonically increasing in
size and performance was measured relative to that achieved at the last input size to fit com-
pletely in device memory. We chose the metric grid cell updates per time in order to quantify
performance. All measurements are performed in a ’warm-cache’ scenario, meaning that the
stencil updates belonging to either one timestep or one temporal block was performed prior
to the benchmark measurement. In the in-core scenario, the interconnection transfers were
therefore provided at the benchmark start. The black curve in Fig. 12 demonstrates that the
performance of the reference implementation drops dramatically when the working set ex-
ceeds the physical memory.At the start of the out-of-core region, the achieved performance
is approximately 16% but decreases monotonically towards 2.5% when the input size is
more than twice the size of device memory. The baseline time-space tiling implementation
is able to sustain around 66% of the original performance in the out-of-core region. This is a
considerable improvement over the reference implementation, yet not entirely satisfactory.
With prefetching we are able to increase the out-of-core performance by approximately 25
percentage points, achieving at least 92% of the original performance.

The second time-space tiling example evaluates the out-of-core performance of the FWI
implementation by considering succesive gradient computations performed on a grid in-
creasing in size. This represents a benchmark of Algorithm 2 excluding the explicit call to
Algorithm 1. We utilize the same relative performance metric as the last example and all
measurements are performed in a ’warm-cache’ scenario. Fig. 13 demonstrates that the ref-
erence implementation takes a severe performance hit in the out-of-core region. The baseline
time-space tiling implementation is able to sustain circa 70% of the original performance,
whereas including prefetching raises the performance up to 90% of the in-core performance.
A slight decrease is noted for larger input sizes, dipping down to about 78%.

5.3 SEG/EAGE Overthrust example

We consider a realistic, large scale gradient computation example in order to demonstrate
the applicability and feasability of GPU based FWI with wavefield reconstruction and time-
space tiling. A modified subset of the SEG/EAGE Overthrust model is considered, with a
physical size of 8000m×14000m×4000m uniformly discretized on a 20.0m grid spacing.
Including padding zones for the attenuating boundary conditions results in a working set of
size 10.05 GiB1 for FWI gradient computations. The size of the working set is well beyond
the device capacity of the GTX 1070, but within the capacity of the GTX Titan X, which
does not support Unified Memory oversubscription. We consider a simulation time of 2500
timesteps, place 73 shots along the line x1 = 4000m and place 13650 receivers throughout
the ocean bottom of the model. The total size of the reconstruction sources for all timesteps
is in excess of 55 GiB, which we therefore buffer to secondary storage. We calculate the
gradient with respect to the shear wave velocity vs =

√
µ/ρ, which is a combination of the

stiffness gradient terms according to

∇vsχ(
−→
ψ ;d) = 2ρvs∇µχ(

−→
ψ ;d)− 4ρvs∇λχ(

−→
ψ ;d). (38)

1 Measured with the tool nvidia-smi.
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The true shear-wave velocity model along the shot line x1 = 4000 m is shown in Fig. 14.
Computing the misfit gradient in non-linear optimization methods like FWI requires an ini-
tial guess of the subsurface model, which is denoted as the initial model. In our synthetic
example, this was generated by applying a Gaussian smoothing kernel to the true model,
with the result shown in Fig. 15. For display purposes we allow the mass density to be
constant and the compressional-wave velocity model to be equal to its true model. The cal-
culated gradient is shown along the shot line in Fig. 16, which is essentially an image of the
data residuals.

