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Abstract: In association football, a network flow motif
describes how distinct players from a team are involved
in a passing sequence. The flow motif encodes whether
the same players appear several times in a passing
sequence, and in which order the players make passes.
This information has previously been used to classify
the passing style of different teams. In this work, flow
motifs are analyzed in terms of their effectiveness in
terms of generating shots. Data from four seasons of the
Norwegian top division are analyzed, using flow motifs
representing subsequences of three passes. The analysis
is performed with a generalized additive model (GAM),
with a range of explanatory variables included. Find-
ings include that motifs with fewer distinct players are
less effective, and that motifs are more likely to lead to
shots if the passes in the motif utilize a bigger area of
the pitch.

Keywords: generalized additive model; passing; regres-
sion; soccer.

1 Introduction

Decisions in sport have traditionally been made qualita-
tively by humans, based on gut feelings or adherence to
team culture and tradition. Sport analytics offers newways
of assessing the skill of players and teams. By making use
of data to assist in decision-making, players’ and teams’
strengths and weaknesses can be evaluated, and accord-
ingly, changes can be made to training sessions with the
aim of improving performance.

Most major professional sports teams use staff mem-
bers dedicated to apply statistical methods to help players
and managers making better decisions, both before and
during matches. The complexity of the data used is
increasing, and the latest technologies, including big data,
machine learning, and artificial intelligence, have opened
up for more sophisticated analyses (STATS LLC 2017). For
association football, several aspects are of researchers’
interest, including the choice of playing style, prediction of
goal-scoring chances, and determination of players’ mar-
ket value. By analyzing the game better, teams can obtain a
competitive advantage, and research that provide a better
understanding of the dynamics of the game is therefore of
great importance.

This paper advances the research frontier with respect
to analyzing passing behavior in football. When success-
fully passing the ball between teammates, ball possession
is kept with the purpose of creating goal-scoring opportu-
nities and avoiding goals against. When a sequence of
passes occurs, the players on a teambecome connected in a
passing network, where nodes represent players and arcs
represent successful passes between the players. The
resulting mathematical objects can be analyzed to obtain
novel insights. This paper focuses on the use of network
flow motifs to derive such insights.

Gyarmati et al. (2014) introduced flow motifs, being
inspired by the concept of networkmotifs proposed byMilo
et al. (2002). Considering a passing sequence, a flow motif
is a subsequence of the passes where labels represent
distinct players without identity. Figure 1 shows all
possible combinations of flowmotifs with k = 4 nodes.With
four nodes, there are five different types of motifs: ABAB,
ABCA, ABAC, ABCB, and ABCD. Duplicate nodes within a
sequence imply that a single player is involved several
times in the motif.

Applied to association football, network flow motifs
provide a method for discovering patterns in teams’
passing behavior. Gyarmati et al. (2014) analyzed flow
motifs consisting of three consecutive passes to study
teams’ style of play. Using publicly available data from
the top European leagues, teams’ motif characteristics
were investigated by comparing the prevalence of the flow
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motifs in the passing networks to the expected occurrence
in randomly generated networks with identical proper-
ties. Furthermore, cluster analyses were performed to
examine similarities and differences in teams’ passing
patterns. Peña and Navarro (2015) investigated whether
flow motifs could be extended to the player level. By
calculating the average number of a player’s occurrences
in each possible flow motif, the player’s style of play was
identified. Cluster analyses and similarity measures were
used to identify which players have the most similar
playing styles.

Bekkers and Dabadghao (2019) used network motifs to
study teams’ playing styles in both regular play and
attacking phases of the game by distinguishing between
possession flow motifs and flow motifs leading to goal-
scoring opportunities. Machine learning techniques were
used to identify unique players, while radar graphs made
comparisons between players’ and teams’ performance in
the motifs available. The authors concluded that the
Euclidean distance between a specific player and all other
players’motif intensities can be used for scouting purposes
to find players with similar characteristics.

Perdomo Meza (2017) considered the use of motifs to
develop passing network profiles of teams, allowing teams
to be clustered and compared. The author argued for the
importance of repeatability ofmetrics developed, and found
that the optimal size of motifs is four that is, consisting of
four players and three passes. Perdomo Meza (2017) also
extended previous work on flow motifs by incorporating
spatial information when categorizing motifs. Malqui et al.
(2019) focused on the visualization of motifs. In addition to
considering the flow motifs themselves, they also took into
account ball trajectories, as represented by the six end-
points of the three passes involved. Statistics about the use
ofmotifs and trajectory clusters could then be visualized for
teams, players, or matches.

Most work on flow motifs has focused on classifying
playing styles. The existing literature has to a very limited
degree discussed the efficiency of different motifs in terms
of generating shots or goals. The contribution of this paper
is to develop a generalized additive model (GAM) to
investigate the influence of different explanatory variables

on the effectiveness of motifs in terms of generating shots,
using data from the Norwegian top division, Eliteserien.

To achieve this, previous work analyzing passes in the
Norwegian top division is extended. Håland et al. (2020)
evaluated the passing abilities of football players in Elit-
eserien through the development of three generalized ad-
ditive mixed models (GAMMs). The first model evaluated
pass difficulty, similarly to a model by Szczepański and
McHale (2016). The secondmodel dealt with the probability
that a pass can be followed up, that is, whether the player
receiving the pass is able to perform a successful follow-up
action. This is referred to as the pass risk. The third model
investigated pass potential, meaning the probability that
the pass is part of a sequence of play that leads to a shot
being taken.

