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Assessing Cognitive Performance Using Physiological and Facial
Features: Generalizing Across Contexts

Sensing and machine learning advances have enabled the unobtrusive measurement of physiological responses and facial
expressions so as to estimate one’s cognitive performance. This often boils down to mapping the states of the cognitive
processes underpinning human cognition: physiological responses (e.g., heart rate) and facial expressions (e.g., frowning)
often reflect the states of our cognitive processes. However, it remains unclear whether physiological responses and facial
expressions used in one particular task (e.g., gaming) can reliably assess cognitive performance in another task (e.g., coding),
because complex and diverse tasks often require varying levels and combinations of cognitive processes. In this paper, we
measure the cross-task reliability of physiological and facial responses. Specifically, we assess cognitive performance based on
physiological responses and facial expressions for 123 participants in 4 independent studies (3 studies for out-of-sampling
training and testing, and 1 study for evaluation only): (1) a Pac-Man game, (2) an adaptive-assessment learning task, (3) a code-
debugging task, and (4) a gaze-based game. We follow an ensemble learning approach after cross-training and cross-testing
with all possible combinations of the 3 first datasets. We save the 4th dataset only for testing purposes, and we showcase
how to engineer generalizable features that predict cognitive performance. Our results show that the extracted features
do generalize, and can reliably predict cognitive performance across a diverse set of cognitive tasks that require different
combinations of problem-solving, decision-making, and learning processes for their completion.

ACM Reference Format:
. 2021. Assessing Cognitive Performance Using Physiological and Facial Features: Generalizing Across Contexts. 1, 1
(January 2021), 41 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Reliably assessing cognitive performance is becoming increasingly relevant in a range of fields encompassing
neuroadaptive [80] and critical systems [16, 145], educational technologies [147], operational environments [110],
and others. Cognitive performance refers to the overall state of our cognitive functioning, typically comprising of
varying levels of cognitive processes, such as attention, memory recall, learning, decision-making, and problem-
solving [140]. Over the years, a plethora of cognition measures has been developed for assessing cognitive
performance, primarily for the early detection of neurodegenerative diseases, such as Parkinson’s, Alzheimer’s,
and Huntington’s. The NIH Toolbox of Cognition Batteries1 is perhaps the most prominent set of manual cognitive
performance measures, incorporating well-established and tested constructs [140]. However, manual cognition
measures are cumbersome to employ, require considerable time to complete, and assess one’s cognitive capacities
on a macro-scale by design [41]. Yet, cognitive performance naturally entails cognitive workload, which is known
to influence one’s physiological responses2, such as heart-rate variability (HRV) [53, 132], electro-dermal activity
1http://www.healthmeasures.net/explore-measurement-systems/nih-toolbox/intro-to-nih-toolbox/cognition
All hyperlinks last accessed on February 10, 2020.
2In this paper, with the term “physiological responses” we refer to skin conductance and photoplethysmography (PPG) sensor data recorded
from subjects’ wrists, and we acknowledge that the “physiological responses” term is not limited to only such data.
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(EDA) [70], skin temperature [120], but also facial expressions [124]. As a result, automated approaches that
utilize physiological responses and facial expressions are gaining popularity in assessing cognitive performance
by measuring the produced cognitive workload [9, 30, 52, 66, 90, 111, 117].

1.1 Cognitive Workload: A proxy for assessing cognitive performance
Notably, there is a fine distinction between cognitive performance and cognitive workload that often becomes
elusive, particularly when considering that cognitive workload is a natural byproduct of cognitive performance.
The Yerkes-Dodson empirical law of arousal is the most prevalent theory describing the relationship between
cognitive performance and cognitive workload [149]. The Yerkes-Dodson law, further simplified by Hebb [56],
theorizes a non-linear “∩–shaped” curve of increasing (cognitive) performance inline with increasing arousal
(workload), leading to an optimal plateau. When cognitive workload is further increased, cognitive performance
displays diminishing returns, only to start decreasing rapidly after an empirical threshold is surpassed. The
empirical existence of an optimal plateau of productivity is further incorporated in the Flow Theory [26], the
experience of mindfulness and complete submersion to the present moment [95]. On one hand, the Flow Theory
postulates that when one finds oneself in the “flow zone”—a state of optimal arousal—productivity is maximized.
Although the Yerkes-Dodson Law is empirical and the Flow Theory is subjective, they both draw on cognitive
workload (arousal) for estimating performance and productivity, respectively. On the other hand, Machine
Learning (ML) is tasked with producing affinities and associations even among seemingly unrelated factors,
without necessarily unveiling the nature of their relationships. Thus, given the relationship between physiological
responses and facial expressions with cognitive workload, and the relationship of cognitive workload with
cognitive performance, via ML one can utilize evoked physiological responses and facial expressions to also
assess cognitive performance. In other words, we can treat cognitive workload, manifested by physiological
responses and facial expressions, as a proxy for estimating cognitive performance.

1.2 Feature Generalizability: Why it matters
Most approaches in literature do not aim at producing generalizable features, and thus they remain inapplicable
to other contexts (i.e., context-dependent). As “feature generalizability”, we define the extent to which extracted
features can predict the same variable—in our case cognitive performance—in different contexts. To this end,
feature generalizability is related to “transfer learning” but they differ fundamentally, as we describe later. Prior
research has highlighted the importance of generating features that can be generalizable, and particularly in
innately-versatile contexts. For example, prior work in music information retrieval considers the generalizability
(and simplicity) of features as one of the main criteria for feature selection [112]. More recently, feature generaliz-
ability has become relevant when using ML for personality assessment [14]. Feature generalizability also emerges
as an important factor when it comes to the automotive context and predicting driver’s intentions at intersections
[99], as well as students’ affect during learning [64]. Likewise, feature generalizability is particularly relevant
when dealing with physiological data such as electroencephalography (EEG) for developing Brain-Computer
Interfaces (BCIs) [91], and recognizing facial expressions [12]. Now, the field of Ubiquitous Computing naturally
involves the introduction of technological interventions to a multitude of contexts. This often implies that certain
interventions have to be adjusted to fit a new context. Knowing a priori which features to compute (and
how) for reliably assessing cognitive performance, can save valuable time that would otherwise be
allocated to trial-and-error attempts. Apart from generalizable, the features we engineer in this paper and
the methods to compute them, are ideal for hardware with low computational capacities, such as head-mounted
displays (HMDs) and smart watches (e.g., VGG16 on a micro-controller [125]).

Here, we contribute to the engineering of generalizable features by expanding the process of modelling cognitive
performance to a highly-diverse set of contexts. More specifically, we use 3 datasets of physiological responses and

, Vol. 1, No. 1, Article . Publication date: January 2021. 2021-01-04 13:15. Page 2 of 1–41.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141
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facial expressions that were captured in the context of (1) a Pac-Man game, (2) an adaptive-assessment learning
task, and (3) a code-debugging task. Then, we use a 4th, completely new dataset of physiological responses and
facial expressions, captured during a gaze-based game, for evaluating the accuracy and generalizability of our
features. The cognitive performance of a total of 123 participants was assessed in the form of scores across
all 4 study-contexts, where varying levels of problem-solving, memory recall, decision-making, and learning
processes manifested. We follow an ensemble learning approach after cross-training and cross-testing with all
possible combinations of the 3 first datasets—not by simply merging all datasets—to engineer generalizable
features that predict cognitive performance. Finally, we introduce a “feature generalizability index” to assess
the generalizability of features of physiological responses and facial expressions in a variety of contexts related to
cognitive performance. This enables us to decontextualize the knowledge about what works where and how, and
contribute to creating strong concepts—constructing knowledge that is more abstracted than particular instances,
eventually leading to generalized theories [61] (such as the Flow Theory [26]). In summary, our work makes the
following contributions:

• We engineer generalizable features to predict cognitive performance from physiological responses and
facial expressions.

• We quantify the generalizability of our features in predicting cognitive performance during problem-solving,
learning, and decision-making.

• We propose a “feature generalizability index” (FGI) to quantify the generalizability of features.
• We demonstrate how context-agnostic, cross-training, and cross-testing can yield highly-generalizable
features.

