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Abstract

The main arteries that supply blood to the brain originate from the Circle of Willis (CoW).

The CoW exhibits considerable anatomical variations which may have clinical importance,

but the variability is insufficiently characterised in the general population. We assessed the

anatomical variability of CoW variants in a community-dwelling sample (N = 1,864, 874

men, mean age = 65.4, range 40–87 years), and independent and conditional frequencies

of the CoW’s artery segments. CoW segments were classified as present or missing/hypo-

plastic (w/1mm diameter threshold) on 3T time-of-flight magnetic resonance angiography

images. We also examined whether age and sex were associated with CoW variants. We

identified 47 unique CoW variants, of which five variants constituted 68.5% of the sample.

The complete variant was found in 11.9% of the subjects, and the most common variant

(27.8%) was missing both posterior communicating arteries. Conditional frequencies

showed patterns of interdependence across most missing segments in the CoW. CoW vari-

ants were associated with mean-split age (P = .0147), and there was a trend showing more

missing segments with increasing age. We found no association with sex (P = .0526). Our

population study demonstrated age as associated with CoW variants, suggesting reduced

collateral capacity with older age.

Introduction

The primary blood supply to the brain originates from the left and right internal carotid arter-

ies and the basilar artery. These arteries anastomose to form the Circle of Willis (CoW) at the

base of the brain (S1 Fig in S1 File). The circular arrangement of the arteries enables the redis-

tribution of blood flow when arteries in or upstream of the CoW experience reduced flow.

This collateral ability of the CoW provides redundancy in the blood supply to the brain.
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Segments in the CoW are commonly missing or hypoplastic rendering the CoW incomplete,

thereby reducing the collateral capacity of the CoW and increasing the brain’s vulnerability to

changes in the blood flow [1–3].

The CoW anatomy is clinically relevant as incomplete CoW variants are associated with an

increased risk of cerebrovascular disease. Studies on patient samples find that incomplete

CoW variants are associated with stroke [4, 5], aneurisms [6, 7] and white matter hyperintensi-

ties [8–11]. The CoW variants are also important in certain surgical procedures [12, 13]. It is

not clear if incomplete variants pose a similar risk in the general population.

Greatly varying prevalence estimates limit our understanding of the anatomical variability

in the CoW. For example, the estimated prevalence of the complete variant range from 12.2%

[3] to 45.0% [14]. Differences in sample characteristic [1, 12, 15, 16], sample size [17], and

measuring techniques [1, 15] are sources of variability. Additionally, many CoW classification

schemes cannot be compared fully, complicating the comparison between studies [1, 11, 18–

20]. Common classification schemes include using one or more diameter thresholds for arter-

ies [5, 12, 18, 19, 21, 22], comparing diameters of arteries relative to other arteries’ diameter [3,

6, 23], or a mix of both [1, 8, 15, 24]. Other schemes split the CoW classification into anterior

and posterior circulation [1, 5], or omit distinguishing between left and right sided variants [2,

3, 20]. One study did not report its classification scheme [2].

The primary goal of this study was to report population-based estimates of the prevalence

of CoW variants based on 3T MR angiography images using a classification scheme adapted

for more detailed quantitative analyses. We also examined if CoW variants were associated

with age and sex, and we reported the frequency of individual missing arteries in the CoW and

similarly their conditional frequencies, independently of CoW variants.

Materials and methods

The Tromsø Study

The Tromsø Study is a population-based cohort study recruiting from the Tromsø municipal-

ity in Norway. This study has been performed every six to seven years since 1974 and the sev-

enth survey (Tromsø 7) was performed in 2015–2016. Tromsø 7 consisted of two visits. All

inhabitants above age 40 were invited to the 1st visit, and 20,183 subjects participated (65%

participation rate). A subset of participants in the first part of the Tromsø 7 Study were invited

to a 2nd visit, where 8,346 subjects participated. Of these, 2,973 were invited to partake in a

cross-sectional magnetic resonance (MR) study. Of the invited, 525 declined, 396 did not

respond, 169 had conditions prohibiting MR examinations, and five had moved or were dead.

Furthermore, for 14 cases we were unable to find at least one of three baseline MRI series, con-

sequently yielding 1,864 subjects with time-of-flight (TOF) angiography series, T1-weighted

series, and T2-weighted fluid-attenuated inversion recovery (FLAIR) series (Fig 1). The study

was approved by the Regional Committee of Medical and Health Research Ethics Northern

Norway (2014/1665/REK-Nord) and carried out in accordance with relevant guidelines and

regulations at UiT The Arctic University of Norway. All participants gave written informed

consent before participating in the study.