Wiig et al. (2019) applied the results from the passing
ability models of Håland et al. (2020) in a network anal-
ysis, similarly to the approach by McHale and Relton
(2018), where nodes correspond to players, and arcs are
related to the quality of passes made between the players.
Three separate networks were considered, one for each of
the aspects considered for passing ability: difficulty, risk,
and potential. Then, to quantify each player’s influence
and importance in a team, centrality measures (Estrada
2011) were calculated, including closeness centrality,
betweenness centrality, PageRank, and clustering
coefficients.

The relationship between the work of (Håland et al.
2020, Wiig et al. 2019), and this paper can thus be sum-
marized as follows. Håland et al. (2020) developed models
to assess individual passes along three dimensions: the
difficulty of the pass (how likely it is to reach a teammate),
the risk of the pass (how likely it is that the recipient does
not lose control of the ball), and the potential of the pass
(how likely it is to lead to a shot). Being able to categorize
these aspects of passes, it is possible to find players that are
able to perform better than expected in their passing game.
Wiig et al. (2019) used the same dataset and the outputs of
the models of (Håland et al. 2020) to create passing net-
works for each team, where players are nodes and arcs are
weighted based on the quality and quantity of the passes
made between the players. Centrality measures for nodes

Figure 1: Motifs of size four.
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in graphs can then be used to categorize how important
each player is in the passing game of a team.

In the following, this work performs additional
analysis on the level of short passing sequences. Based
on inputs from past work on the evaluation of passes and
the importance of players in the passing game of a team,
flow motifs are analyzed. The goal is to understand what
determines the success of a passing motif, whether
different teams rely on passing patterns that result in
different distributions of passing motifs, and whether the
best teams are more likely to use the more effective motif
types.

2 Experimental setup

The analysis presented in Section 2 is performed using the
mgcv package in RStudio (Wood 2011), and the data used
are from all matches in four seasons of the Norwegian top
division, from 2014 to 2017. The data are in the form of
events recorded in the Opta24Feed (Opta Sports 2018). A
single file for each of 960 matches describes on-ball in-
volvements as well as some off-ball events such as book-
ings and substitutions. The events are recorded manually,
and include information about pitch locations, time
stamps, and the players involved. Events identified by the
Opta24Feed as passes are used in this study, including
passes from open play, headed passes, long passes, and
crosses.

The motifs considered consist of three passes, which
must be sequential and from the same passing sequence.
Moreover, the recipient of a pass must be the passer of the
next pass, the players have to be from the same team, and
each pass must be performed within 5 s after the previous
event. The data cover 749,859 passes by 831 different
players, and parsing these as passing motifs results in a
total of 203,313 motifs of three passes each. Although mo-
tifs of different lengths could be studied, three passes is the
length used in all previous studies on motifs in association
football, and was found to be the most informative length
by Perdomo Meza (2017).

2.1 Generalized additive models

Binary logistic regression is a statistical technique used to
model the relationship between dependent and indepen-
dent variables when the dependent variable is binary
(Hosmer Jr et al. 2013). If i denotes the ith out of N obser-
vations, the dependent variable, yi, is defined as:

yi � { 1, if observation i is  successful (i � 1,  …,  N)
0, if observation i is  unsuccessful (i � 1,  …,  N).

In general, the independent variables in a logistic
regression model are related to the dependent variable via
the logit link function given by:

logit(Pi) � ln( Pi

1 − Pi
) � ηi,

where Pi is the conditional mean and ηi � Xiβ is a function
of the independent variables Xi and their corresponding
coefficient estimates β. The conditional distribution is a
Bernoulli distribution where an observation’s probability
of success is represented by the inverse logit function given
by:

Pi � Pr(yi � 1
∣∣∣∣ηi) � eηi

1 + eηi
� 1
1 + e−ηi

.

Logistic regression is a special case of a generalized
linear model (GLM). A GAM arises when allowing additive
predictors, also known as smooth functions (Lin and Zhang
1999), in addition to the linear predictors of a GLM (Hastie
and Tibshirani 1986). In the case of a GAM, ηi can bewritten
as:

ηi � Xiβ + f 1(x1i) +… + f j(xji), (1)

where Xi is a vector of fixed effects, β is a vector of fixed-
effect coefficients, and f 1,…, f j are smooth functions of
variables x1i,…, xji (Wood 2006).

2.2 Model description

Section 2.2 describes a GAM used to evaluate passing mo-
tifs occurring in Eliteserien. The observations considered
are subsequences of three uninterrupted passes, that is,

motifs of length four. The dependent variable,YM , is binary
and takes the value one if themotif leads to a shot, and zero
otherwise. The shot does not necessarily have to come
immediately after the observedpassing sequence, butmust
be made within 15 s of the last pass of the sequence. Own
goals are considered as shots by the team being awarded
the goal.

Most of the explanatory variables used in the GAM are
based on the results frompassing abilitymodels in (Håland
et al. 2020) and network metrics to analyze key players in
(Wiig et al. 2019). Explanations of thesemodels andmetrics
are therefore given first. Håland et al. (2020) developed
three GAMMs, which extends a GAM by also including
random effects in the predictor. The purpose of these
GAMMs was to evaluate passes, and to provide a score
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between zero and one for each executed pass, indicating
whether the pass is likely to 1) successfully reach a player
on the same team, 2) reach a player on the same team and
then be followed up by any successful event, and 3) allow
the team performing the pass to make a shot within 15 s of
the last pass in the current passing sequence. The depen-

dent variables of these three models are referred to as YP
1 ,

YP
2 , andY

P
3 , respectively,with values closer to 1 indicating a

higher probability of success.
A wide range of explanatory variables were used in

(Håland et al. 2020) to model the success of a pass. For
completeness, these are listed in Table 1. For the pass
number category, s = 1 is used for the first pass in a
sequence, s = 2 is used for the second pass, s = 3 is used for
the third, fourth, or fifth pass of the sequence, and s = 4 is
used for all subsequent passes. The variables Z1, k, Z2, t, and
Z3, o are normally distributed random effects.