2 RELATED WORK
Cognitive performance is not only passively influenced by a plethora of innate factors (e.g., circadian rhythm
[137]), but it also affects physiological responses and facial expressions as a result of exhibiting cognitive workload
[70, 120, 124, 132]. Thus, assessing and eventually improving cognitive performance, with the use of physiological
data, has been the focal point of numerous studies in the intersection of Ubiquitous Computing, Human-Computer
Interaction (HCI), Educational Technologies, and Neuroergonomics fields. Next, we report on prior research that
utilizes physiological responses and facial expressions for assessing and improving specific cognitive processes
or cognitive performance overall.

2.1 Physiological Responses and Cognitive Performance
A large body of research is dedicated to monitoring cognitive workload, engagement, or enjoyment, drawing
among others on Flow Theory [26]. For example, Rissler et al., build on Flow Theory for developing so-called
“flow-classifiers” that use cardiac features for classifying flow states during an invoice matching task [105].
Schaule et al., utilized consumer smartwatches for measuring office workers’ physiological responses for inferring
cognitive workload and deciding when the time is right to be interrupted [114]. Their approach involved a feature
vector generated among others from time and frequency features of HRV, EDA, and skin temperature. In the
same guise, Goyal and Fussel employed the Q Sensor by Affectiva3 for monitoring EDA during collaborative
tasks and managing interruptions [48]. In particular, they calculated the direction of intensity of change in the
average EDA phasic amplitude as a feature to decide over one’s interruptibility.

Gjoreski et al. also used low-cost wrist-worn devices for monitoring cognitive workload based features extracted
from physiological responses such as HRV and EDA, in conjunction with the established self-assessment NASA-
TLX method [47]. Similarly, Kosch et al., used EDA recorded from the Empatica E4 wrist-worn device for
monitoring cognitive workload during a manual assembly tasks with 2 different assistive systems [72]. Using
3https://www.affectiva.com/

2021-01-04 13:15. Page 3 of 1–41. , Vol. 1, No. 1, Article . Publication date: January 2021.
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Bayesian Repeated Measures ANOVA and the NASA-TLX method, they concluded that EDA is an objective
measure for workload monitoring during assembly tasks. Mirjafari et al., was able to collect among others
physiological responses from over 550 office workers in the period of 2–8 months for assessing performance
in the workplace [83]. The authors found significant correlations between high performance in the workplace
and regular heart-beat rates during the weekdays. In a study that involved over 100 drivers, Solovey et al.,
showcased that features from physiological responses improve the detection of increased cognitive workload
when driving with an accuracy of 90 % [122]. More recently, psycho-physiological sensing for assessing cognitive
workload and operational performance has also been proposed for monitoring the cognitive states of an aerospace
crew [146]. Typically, HRV monitoring with wrist-worn devices is performed via photoplethysmographic (PPG)
sensors embedded in the back of the devices touching the skin. In a different approach, Zhang et al., employed a
PPG-based method to measure cognitive workload (mental stress) during touch interactions with an infrared
touchscreen [154]. By utilizing HRV features measured with PPG, they were able to classify cognitive workload
with an accuracy of 97 % and 87 % during static and interaction testing, respectively.

Physiological responses have also been extensively utilized for measuring engagement and enjoyment in
gaming experiences. For example, EngageMon is a multi-modal engaging sensing system that combines a wide
range of physiological and contextual data for assessing engagement during mobile gaming [65]. Among others,
the authors utilized features extracted from the HRV and EDA physiological responses, combined with features
from video and mobile usage to achieve an average accuracy of 87 % in estimating engagement. Tognetti et al.,
utilized physiological responses such as Electrocardiography (ECG) data, EDA, Blood Volume Pulse (BVP), and
respiration data captured with the ProComp Infiniti4 device during a racing game for gauging enjoyment [135].
In an alternative approach, Tan et al., utilized the think-aloud method in conjunction with Electromyography
(EMG) data collected with the ProComp Infiniti for understanding video-game experiences [130]. The authors
did not apply any ML technique, but instead classified manually the EMG peak data in 4 different categories
concluding that physiological data can be used as “anchors” in labelling think-aloud reports.
Learning is also disrupted by approaches that utilize physiological responses for gauging engagement, moni-

toring learning performance, and adapting learning difficulty. Di Lascio et al., used the Empatica E4 physiological-
monitoring wristband for assessing the engagement of students during lectures [29]. Except for monitoring
arousal, the authors used EDA data for designing features that characterize the “physiological synchcrony”
between the students and the teacher for better estimating engagement in the classroom. In a followup work,
Gashi et al., investigated the notion of “physiological synchcrony” predicted by EDA features for estimating
engagement between presenters and the audience in conjunction with subjective self-reporting measures [42].
Ghiani et al., used EEG and eye-tracking data for creating attention rules based on which they throttle information
presentation for facilitating learning [45]. Tamura et al., utilize simple EEG amplitude features of the beta band
in combination with eye-tracking and subjective assessments to detect difficult to comprehend content during
e-learning [129]. Radeta et al., employed the Empatica E4 for acquiring EDA measurements to compare between
2 interactive learning experiences for kids [103]: a mobile game vs. animated storytelling. The authors were able
to quantify and link learning for both experiences to EDA peaks.

2.2 Facial Expressions, Emotions, and Cognitive Performance
Emotions influence arousal and affect, bearing important effects on productivity and cognitive performance
[26, 95], and can be reflected in physiological responses [51]. Nevertheless, facial expressions are perhaps the
most reliable indicator of emotion, as Ekman has shown [37]. Thus, facial expressions have been used either in
isolation or in conjunction with physiological responses for assessing mood and cognitive performance. Babu et
al., propose a multi-modal approach for measuring task-based cognitive performance that utilizes both facial

4http://thoughttechnology.com/index.php/procomp-infiniti-333.html
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expressions and EEG data [9]. They used the VGG-19 network to generate a set of feature maps from images of
participants performing a sequence learning task, and a Convolutional Neural Network (CNN) for predicting
emotions. By also incorporating EEG input, they were able to assess task-based cognitive performance with
an accuracy of 87.5 %. In the first “audio-visual+” emotion recognition challenge, Ringeval et al., merged video
of facial expressions with physiological data for detecting affective dimensions of arousal [104]. The authors
describe how they extracted features from videos of facial expressions using the Supervised Descent Method
(SDM) [148], and features from physiological responses (EDA and HRV), computing among others the spectral
entropy and the first order derivative.

During learning, emotions play a very integral role. Happiness is related to high prospective success, whereas
anger is related to retrospective failure, and sadness to high negative activity [97]. On one hand, exhibiting
happiness/joy results in novel and creative actions [40], while positive emotions also promote the engagement
in meta-cognitive processing, beneficial for long term learning [77]. On the other hand, negative emotions
result in focusing on environmental-specific details [15], and may reduce elaboration [96]. Moreover, negative
affect has been associated with lower learning goals [82], whereas positive affect with the interest in a given
topic [3]. Thus, bearing in mind the innate connection between emotions and facial expressions, a sizeable body
of research is dedicated to assessing learning performance through emotions inferred from facial expressions
[10, 36, 49, 50]. In multiple instances, D’Mello et al., collected facial expressions of students, while interacting with
the “AutoTutor” learning system [25], and played their facial expressions back to them asking them to annotate
their emotions during their prior interactions with the learning system [33–35]. In this way, the authors were
able to model the transition likelihood among the affective states of boredom, flow (engagement), and confusion
during learning. Baker et al., were perhaps the first to adapt an automated approach for detecting affective states
during learning by using a large dataset with manually-labelled affective states of students that also contained
their facial expressions [27]. The authors used eight common classification algorithms (e.g., J48, decision trees,
Naive Bayes, etc.) but with mixed results. Similarly, Whitehill et al., assembled a dataset comprised of videos
from facial expressions of 34 undergraduate students, interacting with a software that trains their cognitive skills,
along with their performance scores [142]. The dataset was then manually labelled by researchers producing 4
levels of engagement. The authors then applied binary classification techniques to automatically classify engaged
from non-engaged students from their facial expressions, using Boost(BF), Support Vector Machine (SVM), and
Multinomial Logistic Regression (MLR), with the manual engagement values and the facial expressions coded in
Action Units (AUs). Notably, the authors considered the generalization issue of facial classifiers when it comes to
classifying facial expressions of people with dark skin colour. To rectify this, they opted for diversifying their
dataset by including African-American, Asian-American, and Caucasian-American participants, and cross-testing
between different populations. Their results showed that Boost(BF) classifier generalized well to subjects within
the same population but not to subjects of a different population [142].
Recently, commercial and open-source software approaches have emerged for facilitating the automatic

emotion assessment from facial expressions. For example, FaceReader is a commercial automated facial-coding
software that displays good accuracy when compared with human emotion recognition from facial expressions
[76]. OpenFace is an open-source facial behaviour analysis toolkit that implements facial landmark detection
and tracking, as well as eye-gaze and head-pose estimation [11]. In particular, AU recognition has been tested in
multiple publicly available datasets, displaying better performance in videos of facial expressions than in pictures.
Either experimental, commercial, or open-source, approaches that infer emotions from facial expressions for
assessing aspects of cognitive performance are seldom tasked with producing generalizable features [142]. The
same trend is observed when having a look at approaches that utilize physiological responses for the purpose
of assessing cognitive performance. However, producing generalizable features for reliably assessing cognitive
performance in diverse contexts paves the way for designing the cognition-aware systems of the future [17, 30].

