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Abstract: CD4+ T cells (T helper cells) are cytokine-producing adaptive immune cells that activate 

or regulate the responses of various immune cells. The activation and functional status of CD4+ T 

cells is important for adequate responses to pathogen infections but has also been associated with 

auto-immune disorders and survival in several cancers. In the current study, we carried out a label-

free high-resolution FTMS-based proteomic profiling of resting and T cell receptor-activated (72 h) 

primary human CD4+ T cells from peripheral blood of healthy donors as well as SUP-T1 cells. We 

identified 5237 proteins, of which significant alterations in the levels of 1119 proteins were observed 

between resting and activated CD4+ T cells. In addition to identifying several known T-cell activa-

tion-related processes altered expression of several stimulatory/inhibitory immune checkpoint 

markers between resting and activated CD4+ T cells were observed. Network analysis further re-

vealed several known and novel regulatory hubs of CD4+ T cell activation, including IFNG, IRF1, 

FOXP3, AURKA, and RIOK2. Comparison of primary CD4+ T cell proteomic profiles with human 

lymphoblastic cell lines revealed a substantial overlap, while comparison with mouse CD+ T cell 

data suggested interspecies proteomic differences. The current dataset will serve as a valuable re-

source to the scientific community to compare and analyze the CD4+ proteome. 

Keywords: adaptive immunity; T-lymphocytes; CD4+ T helper cells; mass spectrometry; prote-

omics; label-free quantitation; systems biology 

 

1. Introduction 

CD4+ T cells, also known as CD4+ T helper cells, are a subtype of T-lymphocytes that 

perform important immunoregulatory roles in adaptive immunity, including activation 

of B cells, cytotoxic T-cells, and nonimmune cells [1]. Bone marrow-derived hematopoietic 

progenitors committed of the T-cell lineage, unlike other cells of the hematopoietic cell 

lineage, enter circulation and migrate to the thymus where they undergo maturation and 

selection processes to produce a pool of mature resting CD4+ and CD8+ T cell lineages [2]. 

During maturation, each T cell re-arranges a unique T cell receptor (TCR) that recognizes 

specific antigenic peptides in complex with major histocompatibility complex (MHC) 

molecules on APCs. Mature naïve T cells exit the thymus and patrol the blood and lymph 

system where they screen MHC molecules on antigen-presenting cells (APCs) and are 

activated if their TCRs detect their cognate antigen on MHC molecules [3]. In addition, 

subsequent signals, including costimulatory receptor signaling (e.g. CD28) and environ-

mental impacts such as cytokines, are essential for T cell activation [4]. The interactions 

between APCs and T cells are mediated by regulatory molecules known as immune 
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checkpoints [5]. After activation, CD4+ T cells undergo clonal expansion and differentia-

tion into CD4+ effector T cells. During this phase, cytokine signals from the environment 

impact the transcriptional programs in the activated CD4+ T cells and guide differentia-

tion towards CD4+ T cell lineages which produce specific sets of effector cytokines. In 

1986, Mosmann and colleagues identified two distinct types of CD4+ T helper cells: Type1 

T helper cells (Th1) that produced IL-2, IL-3, IFNγ, and GM-CSF, and Type2 T helper cells 

(Th2) that produced IL-3, BSF1 (IL-4), a mast cell growth factor (IL-10) and a T cell growth 

factor [6]. However, over the years, multiple/a variety of subsets or lineages of CD4+ T 

helper cells have been identified depending upon their signature cytokine secretion, 

which includes—Th1, Th2, Th17, Th9, Th22, regulatory T cells (Tregs), and follicular 

helper T cells (TFH) [7,8]. Distinct transcriptional profiles and master transcriptional reg-

ulators have been identified for the different subsets/regulating lineage differentiation 

[9,10]. It is now understood that not all activated CD4+ T helper cells terminally differen-

tiate, but that a substantial portion remains plastic and may be capable of acquiring other 

properties and functions as part of secondary immune responses [7]. 

CD4+ T cells play critical roles in the pathogenesis of several diseases, including in-

fectious, auto-immune, inflammatory diseases, and malignancies. CD4+ T cells have a cru-

cial role in the development of HIV infection, where virus entry into cells requires CD4 

receptor involvement [11,12]. Progressive depletion of CD4+ T cell populations is one of 

the hallmarks of acquired immunodeficiency syndrome (AIDS) pathogenesis [13] result-

ing in increased susceptibility to opportunistic infections and virus-associated malignan-

cies [14]. Interestingly, an increase in various CD4+ T cell subsets serves as a hallmark of 

inflammatory diseases such as multiple sclerosis, arthritis, allergies, and chronic airway 

inflammation in asthma [15]. Infiltration and accumulation of CD4+ T cells in the periph-

eral joints is an important feature of rheumatoid arthritis [16]. Additionally, CD4+ T cells 

play an important role in mediating crosstalk between immune cells and adipose tissues 

with an increase in adipose tissues known to be associated with obesity and obesity-asso-

ciated diseases, including type 2 diabetes, insulin resistance, atherosclerosis, and stroke 

[17]. Increasing evidence now suggests a vital role of CD4+T cells in tumor protection [18], 

driving several anti-tumor mechanisms [19–22]. Furthermore, CD4+ T cells have been 

shown to mediate direct cytotoxicity against tumor cells through increased production of 

interferon gamma (IFNγ) and tumor necrosis factor (TNFα in both preclinical models [23–

25] and patient-derived CD4+ T cells [26]. CD4+ T cells can also induce humoral responses 

against tumor antigens primarily through increased expression of CD40 ligand that pro-

motes differentiation and maturation of B-cells into affinity-matured, class-switched 

plasma cells [27,28]. 

T cell activation is accompanied with changes in transcriptional and proteomic ma-

chinery, including massive shifts in metabolism and biosynthesis which drives increase 

in size, rapid proliferation and differentiation of T cells [29]. To date, there have been sev-

eral OMICs-based studies, specifically proteomics approaches to characterize changes in 

protein expression upon T cell activation [30–35]. Despite CD4+ T cells studied exten-

sively, several aspects pertaining to T cell biology, such as comprehensive knowledge of 

the proteomic repertoire, signaling mechanisms, patterns of heterogeneity in the popula-

tion, interspecies differences, and fundamental differences between primary cells and cell 

line models, are not well characterized. The aim of this study was to add knowledge to 

the proteomic differences between resting and in vitro activated primary human CD4+ T 

cells as well as common laboratory-used model T cell lines. We carried out label-free com-

parative proteomic analysis of resting (unactivated) and TCR-activated (72 h) primary hu-

man CD4+ T cells purified from two healthy donors. Furthermore, we also profiled the 

proteome expression repertoire of the human T cell lymphoblastic cell line SUP-T1 and 

accessed a previously published proteome profile of Jurkat T lymphoblast cells [36]. Using 

an integrative bioinformatics approach, we compared the proteomic profiles of resting 

and activated primary CD4+ T cells with those of human SUP-T1 and Jurkat T lympho-

blast cell lines. We also provide a comprehensive overview of signaling pathways and 
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networks affected by the activation of CD4+ T cells. The data generated from the current 

study will enable us to gain a better understanding of the molecular machinery operating 

within primary CD4+ T cells during T cell activation, the proteomic differences between 

primary CD4+ T cells and model T cell lines as well as interspecies differences between 

human and mice. 