The time required for calculating the gradient scales linearly with the number of shots, and
we benchmark the time required to compute the gradient contribution from one shot on
all available hardware configurations. For the out-of-core computations on the GTX 1070
we consider benchmarking without and with time-space tiling, also assessing the effect of
prefetching. The CPU implementation features explicit AVX256 vectorization of the x3
derivatives, but relies on compiler auto-vectorization for the two horizontal derivatives. For
this implementation, we utilize the Intel C++ compiler. Parallelization of the host code is
performed with the OpenMP compiler directive. The GPU implementation is not a direct
port of the CPU code, as the CPU code relies on memory buffers for temporary storing the
partial derivatives required for the stencil kernels. On the CPU, this facilitated readability
and the implementation of the AVX256 vectorization (without vector folding), as well as
the PML absorbing boundary conditions. However, the memory traffic to and from the dif-
ferentiation buffers raises the number of memory operations required for the stencil kernels,
in turn lowering the operational intensity and maximum achievable performance. The GPU
version instead utilizes registers, at the cost of a more involved code and decreased occu-
pancy due to an increased hardware resource usage.

At least three runs were performed for each hardware-algorithm combination and we present
the benchmarking results in Table 6. Here, it can be seen that the GPU implementation on the
most modern and expensive hardware is over an order of magnitude faster than the reference
CPU implementation. The desktop-grade GTX 1070 is faster than the CPU implementation
only when utilizing time-space tiling. Prefetching of Unified Memory also aids the perfor-
mance on this hardware. It should be noted that the call to Algorithm 1 in the gradient
computation algorithm does not require prefetching (nor time-space tiling) for this specific
example, as its internal working set fits completely in device memory. The GTX Titan X is
of similar age to the CPU configuration and achieves a highly significant speedup. Its main
limitation in our implementation is that it does not support oversubscription of UM.

5.4 Comparative analysis

For a comparative analysis, we benchmark our implementation against SeisCL[8], which
is freely distributed through [12]. Although being written in OpenCL[17] and with support
for domain decomposition through MPI, there are many comparable features to our work.
The elastodynamic forward modelling and FWI gradient computations of SeisCL solves the
same state and adjoint-state equation pair, utilizes the same FD discretization method and
similarly features PML attenuating boundary conditions. The gradient computation strat-
egy also supports wavefield reconstruction, yet with a different methodology. SeisCL uti-
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lizes a direct FD reconstruction method[43, 62] in which all nine fields of the state field are
recorded for L values parallel to the boundary, with L again being the FD half-length. This is
in contrast to the reconstruction method in our work, which requires only six fields recorded
at only the grid cell of the boundary itself. Ignoring minor differences at the corner points,
the reconstruction method employed in SeisCL requires a factor 9L

6 = 3
2L more memory

than the one implemented in our work.

Another important distinction lies in the way SeisCL performs (efficient) numerical dif-
ferentiation for the FD implementation. Rather than using a combination of shared memory
and registers, SeisCL performs efficient numerical differentiation purely with shared mem-
ory, see e.g. Fig. 4 in [8]. Furthermore, SeisCL relies on multiple GPUs through domain de-
composition in order to solve larger problems than can fit in the device memory of a single
GPU. In its present implementation, there is no support for transferring the reconstruction
sources across the interconnection, such that these quantities must fit in device memory for
all simulation timesteps.

We benchmark our implementation against SeisCL, although the differences in memory han-
dling greatly restrict the possible benchmarking options to small, in-core problems. Hence,
we chose a problem with 2003 interior grid points along with a width of 12 PML grid points
in all directions. The current version of SeisCL supports differentiator half-lengths (L) one
through six, although we employ a half-length equal to eight. Provided that any value of
L can be met with sufficient on-chip hardware resources, the roofline analyis suggests that
runtime is constant for a fixed grid size. We therefore benchmark SeisCL with its default
maximum L = 6 and with L = 8 against our implementation with L = 8. Expanding the
source code of SeisCL to accommodate longer half-lengths required four minor changes:
Expanding the macros used for numerical differentiation (header_fd.cl), expanding the
table of FD coefficients (holbercoeff.c), redefining the macro controlling maximum
value of L (F.h) and ensuring that the FD symbols were correctly copied when building
the OpenCL programs (F.h,clprogram.c). For this problem size, the maximum number
of timesteps which could be simulated for one GTX1070 in SeisCL were only around 80
and 50 for L = 6 and L = 8, respectively. For both implementations, we consider only the
walltime used for computing the FWI gradient, and consistently ignore the time required for
memory allocation, building of OpenCL programs (SeisCL only) and writing of output.