2021-01-04 13:15. Page 5 of 1–41. , Vol. 1, No. 1, Article . Publication date: January 2021.
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2.3 Feature Generalizability vs. Transfer Learning
“Transfer Learning” (TL) is a machine learning concept related to our work, but fundamentally different to feature
generalizability. TL uses the produced model from one task to improve performance at a rapid pace for another
related task [92]. There are two main methods for accomplishing this [93, 141]: (a) develop a new model, and
(b) use a pre-trained model. The first method involves the selection of a related prediction problem with a large
set of training data available. The new model is developed on related training data, and then the entire model,
or part(s) of it, is (are) used in the original prediction problem [151]. The second method assumes a pre-trained
model, and reuses or adjusts its original parameters to fit the targeted prediction problem [92]. Essentially,
transfer learning is about finding the feature set that will work both for the related and target contexts [151].
However, feature generalizability is not the main aim of TL. In fact, TL solely focuses on optimizing the prediction
outcome in the target context. That is, the model trained in the related context (features and their relation to
the predicted variable) is reused as is (a), or the model can be tuned to fit the target context (b). Conversely,
feature generalizability does not necessarily optimize the prediction outcome for any of the selected contexts.
Additionally, the outcome is a set of features that are empirically deemed to be useful across all the selected
diverse contexts. Finally, although TL requires considerably large datasets for training the base model, large
datasets is not a requirement for achieving feature generalizability.

3 STUDY DESIGN
Our aim is to engineer generalizable features that predict cognitive performance from physiological responses and
facial expressions by drawing on 4 independent study datasets: (1) a Pac-Man game, (2) an adaptive-assessment
learning task, (3) a code-debugging task, and (4) a gaze-based game only for evaluation purposes. In all studies,
intrinsic facets of cognitive performance were central to the completion of the task at hand, and were objectively
assessed by performance indices (scores). In the studies involving games (i.e., 1 and 4) the score is related to
skill-acquisition and in the educational studies (i.e., 2 and 3) the score is related to problem-solving capacities. In
particular, we theorize that the 1st study (Pac-Man game) involves problem-solving, decision-making, and learning.
The 2nd study (adaptive-assessment of learning) involves problem-solving, decision-making, and memory recall
that trigger learning. The 3rd study (code debugging) entails a combination of problem-solving and learning.
Finally, the 4th study also involved problem-solving, decision-making, and learning, and its sole purpose was
evaluating our engineered features in a completely new context. During all 4 studies, physiological responses and
facial expressions were collected, along with the corresponding performance index (score) for each participant.
For all 4 studies, we have obtained the appropriate ethical approval (details hidden for anonymization). In all 4
studies, the data (facial and physiological) was collected using Empatica E4 wristband and a Logitech web camera.
Moreover, in the 4th study (i.e., evaluation of the generalized features), participants interacted with the game via
their eye gaze, without touching the input devices and/or the screen.
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Fig. 1. Protocol of the 4 studies, including the gaze-based game (Study 4) for evaluating our features in a completely new
context.
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3.1 Study 1: Pac-Man Game
This study is a controlled experiment focusing on skill acquisition. Skill acquisition (or movement-motor learning
[39]) loosely encompasses motor adaptation, problem-solving [138], and decision-making [73, 144]. Skill acquisi-
tion consists of the memorisation of an internal representation of a movement (conceptualised as a motor schema)
[133]. Thus, skill acquisition also involves learning. When one receives guidance verbally or one rehearses
mentally the skill to be acquired, one exhibits cognitive workload, indicating the manifestation of higher cognitive
processes [133]. To maintain a simple learning curve, we developed a Pac-Man, a time-tested game that has been
used to test motor skills in the past [87]. Pac-Man was developed by applying all the typical game-play elements
(e.g., enemy sprites and the maze—see Fig. 2), while providing 3 lives for each session. The game was controlled
by the 4 arrow buttons of the keyboard, and was developed to log every keystroke performed by the user. The
difficulty of the game increased from one session to another by increasing the sprite-movement speed.

Fig. 2. Study 1: the custom-made Pac-Man game. The basic design principles of the game is minimalist design and a
highly-immersive game environment.

3.1.1 Participants. We recruited a total of 17 healthy participants (7 females) aged 17–49 years (M = 32.05, SD =
8.84) over May 2018. The participants were recruited from the participant pool of a major European university.
All participants were familiar with the game, but none of them had played the game in the previous 2 years. Prior
to completing the trials, the participants were informed about the purpose and the procedure of the experiment,
and of the harmlessness of the equipment involved. We compensated the participants with a movie ticket upon
the completion of the study.

3.1.2 Protocol. The experimental design of the Pac-Man study was a single-group time series design [107] with
continuous (repeated) measurement of a group exposed to the same experimental intervention. Each participant
played on average 16 game-sessions (SD = 7), until their allocated time ran out. Each game-session started
with 3 lives and ended when the participant lost all 3 lives. For each level in a game-session, the speed of the
ghosts-sprites increased. Fig. 1 showcases the protocol of our experiment. Each participant was given a 5-seconds
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break before starting the next session. Each session was completed in 2–3 minutes, after which the participants
had a 2–3 seconds of reflection period, looking at their game score.

3.1.3 Procedure. Upon obtaining consent, the researcher escorted the participant to the User Experience (UX)
room with a comfortable chair facing a large computer monitor. The participant wore the Empatica E4 wristband,
while the researcher connected and calibrated all the data collection devices (i.e., E4 wristband and camera).
The wristband data streams were calibrated using the built-in calibration procedure available in the Empatica
mobile application. The researcher explained the mechanisms of the game and the respective keyboard functions,
double-checked the data collection devices, and exited the room. The participant had ∼40 minutes to master the
game and achieve a score that was as high as possible.

3.1.4 Performance. At the end of each game-session the participants received a score that was considered as
their performance in that session. Thus, we use the game-score as an indicator of cognitive performance.

3.2 Study 2: Adaptive-Assessment Learning
The 2nd study also took place in controlled settings and focused primarily on learning, by also encompassing the
cognitive processes of problem-solving, memory recall, and decision-making. Students’ responses and system
usage logs were collected with LAERS [94], a web-based implementation of a layered architecture for testing
systems. The version of LAERS employed in this study consists of (a) an assessment interface, (b) an adaptation
mechanism, (c) a tracker that logs the students’ usage data when interacting with the system, and (d) a database
storing information about students’ performance and the test-items.

Fig. 3. Study 2: The LAERS self-assessment interface featuring a test-item that requires solving a short coding exercise so
that it can be answered.

The assessment interface displays the test-items, in the form of multiple choice questions, which are delivered
to students one by one (see Fig. 3). The adaptation mechanism selects the next most appropriate test-item to
deliver to the student, according to the correctness of the student’s response to the previous test-item, and
the discrimination capacity of the test-items, by drawing on the Measurement Decision Theory (MDT) [109].
The tracker logs the students’ response time, dividing it to time on correctly- and time on wrongly-answered
test-items. Finally, the system also calculates and updates the test score according to the correctness (0/1) of the
student’s answer for each test-item.

2021-01-04 13:15. Page 9 of 1–41. , Vol. 1, No. 1, Article . Publication date: January 2021.
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3.2.1 Participants. The study was conducted at a controlled computer lab, equipped and furnished for the
needs of the experimental process, over October 2018. We recruited a total of 32 undergraduate students (15
females) aged 18–21 years (M = 19.24, SD = 0.831) from the pool of a European University. All participants were
enrolled in an online adaptive self-assessment procedure for the Web Technologies course (related to front-end
development). The participants undertook the self-assessment task individually for a period of ∼30 minutes each.