The output of the GAMMs in (Håland et al. 2020) allows
any pass to be evaluatedwith respect to the probability that

it reaches a teammate (YP
1 ), the probability that the team

performs at least one additional successful action after the

pass (YP
2 ), and the probability that the team is able to make

a shot shortly following the pass (YP
3 ). To generate

explanatory variables for the motif model, the predicted
probabilities of success for the three passes involved in the
motif are added up. This is done separately for each of the
three success criteria, leading to an overall evaluation of
the difficulty, risk, and potential associated with the
passing motif in question. Table 2 lists the three resulting

explanatory variables under the name SumYP
i , for i = 1, 2, 3.

These variables are continuous, and take on values from
the interval [0, 3].

FollowingWiig et al. (2019), passing networks are built
using outputs from the three GAMMs of (Håland et al.
2020), where connections are formed between players if
they have made passes between each other, and where the
weights of these connections depend on the associated

values of YP
1 , Y

P
2 , and YP

3 for the passes made. These net-
works are occasionally referred to as network 1, 2, and 3, to
indicate that they are calculated based on weights derived

Table : Summary of explanatory variables used in models by Håland et al. (). Fixed-effect variables are denoted by X, random-effects
variables by Z, and smooth terms by f(⋅). The types of variables offixed and randomeffects are continuous (C), categorical/factor (F), binary (B),
and interaction (I).

Variable Description Type

X; s Pass number category in the current sequence of passes (s ¼ ;  ;  ;  ) F
X Tackle in the previous event B
X Aerial duel in the previous event B
X Interception in the previous event B
X; i The player making the pass also took part in a tackle (i ¼ ),aerial duel (i ¼ ), or interception (i ¼ ) B
X Ball recovery due to a loose ball in the previous event B
X Previous pass was a header B
X Current pass is a header B
X Player performing the pass plays for the home team B
X Previous event was a free kick B
X Previous event was a throw-in B
X Corner taken within the past five events B
X; i The team attempting a pass just executed a corner (i ¼ ), free kick (i ¼ ), or throw-in (i ¼ ) B
X The match is played on artificial grass B
X;X Pass sequence number  interacting with free kick in previous event I
X;X Pass sequence number  interacting with throw-in in previous event I
Z; k Player k passing the ball (k ¼ ;  …;  ) F
Z; t Team t the player is representing (t ¼ ;  …;  ) F
Z; o Opponent team o to the player passing the ball (o ¼ ;  …;  ) F
f ðx;  y;  x;  yÞ -D smooth for the start (x, y) and end coordinates (x, y) of a pass C
f ðx;  yÞ -D smooth representing the average position of the player given by coordinates (x, y) C
f ðxÞ -D smooth representing game time, x, in minutes C
f ðxÞ -D smooth for time played by the player passing the ball, x C
f ðxÞ -D smooth representing the goal difference, x C
f ðx;  xÞ -D smooth representing the interaction between game time and goal difference I
f ðxÞ -D smooth for the time passed since last occurred event, x C
f ðxÞ -D smooth for the Elo rating, x, of the opponent team C
f ðxÞX -D smooth functions representing month of play, x, interacting with type of grass I
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from YP
1 (pass difficulty), YP

2 (pass risk), and YP
3 (pass po-

tential). Several centrality measures from network theory
were then computed for each of the three networks. The
centrality measures are calculated per player, relative to
their team, and indicate how influential the player is in
terms of making or receiving passes. That is, each player is
scored from 0 (for the least central player on the team) to 1
(for the most central player on the team), with separate
scores for each centrality measure considered.

Table 2 shows eight explanatory variables derived
from centrality measures. Each of these involves adding up
the centrality scores of the players involved in a motif,
based on one specific centralitymeasure and network type.
The closeness centrality of a network node is a function of
the length of the paths from the node to all other nodes in
the network (Freeman 1978), and can be interpreted as a
measure of the easiness of reaching a particular player
within a team. That is, players with higher closeness scores
tend to reach more players in fewer passes (Clemente et al.
2016). For closeness, only the difficulty of passes is
consideredwhen analyzingmotifs, and the values given by

network 1 and YP
1 are used to calculate a single explanatory

variable by summing the closeness scores for the players
involved in the motif.

The betweenness centrality of a node in a network is
based on the number of shortest paths between two other
nodes passing through the node (Freeman 1977). A node is
considered to be central if it appears on the shortest path
between many pairs of nodes. The betweenness score of a
player gives an indication of how the ball-flow between
teammates depends on that player, and players with high
scores play are important in connecting other teammates in
the passing game (Gonçalves et al. 2017). As for closeness, a
single explanatory variable is calculated based on the
betweenness centrality of the four players involved in a
motif.

A third centrality measure is the Barrat clustering co-
efficient (Barrat et al. 2007). It indicates the tendency of a
node to cluster togetherwith other nodes. A high clustering
coefficient of node i indicates that if nodes i and j are
connected, and nodes j and h are connected, then node i is
likely to be connected directly to h as well (Barrat et al.
2007). A single explanatory variable is derived from the
clustering coefficients of the players involved in a motif,
with higher values indicating that the players involved in
the motif have a tendency to form clusters with other
players.