Table 7 represents the results of the gradient computation benchmark, in which relative
performance is simply measured as the quotient of runtimes, with SeisCL as the point of
reference. At lower half-lengths and for such small problems, SeisCL is significantly faster.
When increasing the half-length to L = 8, the runtimes are within a few percentages of one
another. We observe that the shared memory usage per thread in SeisCL increases dramati-
cally when increasing the differentiator half-length, leading to a lower achieved parallelism
and performance. This behaviour is generally consistent with Fig. 9 in [8]. Furthermore, due
to the very few number of timesteps allowed in this benchmark, we observe that the runtime
of our code is slightly elevated due to page faults at the startup of certain procedures. Indeed,
when considering the average runtime per 50th timestep in a simulation of 500 timesteps,
the in-core performance is slightly higher than that of SeisCL. This result is presented in the
final row of table 7.
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6 Discussion and possible improvements

6.1 General discussion

Combining the performance results in Table 6 with the pricing guidelines in Table 2, we
observe that both consumer and workstation grade GPUs provide a compute platform for
FWI economically competitive to workstation grade CPUs. The seismic community largely
does not utilize the enhanced features that workstation grade GPUs provide, such as high-
performance double precision arithmetic and error-correcting code memory, giving a par-
ticular economic advantage for the consumer grade counterparts. We have shown an imple-
mentation of FWI highly suitable to GPUs even with limited device memory, as it maintains
large parts of its performance in out-of-core scenarios.

When comparing our work to the state-of-the-art for elastodynamic FWI gradient computa-
tions on GPUs, in the form of SeisCL [8, 12], the following observations are in order:

– Direct stencil reconstruction methods consume significantly more memory than the re-
construction method employed in our work, e.g. an order of magnitude more. When
keeping the reconstruction sources on the GPU, this can severely restrict the achiev-
able simulation times. Due to the differences in memory consumption, it is not obvious
whether transferring the reconstruction sources in SeisCL between device and host can
be hidden as well as achieved in our work, particularly in scenarios where buffering to
secondary storage would be required.

– The key ingredients of our implementation permit one to compute FWI gradients on
significantly larger models and extended simulation times, yet retaining high efficiency,
than previously possible with a small number of GPUs per shot. This is attractive as the
number of shots in a seismic survey typically outnumber the amount of available GPUs.

– For equivalent FD half-lengths, our FWI implementation shows very comparable in-core
performance. For shorter half-lengths, SeisCL demonstrates improved (in-core) perfor-
mance. In our (compiled) code, it appears that register inefficiencies are slightly restrict-
ing maximum in-core performance, e.g. see the discussion further below. For SeisCL,
the per-thread usage of shared memory increases drastically when increasing the FD
half-length, leading to a reduced parallelism.