2. Results 

2.1. Comparative Proteomic Analysis of Resting and Activated Primary CD4+ T Cells and SUP-

T1 T Lymphoblastic Cell Line 

We performed an unbiased global proteomic profiling to elucidate the protein ex-

pression profiles of resting (un-activated) and TCR- activated primary human CD4+ T 

cells (Figure 1A) as well as the T cell lymphoblastic cell line SUP-T1. Peripheral Blood 

Mononuclear Cells (PBMCs) were isolated from two healthy donors, and CD4+ T cells 

were further purified using magnetic bead-based isolation (negative-isolation of “un-

touched” cells). Flow-cytometric analysis indicated a purity of >94% for both donors and 

in total less than 0.5% contaminating of myeloid origin (CD14+ or CD11c+ cells) or CD8+ 

T cells (Figure 1B,C). Resting CD4+ T cells were frozen directly after isolation. For acti-

vated CD4+ T cell samples, TCR (plate-bound anti-CD3 antibody) and co-stimulatory 

(anti-CD28 antibody) signaling was induced for 72 h before the samples were frozen.  
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Figure 1. (A) A workflow for the comparative proteomics analysis of resting and activated pri-

mary human CD4+ T cells as well as SUP-T1 lymphoma T cells. Primary human CD4+ T cells were 

purified using magnetic beads (MACS cell separation) from PMBCs of healthy donors. Resting 

(unstimulated) CD4+ T cell samples were harvested (washed and shock-frozen) for protein extrac-

tion immediately after isolation. A fraction (1 × 107) CD4+ T cells were activated for 72 h by anti-

CD3/anti-CD28 stimulation before cells were harvested/shock-frozen for protein isolation. SUP-T1 

cells were harvested from a cell line tissue culture. Resting CD4+ T cells, activated CD4+ T cells 

and SUP-T1 cell samples were subjected to protein extraction. Proteins were subjected to tryptic 

digestion. Peptide samples obtained were subjected to strong cation exchange chromatography 

followed by MS/MS analysis. B and C. Flow cytometric purity analysis of CD4+ T cell preparations 

for Donor 1 (B) and Donor 2 (C). Purified CD4+ T cells were stained with fluorescent antibodies 

for CD11c, CD14, CD3, CD8 and CD4. Both preparations contained >94% CD3+CD4+ T cells and 
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(in total) less than 0.5% contaminating CD11c+, CD14+ or CD8+ cells. (D) Principal Component 

Analysis (PCA) plot depicting common proteomic patterns in resting/resting CD4+ T cells and 

activated CD4+ T cells. (E,F) S-curve graphs showing the distribution of fold-changes in Donors 1 

and 2 and the top differentially expressed proteins. 

LC-MS/MS analysis of resting and activated CD4+ T cell proteomes resulted in the 

identification of 5237 proteins (Table S1). The proteomic profiles of resting and activated 

CD4+ T cells from two donors were compared to see expression patterns using Principal 

Component Analysis (PCA). While resting cells from the donors clustered together in the 

PCA plot, activated cells revealed heterogeneous expression profiles between the two do-

nors (Figure 1D), indicating that there were significant proteomic differences between 

them. A total of 1119 were significantly altered between resting and activated states in 

both donors (log2 fold change ±2, p-value < 0.05) (Figure S1A,B; Table S1). The top 10 dif-

ferentially regulated proteins in activated CD4+ T cells include enzymes such as thymi-

dylate synthetase (TYMS) and methylenetetrahydrofolate dehydrogenase (NADP+ de-

pendent) 2 (MTHFD2) that were found to upregulated while ATP synthase membrane 

subunit 6.8PL (ATP5MPL), azurocidin 1 (AZU1), granzyme K (GZMK) were found to be 

downregulated in activated CD4+ T cells from both the donors (Figure 1E,F). 

2.2. Known and Novel Molecular Markers of Resting and Activated CD4+ T Cells 

We analyzed proteins characteristic of resting and activated CD4+ T cells. As ex-

pected, CD4 was uniformly expressed in both resting and activated CD4+ T cells (Figure 

2A). CD8 protein was not identified in the current dataset, confirming the purity of the 

CD4+ T cell preparations. The expression profiles of the hallmark markers of T cell activa-

tion including transcriptional regulator FOXP3, interleukin (IL)-2 receptor α-chain IL2RA 

(CD25), major histocompatibility complex class II, DR alpha (HLA-DRA), CD40 ligand 

(CD40LG) and CD69 were assessed. As expected, a marked increase in the protein expres-

sion was observed after 72 h of activation in comparison to resting CD4+ T cells. HLA-

DRA however, showed a minor increase in protein expression (Figure 2B–F). 

Next, we carried out gene ontology-based enrichment analysis of differentially ex-

pressed proteins in activated CD4+ T cells with respect to their resting/untreated counter-

parts. The two donors showed significant differences in the type of biological processes 

for which proteins were upregulated in CD4+ T cells after activation (Figure 2G,H). How-

ever, “housekeeping” processes pertaining to cell cycle, mitosis and DNA replication were 

commonly enhanced in both donors. The biological processes enriched for downregulated 

proteins were mostly similar for both donors and consisted mainly of proteins involved 

in neutrophil activation (Figure S2A,B). 
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Figure 2. Protein expression levels of (A) CD4 (B) FOXP3 (C) IL2RA (CD25), (D) HLA-DRA, (E) 

CD40LG, (F) CD69 in resting (R) and activated (A) primary CD4+ T cells from Donor1 (D1) and 

Donor2 (D2). Enriched Biological Processes from proteins upregulated in (G) Donor 1 and (H) 

Donor 2 in response to activation. Heatmaps depicting (I) CD4+ T cell activation markers, (J) Reg-

ulators of T cell activation in CD4+ T cells and (K) Markers of T cell lineages. Genesets for compar-

ison of significantly changing proteins were obtained from MSigDB. 
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Furthermore, a detailed comparison of proteins differentially expressed in activated 