Five of the explanatory variables are based on cen-
trality measures derived using the PageRank algorithm
(Brin and Page 1998). For PageRank, separate networks are
built for evaluating players making passes and for players
receiving passes (Wiig et al. 2019). PageRank centrality
becomes a recursive notion of popularity or importance,
where a player can be important either when receiving
passes from other important players, or when passing to
ball to other important players. To calculate explanatory
variables based on PageRank centrality, either the three
playersmaking passes or the three players receiving passes
in the motif are considered. Thus, these variables take on
values in the interval [0, 3], as opposed to the variables
based on betweenness, closeness, and clustering, which
take on values in [0, 4]. For recipients of passes, all three
networks are used to derive separate explanatory vari-
ables, whereas for players making passes, only the net-
works for pass difficulty and pass potential are used.

The explanatory variables derived from (Håland et al.
2020; Wiig et al. 2019) are all continuous variables and are
treated as smooth terms in the GAM. The aims of including

the smooth terms for SumYP
1 , SumYP

2 , and SumYP
3 are to test

how the effectiveness of motifs is influenced by the diffi-
culty of the passes made, the risk taken by the players
involved, and the potential of the passes made. The

Table : Explanatory variables for the motif analysis. Some variables are replicated for the three passing ability models and their respective
networks. These variables have an indicator of i = (, , ). Players involved more than once in a motif are added accordingly to the sums
considered, and the player scores are considered for the season the motif happens. Types of variables are continuous (C) and factor/
categorical (F).

Variable Description Type

SumYP
i The sum of the predicted probabilities of success for the three passes in the motif C

Closeness The sum of the closeness scores for all four players involved in the motif C
Betweenness The sum of the betweenness scores for all four players involved in the motif C
Clustering The sum of the Barrat clustering coefficients of all four players C
PageRankRecipienti The sum of the three recipients’ PageRank Recipient scores C
PageRankPasseri The sum of the three passers’ PageRank passer scores, i ≠  C
Motif Type Indication of the motif type F
Zones The number of unique zones in which the motif takes place C
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network metrics obtained for players in (Wiig et al. 2019)
are used to test whether the involvement of key players in a
motif has an effect on its outcome.

Two additional explanatory variables are included.
First, a categorical variable is added to identify the motif
type. With a motif size of four, five different motif types are
possible as illustrated in Figure 1. The reference is chosen
to be the ABCD motif, i.e., with four unique players being
involved. Second, to test whether the area covered by the
players involved in a motif has an impact on its effective-
ness, a variable counting the number of unique zones on
the pitch in which the players have been active during the
motif is added. The pitch is divided into 21 unique zones, as
shown in Figure 2, and a total of six zones may be involved
in a flow motif: the start and end zone of each of the three
passes. Both the start and end zones are included as
players might receive the pass in one zone, perform a ball
touch or ball carry, and then pass the ball further from
another zone within the 5-s time frame. Although the
number of zones for a motif is discrete, the variable for
zones is interpreted as a continuous variable, to allow its
use in a GAM smooth function. Fixed-effect variables are
selected through the use of a Wald test (Hosmer Jr et al.
2013), while the smooth terms are not tested as fixed
effects.

Figure 2 also illustrates a sequence of 10 passes made
by Rosenborg against Viking in a match played in August
2016. The sequence started with a free kick and ended with
a shot on goal, after involving seven unique players. A total
of eight flowmotifs can be recorded from the sequence, the
first of which involves four unique players in the pattern
ABCD and four distinct zones. Passes labeled 3 and 5 were

made by the same player, so the flowmotif startingwith the
second pass is encoded as ABCB, spanning three distinct
zones. The details of eachmotif from this passing sequence
are given in Table 3.

3 Results and discussion

Before presenting the main results, the model is first vali-
dated using the area under the curve (AUC) for the receiver
operating characteristic (ROC) curve and the precision-
recall (PR) curve (Hosmer Jr et al. 2013). From Figure 3, the
AUC for the ROC curve indicates an acceptablefit according
to the guidelines suggested in (Hosmer Jr et al. 2013). The

Figure 2: The pitch coordinate system
divided into 21 zones. Direction of play is
left to right, always relative to the team in
possession of the ball. Also shown is a
sequence of 10 passes from a match in
Eliteserien.

Table : Details of players and motifs in the passing sequence
illustrated in Figure .

No. Player Action Motif

       

 Svensson Free kick A
 Reginiussen Pass B A
 Eyjólfsson Pass C B A
 Gersbach Pass D C B A
 Eyjólfsson Pass B A B A
 Reginiussen Pass C C B A
 Svensson Pass D C B A
 Jensen Pass D C B A
 Gytkjær Pass D C B
 Helland Pass D C
— Gytkjær Shot B

No. of zones:        

316 E.M. Håland et al.: Evaluating the effectiveness of network flow motifs



PR curve gives a low AUC due to a highly skewed data
distribution. However, the points at which the PR curve has
to start and end are not giving much room for a high AUC,
which makes the value obtained seem appropriate. Model
calibration refers to the property that the number of pre-
dicted positives and the number of actual positives should
be approximately equal for all ranges of probabilities. A
Hosmer–-Lemeshow test (Hosmer Jr et al. 2013) has been
performed to test the model calibration, considering
different groups of observations, under the null hypothesis
that the model provides a good fit. Following Bartley

(2014), 100 random samples are drawn, and the test in-
dicates a good fit of the model if less than 10 of the random
samples result in a rejection of the null hypothesis at a
significance level of 5%. This was the case bothwhen using
sample sizes of 1000 and 5000 observations, thus indi-
cating an acceptable calibration.