Unified Memory greatly reduced the implementational effort required for the out-of-core
GPU computations as it provides a consistent virtual address space across the physical host
and device memory pools. We have shown that prefetching instructions are decently effec-
tive in minimizing warp stalls due to page failures on the device. We believe that the slightly
reduced prefetching efficiency observable for the largest out-of-core scenarios in Fig. 13 can
be avoided by e.g. optimizing the CUDA stream placement of the prefetching instructions.
We attempted to improve the page eviction policy by specifying prefetches of evictable data
from device to host. This proved to be challenging as device-to-host prefetch operations will
stall the CPU if not deferred by the driver, leading to a reduction in overlapping opportuni-
ties [45]. Although not theoretically optimal, we therefore allowed the default LRU policy
to control page eviction.
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The current CUDA prefetching functionality has at least one caveat in the setting of time-
space tiling techniques. In order to hide the interconnection transfers, the spatial tile size
Wx3 in one-dimensional time-space tiling must be large enough as to provide sufficient
data reuse compared to the amount of data loaded and evicted across intra-tile timesteps.
This requirement might not be satisfiable if the horizontal dimensions x1 and x2 are large
and a long differentiator half-length is utilized. An effective solution is to extend the tiling
technique to one or both of the horizontal dimensions, which is algorithmically straight-
forward. However, the Unified Memory prefetching functionality does not allow a strided
access pattern, such as provided by the copying routines for explicitly managed memory. We
speculate that the lack of functionality arises because Unified Memory transfers move data
at the system page granularity, which might lead to a higher data movement than necessary.
The data movement granularity might also present unexpected page ownership conflicts in
heterogenous computing systems or when using multiple GPUs. We believe, however, that
the data movement redundancy of UM for two-dimensional tiling (x2 and x3) in large scale
FWI would be negligible, and particularly so for small system page sizes. Specifying many
smaller prefetching operations does not appear as a feasible solution because the achievable
interconnection throughput depends significantly on the message size [46].

We utilized the roofline model in a simplistic fashion to motivate our memory oriented
optimizations, in the sense that we considered all kernels to be independent and without
significant cache hits across them. The constituent kernels on GPUs are separated into sep-
arate kernel launches in order to enable inter-thread block synchronization and to reduce
register pressure. Furthermore, GPUs rely heavily on thread-level parallelism in order to
hide latencies to device memory and the cache sizes present are small compared to what is
found e.g. on CPUs. Improving cache hits on GPUs with tiling techniques therefore does
not appear as viable as on CPUs.. This holds in particular considering our need for longer
differentiator half-lengths, which increase the extent at which dependencies propagate in
the stencil scheme. These considerations support viewing the constituent kernels of our im-
plementation as separate (in the roofline analysis). The FWI implementation also requires
significantly more functionality than merely the wave equation discretization, and providing
accurate estimates of operational intensity for all involved routines appears daunting and
tedious.

6.2 Possible improvements

A possible improvement would be to consider a multi-GPU implementation of our work.
However, as FWI is commonly performed with simulations of many, independent shots,
it is attractive to consider task-based parallelism by assigning one GPU to each shot. For
this reason, we have not yet considered a multi-GPU implementation. If desired however,
time-space tiling facilitates multi-GPU simulations in an arguably easier formulation than
domain decomposition. The latter requires both reads and writes at each shared boundary,
but parallelogram tiling performs all reads on one tile boundary and all writes on the other.
Furthermore, one can allow greater parallelism in tile execution by changing the shape of
the iteration space from parallelograms to diamonds [35, 36, 11]. Diamond tiling has a
structured iteration space similar to parallelogram tiling and changing the existing imple-
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mentation appears straight-forward.

In order to achieve smaller tile sizes and, therefore, better out-of-core performance, one
could consider to extend the tiling technique to one or both of the horizontal spatial dimen-
sions. As remarked above, this would be best suited to an implementation relying purely
on explicitly managed memory, rather than UM. Alternatively, a worthwhile improvement,
while using UM, could be to override the default page eviction policy in order to improve
the interconnection transfers.

We also note that the achieved occupancy of the FD stencil kernels of our FWI implementa-
tion is suboptimal due to high register usage, which was present also before the introduction
of register pipelining. A quick analysis of the PTX assembly code generated by the compiler
reveals that it performs extensive loop unrolling to split the integer calculations of memory
addresses and the FMA operations belonging to the partial derivatives. We believe that this
behavior is in place on the Pascal and Maxwell architectures due to a lack of dedicated
functional units for integer operations. The elevated register usage is also partly due to our
implementation of the PML attenuating boundary condition. Limiting the register usage by
invocation of compiler options lead to an increased occupancy but decreased performance.
This slowdown can be argued from an increased need of flushing the instruction pipeline
of the multi-purpose functional units and increased access times due to register spilling.
It could be interesting to test our implementation with stencil-aware compilers allowing a
greater register reusage, or on GPUs with dedicated functional units for integer arithmetic.
Higher occupancy enables better utilization of the device DRAM, which would increase the
achieved performance further.