CD4+ T cells compared to resting CD4+ T cells was carried out. Gene sets derived from 

the Molecular Signatures Database (MSigDB) were used to obtain insights into signaling 

in the course of T cell activation and modulating effector lineage differentiation. Proteins 

involved in T cell activation, mainly including transcription factors (basic leucine zipper 

ATF-like transcription factor (BATF), forkhead box P3 protein (FOXP3), T-box transcrip-

tion factor 21 (TBX21/T-Bet), interferon regulatory factor 4 (IRF4), among others were 

found to be overexpressed in activated cells of both donors. On the contrary, proteins, 

including BCL3 transcription coactivator (BCL3), zinc finger, and BTB domain containing 

7B (ZBTB7B) revealed mixed patterns of expression between the two donors. Notably, the 

expression of SLAMF6 was decreased after activation (Figure 2I). Among the regulators 

of T-cell activation, we observed proteins belonging to the CD family (CD47, CD74, CD81, 

CD70, and CD40LG), members of TNF receptor superfamily (TNFRSF1B, TNFRSF18), in-

terferon regulatory factor 4 (IRF4) and inducible T cell costimulator (ICOS) to be overex-

pressed in activated CD4+T cells from both donors (Figure 2J).On the contrary, interleukin 

7 receptor (IL7R), CD300A, spleen associated tyrosine kinase (SYK), and NFKB activating 

protein (NKAP) were decreased in activated CD4+ T cells compared to their resting coun-

terparts. Furthermore, we assessed the expression of Th cell lineage markers which sug-

gested similar expression patterns across the donors with a mixed lineage phenotype ob-

served in both donors (Figure 2K). Notably, three proteins constituting Th1 cell hallmark 

cytokine Interferon-γ (IFNG), signal transducer, and activator of transcription 4 (STAT4) 

and (T-bet/TBX21) and Treg markers -transcription factors STAT5A, STAT5B, and FOXP3 

and TGFB1 effector cytokine were increased after activation were increased consistently 

in both donors after activation. 

2.3. Activation of CD4+ T Cells Influences Processes and Signaling Pathways 

Kinases and phosphatases constitute important classes of proteins mediating cell sig-

naling and could provide mechanistic insights into T cell activation. Towards this end, we 

explore the expression profile of protein kinases and phosphatases in resting and acti-

vated CD4+ T cells (Figure 3A,B). Protein kinases including Aurora kinase B (AURKB), 

cyclin dependent kinases (CDK1 and CDK2), RIO kinases (RIOK1 and RIOK2), checkpoint 

kinase 1 (CHEK1), Janus kinase 3 (JAK3), serine/threonine kinase 17b (STK17B) and SRSF 

protein kinase 1 (SRPK1) were significantly upregulated (p-value < 0.05) 72 h post-activa-

tion in CD4+ T cells from both donors. On the contrary, cyclin dependent kinase 13 

(CDK13), TBC1 domain containing kinase (TBCK), members of the MAP kinase family 

(MAPKAPK3, MAP3K2, and MAPK9), microtubule affinity regulating kinase 3 (MARK3), 

SNF related kinase (SNRK), ribonuclease L (RNASEL) and spleen associated tyrosine ki-

nase (SYK) were significantly downregulated in activated CD4+ T cells from both donors. 

In general, more protein kinases were upregulated in activated CD4+ T cells from donor 

1 compared to donor 2. Protein kinases such as mitogen-activated protein kinase 8 

(MAPK8), calcium/calmodulin-dependent protein kinase ID (CAMK1D), mitogen-acti-

vated protein kinase 6 (MAPK6), PEAK1 related, kinase-activating pseudokinase 1 

(PRAG1), TRAF2 and NCK interacting kinase (TNIK), misshapen like kinase 1 (MINK1) 

and ribosomal protein S6 kinase A4 (RPS6KA4) were only found to be upregulated in 

activated CD4+ T cells from donor 1 suggesting better activation of these cells. Among the 

phosphatases, the non-protein phosphatase- myotubularin related protein 9 (MTMR9) 

was found to be upregulated in activated CD4+ T cells, whereas the protein tyrosine phos-

phatase receptor type A (PTPRA) was found to be downregulated in activated CD4+ T 

cells from both donors. A significant decrease in the expression of protein tyrosine phos-

phatase receptor type J (PTPRJ), myotubularin related protein 12 (MTMR12), and synap-

tojanin 2 (SYNJ2) was observed in activated CD4+ T cells from donor 2. These suggest that 

phosphatases were less impacted after activation in both donors. 
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Figure 3. Heatmaps depicting changes in (A) protein kinases and (B) protein in CD4+ T cells in response to activation. 

Genesets for comparison of significantly changing proteins were obtained from MSigDB. (C) Significantly changing sig-

naling pathways in resting and activated CD4+ T cells after pathway enrichment using Reactome Pathways. 

Pathway enrichment analysis of proteins differentially expressed in activated CD4+ 

T cells from both the donors revealed several pathways, such as Interferon signaling, cell 

cycle pathways, and nucleotide metabolism, to be enriched in activated CD4+ T cells (Fig-

ure 3C). This is in line with reports suggesting increased cytokine-mediated differentia-

tion and increased proliferation of activated CD4+ T cells. We further assessed the expres-

sion of proteins involved in adaptive immune response, including cytokines, cytokine re-

ceptors, hypoxia and ROS markers (Figure S3). We observed an overall increase in the 

extent of expression of cytokines and receptors in activated CD4+ T cells with the excep-

tion of interleukin 7 receptor (IL7R) which was downregulated. Protein markers of hy-

poxia, including perilipin 2 (PLIN2), high density lipoprotein binding protein (HDLBP), 

jumonji domain containing 6, arginine demethylase and lysine hydroxylase (JMJD6), 

hexokinase 2 (HK2), ilvB acetolactate synthase like (ILVBL), solute carrier family 2 mem-

ber 1 (SLC2A1), and prolyl 4-hydroxylase subunit alpha 1 (P4HA1), were found to be up-

regulated in activated CD4+ T cells of both donors. Further, ROS markers apolipoprotein 
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E (APOE) was found to be increased in expression in activated T cells while neutrophil 

cytosolic factor 2 (NCF2), ring finger protein 7 (RNF7), myeloperoxidase (MPO), and thi-

oredoxin reductase 2 (TXNRD2) were found to be decreased. In summary, activated CD4+ 

T cells showed classical markers of adaptive immune responses, while the increased hy-

poxia markers in response to activation may be a result of increased nutritional needs of 

activated CD4+ T cells. In terms of cellular metabolism, proteins/enzymes involved in 

amino acid and lipid metabolism were in general upregulated after activation, whereas a 

mixed expression pattern between resting and activated CD4+ T cells were observed for 

oxidative phosphorylation  and glycolysis/gluconeogenesis (Figure S4). Notably, acyl-