3.1 Regression results

The resulting GAM is built on 203,208 observations, which
is a slight reduction from the initially observed number of
motifs of size four in the data. The reduction is due to some
passes not having defined probabilities of success in
accordance with the GAMMs explored in (Håland et al.
2020). The regression results are shown in Table 4. A sig-
nificance level of 10% is used, and negative values of the
fixed-effect coefficients imply a reduced probability of
success, that is, the motif leading to a shot.

3.1.1 Fixed terms

In the final model, two of the motif types have been
removed after applying the Wald test. Hence, three motif
types form the reference for the variable. The initially
chosen reference (ABCD) is characterized by having four
distinct players involved in the motif. This pattern is more
likely to cover a larger area of the pitch. This is

Table : The regression results from the motif analysis. Signifi-
cance level is indicated by ∗.

Fixed effects

Variable Coefficient(SE)

MotifTypeABAB �:∗(.)
MotifTypeABCB �:∗∗∗(.)
Intercept �:∗∗∗(.)

Smooth terms

Variable Sign.

SumYP


∗∗∗

SumYP


∗∗∗

SumYP


∗∗∗

Closeness ∗

Betweenness ∗

Clustering ∗∗∗

PageRankRecipient ∗∗∗

PageRankRecipient ∗∗∗

PageRankRecipient ∗∗∗

PageRankPasser ∗∗∗

PageRankPasser ∗∗∗

Zones ∗∗∗

Note:∗p < .;∗∗p < .; ∗∗∗p < .

Table: Theaveragenumber of zones coveredby each type ofmotif.

ABAB ABAC ABCA ABCB ABCD

Count     

Avg. zones . . . . .

Figure 3: ROC and PR curves for the passing
motif model.
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corroborated by Table 5, which shows that ABCD covers
more zones on average than the other motifs. For all the
motifs, the minimum observed number of zones covered is
one, with all three passes starting and ending within the
same zone, and the maximum is six, with the three passes
starting and ending in all different zones.

Motif type ABCA, which is added to the reference, is
similar to ABCD as only the first and last involved player is
the same. For the second addition to the reference, (ABAC),
it is more difficult to understand how this motif type is
indistinguishable from the two others in the reference as its
pattern is seemingly more similar to the categories that
remain in the final model. Both the ABAB and ABCB motif
types are left in the model and have negative signs on their
corresponding coefficients. Thus, the more compact motif
type, ABAB, seems to be less effective in terms of resulting
in shots.

3.1.2 Smooth terms

The resulting smooth functions from the motif analysis are
displayed in Figure 4 and Figure 5. Higher outcomes from

the functions imply an increased probability for a motif to
lead to a shot. Considering the difficulty of passes in a
motif, the shape of the corresponding smooth function is
intuitive. As higher sums indicate more easy passes, the
probability of success increases whenmore difficult passes
aremade. Passes are in general easier tomake further away
from the opponent’s goal. Thus, having several passeswith
high probabilities of success might indicate that the motif
takes place far away from the opponent’s goal, and the
shape of the smooth function is thus intuitive as shots are
more likely to be attempted near the opponent’s goal.

Similarly reasonable results are also present for the
pass risk measures when looking at the region with a tight

confidence interval. As YP
2 measures how likely a pass is to

be followed up by a successful event, high values of SumY2

indicates that the passes involved in the motif were un-
likely to lead to a loss of possession. Compared to an
average motif, Figure 4 shows that motifs consisting of
passes that are easier to follow up are less likely to lead to
shot opportunities. This is plausible due to the same
reasoning as used for pass difficulty, as passes that are
easier tomake also tend to be easier to follow up. However,

Figure 4: The resulting smooth functions
from the motif analysis. The dotted lines
indicate the 95% confidence intervals of the
functions.
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this trend is not evident for low values of SumY2, which also
give a negative contribution to the likelihood of a motif
endingwith a shot. There are two explanations for this. One
is that this region has much larger confidence intervals,
indicating fewer observations and more uncertainty in the
effect. The second is that toomany risky passes means that
the motif is likely to end with a loss of possession, rather
than a shot. Thus, the best motifs may be those involving a
medium level of risk. Intuitively, with many high-potential
passes in a motif, their potential should be positively
related to the motif’s potential for leading to a shot. This
belief is captured by themodel as evidenced by the positive
slope for the smooth function.

For the closeness centrality, the slope of the function is
negative, indicating thathighervaluesof thismeasure for the
players involved are associated with lower probabilities of
success, although the slope is gentle within the region of
narrower confidence interval. Wiig et al. (2019) found that
players in more offensive player positions received higher
scores on thismeasure, thus the negative slopemay indicate
that defensive or central players are more often involved in
successfulmotifs.Also, thehighestsumpossiblyobtainedfor

themeasureisfour,whichishardtoobtainasmostlyonlyone
player on each teamhas received themaximumscore of one.
Hence, all players involved in the motif must have received
similarlyhighclosenessscoresto reachasumclose to four,or
fewerdistinctplayersmusthavebeeninvolvedinthemotif. In
fact, most of the highest sums for this measure are found for
the ABAB motif type, which is the motif type identified as
giving the lowest probability of success.

Considering the betweenness centrality, the corre-
sponding smooth function has a concave shape where the
likelihood of success increases for lower values and de-
creases for higher values. Hence, the chance of amotif to be
effective is highest when the sum of the betweenness
scores for the players involved is moderate. For the
betweenness scores calculated for the Norwegian top di-
vision, Wiig et al. (2019) observed that the scores varied
among player positions and that players could receive a
score of zero even if they had a high number of pass in-
volvements compared to other players on their team. Some
of the players who received low scores, however, did
receive high scores for the PageRank effectiveness mea-
sures. Hence, players that are effective do not necessarily

Figure 5: The resulting smooth functions
from the motif analysis. The dotted lines
indicate the 95% confidence intervals of the
functions.
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also have high betweenness scores, which could explain
the shape of the function.