3.2.2 Protocol. The experimental design of the adaptive assessment study was a single-group time series design
[107] with continuous (repeated) measurement of a group exposed to the same experimental intervention. Each
participant answered 20 questions, in about 30 minutes. Each test-item provided 2–4 possible answers but only
one of them was correct. Some test-items required factual and/or conceptual knowledge to be answered, whereas
others were puzzles (i.e., short coding exercises), thus requiring procedural knowledge to be solved [74]. Each
session lasted from the display of test-item until providing an answer (∼1 min). Fig. 1 presents the protocol of
this experiment. Each participant was shown the correct answer before moving to the next test-item. In the end,
a list containing the test-items and their answers was shown to the participants, and they had 2–3 minutes to
reflect on their performance.

3.2.3 Procedure. Prior to the experiment, all participants signed an informed consent form that detailed the
procedure, authorising the researchers to use the data collected for research purposes. After granting their consent,
the participants had to wear the E4 wristband, and all data collection devices (i.e., wristband and camera) were
tested. Furthermore, the participants had to answer to a pre-test questionnaire that assessed their goal-expectancy
from the upcoming self-assessment. Next, the actual adaptive self-assessment experiment commenced, with the
students providing their answers to the test-items. In the end of the procedure, the test score was made available
to the participants, along with their full-test results, including all the test-items to which they had responded,
their responses, the correctness of their responses, and the option to check the correct answers to the test-items
that they had submitted wrong answers. This was intended for self-reflection purposes. Finally, the participants
were compensated with a movie ticket upon the completion of the study.

3.2.4 Performance. Each response to a test-item in an individual session was given a correctness label (0/1). This
was considered as the performance measure for this experiment.

3.3 Study 3: Code Debugging
Drawing on Katz and Anderson’s conceptualization of a debugging process [68], we decided to engage the
debugging process as a case of troubleshooting featured in 4 steps: (1) understand the problem, (2) find the bug, (3)
fix the bug, and (4) test the code. In this study, we postulate the manifestation of cognitive processes that involve
problem-solving and learning. In fact, debugging is more related to procedural knowledge than it is to factual or
conceptual knowledge [74]. We designed and implemented a debugging task to collect a fine-grained multi-modal
dataset and explore the features associated with cognitive performance in the debugging process. The main
task assigned to the participants was debugging a Java class named “Person” (that implements “parent-child”
relationships), accompanied with five debugging tasks (i.e., questions), written right after the code, and presented
as a part of the main method.

3.3.1 Participants. The study was conducted in the controlled settings of a computer lab at a European university
with 46 students (8 females) over the Spring semester 2019. Participants were recruited from all study years of
the computer science major of our University via an e-mailing list. We specifically did not recruit participants in
their 1st year, since they had not taken an object-oriented programming (OOP) course yet. All participants had
used Eclipse Integrated Development Environment (IDE) during their OOP course. For their participation in the
study, participants received a gift voucher equivalent to $35.
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Fig. 4. Study 3: the Eclipse IDE and the panels available to the participants.

3.3.2 Protocol. Similar to the previous studies, the research design of the code-debugging study is a single-group
time series design [107] with continuous (repeated) measurement of a group exposed to the same experimental
intervention. Each participant was requested to complete 5 debugging tasks with a total duration of ∼40 minutes.
Each task was composite, requiring the debugging of 2–5 “bugs” in order to be completed. Fig. 1 displays the
protocol of this experiment. The participants were allowed to modify the code as many times as they desired. In
the end, one of the researchers explained the participants which were the remaining bugs and how to fix them.

3.3.3 Procedure. Upon arrival in the laboratory, the participants signed an informed consent form. Next, the
lead researcher placed the E4 wristband on their wrist, and all data collection devices (i.e., wristband and camera)
were tested. The wristband data streams were calibrated using the built-in calibration procedure available in
the Empatica mobile application. Before the actual study commenced, the participants were asked to complete 3
small debugging assignments (easy, medium, and difficult) within 20 minutes. This pre-test was intended for
assessing the debugging expertise of the participants. Then, the participants were given 40 minutes to complete
the 5 debugging tasks (i.e., questions) presented as part of the main method in the “Person” class. The provided
code assumed, but failed to ensure, consistent object relationships (e.g., “a mother of a child is female”). The 5
debugging tasks were incremental. Thus, the participants could not start working on the second task if they had
not successfully completed the first one. The code for the main debugging task contained no syntax errors, and
the participants were informed about this fact.

3.3.4 Performance. At the end of the experiment, the participants were assigned 5 individual scores based on
the number of bugs they fixed in each debugging task. This was the performance measure for this experiment.

3.4 Study 4 (feature evaluation only): Gaze-based game
Similar to the Pac-Man game, this study is also a controlled experiment focusing on skill acquisition, includ-
ing problem-solving [138], and decision-making [73, 144]. However, all interactions are explicitly performed
through eye-gaze, and thus we assume an extent of ocular motor adaptation as part of skill acquisition [116].
Most importantly, we theorize that the context of this studymore closely aligns with previous studies
and applications in the field of Ubiquitous Computing, involving pervasive displays and gaze-based
interaction (e.g., [123]). The gaze-based game is called Xtreme Yoga, and it is a shooting game we developed
for the stationary Tobii eye-tracker. In the game, a player controls an avatar with 3 lives that avoids randomly
appearing “knights” and the projectiles they launch. The avatar can move in all directions, and its movement
entirely relies on the player’s eye-gaze. An always-visible white circle indicates where the player’s eye-gaze is

2021-01-04 13:15. Page 11 of 1–41. , Vol. 1, No. 1, Article . Publication date: January 2021.
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focused (Fig. 5a). Additionally, a player can focus on the avatar to activate a defensive shield (Fig. 5d and 5f),
or focus on a “knight” at whom to launch a projectile (Fig. 5c). The game ends when a player loses all 3 lives.
The dataset of this study was explicitly used only for evaluating the generalizability of the features
we engineered based on the previous studies described.

Fig. 5. Study 4: the different stages in the game.

3.4.1 Participants. We recruited 28 healthy participants (8 females) aged 8–14 years (M = 10.00, SD = 1.38) over
November 2019. The participants were recruited from a classroom of a major public school in a European city.
None of the participants were familiar with the game or its gaze-based controls. Prior to completing the trials,
the participants were informed about the purpose and the procedure of the experiment, and of the harmlessness
of the equipment involved. We compensated the participants with a gift coupon equivalent to $11 upon the
completion of the study.

3.4.2 Protocol. Similar to Studies 1, 2, and 3, the experimental design of the gaze-based game study is a single-
group time series design [107] with continuous (repeated) measurement of a group exposed to the same experi-
mental intervention. Each participant was requested to play multiple sessions of the game, with a session duration
of ∼5 minutes. In each game session, participants used their eye-gaze to avoid projectiles, raise shields, and attack
an enemy to increase their overall score. Fig. 1 displays the protocol of this experiment. The participants were
allowed to play the game as many times as they desired. On average, each participant completed 11 game sessions
(SD = 6).

3.4.3 Procedure. Prior to their arrival in the laboratory, the participants’ parents signed a parental / guardian
consent form at home. Next, the lead researchers placed the E4 wristband on the wrists of the participants. The
wristband data streams were calibrated using the built-in calibration procedure available in the Empatica mobile
application. Participants’ facial expressions were recorded with a webcam. Before the actual study commenced,
the participants were asked to play one training round so that they familiarize themselves with the gaze-based
controls and the game setup. The researcher explained the mechanisms of the game and the respective gaze-
controlled functions, double-checked the data collection devices, and exited the room. Then, the participants
were asked to play as many games as they desired. Each game session had 3 player lives, once all were lost the
participants could restart the game.
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3.4.4 Performance. At the end of each game session the participants received a score for their performance in
that game session. The score increased the longer a player kept the avatar alive, and the more enemies a player
terminated. Thus, we use the game-score as an indicator of cognitive performance. The score was set back to 0
each time a new game session started.