MRI protocol

Participants were scanned at the University Hospital North Norway in a 3T Siemens Skyra

MR scanner (Siemens Healthcare, Erlangen, Germany). A 64-channel head coil was used in

most examinations, but in 39 examinations, a slightly larger 20-channel head coil had to be

used. The MRI protocol consisted of a 3D T1-weighted series, a 3D T2-weighted FLAIR series,

a susceptibility weighted series and a TOF angiography series, with a total scan time of 22
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minutes. Only the TOF images were used in this study. These were acquired with a 3D trans-

versal fast low angle shot sequence with flow compensation (TR/TE = 21/3.43 ms, parallel

imaging acceleration factor 3, FOV 200 × 181 mm, slice thickness 0.5 mm, 7 slabs with 40 slices

each). Reconstructed image resolution was 0.3 × 0.3 × 0.5 mm. The slice prescription was auto-

matically aligned to a standardized brain atlas ensuring consistency across examinations [25].

Classification of CoW variants

TOF images were evaluated by LBH, using a program created in MeVisLab (v3.0.1). The pro-

gram displays the TOF images both as a 3D rendering or a maximum intensity projection

(MIP), and in 2D with a lumen diameter measurement tool. For rating an artery as present,

the following criteria were used: (1) visible along its entire segment on the 3D rendering, (2)

have a diameter larger than 1 mm, (3) connected to other arteries as in the complete textbook

CoW. It is difficult to reliably identify smaller than 1 mm on TOF MRI due to the image reso-

lution and possibly low flow rates in small arteries. Due to these limitations, we followed the

convention as in most studies of the CoW [1, 5, 12, 18, 19, 21, 22] and did not differentiate

between missing and hypoplastic segments. We emphasize, however, that when we refer to

missing segments of the CoW we mean “missing or hypoplastic”. The classification criteria are

illustrated in Fig 2 with different degrees of hypoplastic/missing arteries. Compare it to S1 Fig

in S1 File for a complete “textbook-type” CoW.

Fig 1. Flow chart of the selection of subjects from the seventh Tromsø Study to the current study. MR = Magnetic

resonance, MRI = Magnetic resonance imaging, TOF = Time-of-flight angiography series, T1 = T1-weighted series,

FLAIR = T2-weighted fluid-attenuated inversion recovery series.

https://doi.org/10.1371/journal.pone.0241373.g001
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Fig 2. 3D volume rendering of a time-of-flight image depicting three classification cases within our classification scheme. Green arrow: The right

anterior cerebral artery is present. Yellow arrow: The left posterior cerebral artery is hypoplastic or missing, and just below 1mm in diameter. Red arrow:

The right posterior cerebral artery is clearly missing. The configuration itself is of bilateral missing posterior cerebral artery (2P) type. Image follows

neurological convention, where left is left and right is right. An orientation cube in the lower right corner show orientation, and its P denotes posterior.

https://doi.org/10.1371/journal.pone.0241373.g002
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The CoW consists of seven arteries, all of which were considered in our variants. First, the

left and right proximal anterior cerebral artery (ACA), the anterior communicating artery

(ACoA), the left and right posterior communicating artery (PCoA), and the left and right

proximal posterior cerebral artery (PCA). We also considered the three largest in-flow arteries,

both the left and right internal carotid artery (ICA) and the basilar artery (BA), and the left

and right middle cerebral artery (MCA) in relation to the variants, because they, although

rarely, can be missing and are important for interpreting the collateral flow in a CoW. The dis-

tal ACA and distal PCA segments were not considered since they are almost always present

and can receive collateral flow through ACoA, and PCoA or PCA, respectively. A textbook

CoW is visualised in S1 Fig in S1 File. There were some rare variants that did not fit into the

regular classification of the CoW, such as the persistent primitive trigeminal artery, described

in Dimmick et al. [26], which was ignored. Arterial segments that did not connect to their

expected locations were classified according to the third criterion. For instance, variations in

the ACoA, of which there are many of [3], were all regarded as a single ACoA. Furthermore, a

posterior CoW variant named unilateral dual PCA (S2 Fig in S1 File) was categorized as miss-

ing a PCoA using the third criterion, because of the missing connection between the PCoA

and its ipsilateral PCA. This simplification via the third criterion does not compromise the

descriptions of the collateral flow ability within each CoW variant.

We labelled the CoW variants using a nomenclature similar to previous studies [1, 6],

where each variant’s name signified the missing segments. For brevity, ACA were denoted by

“A”, ACoA by “Ac”, PCA by “P”, PCoA by “Pc”, ICA by “I”, MCA by “M”, and BA by “B”.

Alternatively, when no artery segment was missing a complete CoW was denoted by “O”. To

specify whether a missing segment was in the left or right hemisphere, an “l” or “r” suffix is

used. If the same segment was missing on both sides the number “2” was instead used as a pre-

fix, e.g. “2Pc” for the variant where both PCoA are missing. This scheme ensured unique

names for all CoW variants. See Fig 3 for illustrations of variants with their corresponding

label.

A random sample (N = 100) was blinded and reclassified by the same rater (LBH), and also

another rater (TRV) blinded to the original classification, in order to measure intra- and inter

rater accuracy.

Comparison with other studies

To contextualise our CoW variant frequencies, we wanted to compare with other studies.