6.3 Applications in other fields

The proposed approach for gradient computations naturally lends itself to closely related al-
gorithms such as the imaging technique know as Reverse Time Migration (RTM)[7]. RTM
builds an image of the scatterers of a medium by computing the cross-correlation between
a wavefield modelled from the sources with a backwards-propagating scattered wavefield.
The cross-correlation involved in RTM imaging is therefore computationally the same as
the adjoint-state gradient computation in FWI. More generally, our approach can be ap-
plied to many types of inversion and imaging procedures in lossless media, i.e. for wave-
forms such as acoustic, quantum-mechanic, elastodynamic and electromagnetic waves in
non-conductive media. As the two main optimizations are targeted at the memory hierar-
chy, we envision that the proposed approach can be succesfully applied to other types of
accelerators.

7 Conclusion

This paper has presented an implementation of gradient-based elastodynamic FWI on GPUs
which utilizes wavefield reconstruction methods and time-space tiling to circumvent the
low bandwidth of the device to host interconnection. A hybrid approach utilizing Unified
Memory for the wavefields, medium parameters and the absorbing boundary conditions and
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explicitly managed memory for all auxiliary quantities was implemented. We found this
to strike a satisfying balance in simplifying the time-space tiling implementation while re-
taining full control of the memory transfers of sources, receivers and quantities related to
wavefield reconstruction. We have provided a discussion of key optimizations for the re-
construction method within the staggered-grid FD discretization of the elastodynamic wave
equation. Our benchmarks demonstrate that the optimized implementation of the reconstruc-
tion method has negligible impact on the wave equation simulation performance, in terms of
grid cell updates per second. Furthermore, time-space tiling allows one to retain most of the
performance in out-of-core scenarios, especially when overriding the UM page-migration
engine with prefetching hints.
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Tables

Peak arithmetic performance (π) DRAM Memory bandwidth (β) Interconnection bandwidth
8064 FLOP/s 448 GB/s 64 GB/s

Table 1: Probable characteristics of a modern graphics card, utilized for our algorithmic
analysis.

Computational unit Memory capacity Memory bandwidth Release MSRP
Nvidia GeForce GTX 1070 8 GiB 256 GB/s 2016 $379
Nvidia GeForce GTX TITAN X 12 GiB 336.5 GB/s 2015 $999
Nvidia Tesla P100 16 GiB 732 GB/s 2016 $5699 [50]
2x Intel Xeon E5-2660V3 128 GiB 2x68 GB/s 2014 2x$1445

Table 2: The compute units used for benchmarking. The Intel CPU is a dual-socket system
where the denoted memory capacity is the installed amount of memory.

Compiler Version Compiler flags
nvcc 9.1/9.1.85/10.2 --x=cu -arch=sm_52 -lineinfo -Xptxas --opt-level=3 -Xptxas \

--warn-on-spills -Xptxas -allow-expensive-optimizations=true \
-Xcompiler -fopenmp -std=c++11

icpc 18.0.1 -std=c++11 -O3 -march=native -diag-disable 161 \
-diag-disable 3180 -qopenmp

Table 3: The compilers used for benchmarking. The host compilers refer to the CPU bench-
marks.
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Experiment Performance Relative Performance
Forward simulation 4.0681× 108 GCU/s 100%
Forward simulation with recording 3.9369× 108 GCU/s 96.77%
Reverse simulation with injection 3.7811× 108 GCU/s 92.94%

Table 4: Performance of the wavefield reconstruction implementation relative to a plain for-
ward simulation, with GCU abbreviating Grid Cell Updates. The results have been averaged
over three independent runs.