4 ANALYSIS
To engineer generalizable features from physiological responses and facial expressions, we utilise the datasets
collected in Studies 1, 2, and 3, and validate the features using the data from Study 4. The total sample size for all
studies was 123 participants. To identify the generaliszable features, first we apply standard data pre-processing
techniques: denoising, filtering, smoothing. Next, we perform a common feature engineering process to extract
the features from the raw signals, and we then reduce the feature space either by applying a feature selection
technique (keeps the selected features in their original form), or by using a dimensionality reduction algorithm
(creates new dimensions using certain combinations of the original features). The final step is to apply an ensemble
of prediction algorithms to predict cognitive performance. Fig. 6 summarises the overall process applied in our
analysis.

To identify generalizable features, we conduct an exhaustive search of possible analyses and data combinations.
Therefore, in the remainder of the paper we use the term “pipeline” to refer to a unique combination of: studies
(i.e., Pac-Man, Adaptive-Assessment Learning, and Code Debugging) and data (i.e., physiological and facial
expressions) as input, extracted features (e.g., deep features, action units, FFT, LPC, etc.), either feature selection
(e.g., LASSO) or dimensionality reduction (e.g., Kernel PCA), and ensemble prediction models (e.g., Support
Vector Machines, Gaussian process models, etc.). We opt to test both feature selection and dimensionality reduction
methods, since in the attempt to engineer generalizable features, there is no empirical / theoretical grounding
for any of the 2 methods to perform better. Notably, each pipeline uses either the feature selection or the
dimensionality reduction, never both. In a nutshell, a “pipeline” is a unique combination of data inputs,
selected features or reduced feature sets, and prediction models.

A total of 156 pipelines was assembled and tested in our analysis. Each pipeline receives one of the three data
types as input: (1) physiological data, (2) facial data, or (3) both (see Section 4.1). The data from the E4 wristband
and the facial videos are first pre-processed to remove the noise and bias from known sources, including hand
movement and camera white-balancing (see Section 4.2). The features are extracted based on the data type used
in each pipeline: signal processing features from physiological data—action units and deep features from facial
data (see Section 4.3). Once the features are extracted, they serve as input to either the feature selection (LASSO,
linear or RF, non-linear, see Section 4.4), or the dimensionality reduction (PCA, linear or kernel PCA, see Section
7.6 of the Appendix). Features selected via either branch comprise yet another pipeline. Next, the selected features
(in the case of feature selection), or the modified space (in the case of dimensionality reduction), serve as input to
the ensemble learning setup with seven predictors (SVM—linear, radial, polynomial; model tree M5; GPM—linear,
radial, polynomial, see Section 4.6). The weighted average, after performing 10-fold cross-validation and out-of-
sample testing, yields the final prediction over cognitive performance drawing on data from all 3 independent
studies. For engineering generalizable features, we also perform “out-of-study testing” (i.e., leave-one-task-out),
testing the engineered features on entirely different datasets from the ones on which they were trained (see
Section 4.7). We also introduce a feature generalizability measure, based on which we compare our pipelines (see
Section 4.8), and we benchmark the generalizability of the top performing features in a completely novel context
(Study 4: Gaze-based game—see Section 4.9).

Finally, we point out that for the 4 studies, and the 4 respective tasks presented in this paper, cognitive perfor-
mance is calculated slightly differently. For the games, such as Pac-Man and the gaze-based game, there is no
theoretical upper limit for the score. Conversely, the scores are upper-bounded in the adaptive assessment and the
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code debugging tasks (i.e., having all the tasks correct and achieving the maximum score). Yet, even though the
performance measurements have different ranges, there is a key similarity across all the tasks: high performance
requires a certain level of (i) skill, (ii) attentional processing, and (iii) cognitive processing across all tasks. In
addition, Table 1 presents the mean values of the cognitive performance, their standard deviation, and the results
coming from a chi-square comparison on their distribution. Table 1 indicates that the cognitive-performance
slightly varies across the different tasks, but with no statistically significant difference. Moreover, the mean values
and their standard deviations depict that there was a healthy distribution of the cognitive performance in each of
the tasks (i.e., we did not have a very difficult or very easy task). Another commonality between the 4 tasks is
that for the user to attain high cognitive-performance score, they need to devote the required levels of attentional
and cognitive processing. This paper is an effort to identify those facial and physiological features that
generalise across different contexts to encode these attentional and cognitive processing levels that
are associated with task-based cognitive performance.

Table 1. The second column depicts the mean and standard deviations for the cognitive-performance measures (normalized
using MinMax) from the 4 studies. The third-sixth columns depict the results of chi-square tests for the distributions of the
cognitive performance measurements of the 4 studies. The number indicates the chi-square statistic, and the number in the
parentheses the corresponding p-value.

Mean (SD) Pac-man Adaptive Assessment Code Debugging Gaze-based Game
Pac-man 0.35 (0.29) – 18.61 (0.54) 21.25 (0.38) 25 (0.20)

Adaptive Assessment 0.48 (0.26) – – 25.83 (0.41) 23.61 (0.54)
Code Debugging 0.59 (0.36) – – – 28.75 (0.27)
Gaze-based Game. 0.32 (0.28) – – – –

4.1 Cross-Study Data Collection Setup
We collected sensor data from 2 different sources: (a) the Empatica E4 wristband, and (b) a video camera.

• E4 wristband: To record physiological data we use the Empatica E4 wristband. Participants wore
the wristband on the non-dominant hand. Four different measurements were captured: (1) heart rate
variability (HRV) at 1 Hz, (2) electrodermal activity (EDA) at 64 Hz, (3) body temperature at 4 Hz, and (4)
blood volume pulse (BVP) at 4 Hz.

• Video camera: Given the fact that we expected participants to exhibit minimal body and gesture activity
during all the 4 studies, the video recording focused on their face. We use a Logitech Web cam capturing
video at 30 FPS. The webcam focus was zoomed 150 % onto the faces of the participants. The video resolution
was 640 × 480 pixels.

4.2 Data Pre-processing
We pre-processed the following types of data as follows:

• Physiological data: A simple smoothing function was used to remove any unwanted spikes in the time
series in the 4 data streams originating from the E4 wristband (HRV, EDA, Skin Temperature, and BVP). This
was a simple running average with a moving window of 100 samples, and an overlap of 50 samples between
two consecutive windows. Physiological data, such as HRV, BVP and skin temperature, are susceptible to
many subjective and contextual biases. These biases include: time of the day, physical health condition,
gender, age, overnight sleep, and others. All 4 data streams were normalised using the first 30 seconds of
the data to remove the subjective and contextual biases from the data.
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Fig. 6. General pipelines (top: with feature selection; bottom: with dimensionality reduction) for the prediction of cognitive
performance.

• Facial data: For most of the frames in the video recordings, only one face was visible. However, sometimes
the lead researcher appeared in the field of view of the camera. Due to the settings of the experimental
space, the researcher could only appear to the right side of the participant. Moreover, the algorithm in the
OpenFace face recognition library [6] assigned each face in the frame a unique identifier from left to right.
This means that in the frames, where both the researcher and the participant were present, the participant’s
face unique identifier was always zero. For frames with 2 faces (as this was the highest number of faces in
any frame), the researcher’s face that had a unique identifier value of 1 was systematically removed.

4.3 Feature Extraction
4.3.1 Features from physiological data. We computed the following features from the physiological data streams
(EDA, HRV, skin temperature, and BVP). These features are extracted based on the recent approaches for fea-
ture extraction using both the time [48, 72, 118, 146] and the frequency [44, 119, 153] domain properties of the data.

• Value histogram:We computed the mean, standard deviation (SD), skewness, kurtosis, and median of the
value histogram of the 4 data streams.

• Power spectral histogram: The power spectrum of a time series describes the distribution of power into
frequency components composing that signal. Once the frequency components are computed, they can be
represented as a histogram (Power Spectral Histogram). We computed the mean, SD, skewness, kurtosis,
and median of the Power Spectral Histogram. Fig. 12 displays the individual differences among features
extracted with the power spectral histogram process.
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• ARMA: An ARMA process combines the auto-regressive and the moving average features. More precisely,
X (t)t ∈Z follows an ARMA process if for every t the random variable Xt satisfies

Xt =

p∑
j=1

ϕ jXt−j +

q∑
i=1

θiϵt−i + ϵt (1)

In order for these equations to define a covariance stationary causal process (a process that depends only
on the past innovations), the coefficients must be

��ϕ j �� < 1 and |θi | < 1 . Moreover, ϵ models the residual
noise. Fig. 10 displays the individual differences among features extracted with the ARMA process.