The slope of the smooth function for the clustering
coefficient is more or less positive, implying that higher
values of this measure correspond to an increased likeli-
hood for a motif to be effective. This is a reasonable result
as higher values of the clustering coefficients are associ-
ated with a well-balanced teamwhere the teammates have
strong connections to each other.

For the PageRank passer and recipient measures for
network 1 (pass difficulty) and the PageRank recipient
centrality for network 2 (pass risk), the probability of suc-
cess decreases with higher sums of the measures. The
involvement of key players in terms of these PageRank
measures reducesmotif effectiveness. As defenders tend to
receive higher scores on the PageRank passer measure,
while offensive players tend to obtain higher PageRank
recipient scores for network 1 (pass difficulty), the two
graphs for the pass difficulty network are a bit contradic-
tory. The negative slopes thus imply that the optimal
strategywould be to have offensive players passing the ball
and defenders receiving the ball in the offensive play.
Hence, only the function for the PageRank passer measure
can be seen as intuitive. Higher values of the PageRank
passer and recipient measures for network 3 (pass poten-
tial), however, contribute to an increased probability of
success as seen from the positive slopes. This is intuitive as
the PageRank scores for network 3 are based on the fre-
quency of players’ involvements in effective passes.

The likelihood of success increases with the number of
unique zones on the pitch in which the players have been

active during the motif. By utilizing a bigger area, a team
might take advantage of open areas by making tactically
better passes as the players tend to be more mobile in be-
tween passes for such cases. The shape of the function
supports the findings from the fixed-effect variables as
larger areas covered seem to be beneficial for success. As
there is a time limit of 5 s between each pass in a motif,
large movements could indicate that counter-attacks have
been performed. If so, the model suggests that counter-
attacks are effective, which is intuitive.

3.2 Distribution of motif types in Eliteserien

The distribution of four-sized motifs for each team playing
in Eliteserien 2017 is shown in Table 6. Additionally, the
number of shots attempted per game is given for the teams.
The aim of presenting these statistics is to investigate
whether the top performing teams, seen in light of the
regression results, tend to use some specific motifs to a
higher extent compared to the other teams in the league.

Clearly, for all teams the proportion of the ABCDmotif
is the highest. In fact, more than half of the performed
motifs by each team in the season involve four distinct
players. Among the top teams of the season, Rosenborg,
Molde, and Strømsgodset have quite similar distributions
of motif types used, whereas Sarpsborg 08 stand out by
having the highest internal percentage of the ABAB motif.
Interestingly, Stabæk has the second best rate of shots per
game, but has some of the highest internal proportions of
motif types where less distinct players are involved,

Table : The distribution of motif types and the total number of four-sized motifs for each team in the  season. The three highest
percentages of each motif type and shot rates per game are highlighted in bold text, and the teams are ordered by their end-of-season
table positions. Shots per game (SpG) for all teams are obtained from WhoScored.com ().

Team ABAB ABAC ABCA ABCB ABCD Obs SpG

 Rosenborg . . . . .  .
 Molde . . . . .  .
 Sarpsborg  . . . . .  .
 Strømsgodset . . . . .  .
 Brann . . . . .  .
 Odd . . . . .  .
 Kristiansund . . . . .  .
 Vålerenga . . . . .  .
 Stabæk . . . . .  .
 Haugesund . . . . .  .
 Tromsø . . . . .  .
 Lillestrøm . . . . .  .
 Sandefjord . . . . .  .
 Sogndal . . . . .  .
 Aalesund . . . . .  .
 Viking . . . . .  .
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indicating that they have a more compact playing style.
This observation contradicts the results from the regression
where thesemotif types are found to be less likely to lead to
shots.

The three teams with the highest internal proportion
of using the ABCD motif are situated in the bottom of the
table, and they have relatively low rates of shots per
game. Moreover, some of the teams with the lowest in-
ternal percentages have the highest number of shots per
game. Considering that this motif type is one of those that
are most likely to be effective, these numbers are sur-
prising. One would expect that the teams being more
effective in terms of generating shots would be inclined to
use the most effective motif types. However, which motif
types the teams actually succeed with in terms of scoring
goals are not considered. Nevertheless, two out of the
three teams with the highest shot rates do use the ABCA
motif more frequently, while the third team has the
highest internal ratio of the ABAC motif. Both of these
motif types are included in the reference of the model
developed and have thus the highest probabilities of
leading to a shot.

3.3 Comparison with existing literature

Pina et al. (2017) used network metrics as fixed terms in a
logistic regressionmodel to test how they affect the success
of offensive plays in football. Such plays cover entire
passing sequences and not parts of them like motifs do. A
limited number of network metrics was utilized, and only
the density score of the team performing the sequence was
found to be significant. With a negative coefficient, a
higher density for the team, or interconnectedness between
the players, implies less chance of succeeding with the
offensive play. Although not being the same types of cen-
trality measures, the closeness and the PageRank mea-
sures for network 1 (pass difficulty) and network 2 (pass
risk) also turned out to have negative slopes.