CoA oxidase 1 (ACOX1), holocytochrome c synthase (HCCS), 3-hydroxy-3-methylglu-

taryl-CoA synthase 1 (HMGCS1), ELOVL fatty acid elongase 5 (ELOVL5), retinol saturase 

(RETSAT), isopentenyl-diphosphate delta isomerase (IDI1), fatty acid synthase (FASN) 

corresponding to lipid metabolism and folylpolyglutamate synthase (FPGS), methionyl-

tRNA synthetase 2, mitochondrial (MARS2), fumarylacetoacetate hydrolase (FAH), and 

tryptophanyl-tRNA synthetase 1 (WARS), corresponding to amino acid metabolism were 

found to be upregulated in activated CD4+ T cells. Several proteins belonging to cellular 

processes such as cell cycle, apoptosis, autophagy, and phagocytosis were upregulated in 

activated CD4+ T cells indicating changes in cellular activity and cell proliferation in re-

sponse to activation (Figure S5). 

2.4. Activation of CD4+ T Cells Influences Protein Signaling Networks 

Interactome analysis of proteins upregulated during activation of primary human 

CD4+ T cells was carried out on our datasets to identify critical regulatory hubs. The pro-

tein-protein interaction network was generated from the set of proteins upregulated in 

activated CD4+ T cells from both donors compared to non-activated CD4+ T cells using 

Cytoscape, and network topology parameters were calculated (Figure 4, Table S2). The 

betweenness centrality and degree measures were used to visualize the network and iden-

tify the highly connected nodes. Proteins with high betweenness centrality measures in-

cluded proteins with known roles in T cell activation such as transcription factors- inter-

feron regulatory factor 1 (IRF1), forkhead box P3 (FOXP3), Interferon-γ (IFNG), as well as 

marker of proliferation Ki-67 (MKI67), cell cycle proteins including cyclin dependent ki-

nase 1 (CDK1), cyclin dependent kinase 2 (CDK2), cell cycle associated protein 1 

(CAPRIN1) and aurora kinase B (AURKB). Interestingly several proteins not previously 

known in the context of T cell activation including RIO kinase 2 (RIOK2), cell division 

cycle 20 (CDC20), tRNA methyltransferase 1 (TRMT1), ubiquitin conjugating enzyme E2 

L6 (UBE2L6), clusterin (CLU) and mini-chromosome maintenance proteins (MCM) in-

cluding MCM2, MCM3, MCM4, MCM5, MCM5, and MCM7 also showed a significant and 

high betweenness centrality measures probably representing novel regulatory hubs of 

CD4+ T cell activation and need to be investigated further. 
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Figure 4. Network analysis of proteins upregulated in primary activated CD4+ T cells in both donors. The Network anal-

ysis was carried out using Cytoscape, and network topology properties were calculated using NetworkAnalyzer. The 

betweenness centrality and degree measures were used to visualize the relationship between nodes. Larger sizes of nodes 

from high betweenness centrality suggest potential regulatory hubs. 

2.5. Changes in Expression Levels of Immune Checkpoint Proteins in Activated/Resting  

CD4+ T Cells 

The complete activation of CD4+ T cells depends on signals from the TCR (signal 1) 

and antigen-independent co-stimulatory signals (signal 2). In our set-up, we provided 

both signal 1 (anti-CD3 stimulation) and signal 2 (anti-CD28 stimulation) to primary CD4+ 

T cells for 72 h. However, CD4+ T cell activation is tightly regulated by a range of co-

stimulatory and co-inhibitory signaling receptors known as immune checkpoints. Im-

mune checkpoints act as regulators of the immune system mediating interactions between 

T cells and other cells, such as APCs or tumor cells [5]. These inhibitory or stimulatory 

checkpoint pathways attenuate T cell activation and are essential for self-tolerance mech-

anisms and regulate the adaptive immune response [37,38]. Immune checkpoints are con-

sidered as important immunotherapy targets, and checkpoint inhibitors against CTLA4, 
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PD-1/PD-L1 have been approved for clinical use [39]. Of the 16 known immune check-

points [38,40], ten were identified in the current dataset (Figure 5). These included stimu-

latory checkpoint molecules such as CD27 (TNFRSF7), CD28, CD40LG (CD40L), CD96 

(Part of TIGIT/CD96), inducible T cell costimulator (ICOS), TNF receptor superfamily 

members-TNFRSF4/OX40 and TNFRSF18/GITR. Among the inhibitory checkpoint mole-

cules, cytotoxic T-lymphocyte associated protein 4 (CTLA4), lymphocyte activating 3 

(LAG3), and V-set immunoregulatory receptor (VSIR/VISTA/PD-1H) were identified.  

 

Figure 5. An illustration representing expression profiles of immune checkpoint regulators in resting and activated pri-

mary CD4+ T cells. The inset graphs for each protein provide log2(intensity) value-based abundances for resting (R) and 

CD3/CD28-activated (A) CD4+ T cells from Donor1 (D1) and Donor2 (D2). Legends indicate Significant (*, FDR ≤ 0.05), 

Not significant (NS), Not detected (ND). 
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Amongst these, CD27 (TNFRSF7), CD28, and VSIR (VISTA/PD-1H) proteins were 

found to be expressed at similar levels in both resting and activated CD4+ T cells, CD96 

was expressed at higher levels in resting compared to activated CD4+ T cells. Interest-

ingly, PD-1 (PDCD1) was neither detected in resting nor activated CD4+ T cells in the 

current study. This may be because PD-1 is generally strongly expressed in late-stage ex-

hausted T cells, such as those in the tumor environment and was not detected in our setup 

with strongly activated T cells at an early stage (72 h). However, expression of the stimu-

latory checkpoint molecules CD40LG, ICOS, TNFRSF18 and TNFRSF4 (OX40) as well as 

the inhibitory immune checkpoint regulators CTLA4 and LAG3 was significantly upreg-

ulated 72 h post-activation in CD4+ T cells. These results indicate that CD4+ T cells are 

highly responsive for distinct positive co-stimulatory signals 72 h post-activation, but that 

at the same time, expression of certain inhibitory checkpoint molecules is induced and 

counter-acts the activation process. 