• GARCH: GARCH models are similar to AutoRegressive Moving Average (ARMA) models but they are
applied to the variance of the data instead of being applied to the mean [4, 38, 69, 78, 113]. GARCH processes
X (t)t ∈Z take the general form

Xt = σtZt , t ∈ Z (2)
Where σt , the conditional deviance (so-called volatility in finance), is a function of the history up to time
t − 1 represented by Ht−1 and (Zt )t ∈Z a strict white noise process with mean zero and variance one. We
assume that Zt is independent of Ht−1. Mathematically, σt is Ht−1 measurable, where Ht−1 is a filtration
generated by (Xs )s≤t−1 , and therefore

Xt |Ht−1 = σ 2
t (3)

The series (Xt ) follows a GARCH (p,q) process if for all t

σ 2
t = α0 +

p∑
j=1

α jX
2
t−j +

q∑
k=1

ηkσ
2
t−j ,α j ,ηk > 0 (4)

The condition on the parameters, α j = 1. . .p and, ηk = 1. . .q for the GARCH equations to define a covariance
stationary process with finite variance is that

p∑
j=1

α j +

q∑
k=1

ηk < 1 (5)

The rationale behind equation 4 is that, first, opposite to AutoRegressive Moving Average (ARMA) models,
which are models for the conditional mean, the GARCH is a model for the conditional standard deviation.
By “conditional” we mean “given the history up to time t”, that is given Ht−1. Second, the model shows
that more persistence is built into the variability. In other words, GARCH models the variance at time t in
the time-series as the linear combination of the history of variances up to time t − 1. For more details see
[131]. The coefficients α0. . .αp and η1. . .ηp can be estimated by maximizing a likelihood function. The most
popular GARCH model is GARCH (1, 1), that is, p = q = 1 in (3) meaning that the current action variability
is explained by the latest action and the latest action number only (lag time of one). Fig. 11 displays the
individual differences among features extracted with the GARCH process.

• Linear Predictive Coding (LPC): This is a way of coding the spectral envelope of the signal. LPC is
mostly used to perform lossless compression of the signals [71, 85, 152], however it has recently been used
to analyse the quality of the signal as well [128]. LPC estimates the amplitude for signal xn as:

x̂n = −α1xn−1 − α2xn−2 − α3xn−3... − αpxn−p (6)

• Linear Spectral Frequency Coding (LFSC): LPC is susceptible to high peaks in the signal [7], hence we
also compute the LSFC for the physiological data that improves upon this shortcoming of the LPC [67]. Fig.
13 displays the individual differences among features extracted with the LPC and LFSC processes.
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4.3.2 Features from facial data. The most common feature extraction techniques used in the literature are Action
Units (AU) [28, 50, 106], and deep features [9, 83, 126]. Thus, for ensuring we have extracted all the potential
features, we applied both techniques in our feature extraction stage.

• Action Units (AU): Using facial data (videos of facial expressions), we elicited expressions and produced
features from different face regions (eyes, nose, mouth, jawline). Following best practices in literature, we
extracted the facial Action Units (AUs,[24]) using the OpenFace library [6]. Fig. 7 shows the AUs detected
in this study. We detected these AUs for each frame in the video. OpenFace provides a floating point value
between 0 (nothing detected at all) and 5, based on the intensity of each AU detected. Fig. 9 displays the
individual differences among extracted AUs.

Fig. 7. Action Units (AU) correspond to the fundamental actions of different facial muscles or group of facial muscles [11].

• Deep features5: Using the deep neural network architecture by Simonyan and Zisserman [121], we
extracted the “deep features” in the following steps (see Fig. 8):

(1) Reduce the facial image to 224 × 224 pixels.
(2) Use a pre-trained VGG-19 (on facial data) to extract the features as the output of the last layer in the

network. This step provides 1000 features.
(3) Use a spatial averaging filter to convert this 1000 length vector to a 250 length vector.

Fig. 8. Process to obtain the facial features using the deep neural network.

5Deep features are too many to visualize, and plotting them in the same way as the rest of the features would not convey any meaningful
information.
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Table 2. Summary of the selected features.

Physiological Features
Value histogram Mean, median, SD, skewness, kurtosis of the values.

Spectral histogram Mean, median, SD, skewness, kurtosis of the
dominant frequency components.

ARMA Auto-regressive moving average: maps the current value to the history of time series.

GARCH Generalized Auto-regressive conditional heteroskedasticity: maps the current variance to
the historical variance of time series and the heterogeneity of the appearance of the values.

LPC Linear predictive coding: captures the information about the enveloping shape of
the signal.

LFSC Linear Frequency Spectral coding: LPC in frequency domain.
Facial Features

Action units Defines the specific area of the face of the user such as, eyebrows, eyes, nose, lips, chin.
Deep Features Features extracted from a convolutional neural network.
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Fig. 9. The average intensity of the facial action units detected for ten random participants in the PM (left), AA (center), and
DB (right) studies.

4.4 Feature Selection
One of the techniques to reduce the number of features is to select the most appropriate features, and use them
for the training-testing purposes. We use two different feature selection techniques: one linear (Least absolute
Shrinkage and Selection Operator—LASSO), and one non-linear (Random Forest [54, 81, 127]). The reason for
using LASSO is the fact that for the majority of the pipelines, the number of examples is smaller than the number
of features, which is the ideal use-case for LASSO [46, 134]. Furthermore, we decided to also use non-linear feature
selection, since there are indications of non-linear relation between the physiological data and the measured
behaviour / outcome—cognitive performance in our case [43, 102].
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Fig. 10. The average values of ARMA(P=4, Q=4) coefficients for ten random participants in the PM (left), AA (center), and DB
(right) studies.
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Fig. 11. The average values of GARCH(P1=4, Q1=4, P2=4, Q2=4) coefficients for ten random participants in the PM (left), AA
(center), and DB (right) studies.

4.5 Dimensionality Reduction
Apart from feature selection, another way to reduce the number of features is to map the current feature space
to a lower dimensional feature space, and conduct the training-testing in the new space. We use two different
feature selection techniques: one linear (Principle Component Analysis—PCA), and one non-linear (Kernel PCA
[59]). Similar to feature selection, the reason for using a non-linear dimensionality reduction is an indication of
non-linear relation between the physiological data and the measured behaviour/outcome—cognitive performance
in our case [43, 102]. Another reason for using the non-linear dimensionality reduction technique is that it has
been shown to provide better results than the linear techniques [18, 115].

4.6 Prediction: Ensemble Learning
Ensemble models in machine learning combine the decisions from multiple models to improve the overall
performance. In this paper, we combine predictions from 7 different algorithms: Support Vector Machines [21]
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Fig. 12. The average values of value (M:mean, V:variance, S:skewness) and spectral (M:mean, V:variance, S:skewness)
histograms for ten random participants in the PM (left), AA (center), and DB (right) studies.
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Fig. 13. The average values of LPC (n=5) and LFSC (n=5) coefficients for ten random participants in the PM (left), AA (center),
and DB (right) studies.

with linear, radial and polynomial kernels; Gaussian process models [143] with linear, radial and polynomial
kernels; and M5 model trees. These methods are designed to improve the stability and the accuracy of Machine
Learning algorithms. One way of using the results from multiple models is to use a weighted average from all the
prediction algorithms. The weights for individual prediction are considered based on their accuracy during the
validation phase. There are 3 major advantages of these methods [8, 43, 100]:

(1) We can compare the performance of the ensemble methods to the diversification of our models predicting
cognitive performance. It is advised to keep a diverse set of models to reduce the variability in the prediction
and hence, to minimize the error rate. Similarly, the ensemble of models will yield better performance on
the test case scenarios (unseen data), as compared to the individual models in most of the cases.

(2) The aggregate result of multiple models always involves less noise than the individual models. This leads
to model stability and robustness.

, Vol. 1, No. 1, Article . Publication date: January 2021. 2021-01-04 13:15. Page 20 of 1–41.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

Assessing Cognitive Performance Using Physiological and Facial Features: Generalizing Across Contexts • 21

(3) Ensemble models can be used to capture the linear, as well as the non-linear relationships in the data. This
can be accomplished by using two different models and forming an ensemble of the two.