Unfortunately, to our knowledge, there is only one other CoW TOF MR study with a similar

sample size compared to ours. The study is in 2246 healthy Chinese men [3], and we were able

to perform comparisons with their study with only minor adaptations of the classification of

the CoW variants. Main changes included removing left and right lateralization in our CoW

variants, and translating their CoW variants to our nomenclature. Further information about

the comparison is found in the S1 and S2 Files.

Statistical analysis

We split the CoW data at mean age of participants, grouping subjects into a “younger” and

“older” group (Table 1). We also grouped the subjects into age per decade (5 categories, 40

years to 90 years). Formulas used to calculate all frequencies for every CoW segment and vari-

ant are described in the S1 File. CoW variants observed less than ten times were grouped into

a single composite category of rare variants (S1 Table in S1 File). This composite category was

created to include all subjects when testing without having too few observations in the array

elements (see S1 File for details). The Cochran-Mantel-Haenszel test was used to test whether
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Fig 3. Complete graphical overview of all Circle of Willis variants observed in the current study. All variants are sorted first by (descending) frequency and

then, in case of equal frequencies, by alphanumerical ordering. Each variant’s name is put together by the missing segments with the following notation:

O = Complete variant (no missing arteries), Ac = Anterior communicating artery, A = Anterior cerebral artery, Pc = Posterior communicating artery,

P = Posterior cerebral artery, I = Internal carotid artery, M = Middle cerebral artery, B = Basilar artery, while the suffixes “r” and “l” denote right and left

lateralization of arteries. The prefix “2” denotes bilateral missing arteries.

https://doi.org/10.1371/journal.pone.0241373.g003

Table 1. Age distributions per sex of subjects.

Men n = 874: Women n = 990:

Mean split age

Above mean age� 503 (57.6) 513 (51.8)

Below mean age� 371 (42.4) 477 (48.2)

Age by decade

40–49 84 (9.6) 123 (12.4)

50–59 135 (15.4) 177 (17.9)

60–69 313 (35.8) 353 (35.6)

70–79 273 (31.2) 264 (26.7)

80–89 69 (7.8) 73 (7.4)

(�) = Average age is 65.4 years.

https://doi.org/10.1371/journal.pone.0241373.t001
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CoW variant frequencies were associated with sex, and age. This test allows for testing condi-

tional independence between two factors while controlling for a third factor. As such, we used

the Cochran-Mantel-Haenszel test to test for conditional independence between CoW variants

and sex while controlling for the dichotomic age variable, and to test for conditional indepen-

dence between CoW variants and dichotomic age while controlling for sex. Both of these tests

had array dimensions 23 × 2 × 2. The effect of age was further examined by plotting the distri-

bution of CoW variants for each decade. To assess whether sex might affect this plot, a 5 × 2

Chi-squared test between age per decade and sex was performed to assess independence

(Table 1). We considered a Bonferroni corrected P < 0.05 as significant (nominal P < 0.0167).

At last, the accuracy metric was used to assess the intra- and inter rater validation. All compu-

tations were performed in R (v3.4.4) and three figures were created using the ggplot2 package

[27].

Results

Study participants

The mean age for all participants was 65.4 years (SD = 10.6). There were 874 men (47%), mean

age 66.1 years (SD = 10.4, range = 40–86 years), and 990 women (53%), mean age 64.7 years

(SD = 10.7, range = 41–87 years). Distributions of both mean-split age and decade age group-

ings with respect to sex are shown in Table 1, and distribution of age for men and women are

shown in S3 Fig in S1 File.

Frequencies of CoW variants

We found 47 unique variants of the CoW (Fig 3). Of these, 22 made up 96.8% of the sample

(Table 2), while the remaining 25 variants had less than ten observations each and constituted

in total only 3.2% of the sample (S1 Table in S1 File). The most common variants were, 2Pc

(27.8%), with both PCoA segments missing, Pcl (12.2%), with the left PCoA segment missing,

the complete O variant (11.9%), Ac2Pc (9.3%), with the ACoA and both PCoA missing, and

Pcr (7.3%) with the right PCoA missing. These five most common CoW variants constituted

68.5% of the total sample. These findings suggest that only about 12% of the adult population

have a complete CoW, while the remaining 88% have one or more missing segments, thus

reducing their collateral capacity.

Comparison of adapted CoW estimates with a previous study

After adapting the CoW estimates, we were able to compare 18 of our resulting prevalence esti-

mates to the well-powered Chinese study [3] (S1 and S2 Files). This comparison showed excel-

lent agreement; with mean and median percent point differences of 1.6 and 0.8 respectively

(range 0.1–10.6 percent points). The difference between the complete variant estimates was

only 0.3 percent points. Most of the total 28.4 percent point difference could be attributed to

variants missing PCoA or PCA. In the end, we compared 99.2% of our sample with 100% of

the other study, resulting in only an additional 0.8 percent point bias. In sum, the comparison

showed near-perfect agreement for nearly all CoW variants.