2.6. Comparison of Primary T Cell Data with Proteomes of Human Lymphoblastic T Cell Lines 

and Published Primary Human and Mouse CD4+ T Cell Datasets 

In vitro cell models such as SUP-T1 and Jurkat cells are widely employed to study T-

cell mediated signaling mechanisms and are in general amenable to gene manipulation 

techniques. However, there is a paucity of information on the extent of correlation of pro-

tein expression in SUP-T1 cells with protein expression in primary CD4+ T cells. To 

achieve this, we generated the proteome profile of SUP-T1 cells. As these cells do not ex-

press a functional TCR on their surface, they were analyzed in a resting state (no TCR 

activation prior to analysis). LC-MS/MS analysis resulted in the generation of 167,863 pep-

tide spectrum matches (PSMs), which mapped 26,111 peptides corresponding to 4,815 

proteins (Table S3). Comparison of the proteomic profiles of SUP-T1 cells and Jurkat A 3 

cells obtained from a published dataset [36] with the data from resting primary CD4+ T 

cells revealed 2,925 common proteins (~59%) (Figure 6A, Table S4). Gene ontology-based 

enrichment of this subset revealed housekeeping processes such as RNA processing, 

translation initiation, and nuclear transport. We further assessed gene ontology-based en-

richment for the proteins that were exclusive to each of the cell types. The top enriched 

processes unique to resting primary CD4+ T cells included proteins involved in interferon 

gamma-mediated signaling pathway and T cell activation processes, suggesting that these 

processes were less represented in SUP-T1 and Jurkat cells. CD4 protein was found to be 

expressed in all cell types. Further examination into CD3 (a T cell co-receptor) expression 

revealed that CD3D and CD3E subunits were found to be expressed in all three cell types, 

while CD3G was found to be expressed in primary resting T cells and Jurkat but not SUP-

T1 cells. However, CD28 expression was identified in resting and SUP-T1 cells, but not 

Jurkat cells (Table S3). In addition to CD4, SUP-T1 cells also expressed CD8 (CD8B) albeit 

at lower levels. These findings suggest that there is a difference between T cell lines which 

may affect the phenotype under study. 
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Figure 6. (A) Comparison between proteomic profiles of primary resting CD4+ T cells, SUP-T1 

cells and Jurkat cells (Wu et al., 2007) and Gene ontology-based classification of biological pro-

cesses of common proteins and proteins distinct to each cell type (B) Comparison of identified 

proteins and (C). Correlation matrix between previously published dataset on mouse (Howden et 

al.) and human CD4+ T cells (current study). Comparison of lists of identified proteins with previ-
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ous studies on (D) Resting and (E) Activated human CD4+ T cells. (F) Correlation matrix for prote-

omic profiles of resting and activated CD4+ T cells from the current study, and previously pub-

lished studies including Rieckmann et al., Gerner et al., and Mitchell et al. 

To assess the extent of similarities/dissimilarities across published studies on human 

and mouse CD4 T cell datases, we performed a series of comparisons across datasets. Alt-

hough a substantial overlap was observed between proteomic profiles of human resting 

and activated CD4+ T cells with a previous study on proteomic analysis of mouse resting 

CD4+ T cells and Th1 cells [41] (Figure 6B, Table S5) , a closer inspection of the pattern of 

expression demonstrated a poor correlation. This strongly indicates considerable species-

level differences in the protein expression profiles of both resting and activated CD4+ T 

cells (Figure 6C). 

Similar findings were also observed upon comparison of our dataset with previously 

published proteomic datasets on human CD4+ T cells [30,42,43] (Tables S6 and S7). A large 

overlap of identified proteins was observed across both resting and activated CD4+ T cells 

irrespective of the generation of mass spectrometers used (Figure 6D,E). However, corre-

lation matrices indicated a considerable heterogeneity in protein expression profiles be-

tween the different datasets. Overall, the proteomic profile provided by Rieckmann et al. 

[43] showed more similarity to the current study, while the proteome profiles from Gerner 

et al. [30] and Mitchell et al. [42] showed lower levels of correlation (Figure 6F). Taken 

together, our analysis demonstrates heterogeneity across individuals and the technology 

employed strongly affect the proteome dynamics of T-cells. 

3. Discussion 

Primary human CD4+ T cells have been studied extensively pertaining to their role 

in adaptive immunity. Several omics-based studies have characterized the proteome of 

CD4+ T cells. Despite these cells being studied in detail, the protein expression dynamics 

as well as signaling mechanisms operating in these cells during steady-state and upon 

induction of activation is not entirely understood. To identify changes in the protein ex-

pression profiles of resting and TCR-activated CD4+ T cells, we performed a label-free 

quantitative proteomic analysis on primary human CD4+ T cells derived from two donors. 

We also carried out the proteomic analysis of SUP-T1 cells, an in vitro T cell model cell 

line widely used in the field to compare and contrast proteome profiles of primary CD4+ 

T cells. Our study indicated that during the course of CD4+ T cell activation, significant 

changes in the protein expression profile occur. We identified several proteins that were 

previously found to be differentially expressed in response to stimulation. Importantly, 

markers of CD4+ T cell activation along with their regulators and Th1-, Th2-, Th17-, and 

Treg-specific markers were found to be upregulated, suggesting the presence of potential 

transient hybrid cell types. This has been previously suggested by logical modeling-based 

simulations on T cell differentiation [44]. These findings suggest heterogeneity in CD4+ T 

helper cell types during activation and differentiation into terminally differentiated CD4+ 

T effector cells. This heterogeneity may arise due to varying stimuli that the donors were 

exposed to throughout life, the in vitro condition of cells, the single timepoint used in the 

study-72 h, which probably represents an intermediate phase where the T cells may not 

be terminally differentiated into effector lineages. Further, the in vitro conditions used 

may not mimic the in vivo state where polarizing cytokine signals would usually arise 

from APCs. 

Further, several protein kinases, cytokines, MAP kinases, and markers of adaptive 

immune response, ROS, and hypoxia were found to be upregulated. Interstingly, proteins 

belonging to lipid metabolism and amino acid metabolism were found to upregulated in 

activated CD4+ T cells. This can be possibly be explained by the increasing cellular meta-

bolic needs due to CD4+ T cell activation and proliferation. In addition, several proteins 

involved in amino acid synthesis and transport were upregulated in activated CD4+ T 
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cells, indicating that uptake and utilization of nutrients are associated with T cell differ-

entiation and function. Our findings are in concordance with previous study suggesting 

amino acid transporters are essential for the normal differentiation and functioning of T 

cells [45–49]. Previous reports have shown that CD4+ T cell activation results in substan-

tial remodeling of the mitochondrial proteome that, in turn, generates specialized mito-

chondria with significant induction of the one-carbon metabolism pathway [50]. Defective 

one-carbon metabolism has been shown to result in defective resting T cell activation in 

aged mice [51]. In the current study, we identified several proteins belonging to the One 

carbon pool by folate pathway induced in CD4+ T cells after activation, including dihy-

drofolate reductase (DHFR), methylenetetrahydrofolate dehydrogenase (NADP+ de-

pendent) 1 like (MTHFD1L), methylenetetrahydrofolate dehydrogenase (NADP+ de-

pendent) 2, methenyltetrahydrofolate cyclohydrolase (MTHFD2), and thymidylate syn-

thetase (TYMS). This confirms the previous findings of mitochondrial remodeling after 

CD4+ T cell activation. 