By using motifs of size four, Gyarmati et al. (2014)
studied teams’ playing styles in the Spanish La Liga. FC
Barcelona, the leaguewinners, stand out by using the three
compact motif types more often than the other teams in the
league. Interestingly, the team use the motifs ABCA and
ABCD, which were found to bemore likely to be effective in
the Norwegian top division, less than the other teams.
However, even though being the league’s top scorers, the
team is ranked in sixth place in terms of the number of
shots per game for the season considered (WhoScored.com
2018). Thus, the team’s compact playing style does not
seem to generatemore shot attempts, an observation that is

supported by the results from the motif analysis in this
paper.

Bekkers and Dabadghao (2019) investigated teams’
playing styles by studying possession motifs and motifs
resulting in a shot immediately after the last pass. The
results are not directly comparable, as Bekkers and
Dabadghao (2019) looked at the probability of scoring
given that a shot is taken after a sequence of up to three
passes. Their results indicate that shots taken following
motifs with fewer players involved are of worse quality.
This adds to the finding in this paper that such compact
sequences are also less likely to lead to shots.

Other than the observation that the more compact
motif types tend to be less effective in terms of leading to a
shot, the findings from the analysis in Section 3.3 are
seemingly new to the literature on passing motifs. For
instance, it is found that the more space utilized on the
pitch during a motif, the more likely it is of being effective.
Hence, counter-attacks seem to be proven more likely to
lead to shot attempts. Also, difficult passes and passes that
are more challenging to follow up appear to be more
effective in a motif. The results suggest that teams should
look for smart passing alternatives such that they can
attempt combinations of passes that enable them to
advance fast on the pitch.

3.4 Final evaluation

Three goals of this research were stated in Section 1. The
first goal is to understand what determines the success of a
passing motif. The second goal is to see whether different
teams rely on passing patterns that result in different dis-
tributions of passing motifs. Finally, the third goal is to see
whether the best teams are more likely to use the more
effective motif types. To find which factors affect the
outcome of a passing motif, a GAMwas built on all passing
motifs of size four in the data set.

Regarding the factors determining the success of a
passing motif, the results indicate that the pattern of the
motif does influence its outcome in terms of generating
shots. More compactmotif typeswith fewer distinct players
involved tend to be less effective. This is also supported by
the smooth function for the number of unique zones
covered in the motif.

All smooth functions based on the predicted proba-
bilities of success have reasonable shapes. Passes that are
easier to make (higher probability of reaching a teammate)
and that are easier to follow up (higher probability of a
successful event following the pass) are associated with a
decrease in the probability of success. That is, motifs with
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such passes are less likely to lead to a shot. Having passes
with a higher potential of leading to a shot in a motif
naturally increases the likelihood for the motif to be
effective as well.

The participation of key players in amotif has differing
results for the different network metrics considered. How-
ever, the tendency is that more intuitive effects on the
effectiveness of motifs are present for the metrics where
offensive contribution already is taken into account, such
as the PageRank metrics for the networks related to risk
and potential. Some of the network metrics are highly
correlated, as pointed out byWiig et al. (2019), whichmight
be the reason why some counter-intuitive results are
present.

For the second goal, whether teams have different
distributions of passing motifs, Table 6 shows that there is
some variation between the teams. However, the differ-
ences are relatively minor, in particular when compared to
the variance in the number of motifs observed for each
team. All teams use theABCDmotif themost, and theABAB
motif the least.

Turning to the third goal and the question regarding
whether top performing teams in Eliteserien are inclined to
use the more effective motif types, the distribution of motif
types used for each team in the 2017 season reveals that
there is ostensibly no connection between teams’ end-of-
season table positions and their distribution of motifs
types. The teams with the highest shot rates have lower
internal proportions of theABCDmotif compared tomost of
the other teams, but they do have higher proportions of the
two other reference types, ABCA and ABAC, which are
equally affecting the outcome of a motif.

4 Concluding remarks

Passing in association football can be modeled using net-
works. Sequences of passes, where the same player may
appear in the sequence several times, are considered as a
networkmotif, following (Milo et al. 2002). To analyzewhat
influences the effectiveness of four-sized passing motifs in
the Norwegian top division, Eliteserien, a GAM was built
using data from four seasons, spanning the years 2014–
2017. A total of 203,208 motifs were included in the anal-
ysis. Most of the explanatory variables in the model were
based on the results from the passing ability models of
(Håland et al. 2020) and the network analyses of (Wiig et al.
2019).

The main finding of the analysis was that the more
compact motif types, where fewer distinct players are
involved, have a lower likelihood of being effective in

terms of leading to shots. However, there was no clear
connection between teams’ table rankings and their dis-
tribution ofmotif types. Overall, the teamswith higher shot
rates had a higher internal proportion of some of the more
effective motif types, although these teams did not score
the most goals. Hence, a team’s ability to convert a chance
into a goal is important so that the team actually is able to
take advantage of effective motif types. Nevertheless,
teams may look into which motif types are the most
effective, and consider how their passing system can be
made more efficient. This may provide the top-scoring
teams with more goal-scoring opportunities of which they
can take advantage.

An important limitation of this work is that only one
league is studied, and that this league is not considered to
be among the best leagues in Europe. That is, passing
behavior may be different in better leagues, and the rela-
tive effectiveness of network motifs may differ as a result.
This is also the first study that aims to evaluate the effec-
tiveness of passing motifs, and additional studies on other
data sets may be necessary to increase the confidence in
the results.

In general, adding more variables that potentially
could influence the effectiveness of passing motifs should
be considered to improve the model fit. For instance, it
would be interesting to explicitly investigate whether
passing motifs that are parts of counter-attacks are more
likely to be effective. However, this would call for the need
of additional types or sources of data. By adding mixed
effects to account for the teams involved in a motif, the
effectiveness of teams could be explored. If combining this
in an interaction with motif types, it would be revealed
which teams are more effective in using the different mo-
tifs. However, as some of the motifs are used far less than
others, the amount of data needed for the analysis should
be higher than only four seasons.