Frequencies of missing segments independent of CoW variant

The frequencies of missing CoW segments in the whole sample are shown in Fig 4. The left

and right PCoA were most frequently missing (60.6% and 53.6%), followed by the ACoA

(22.7%). There was a notable right-left asymmetry in the frequencies of missing ACA and
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PCoA, but not for PCA. The right-to-left ratio for ACAs (4.3%/1.8%) was large, considering

how infrequent the ACAs were missing.

Pairwise conditional frequencies of missing segments

The heatmap of conditional frequencies (Fig 5) shows the conditional probabilities between

CoW segments that were commonly missing, i.e. PCoA, PCA, ACA and ACoA (Fig 4).

Although the conditional frequencies ultimately reflect the observed variant frequencies, the

heatmap representation reveals several interesting patterns. First, ACoA was seldom missing if

the left or right ACA was missing. Second, each ACA, PCoA and PCA segment pairs had

approximately equal probability of being missing if the ACoA was missing. Third, if ACA was

missing on one side, it was much more likely that the PCA was missing on the same side than

on the opposite side, suggesting an ipsilateral pattern. Fourth, a contralateral pattern existed

between ACA and PCoA, i.e., if the ACA was missing on one side, it was more likely that the

PCoA was missing on the other side. Lastly, similar contralateral patterns were also seen

between PCA and PCoA, within the PCoA pair, and within the PCA pair.

Table 2. Frequencies of common Circle of Willis variants for the whole sample, and their frequencies for men and women, and for being below and above mean age

[number of cases (percentage of column total)].

Variant: Total n = 1,864: Men n = 874: Women n = 990: Below mean age n = 848: Above mean age n = 1,016:

2Pc 518 (27.8) 266 (30.4) 252 (25.5) 222 (26.2) 296 (29.1)

Pcl 227 (12.2) 95 (10.9) 132 (13.3) 116 (13.7) 111 (10.9)

O 221 (11.9) 88 (10.1) 133 (13.4) 123 (14.5) 98 (9.6)

Ac2Pc 173 (9.3) 72 (8.2) 101 (10.2) 73 (8.6) 100 (9.8)

Pcr 137 (7.3) 69 (7.9) 68 (6.9) 71 (8.4) 66 (6.5)

AcPcl 63 (3.4) 33 (3.8) 30 (3.0) 31 (3.7) 32 (3.1)

PcrPl 58 (3.1) 26 (3.0) 32 (3.2) 29 (3.4) 29 (2.9)

PclPr 57 (3.1) 35 (4.0) 22 (2.2) 25 (2.9) 32 (3.1)

Ac 49 (2.6) 19 (2.2) 30 (3.0) 26 (3.1) 23 (2.3)

AcPcr 46 (2.5) 18 (2.1) 28 (2.8) 20 (2.4) 26 (2.6)

Pl 43 (2.3) 16 (1.8) 27 (2.7) 13 (1.5) 30 (3.0)

Pr 41 (2.2) 22 (2.5) 19 (1.9) 17 (2.0) 24 (2.4)

AcPclPr 23 (1.2) 11 (1.3) 12 (1.2) 9 (1.1) 14 (1.4)

2P 21 (1.1) 11 (1.3) 10 (1.0) 9 (1.1) 12 (1.2)

ArPclPr 21 (1.1) 9 (1.0) 12 (1.2) 7 (0.8) 14 (1.4)

AcPl 19 (1.0) 10 (1.1) 9 (0.9) 8 (0.9) 11 (1.1)

Ar2Pc 19 (1.0) 10 (1.1) 9 (0.9) 9 (1.1) 10 (1.0)

AcPr 17 (0.9) 6 (0.7) 11 (1.1) 9 (1.1) 8 (0.8)

AcPcrPl 16 (0.9) 8 (0.9) 8 (0.8) 3 (0.4) 13 (1.3)

Ac2P 14 (0.8) 7 (0.8) 7 (0.7) 3 (0.4) 11 (1.1)

ArPcl 11 (0.6) 2 (0.2) 9 (0.9) 4 (0.5) 7 (0.7)

Al2Pc 10 (0.5) 4 (0.5) 6 (0.6) 3 (0.4) 7 (0.7)

Rare/Other 60 (3.2) 37 (4.2) 23 (2.3) 18 (2.1) 42 (4.1)

Each variant is put together by the missing segments with the following notation: 2P: Missing bilateral posterior cerebral artery. 2Pc: Missing bilateral posterior

communicating artery. Ac: Missing anterior communicating artery. Pc: Missing posterior communicating artery. P: Missing proximal posterior cerebral artery. A:

Missing proximal anterior cerebral artery. Left and right lateralization are denoted by using “l” or “r” respectively as a suffix for eligible segments. Special cases exempt

from the preceding are: O: Complete variant, i.e. no missing segments. Rare/Other: Composite category of other rare variants with missing segment(s).

https://doi.org/10.1371/journal.pone.0241373.t002
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Tests of conditional independence between CoW variant frequencies and

sex, and age, while controlling for the other

The Cochran-Mantel-Haenszel test of conditional independence between sex and CoW vari-

ant frequencies while controlling for age (Table 2), resulted in M2(22, N = 1,864) = 33.702 with

unadjusted P = .0526. This result imply that sex is not significantly associated with the fre-

quency of CoW variants when corrected for mean split age.