Experiment Performance Relative Performance
Forward simulation 3.7872× 108 GCU/s 100%
Forward simulation with snapshots to system memory 3.3384× 107 GCU/s 8.77%

Table 5: Performance of extracting snapshots relative to a plain forward simulation, with
GCU abbreviating Grid Cell Updates. The results have been averaged over three independent
runs.

Computational unit Runtime (s) Speedup
Nvidia GeForce GTX 1070 a) 1.1487× 104 0.91
Nvidia GeForce GTX 1070 b) 2.4807× 103 4.24
Nvidia GeForce GTX 1070 c) 2.1027× 103 5.00
Nvidia GeForce GTX TITAN X 1.5568× 103 6.75
Nvidia Tesla P100 9.4167× 102 11.16
2x Intel Xeon E5-2660V3 1.0508× 104 1.00

Table 6: The SEG/EAGE Overthrust gradient computation example. a) Reference iteration
space, b) Time-space tiling, c) Time-space tiling with prefetching.

Implementation Number of timesteps Runtime (s) Relative performance
SeisCL (L = 6) 80 6.185 100.00%
This work (L = 8) 80 10.163 60.86%

SeisCL (L = 8) 50 6.214 100.00%
This work (L = 8) 50 6.647 93.49%
This work* (L = 8) 50 5.863 105.98%

Table 7: Relative comparison of in-core performance for elastodynamic gradient compu-
tations. *: Average runtime per 50 timesteps for a simulation involving 500 timesteps in
total.
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t′ = T t′ = T −∆t t′ = ∆t t′ = 0

t = 0 t = ∆t t = T −∆t t = TPropagation direction
−→
ψ (x, t)

Propagation direction←−ϕ (x, t′)

∇mχ(
−→
ψ ;d)+=computeGradient(←−ϕ (x, t′ = T −∆t),−→ψ (x, t = ∆t))

Fig. 2: Graphically visualizing the propagation directions of the wavefields contributing to
the FWI gradient. The state and adjoint wavefields must be simultaneously available at all
timesteps in order to compute the gradient, which is an algorithm depicted by the pseu-
docode computeGradient().
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Fig. 3: The roofline performance model for the hypothetical system. The ridge point sepa-
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Fig. 4: The roofline model of the hypothetical system with the stencil kernels of particle
velocity and gradient computations plotted for a range of differentiator half-lengths.
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Fig. 6: Wavefield reconstruction within a homogenous region with an elastic free surface at
the top. The reconstruction boundary ∂V is denoted by the dashed lines. The colorscale has
been clipped in order to emphasize all events and any errors.
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Fig. 8: Source injection (a) and receiver interpolation (b) iteration space structure in the
parallelogram tiled version of Algorithm 1. The tiles are shaded according to the stencil
iteration space in Fig. 7 and the node colouring denotes which tile the injection or interpo-
lation operation belongs to. The black nodes belong to a tile which is not observed in Fig. 7.
The half-length for differentiation and interpolation is equal to L = 1.
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Fig. 9: Two-pass interpolation of doubly staggered wavefield quantities onto the rectangular
boundary region ∂Vk, denoted by the solid black lines. In the first pass, the wavefield is
interpolated in direction xj on ∂Vk and on a halo zone, marked in striped blue between the
solid and the dash-dotted lines. The second pass performs interpolation in direction xi only
on ∂Vk, with some data dependencies located in the halo zone. The respective interpolation
stencils are shown for a half-length equal to 2 with the output point denoted as as solid red
node. The stencil dependencies for the output point in each interpolation procedure includes
itself and three adjacent nodes.
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Fig. 10: Intra-warp reduction for efficient interpolation at a boundary with normal vector n̂
aligned with the x1 axis. In the first step, the valid lanes load the required parts of f for
computing the backwards interpolation with I−1 at grid point i. In the second step, an intra-
warp reduction operation is performed to compute the result at lane 0. The contributing lanes
at each substep of the reduction are shaded white, whereas the inactive lanes are shaded in a
gray colour. For this display, an interpolation half-length equal to 4 has been used.
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Fig. 11: Flowchart of the implemented FWI gradient computation with time-space tiling and
wavefield reconstruction. This constitutes a graphical display of the main computations of
Algorithm 2 with time-space tiling, also including information of where explicit transfers
and, optionally, UM prefetching is performed. Wt refers to the temporal tile size. Refer to
the main text for further explanation.
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Fig. 14: True shear wave distribution along the slice x1 = 4000m.
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Fig. 16: The calculated gradient for all 73 shots along the slice x1 = 4000m.