An additional objective of this study was to compare proteomes between primary 

CD4+ T cells and commonly used T cell lines including Jurkat and SUP-T1 to see if the 

biological mechanisms in these cell models mimic the primary CD4+ T cells. Comparison 

of the lists of identified proteins across the three cell types showed the majority of the 

proteome expressed in these cells was common, driving essential processes of transcrip-

tion, translation, and transport. However, each of the cells also expressed proteomes ex-

clusive to each cell type, which might be caused due to varying proteomic coverage and 

depth in the different experiments. Differences were observed in terms of expression of T 

cell activators -CD3 and CD28 across these cell types, with CD3G not being identified in 

SUP-T1. This is in accordance with previous reports showing SUP-T1 cells to be CD3-

negative [52,53]. It is widely known that Jurkat cell lines are CD28+, and it not being de-

tected in the previous proteomics data suggests low proteome coverage as a possible 

cause. Both SUP-T1 and Jurkat cell lines exhibited enrichment of processes such as double-

strand break repair, histone modification, cell junction organizations, which could be due 

to the malignant nature of these lymphoblastic cell lines. In comparison, primary CD4+ T 

cells showed lower enrichment of repair processes. It can be concluded that these cell lines 

are essentially similar in terms of shared proteomes and can serve as useful models of 

resting primary CD4+ T cells. However, prior knowledge of the proteomes of these cell 

lines is desirable to study specific biological processes. Comparison of our data on CD4+ 

T cells with proteomic data from mouse CD4+ T cells showed lower levels of correlation, 

suggesting interspecies differences in CD4+ T cell activation, which may lead to poor 

translatability of findings of mouse-based experiments to the physiological state of T cell 

activation in humans. However, this needs to be validated and explored further. 

We also identified heterogeneity in the levels of CD4+ T cell activation markers pre-

sent in the cells from two donors. In our study, cells from donor 1 were observed to show 

more markers of activation, suggesting better activation. Further, resting cells from Donor 

1 showed higher levels of protein kinases and phosphatases. This could be attributed to a 

higher degree of variability among primary donors with respect to their age, immune sta-

tus, and recent exposure to infection. Comparison of CD4+ T cell proteomic profiles with 

other previously published studies also indicated considerable heterogeneity in proteo-

mic expression profiles of both resting and activated T cells. The heterogeneity also ex-

tended to important regulatory molecules of the adaptive immune response, such as im-

mune checkpoints. 

We identified several potential regulatory hubs of CD4+ T cell activation using net-

work analysis. These included proteins involved in inflammatory response, including 

VTN; CD40LG; IFNG; IL2RA; FN1; IL2RG; TNFRSF1B.. Interestingly, several proteins as-

sociated with the cell cycle, including CDK1, CDK2, CAPRIN1, CCNB1, and CDC20, are 

likely to be potentially regulatory hubs of CD4+ T cell activation. Previous studies have 

suggested that cell cycle progression and cytokine signaling are closely linked during 

CD4+ effector T cell differentiation [54–59]. The upregulation of proteins involved in DNA 
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replication such as MCM2-7 POLD3, POLA1, PCNA, and PRIM1; pyrimidine metabolism 

proteins such as RRM1; UCK2; RRM2; TK1; TYMS; TYMP; and the marker KI67 (MKI67) 

during activation is explained the increased rate of cell proliferation. Protein kinases such 

as RIOK2, AURKB, and PRKAB1 were found to be significantly upregulated in our da-

tasets after activation of CD4+ T cells. Among these, RIOK2 and AURKB were found to 

have potential roles as regulatory hubs from the network analysis. Both RIOK2 and 

AURKB are associated with cell cycle activities. Aurora kinase B (AURKB) has been 

shown to regulate CD28-dependent T cell activation and proliferation [60]. RIO kinase 2 

(RIOK2) is one of the members of the atypical protein kinase families [61]. RIOK2 is poorly 

studied compared to the other kinases; therefore, the biological mechanisms mediated by 

it are not well known. Over the years, a few papers have explored the role of RIOK2 in the 

context of the cell cycle. A study by Read and colleagues investigated a Drosophila glio-

blastoma model and discovered the Akt-dependent overexpression of RIOK1 and RIOK2 

in glioblastoma cells [62]. Further, the study also found that the decreased expression of 

these kinases caused aberrant Akt signaling and resulted in cell cycle and apoptosis [62]. 

A recent study identified RIOK2 silencing in glioma cells inhibited cell migration and in-

vasion [63]. RIOK2 has also been found to be essential for ribosome biogenesis [64,65], 

which in turn is regulated in a cell cycle-dependent fashion [66]. However, there are no 

previous reports of RIOK2 being associated with T cell activation. In a previous paper, it 

was shown that PLK1 phosphorylates and activates RIOK2 and this in turn leads to mi-

totic progression [67]. Polo-like kinase 1 (PLK1) has well-known roles in T cell function 

[68,69]. We thus hypothesize that RIOK2 might be involved in the division and function 

of T cells function. While the modulatory role of several of these potential regulatory hubs 

in T cell activation is well known, others such as RIOK2 need to be studied further. 

4. Materials and Methods  

4.1. Cells 

Buffy coats from healthy blood donors were received from the Blood Bank (St Olav's 

Hospital, Trondheim) with approval by the Regional Committee for Medical and Health 

Research Ethics (REC Central, Norway, NO. 2009/2245). Peripheral Blood Mononuclear 

Cells (PBMCs) were isolated from Buffy coats by density gradient centrifugation (Lym-

phoprep, Axis-shield PoC AS, Oslo, Norway). CD4+ T cells were isolated from PBMCs by 

a magnetic bead “negative” isolation procedure using the CD4+ T Cell Isolation Kit (Mil-

tenyi Biotec, Bergisch Gladbach, Germany) and LS columns (Miltenyi Biotec, Bergisch 

Gladbach, Germany). CD4+ T cell purity was assessed by flow cytometry using anti-CD4 

Alexa 700 (eBioscience) and anti-CD3 Brilliant Violet (BV) 785 (BioLegend) antibody stain-

ing. Data were acquired on a BD LSRII flow cytometer and analyzed using FlowJo soft-

ware (FlowJo, LLC, Ashland, OR, USA). For both donors, CD4+ T cell purity was >94 % 

and cell preparations contained less than 0.1% CD8+ cells and less than 0.5% cells CD11c+ 

or CD14+ cells of myeloid origin (Figures 1B and 1C). SUP-T1 human T lymphoblast cells 

(ATCC) were cultured in RPMI 1640 (Gibco) supplemented with 10% FBS and penicil-

lin/streptomycin (Thermo Fisher Scientific). 