4.7 Training, Validation, and Testing Setup
Initially, we perform out-of-sampling testing (i.e., leave-one-participant-out), dividing all 3 first datasets into
3 subsets: (1) training, (2) validation, and (3) testing. We keep the testing set aside (10 % from each study). The
datasets are split based on participant identifiers. All the models are trained and validated using the training
and validation sets with a cross validation. The cross-validation is performed using leave-one-participant-out.
In Table 3, pipelines with IDs 1, 4, 9, and 13 are examples of “pure” out-of-sampling testing, where we used the
same dataset(s) both for training and testing. In the next stage, we perform out-of-study testing (i.e., leave-one-
task-out)—that is training on entirely different dataset(s)—and thus context(s)—from the one(s) on which we are
testing. This was intended to unveil features that assess cognitive performance reliably across different contexts
(i.e., engineering generalizable features). In Table 3, pipelines with IDs 10–12 reflect exactly what we mean by
“out-of-study testing,” by using 2 study datasets for training, and a 3rd different study dataset for testing. All
pipelines were compared based on the Normalized Root Mean Squared Error (NRMSE). The Root Mean Squared
Error (RMSE) is calculated using the following formula:

RMSE =

√∑Number of samples
i=1 (predictedi − oriдinali )2

Number o f samples
(7)

Once we have calculated the RMSE, we normalise it to obtain NRMSE using the following formula:

NRMSE(%) = 100 ×
RMSE

oriдinalmax − oriдinalmin
(8)

NRMSE is the proposed metric for student models [98], and is used widely in learning technologies [84] for
measuring the accuracy of learning prediction. Another reason for using NRMSE is that it penalizes the larger
errors (since the errors are squared before addition), thus making NRMSE a high-quality metric for evaluating
predictions. The pipelines were also compared based on the R-statistic measure describing feature generalizability,
as we explain in the next section.

4.8 Feature Generalizability Index (FGI)
To measure the generalizability of the features, we examine whether the NRMSE values from the cross-validation
and the testing (i.e., out-of-sampling or out-of-study) phases are similar. To this end, we require a statistical test
to show the similarity between the two distributions. Since there is no theoretical distribution characterising
about the NRMSE values, we require a non-parametric test for checking the similarity of two populations [23].
The ANOSIM (ANalysis Of SIMiliarity) test is non-parametric and bears the null-hypothesis that the two (or
more) groups compared have a different mean and variance [23]. Thus, by rejecting the null-hypothesis, one can
deduce the similarity of the two NRMSE distributions—in our case: one from the cross-validation and the other
from the testing (i.e., out-of-sampling or out-of-study).

Once we have completed all the steps in the pipeline setup, we obtain a list of training (cross-validation) and
testing NRMSE per user. The generalizability index of the top features will be the effect size of an ANOSIM. To
test for the generalizability (i.e., to conduct ANOSIM) of a given feature set, we require that training and testing
datasets come from different studies. Otherwise, the testing NRMSEs are supposed to be similar. Thus, we do not
perform this procedure in pipelines with the same training and testing datasets, such as pipelines with IDs 1, 4, 9,
and 13 (see Table 3). In cases where the ANOSIM test yields a significant result, the feature set will be considered
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“generalizable”. The R-statistic from the ANOSIM is calculated as follows:

R =
mean ranks between дroups − mean ranks within дroups

N (N − 1)/4
(9)

The denominator ensures that the value of R is between +1 and −1, with 0 designating a complete random
grouping. The statistical significance of the observed R is assessed by permuting the grouping vector to obtain
the empirical distribution of R under null-model.

4.9 Benchmarking the Generalizable Features
After establishing a generalizability metric (FGI), and NRMSE baselines against which to compare (see Table 3), we
used the independent dataset from Study 4 (Gaze-based game) to bench-mark the reliability of the generalizable
features we previously engineered. We process the new dataset using the same methods we used for the other 3
studies, as previously described. However, we only compute the features for the pipelines that were found to be
generalizable (IDs 10–12, see Table 3), and applying the methods described in this section. For comparison, we
also compute the features for those pipelines that were shown to be context-specific, or else “non-generalizable”
(IDs 1, 5, 9, and 13, see Table 3). Once we compute the features, we use the same ensemble prediction algorithms
to predict participants’ cognitive performance in Study 4 (Gaze-based game). Then, we run a series of pairwise
Wilcoxon signed-rank tests to compare the NRMSE of the generalizable features vs. the non-generalizable features.
We use a non-parametric test, since there is no empirical or theoretical basis for assuming any known statistical
distribution for the NRMSE values.

5 RESULTS AND DISCUSSION
We test a total of 156 pipelines assembled by 3 data type combinations, 4 feature selection or dimensionality
reduction techniques, and 13 cross-training and cross-testing combinations. Table 3 summarizes the results from
the top 13 most accurate pipelines in predicting cognitive performance (one for each training-testing combination).
For brevity, the pipelines are assigned with a numerical ID (i.e., 1st column of Table 3). Pipelines with IDs: 1, 5,
and 9 are those in which the training and testing datasets came from the same study (i.e., self-training-testing
with out-of-sampling testing). IDs: 1–9 are the pipelines resulting from combinations with one dataset used for
training, and one dataset used for testing (i.e., single training-testing, and either out-of-sampling or out-of-study
testing). IDs: 10–12 are the pipelines resulting from combinations with two datasets used for training, and one
dataset used for testing (i.e., out-of-study testing). For example, ID: 1 is the pipeline with the best NRMSE score
of 10.29 % (SD = 2.5 %) when using the dataset from the Pac-Man (PM) study for both training and testing.
The corresponding features for ID: 1 are FFT, value and spectral histograms from physiological data, and AU
for facial data, selected with the LASSO feature selection technique. The feature generalizability index could
not be computed here because the training and testing datasets are the same. The random baselines for the
performance prediction for PM, AA and DB are 44.51, 32.93 and 47.25, respectively. Hence, we observe
that the resulting NRMSEs of the 13 most accurate pipelines outperform the random baseline in all
the studies (see Table 3 and Figure 14). The random baselines were calculated using the same distribution as the
scores from the individual studies, and by creating random distributions based on the statistics of the normalized
scores.

5.1 Selecting Generalizable Features
Table 3 shows the NRMSE values for all the training and testing pairs. As expected, single cross-training-testing
(IDs: 2, 3, 4, 6, 7, 8) yields worse prediction than the self-training-testing (IDs: 1, 5, 9). Moreover, we observe
that the best feature selection (or dimensionality reduction) method for the single cross training-testing (IDs:
2, 3, 4, 6, 7, 8) is Random Forest (RF). Instead, the best feature selection (or dimensionality reduction) method
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for the self training-testing (IDs: 1, 5, 9) is LASSO. Interestingly, when we use two datasets for training in
cross-training-testing (IDs: 10, 11, 12), we achieve similar prediction results to self-training-testing (IDs: 1, 5,
9). We observe that the best feature selection (or dimensionality reduction) method for these cases (IDs: 10, 11,
12) is Kernel PCA. When we merge all 3 datasets together and perform a simple training-testing approach, we
attain the best prediction results (ID: 13). In the case of merged training-testing, the best feature selection (or
dimensionality reduction) method is the Random Forest. In the remainder of this section, we will discuss the top
features in predicting cognitive performance from a data type perspective (physiological and facial).

Finding #1: The best feature selection technique for the same training and testing context is LASSO.
Finding #2: The best feature selection technique for training on data from one context and testing on another is
Random Forest (RF).
Finding #3: The best dimensionality reduction technique for training and testing in multiple contexts is Kernel
PCA.

5.2 Engineering Generalizable Physiological Features
In Table 3, we observe a distinction between physiological features that are context-specific, and those that are
generalizable. On one hand, we can see from the single training-testing (IDs: 1–9) that for self-training-testing
(IDs: 1, 5, 9) the most important features are the FFT and histograms (ID: 1), FFT and LPC (ID: 5), and histograms
for EDA and BVP in particular (ID: 9). However, when using the FFT, LPC, LFSC and value histograms in single
cross-training-testing (IDs: 2, 3, 4, 6, 7, 8), we obtain a high prediction error. Thus, these features do not generalize
to other contexts. This lack of generalizability, and the high prediction error, indicate context-specific features.
On the other hand, the most important features from the multi-dataset cross training-testing (IDs: 10–12), are the
feature sets of GARCH and spectral histogram. The fact that we achieve low error rates in the pipelines with ID:
10–12, indicates that these feature sets are generalizable and context-agnostic. Moreover, GARCH and ARMA
feature sets emerge among the most important ones when we merge the three datasets and perform regular
training-testing. This is yet another indication that GARCH and ARMA feature sets do not depend on context.
These findings demonstrate that we were able to produce generalizable features from data of physiological
responses to accurately predict cognitive performance in a diverse set of contexts.
Finding #4: The most generalizable physiological features are GARCH and spectral histogram.
Finding #5: The most context-specific physiological features are FFT, value and spectral histogram.