Algorithms

Algorithm 1: Velocity-stress forward modelling with source injection, recording of re-
ceiver responses and recording of reconstruction-type sources at the boundaries.
Input: Number of timesteps nt and the lengths of the three spatial axes n1,n2,n3.

1 for(t = 0; t < nt; t++){
2 injectSource(t); //Inject physical source.
3 saveReceivers(t); //Record receivers at physical locations.
4 recordReconstructionSource(t); //Record reconstruction sources on the boundary.
5

6 //FD stencil kernels for forward propagation.
7 {
8 for((x1,x2,x3) in (n1,n2,n3))
9 updateVelocity(x1,x2,x3); //Update particle velocities from stress.

10

11 for((x1,x2,x3) in (n1,n2,n3))
12 updateStress(x1,x2,x3); //Update stress from particle velocities.
13 }
14 }
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Algorithm 2: Velocity-stress gradient computations with wavefield reconstruction meth-
ods.
Input: Number of timesteps nt and the lengths of the three spatial axes n1,n2,n3.

1 call Algorithm 1; //Generate data, save reconstruction sources.
2 computeMisfit(); //Compute misfit value for optimization procedure.
3 computeAdjointSources(); //Create adjoint sources at receiver locations.
4

5 for(t = nt-1; t >= 0; t--){
6

7 //Propagate adjoint wavefield backwards in time.
8 {
9 for((x1,x2,x3) in (n1,n2,n3))

10 updateAdjointStress(x1,x2,x3);
11

12 for((x1,x2,x3) in (n1,n2,n3))
13 updateAdjointVelocity(x1,x2,x3);
14

15 injectAdjointSource(t);
16 }
17

18 //Compute contributions to gradient.
19 computeGradient();
20

21 //Propagate state wavefield backwards in time.
22 {
23 for((x1,x2,x3) in (n1,n2,n3))
24 updateStress(x1,x2,x3);
25

26 for((x1,x2,x3) in (n1,n2,n3))
27 updateVelocity(x1,x2,x3);
28

29 injectReconstructionSource(t);
30 }
31 }
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Algorithm 3: Velocity-stress stencil scheme with time-space tiling over the x3 and t

dimensions.
Input: Number of timesteps nt, the lengths of the three spatial axes n1,n2,n3, the wavefront angle

ax3, the tile-lengths wt and wx3 and the number of tiles nbt and nbx3.
1 for(tt = 0; tt < nbt; tt++){
2 for(xx3 = 0; xx3 < nbx3; xx3++){
3 ox3 = 0; //Initialize wavefront offset.
4 for( t = tt*wt; t < min((tt+1)*wt,nt); t++){
5 //Update particle velocity from stress.
6 for( x3 = xx3*wx3-ox3; x3 < (xx3+1)*wx3-ox3; x3++)
7 for((x1,x2) in (n1,n2))
8 updateVelocity(x1,x2,x3);
9

10 //Update stress from particle velocity, shifted by one wavefront angle.
11 for(x3 = xx3*wx3-ox3-ax3; x3 < (xx3+1)*wx3-ox3-ax3; x3++)
12 for((x1,x2) in (n1,n2))
13 updateStress(x1,x2,x3);
14

15 ox3 += 2*ax3; //Add to wavefront offset due to dependencies in the next timestep.
16 }
17 }
18 }
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