4.2. CD4+ T Cell Activation 

For the unactivated (resting) CD4+ T cell samples, 1 × 107 CD4+ T cells from both 

donors were washed three times with PBS before the pellet was shock-frozen in liquid 

nitrogen and stored at −80 °C. For the activated CD4+ T cell samples, 1 × 107 CD4+ T cells 

from both donors were activated in anti-CD3 coated plates (clone OKT3, eBioscience, 5 

µg/mL, 1 h) in the presence of 1 µg/mL anti-CD28 (clone CD28.2, eBioscience). CD4+ T 

cells were cultured for 72 h in RPMI 1640 (Sigma-Aldrich), supplemented with 10% 

pooled human serum (The Blood Bank, St Olav’s Hospital, Trondheim, Norway) at 37 °C 

and 5% CO2. CD4+ T cells were washed three times with PBS before the pellet was shock-

frozen in liquid nitrogen and stored at −80 °C. 
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4.3. Sample Preparation of CD4+ T Cell for Proteomics 

The cell lysates were reconstituted in 300 µL lysis buffer containing 4% sodium do-

decyl sulfate (SDS) and 50 mM triethyl ammonium bicarbonate (TEABC) (Sigma-Aldrich). 

They were sonicated three times for 10 s on ice, followed by heating at 90 °C for 5 min. 

The lysate was further centrifuged at 12,000 rpm for 10 min. The concentration of protein 

was determined using bicinchoninic acid assay (BCA) (Thermo Fisher Scientific, Rock-

ford, IL, USA). The samples were subjected to in-solution trypsin digestion and subjected 

to strong cation exchange-based fractionation 

Briefly, 200 µg of protein lysate of resting and activated CD4 were considered for 

trypsin digestion, where it was reduced by incubating in 10 mM dithiothreitol (DTT) 

(Sigma-Aldrich) at 60 °C for 20 min and alkylated using 20 mM iodoacetamide (IAA) Ed-

ited at room temperature for 10 min. This was followed by acetone precipitation for 6 h, 

where the pellet was dissolved in 50 mM TEABC. The lysate was then subjected for diges-

tion using L-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK) treated trypsin 

(Worthington Biochemical Corporation, Lakewood, NJ, USA) at a final concentration of 

1:20 (w/w) at 37 °C overnight (~16 h). SCX fractionation was carried out as described pre-

viously [70]. 

4.4. Tandem Mass Spectrometry (MS/MS) Analysis 

The digested peptides were analyzed on Orbitrap Fusion Tribrid mass spectrometer 

(Thermo Scientific, Bremen, Germany) interfaced with Easy-nLC-1200 (Thermo Scientific, 

Bremen, Germany). Each fraction was reconstituted in 0.1% formic acid and loaded onto 

the trap column (75 µm × 2 cm, nanoViper, 3 µm, 100 A°) filled with C18 at a flow rate of 

4 µL/min with Solvent A. The peptides were then resolved onto the analytical column (15 

cm × 50 µm, nanoViper, 2 µm) for 120 min. Data were acquired by using data-dependent 

acquisition mode at a scan range of 400–1600, in positive mode with a maximum injection 

time of 55 ms using an Orbitrap mass analyzer at a mass resolution of 120,000. MS/MS 

analysis was carried out at a scan range of 400–1600. Top ten intense precursor ions were 

selected for each duty cycle and subjected to higher collision energy dissociation (HCD) 

with 35% normalized collision energy. The fragmented ions were detected using Orbitrap 

mass analyzer at a resolution of 120,000 with maximum injection time of 200 ms. Internal 

calibration was carried out using a lock mass option (m/z 445.1200025) from ambient air. 

4.5. Bioinformatics Analysis of Mass Spectrometry Data 

The raw data obtained from mass spectrometry analysis were searched against the 

human UniProt protein database (20,972 sequences, downloaded from ftp://ftp.uni-

prot.org/ on 3 July 2019) using MaxQuant (v1.6.10.43,) search algorithm. Trypsin was 

specified as the protease, and a maximum of two missed cleavages was specified. N-ter-

minal protein acetylation and oxidation of methionine were set as variable modifications, 

while carbamidomethylation of cysteine was set as a fixed modification. The peptide 

length was set between 8–25 and precursor, and fragment mass tolerances were specified 

as 20 ppm each. Decoy database search was used to calculate False Discovery Rate (FDR), 

which was set to 1% at PSM, protein, and peptide levels. The search results from 

MaxQuant were processed and label-free protein quantitation using Perseus (v. 1.6.2.2, , 

https://maxquant.net/perseus/) [71]. Briefly, intensity values were filtered, log-trans-

formed, and fold-change calculations were performed. Perseus was also used to generate 

volcano and PCA plots. 

Hypergeometric enrichment-based gene ontology and pathway analysis were car-

ried out with R (R studio v. 1.2.1335, Bioconductor v 3.9.0) scripts using clusterProfiler (v. 

3.12.0) [72] and Reactome pathways [73] with ReactomePA package (v. 1.28.0) [74]. The 

pathway enrichment parameters included 0.05 as p-value cut-off, Benjamini-Hochberg 

correction based p-value adjustment, minimum gene set size of 10, and q-value cut-off of 
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0.2. Pathways were plotted in R using ggplot2 package(v. 3.3.0,https://cran.r-pro-

ject.org/web/packages/ggplot2/). 

The Gene Ontology (GO) enrichment for Biological processes was carried out using 

R with clusterProfiler. The GO enrichment parameters included 0.05 as p-value cut-off, 

Benjamini-Hochberg correction based p-value adjustment, minimum gene set size of 10. 

Gene lists for functions such as Cell cycle, phagocytosis, autophagy, apoptosis, hypoxia, 

adaptive immune response, and T cell activation were obtained from the Molecular Sig-

natures Database (MSigDB, v. 7.0, https://www.gsea-msigdb.org/gsea/msigdb) [75]. Gene 

lists for metabolism was obtained from KEGG (https://www.genome.jp/kegg/), while 

genes list for reactive oxygen species was compiled from the literature [76]. Protein kinase 

and phosphatase lists were obtained, as described previously [77]. Immune checkpoints 

receptors and their ligands were compiled from the literature [38,40] and compared with 

the data from this study. Heatmaps were drawn using Morpheus (https://soft-

ware.broadinstitute.org/morpheus/) with Euclidean complete linkage-based hierarchical 

clustering. Networks were generated using StringApp [78] in Cytoscape (version 3.7.1) 

[79] as previously described [80]. Briefly, proteins that were upregulated in both donors 

and significant were filtered and used to generate networks. The network properties were 

calculated using NetworkAnalyzer in Cytoscape [81], and the network was visualized 

based on betweenness centrality and degree values. 