A different type of motifs that might be considered is
zone motifs. Rather than having patterns of players, the
patterns could consist of zones on the pitch. Some pre-
liminary calculations showed that the vast number of
potential combinations when having 21 zones and a motif
size of four made the analysis too extensive. By finding a
way of dealing with the combinations, for instance by
selecting a range of them or using fewer zones, such an
analysis could provide insight into where on the pitch the
most effective motifs take place, regardless of which
players are involved.

As the more compact motif types were found to less
effective, it could be interesting to perform a similar anal-
ysis using goals rather than shots as a criterion for the
dependent variable and compare the analyses. Perhaps the
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compact motif types turn out to be more effective in terms
of leading to a goal. If so, it could be tested whether teams
with high shot effectiveness, i.e., with many goals scored
compared to the number of attempted shots, are correct to
not use themotif types that were found to bemore effective
in this work.
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J. Sampaio. 2017. “Exploring Team Passing Networks and Player
Movement Dynamics in Youth Association Football.” PloS One
12(1): e0171156.

Gyarmati, L., H. Kwak, andP. Rodriguez. 2014. “Searching for aUnique
Style in Soccer.” In Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining (KDD)
Workshop on Large-Scale Sports Analytics, August. arXiv
preprint arXiv:1409.0308.

Håland, E. M., A. S. Wiig, M. Stålhane, and L. M. Hvattum. 2020.
“Evaluating Passing Ability in Association Football.” IMA Journal
of Management Mathematics 31: 91–116.

Hastie, T., and R. Tibshirani. 1986. “Generalized Additive Models.”
Statistical Science 1: 297–318.

Hosmer, D. W., Jr, S. Lemeshow, and R. X Sturdivant. 2013. Applied
Logistic Regression, Vol. 398. Hoboken, New Jersey: JohnWiley &
Sons.

Lin, X., and D. Zhang. 1999. “Inference in Generalized Additive Mixed
Modelsby Using Smoothing Splines.” Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 61(2):
381–400.

Malqui, J. L. S., N. M. L. Romero, R. Garcia, H. Alendar, and J. L. D.
Comba. 2019. “How Do Soccer Teams Coordinate Consecutive
Passes? A Visual Analytics System for Analysing the Complexity
of Passing Sequences Using Soccer Flow Motifs.” Computers &
Graphics 84: 122–33.

McHale, I. G., andS. D. Relton. 2018. “IdentifyingKey Players in Soccer
Teams Using Network Analysis and Pass Difficulty.” European
Journal of Operational Research 268(1): 339–47.

Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U.
Alon. 2002. “NetworkMotifs: Simple Building Blocks of Complex
Networks.” Science 298(5594): 824–7.

Opta Sports. 2018. World Leaders in Sports Data. https://www.
optasports.com/ (accessed April 13 2018).

Peña, J. L., and R. S. Navarro. 2015. “Who Can Replace Xavi? a Passing
Motif Analysis of Football Players.” arXiv preprint arXiv:
1506.07768.

Perdomo Meza, D. A. 2017. “Flow Network Motifs Applied to Soccer
Passing Data.” In Proceedings of MathSport International 2017
Conference, edited by C. De Francesco, L. De Giovanni, M.
Ferrante, G. Fonseca, F. Lisi, and S. Pontarollo, 305–19. Padova,
Italy: Padova University Press.

Pina, T. J., A. Paulo, and D. Araújo. 2017. “Network Characteristics of
Successful Performance in Association Football. A Study on the
UEFA Champions League.” Frontiers in Psychology 8: 1173.

STATS LLC. 2017. “AI and the Growing Use of Technology in Sport.”
https://www.stats.com/industry-analysis-articles/ai-growing-
use-technology-sport/ (accessed April 11 2018).

Szczepański, Ł., and I. McHale. 2016. “Beyond Completion Rate:
Evaluating the Passing Ability of Footballers.” Journal of the
Royal Statistical Society: Series A (Statistics in Society) 179(2):
513–33.

WhoScored.com. 2018. Whoscored.com. Also available at https://
www.whoscored.com/.

Wiig, A. S., E. M. Håland, M. Stålhane, and L. M. Hvattum. 2019.
“Analyzing Passing Networks in Association Football Based on
the Difficulty, Risk, and Potential of Passes.” International
Journal of Computer Science in Sport 18: 44–68.

Wood, S. N. 2006. Generalized Additive Models: An Introduction with
R. Boca Raton, Florida: Chapman and Hall/CRC.

Wood, S. N. 2011. “Fast Stable Restricted Maximum Likelihood and
Marginal Likelihood Estimation of Semiparametric Generalized
Linear Models.” Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 73(1): 3–36.

E.M. Håland et al.: Evaluating the effectiveness of network flow motifs 323

https://www.optasports.com/
https://www.optasports.com/
https://www.stats.com/industry-analysis-articles/ai-growing-use-technology-sport/
https://www.stats.com/industry-analysis-articles/ai-growing-use-technology-sport/
https://www.whoscored.com/
https://www.whoscored.com/

	Evaluating the effectiveness of different network flow motifs in association football
	1 Introduction
	2 Experimental setup
	2.1 Generalized additive models
	2.2 Model description

	3 Results and discussion
	3.1 Regression results
	3.1.1 Fixed terms
	3.1.2 Smooth terms

	3.2 Distribution of motif types in Eliteserien
	3.3 Comparison with existing literature
	3.4 Final evaluation

	4 Concluding remarks
	Acknowledgments
	References