The second Cochran-Mantel-Haenszel test (Table 2) tested whether CoW variant frequen-

cies were conditionally independent of being above or below sample mean age while control-

ling for sex. This test returned M2(22, N = 1,864) = 38.849 with unadjusted P = .0147,

demonstrating that the mean-split age group was associated with the distribution of CoW vari-

ants, when corrected for sex.

CoW variant frequencies per decade

Fig 6 shows CoW variant frequencies per decade. From this figure, we observed that for each

increasing decade the CoW variants that were missing a single artery (Ac, Pcl and Pcr) and the

complete variant became less common. We also observed that the composite category of rare

CoW variants became more common in later decades. These observations suggest that it is

more common in older age to have more missing segments in the CoW.

Fig 4. Frequency that each artery is missing independently of Circle of Willis variants and other arteries. Nominators and denominators are in

corresponding parentheses, and represent respectively the number of times an artery is missing and the total number of subjects. ACA: Anterior cerebral

artery. ACoA: Anterior communicating artery. PCoA: Posterior communicating artery. PCA: Posterior cerebral artery. ICA: Internal carotid artery. MCA:

Middle cerebral Artery. BA: Basilar artery. Hemispheric left and right lateralization are denoted by “L” and “R” respectively.

https://doi.org/10.1371/journal.pone.0241373.g004
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Test of independence between sex and decade age groups

The 5 × 2 Chi-squared test was carried out (Table 1) to test for independence between the sex

and age as decades group in Fig 6. This test yielded X2(4, N = 1,864) = 8.482 with unadjusted

P = .075, implying homogeneous distribution of men and women across the five decades.

Thus, due to the homogeneity result, Fig 6 is statistically appropriate to interpret equally for

both sexes.

Intra- and inter rater validation

The intra rater validation yielded an accuracy score of 79% (conflicting classification in 21 of

100 cases). Closer inspection showed that only a single artery was mismatched for all 21 variant

mismatches (S4 Fig in S1 File). The ACoA was prone to ambiguity with a total of 12 mis-

matches. ACA and PCA were misclassified as present instead of missing in four and three

cases, respectively.

The inter rater validation yielded an accuracy score of 82% (conflicting classification in 18

of 100 cases). Compared to the intra rater validation, the inter rater validation had higher accu-

racy score, but had on the contrary more severe misclassifications. In other words, the mis-

matches were not only single artery mismatches. See S5 Fig in S1 File for details on the inter

rater validation.

Fig 5. Heatmap of conditional probabilities that Y-artery is missing given that X-artery was missing. Numerators and denominators of conditional probability

estimates are provided in the brackets, and represent respectively the number of times two segments are missing at the same time (joint probability) and per column

the number of times the artery X is missing (independent probability). The common denominator of the joint probabilities and independent probabilities have

cancelled. ACA: Anterior cerebral artery. ACoA: Anterior communicating artery. PCoA: Posterior communicating artery. PCA: Posterior cerebral artery. Left and

right lateralization are denoted by “L” and “R” respectively. Each successive heatmap interval increases in size with 0.05.

https://doi.org/10.1371/journal.pone.0241373.g005
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Discussion

This is, to our knowledge, the largest population-based study on the anatomical variation of

the CoW, that included both men and women. The large sample size and recruitment of par-

ticipants from the general population provide prevalence estimates of the anatomical variation

in the CoW according to our classification scheme for people between 40 to 90 years of age.

Main findings were that only 11.9% had a complete textbook CoW variant, while the remain-

ing 88.1% had one or more missing segments in the CoW. In total, we found 47 variants of the

CoW, but only five of these variants were very common (i.e. present in > 5%). Further notable

findings were that CoW frequencies were associated with age, but not with sex, and that there

were patterns of interdependent missing segment patterns across CoW variants.