4.6. Isolation of SUP-T1 Cell Proteome and MS/MS Analysis 

The cell lysates of SUP-T1 was reconstituted in 300 µL lysis buffer containing 4% 

sodium dodecyl sulfate (SDS) and 50 mM triethyl ammonium bicarbonate (TEABC). It 

was sonicated three times for 10 s on ice, followed by heating at 90 °C for 5 min. The lysate 

was further centrifuged at 12,000 rpm for 10 min. The concentration of protein was deter-

mined using bicinchoninic acid assay (BCA), giving a yield of 11.3 µg/µL. Protein lysate 

of 200 µg was considered for trypsin digestion where it was reduced by incubating in 10 

mM dithiothreitol (DTT) at 60 °C for 20 min and alkylated using 20 mM iodoacetamide 

(IAA) at room temperature for 10 min. This was followed by acetone precipitation for 6 h 

where the pellet was dissolved in 50mM TEABC. The lysate was then subjected for diges-

tion using L-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK) treated trypsin 

(Worthington Biochemical Corporation, Lakewood, NJ, USA) at a final concentration of 

1:20 (w/w) at 37 °C overnight (~16 h). SCX fractionation was carried out as described pre-

viously [70]. The digested peptides were analyzed on Orbitrap Fusion Tribrid mass spec-

trometer (Thermo Scientific, Bremen, Germany) interfaced with Easy-nLC-1200 (Thermo 

Scientific, Bremen, Germany). Each fraction was reconstituted in 0.1% formic acid and 

loaded onto the trap column (75 µm × 2 cm, nanoViper, 3 um, 100A°) filled with C18. The 

peptides were then resolved onto the analytical column (15 cm × 50 µm, nanoViper, 2 µm) 

for 120 min at a flow rate of 250 nl/min. Data were acquired by using data-dependent 

acquisition mode at a scan range of 400–1600, in positive ion mode with a maximum in-

jection time of 10 ms using an Orbitrap mass analyzer at a mass resolution of 120,000. 

MS/MS analysis was carried out at a scan range of 110–1800. MS/MS analysis was carried 

out in Top Speed mode, and the precursor ions were subjected to higher collision energy 

dissociation (HCD) with 33% normalized collision energy. The fragmented ions were de-

tected using Orbitrap mass analyzer at a resolution of 30,000 with maximum injection time 

of 200 ms. Internal calibration was carried out using a lock mass option (m/z 445.1200025) 

from ambient air. Mass spectrometry derived data was searched against Human RefSeq 

81 protein database in Proteome Discoverer 2.1 (Thermo Scientific, Bremen, Germany) us-

ing SEQUEST and Mascot (version 2.5.1, Matrix Science, London, UK) search algorithms. 

The parameters included trypsin as a proteolytic enzyme with maximum two missed 

cleavage where cysteine carbamidomethylation was specified as static modification and 

acetylation of protein N-terminus and oxidation of methionine was set as dynamic modi-

fications. The length of 7 amino acids was set as minimum peptide length. The search was 

carried out with a precursor mass tolerance of 10 ppm and fragment mass tolerance of 
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0.05 Da. The data were searched against the decoy database with a 1% FDR cut-off at the 

peptide level. 

4.7. Comparison with Published Datasets 

We carried out comparisons of the data from this study with previously published 

datasets to gain a better understanding of the proteomic landscapes of T cells. We down-

loaded protein expression datasets of published studies and mapped them to gene sym-

bols using a combination of g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) [82], bioDBnet 

(https://biodbnet-abcc.ncifcrf.gov/db/db2db.php) [83] and UniProt ID mapping 

(https://www.uniprot.org/uploadlists/). Orthology conversion of mouse-to-human pro-

tein accessions was carried out using g:Orth function of g:Profiler and Homologene 

(https://www.ncbi.nlm.nih.gov/homologene) [84]. We compared proteomes of resting pri-

mary CD4+ T cells and SUP-T1 cells from the current dataset with a previously published 

proteome profile of Jurkat cells [36]. Hypergeometric enrichment-based gene ontology 

and pathway analysis were carried out with R (R studio v. 1.2.1335, Bioconductor v. 3.9.0) 

scripts using clusterProfiler (v. 3.12.0). 

The datasets were subjected to z-score-based normalization using the scale function 

of base R (v. 3.6.0) and merged to create matrices. The datasets were then subjected to 

quantile normalization using normalizeBetweenArrays feature of limma (v. 3.40.6) to ac-

count for data distribution skewness between multiple datasets. 

4.8. Data Availability 

Mass spectrometry-derived raw data were deposited to the ProteomeXchange Con-

sortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 

[85,86]. The data can be accessed using the dataset identifiers PXD015872 for CD4+ T cell 

data and PXD021272 for SUP-T1 cell data. 

5. Conclusions 

The current study provides a new high-resolution proteomic snapshot of resting 

CD4+ T cells and after 72 h of activation by TCR, together with a comparison to the prote-

ome of T cell lines and resting/activated human/mouse CD4+ T cells. We confirmed sev-

eral known T-cell activation-related processes such as IL-2 response, metabolic and sig-

naling changes, cell cycle induction, differentiation into effector cells, among others. The 

current dataset also provides a resource on checkpoint molecule expression (stimula-

tory/inhibitory) at this differentiation stage and implicates some proteins such as RIOK2 

that previously have not been associated with CD4+ T cell activation. Thus, the data gen-

erated from our study may contribute to a better understanding of the proteome transfor-

mations in primary CD4+ T cells during T cell activation and the comparability of the 

proteomes of primary human CD4+ T cells with T cell lines or mouse T cells. The data 

from our study here, together with other studies, may provide a foundation for develop-

ing therapeutic approaches to modulate CD4+ T cell functions. 
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AA Amino Acid 

FDR False Discovery Rate 

GO Gene Ontology 

KEGG Kyoto Encyclopedia of Genes and Genomes 

MACS Magnetic-Activated Cell Sorting 

NCBI National Center for Biotechnology Information 

PBMC Peripheral Blood Mononuclear Cell 

PSM Peptide Spectrum Match 

SDS Sodium Dodecyl Sulphate 
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TEABC Triethyl Ammonium Bicarbonate 
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