The agreement in prevalence estimates between our study and a comparable well-powered

study [3] has several possible implications. First, the similarities between a male Chinese popu-

lation and a Norwegian population suggest that variations in the CoW are similar across popu-

lations. A notion consistent with a study on twins finding no genetic effect on the variability of

the CoW [14]. Second, it supports our finding that sex is not associated with the anatomical

variability in the CoW, since the study by Qiu et al. [3] only included men, while our study

included both women and men in an approximately equal proportion. Third, since most pre-

vious studies have relied on sample sizes of up to a few hundred participants, it is likely, con-

sidering the agreement between two studies with a sample size of about 2000, that the

Fig 6. Stacked bar plot of the frequencies of the most common Circle of Willis variants divided into age intervals as decades. Each variant is put

together by the missing segments with the following notation: 2P: Missing bilateral posterior cerebral artery. 2Pc: Missing bilateral posterior

communicating artery. Ac: Missing anterior communicating artery. Pc: Missing posterior communicating artery. P: Missing proximal posterior

cerebral artery. A: Missing proximal anterior cerebral artery. Left and right lateralization are denoted by using “l” or “r” respectively as a suffix for

eligible segments. Special cases exempt from the preceding are: O: Complete variant, i.e. no missing segments. Rare/Other: Composite category of other

rare variants with one or more missing segments.

https://doi.org/10.1371/journal.pone.0241373.g006
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disagreement between prevalence estimates in previous studies stems from too small study

samples.

We found that CoW frequencies were associated with age, which has been observed in

other studies [1, 22, 28]. These studies found, similarly to our study, that the number of miss-

ing arteries increased with age. Although the underlying cause of the increase in missing seg-

ments with age is not clear, atherosclerosis has been suggested as a possible cause [22], since

plaque in an arterial segment might reduce the flow so that the segment is not detected on

flow-sensitive TOF MRI. The reduction in cerebral blood flow with age [29] possibly in con-

junction to the increase in tortuosity of blood vessels with age [30] could also alter the flow pat-

tern in the CoW such that there is no, or very little flow in some segments, which would also

appear as missing segments in the CoW. It is therefore not impossible that the increased rate

of missing segments with age is caused by atherosclerosis or other factors affecting the blood

flow in the CoW.

We did not find an association between sex and the frequencies of CoW variants. Previous

studies have reported conflicting findings regarding the effect of sex; some find that the com-

plete variant is more prevalent in women [1, 28], that specific variations are more common in

men or women [6], or that there is no association [22]. Differences in methods, sample sizes

and statistics, make it difficult to compare our results to the previous findings. However, the

large sample size and correction for a possible age bias in our analysis, suggest that the effect of

sex on the anatomy of the CoW is not substantial.

Study limitations were as follows. First, the TOF MR technique is sensitive to blood flow,

i.e. it is necessary for blood to flow with a sufficient speed to be visible on the TOF images. As

such we are only visualising blood flow, not arteries, and some of the missing CoW vessels

might well be present, but not visible on the TOF images. This is supported by the higher fre-

quency of the complete CoW variant in dissection studies [31, 32], but it is worth noting that

dissection studies also show that some sections in the CoW can be completely absent as well

[31]. Second, we did not differentiate between missing and hypoplastic segments. Although

this is done in most CoW studies [1, 5, 12, 18, 19, 21, 22], our prevalences do not reflect all the

nuances in the CoW. There is also a functional distinction between missing and hypoplastic

segments as hypoplastic segment may provide some collateral flow, which is overlooked with

our classification. Third, as seen from the intra- and inter rater validation there were some

misclassifications in ambiguous cases of certain arteries. In particular, the ACoA was associ-

ated with higher rate of misclassification than other arteries. Some cases of ACA, PCoA and

PCA were also mismatched, but not of the same magnitude as ACoA. As such, estimates

including ACoA should be considered less accurate. Last, because of the large number of vari-

ants found, the precision of frequencies for a given variant should be judged relatively to its

number of observations. On the other hand, our study strengths were as follows: (1) a large

sample size, (2) a rigorous and reproducible classification scheme, and (3) intra- and inter

rater validation indicating similar classification robustness across each rater.

In conclusion, in a large population sample, 47 anatomical variants of the CoW were found,

but only 5 variants were commonly encountered. The complete CoW variant was the third

most frequent variant present in 11.9% of the sample. Mean-split age was significantly associ-

ated with CoW variant frequencies, which could be partially explained by the increased num-

ber of hypoplastic or missing arteries with increasing age. We also found interdependent

hypoplastic or missing segment patterns between the ACAs, ACoA, PCoAs, and the PCAs,

highlighting the importance of also including the whole CoW during assessment to retain

information about the CoW variants’ collateral ability. Our variant frequencies agreed well

with another large-scale MRI study in Chinese men suggesting the possibility of similar CoW

variant frequencies across different populations, and that large variability in CoW variant
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frequency in the literature possibly stems from using too small samples. The observed increas-

ing number of hypoplastic or missing segments with age suggests that the collateral ability of

the CoW may become an increasingly important risk factor for brain health with older age.
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12. Klimek-Piotrowska W, Rybicka M, Wojnarska A, Wójtowicz A, Koziej M, Hołda MK. A multitude of varia-

tions in the configuration of the circle of Willis: an autopsy study. Anat Sci Int. 2016; 91(4):325–33.

https://doi.org/10.1007/s12565-015-0301-2 PMID: 26439730

13. Papantchev V, Stoinova V, Aleksandrov A, Todorova-Papantcheva D, Hristov S, Petkov D, et al. The

role of willis circle variations during unilateral selective cerebral perfusion: A study of 500 circles. Eur J

Cardio-thoracic Surg. 2013; 44(4):743–53. https://doi.org/10.1093/ejcts/ezt103 PMID: 23471152

14. Forgo B, Tarnoki AD, Tarnoki DL, Kovacs DT, Szalontai L, Persely A, et al. Are the Variants of the Circle

of Willis Determined by Genetic or Environmental Factors? Results of a Twin Study and Review of the

Literature. Twin Res Hum Genet. 2018; 21(5):384–93. https://doi.org/10.1017/thg.2018.50 PMID:

30201058

15. Li Q, Li J, Lv F, Li K, Luo T, Xie P. A multidetector CT angiography study of variations in the circle of

Willis in a Chinese population. J Clin Neurosci. 2011; 18(3):379–83. https://doi.org/10.1016/j.jocn.2010.

07.137 PMID: 21251838

16. Van Kammen MS, Moomaw CJ, Van Der Schaaf IC, Brown RD, Woo D, Broderick JP, et al. Heritability

of circle of Willis variations in families with intracranial aneurysms. PLoS One. 2018; 13(1):1–9.

17. Liebeskind DS. Mapping the collaterome for precision cerebrovascular health: Theranostics in the con-

tinuum of stroke and dementia. J Cereb Blood Flow Metab. 2018; 38(9):1449–60. https://doi.org/10.

1177/0271678X17711625 PMID: 28555527

18. De Silva KR, Silva R, Gunasekera WS, Jayesekera R. Prevalence of typical circle of Willis and the vari-

ation in the anterior communicating artery: A study of a Sri Lankan population. Ann Indian Acad Neurol.

2009; 12(3):157–61. https://doi.org/10.4103/0972-2327.56314 PMID: 20174495

19. Hashemi SM, Mahmoodi R, Amirjamshidi A. Variations in the Anatomy of the Willis0 circle: A 3-year

cross-sectional study from Iran (2006–2009). Are the distributions of variations of circle of Willis different

in different populations? Result of an anatomical study and review of literature. Surg Neurol Int. 2013; 4

(1):65. https://doi.org/10.4103/2152-7806.112185 PMID: 23772335

20. Eftekhar B, Dadmehr M, Ansari S, Ghodsi M, Nazparvar B, Ketabchi E. Are the distributions of varia-

tions of circle of Willis different in different populations?–Results of an anatomical study and review of lit-

erature. BMC Neurol. 2006; 6(1):22.

21. Tanaka H, Fujita N, Enoki T, Matsumoto K, Watanabe Y, Murase K, et al. Relationship between varia-

tions in the circle of Willis and flow rates in internal carotid and basilar arteries determined by means of

magnetic resonance imaging with semiautomated lumen segmentation: reference data from 125

healthy volunteers. AJNR Am J Neuroradiol. 2006; 27(8):1770–5. PMID: 16971634

22. El-Barhoun E, Gledhill S, Pitman A. Circle of Willis artery diameters on MR angiography: An Australian

reference database. J Med Imaging Radiat Oncol. 2009; 53(3):248–60. https://doi.org/10.1111/j.1754-

9485.2009.02056.x PMID: 19624291

23. Ozaki T, Handa H, Tomimoto K, Hazama F. Anatomical Variations of the Arterial System of the Base of

the Brain. Arch für japanische Chir. 1977; 46(1):3–17. PMID: 561574

PLOS ONE Variations in the Circle of Willis

PLOS ONE | https://doi.org/10.1371/journal.pone.0241373 November 3, 2020 14 / 15

https://doi.org/10.1007/s00234-015-1589-2
http://www.ncbi.nlm.nih.gov/pubmed/26358136
https://doi.org/10.3171/jns.2002.96.4.0697
http://www.ncbi.nlm.nih.gov/pubmed/11990810
https://doi.org/10.3174/ajnr.A3991
http://www.ncbi.nlm.nih.gov/pubmed/24948501
https://doi.org/10.1111/ijs.12042
http://www.ncbi.nlm.nih.gov/pubmed/23521864
https://doi.org/10.1111/jon.12103
https://doi.org/10.1111/jon.12103
http://www.ncbi.nlm.nih.gov/pubmed/24593769
https://doi.org/10.1159/000329274
http://www.ncbi.nlm.nih.gov/pubmed/21865763
https://doi.org/10.1016/j.ejrad.2017.01.031
http://www.ncbi.nlm.nih.gov/pubmed/28267525
https://doi.org/10.1007/s12565-015-0301-2
http://www.ncbi.nlm.nih.gov/pubmed/26439730
https://doi.org/10.1093/ejcts/ezt103
http://www.ncbi.nlm.nih.gov/pubmed/23471152
https://doi.org/10.1017/thg.2018.50
http://www.ncbi.nlm.nih.gov/pubmed/30201058
https://doi.org/10.1016/j.jocn.2010.07.137
https://doi.org/10.1016/j.jocn.2010.07.137
http://www.ncbi.nlm.nih.gov/pubmed/21251838
https://doi.org/10.1177/0271678X17711625
https://doi.org/10.1177/0271678X17711625
http://www.ncbi.nlm.nih.gov/pubmed/28555527
https://doi.org/10.4103/0972-2327.56314
http://www.ncbi.nlm.nih.gov/pubmed/20174495
https://doi.org/10.4103/2152-7806.112185
http://www.ncbi.nlm.nih.gov/pubmed/23772335
http://www.ncbi.nlm.nih.gov/pubmed/16971634
https://doi.org/10.1111/j.1754-9485.2009.02056.x
https://doi.org/10.1111/j.1754-9485.2009.02056.x
http://www.ncbi.nlm.nih.gov/pubmed/19624291
http://www.ncbi.nlm.nih.gov/pubmed/561574
https://doi.org/10.1371/journal.pone.0241373


24. Barkeij Wolf JJ, Foster-Dingley JC, Moonen JE, van Osch MJ, de Craen AJ, de Ruijter W, et al. Unilat-

eral fetal-type circle of Willis anatomy causes right–left asymmetry in cerebral blood flow with pseudo-

continuous arterial spin labeling: A limitation of arterial spin labeling-based cerebral blood flow measure-

ments? J Cereb Blood Flow Metab. 2016; 36(9):1570–8. https://doi.org/10.1177/0271678X15626155

PMID: 26755444

25. van der Kouwe AJW, Benner T, Fischl B, Schmitt F, Salat DH, Harder M, et al. On-line automatic slice

positioning for brain MR imaging. Neuroimage. 2005 Aug; 27(1):222–30. https://doi.org/10.1016/j.

neuroimage.2005.03.035 PMID: 15886023

26. Dimmick SJ, Faulder KC. Normal Variants of the Cerebral Circulation at Multidetector CT Angiography.

RadioGraphics. 2009 Jul; 29(4):1027–43. https://doi.org/10.1148/rg.294085730 PMID: 19605654

27. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016.

28. Zaninovich OA, Ramey WL, Walter CM, Dumont TM. Completion of the Circle of Willis Varies by Gen-

der, Age, and Indication for Computed Tomography Angiography. World Neurosurg. 2017; 106:953–

63. https://doi.org/10.1016/j.wneu.2017.07.084 PMID: 28736349

29. Buijs PC, Krabbe-Hartkamp MJ, Bakker CJ, de Lange EE, Ramos LM, Breteler MM, et al. Effect of age

on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in

250 adults. Radiology. 1998 Dec; 209(3):667–74. https://doi.org/10.1148/radiology.209.3.9844657

PMID: 9844657

30. Wright SN, Kochunov P, Mut F, Bergamino M, Brown KM, Mazziotta JC, et al. Digital reconstruction

and morphometric analysis of human brain arterial vasculature from magnetic resonance angiography.

Neuroimage. 2013 Nov 15; 82:170–81. https://doi.org/10.1016/j.neuroimage.2013.05.089 PMID:

23727319

31. Kapoor K, Singh B, Dewan LIJ. Variations in the configuration of the circle of Willis. Anat Sci Int. 2008;

83(2):96–106. https://doi.org/10.1111/j.1447-073X.2007.00216.x PMID: 18507619

32. Gunnal SA, Farooqui MS, Wabale RN. Anatomical Variations of the Circulus Arteriosus in Cadaveric

Human Brains. Neurol Res Int. 2014; 2014:1–16. https://doi.org/10.1155/2014/687281 PMID:

24891951

PLOS ONE Variations in the Circle of Willis

PLOS ONE | https://doi.org/10.1371/journal.pone.0241373 November 3, 2020 15 / 15

https://doi.org/10.1177/0271678X15626155
http://www.ncbi.nlm.nih.gov/pubmed/26755444
https://doi.org/10.1016/j.neuroimage.2005.03.035
https://doi.org/10.1016/j.neuroimage.2005.03.035
http://www.ncbi.nlm.nih.gov/pubmed/15886023
https://doi.org/10.1148/rg.294085730
http://www.ncbi.nlm.nih.gov/pubmed/19605654
https://doi.org/10.1016/j.wneu.2017.07.084
http://www.ncbi.nlm.nih.gov/pubmed/28736349
https://doi.org/10.1148/radiology.209.3.9844657
http://www.ncbi.nlm.nih.gov/pubmed/9844657
https://doi.org/10.1016/j.neuroimage.2013.05.089
http://www.ncbi.nlm.nih.gov/pubmed/23727319
https://doi.org/10.1111/j.1447-073X.2007.00216.x
http://www.ncbi.nlm.nih.gov/pubmed/18507619
https://doi.org/10.1155/2014/687281
http://www.ncbi.nlm.nih.gov/pubmed/24891951
https://doi.org/10.1371/journal.pone.0241373