5.3 Engineering Generalizable Facial Features
Similarly, in Table 3 we also note a clear distinction forming between facial features that are context-specific,
and facial features that are generalizable. Action Units (AUs) emerge as the most accurate features in assessing
cognitive performance both in single training-testing (IDs: 1–9) and in self-training-testing (IDs: 1, 5, 9). In other
words, using the AUs to test on the same dataset with the one used for training, yields a low prediction error.
However, the AUs do not generalize well to contexts outside which they were trained (IDs: 2, 3, 4, 6, 7, 8). Thus,
the lack of generalizability that AUs display, combined with their low prediction error when the same context is
used for both training and testing, renders AUs a context-specific feature in predicting cognitive performance. On
the contrary, when it comes to multi-dataset cross-training-testing (IDs: 10–12), we observe that the deep features
emerge as the most important feature set. The fact that we achieve low error rates in the models with ID 10–12,
suggests that the deep features are a generalizable, context-agnostic feature set. Deep features are also among
the most important feature sets when we merge the three datasets and perform regular training-testing. This
is yet another indication that deep feature sets do not depend on context. These findings demonstrate that we
were able to produce generalizable features from data about facial expressions that accurately predict cognitive
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performance in a diverse set of contexts.
Finding #6: The most generalizable facial features are deep features.
Finding #7: The most context-specific facial features are Action Units (AUs).

5.4 On Feature Generalizability
To evaluate the capacity of our features to reliably assess cognitive performance in diverse contexts, we introduce
a newmeasure—the feature generalizability index (FGI). We computed the FGI, as described in Section 4.8, for each
pipeline using the R-statistic. The R-statistic designates how generalizable the pipeline is, and thus reveals which
is the most important feature set. A non-significant R-statistic in the Table 3 shows that there is a considerable
amount of contextual information in the pipeline, which leads to a different testing NRMSE (IDs: 2, 3, 5, 6, 7, 8).
Conversely, a significant R-statistic shows that the NRMSE scores, produced from cross-validation testing, are
similar and thus the pipelines generalise from the training set to the testing set (IDs: 10, 11, 12). We observe that
the testing NRMSE scores of the generalizable pipelines (IDs: 10, 11, 12) appear relatively similar to pipeline
ID: 13, where we have merged the 3 datasets from the 3 studies, and perform regular training-testing. All in
all, we were able to quantify how generalizable the features produced from physiological responses and facial
expressions are in reliably predicting cognitive performance in diverse contexts.
Finding #8: FGI measures the generalizability of features that assess cognitive performance stemming
from physiological responses and facial expressions.
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Table 3. Best pipelines identified by their IDs corresponding to 13 cross-training and cross-testing combinations for Pac-Man
(PM), Adaptive Assessment (AA), and Debugging (DB) datasets. The data types (“Both” for physiological & facial data)
and the selection/reduction technique are displayed next. Accuracy in predicting cognitive performance is presented next,
described by minimizing Normalized Root Mean Squared Error (NRMSE) in %, and feature generalizability index (R) in a -1 to
+1 scale, followed by the selected feature sets. We observe that feature sets of pipelines 10, 11, and 12 display the best NRMSE
and R index, respectively. The random baselines for the PM, AA, and DB are 44.51, 32.93, and 47.25, respectively.
When no particular physiological data type is mentioned (e.g., EDA), the entirety of physiological data was included in the
prediction.

ID Training Testing NRMSE (SD) Data (technique) R (p) Selected Feature Set

1 PM PM 10.29 (2.5) Both (LASSO) N/A
E4: FFT, value and spectral
histograms
Face: AUs

2 PM AA 18.46 (3.2) Both (RF) -0.007 (> 0.05) E4: FFT, (BVP, HR, EDA) LPC
Face: AUs

3 PM DB 19.67 (3.8) Both (RF) -0.012 (> 0.05) E4: FFT, (BVP, HR, EDA) LPC
Face: AUs

4 AA PM 19.32 (3.1) Both (RF) N/A E4: LPC, LFSC, value histograms
Face: AUs

5 AA AA 10.77 (2.4) Both (LASSO) -0.005 (> 0.05) E4: LPC, FFT
Face: AUs

6 AA DB 15.30 (3.9) Both (RF) -0.06 (> 0.05) E4: LPC, LFSC, value histograms
Face: AUs

7 DB PM 19.37 (3.1) Both (RF) 0.04 (> 0.05) E4: LPC, LFSC, value histograms
Face: AUs

8 DB AA 15.75 (3.8) Both (RF) 0.07 (> 0.05) E4: LPC, LFSC, value histograms
Face: AUs

9 DB DB 11.15 (2.3) Both (LASSO) N/A
E4: (EDA, BVP) value and
spectral histograms
Face: AUs

10 PM, AA DB 9.24 (1.6) Both (Kernel PCA) 0.17 (< 0.05) E4: GARCH, spectral histogram
Face: deep features

11 PM, DB AA 8.27 (2.1) Both (Kernel PCA) 0.32 (< 0.01) E4: GARCH, spectral histogram
Face: deep features

12 AA, DB PM 8.26 (1.9) Both (Kernel PCA) 0.35 (< 0.01) E4: GARCH, spectral histogram
Face: deep features

13 PM, AA, DB PM, AA, DB 8.17 (1.6) Both (RF) N/A E4: GARCH, ARMA
Face: deep features

5.5 Bench-mark Results for Generalizable Features
As described in Section 4.9, we use the entirely independent dataset of Study 4 (Gaze-based game) to evaluate the
accuracy of the best-performing features in assessing cognitive performance, comparing between context-specific
and context-agnostic (generalizable) feature engineering approaches. Table 4, illustrates the pipelines we use for
comparison, with IDs: 1, 5, 9, and 13 falling into the context-specific category, and IDs: 10–12, falling into the
context-agnostic category. In Table 4, we observe that the NRMSE values for context-specific features (IDs: 1, 5,
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and 9) are higher than those for context-agnostic (generalizable) features (IDs: 10–12), produced with out-of-study
testing. However, to reliably support this claim, we run pairwise comparisons using Wilcoxon signed-rank tests
among the NRMSE values for all selected pipelines shown in Table 4. Overall, the results show that the pipelines
using generalizable features (IDs: 10–12) perform significantly better than the pipelines using context-specific
features (IDs: 1, 5, and 9) in reliably predicting cognitive performance in Study 4 (gaze-based game), as shown
in Table 5. Notably, pipeline 13 has the lowest NRMSE value, since it is trained on all 3 previous datasets (i.e.,
Pac-Man game, adaptive-assessment learning, and code-debugging).

We emphasize that the evaluation of the generalizability of the engineered features is conducted
in a context that is highly representative of Ubiquitous Computing scenarios. Not only does Study 4
involve gaze-based interactions, but the entire sample population consists of school students aged 8–14 years,
in contrast to all 3 previous studies with participants aged 17–49, 18–21, and 20–22 years, for Pac-Man game,
adaptive-assessment learning, and code-debugging, respectively.
Finding #9: Generalizable features reliably assess cognitive performance in diverse contexts, across differ-
ent tasks, and with diverse sample populations.

Table 4. Evaluation of generalizable features (ID: 10–12) and non-generalizable features (ID: 1,5,9). Each pipeline is evaluated
in terms of NRMSE values from the ensemble prediction. The whole dataset from the Study 4 is used for testing. The random
baseline for the performance in Study 4 is 34.65.

Pipeline ID
from Table 3 Trained on Selected Feature

Set NRMSE (SD)

1 PM E4: FFT, value and spectral histograms
Face: AUs 15.67 (3.20)

5 AA E4: LPC, FFT
Face: AUs 15.72 (3.23)

9 DB E4: (EDA, BVP) value and spectral histograms
Face:AUs 17.88 (3.73)

10 PM, AA E4: GARCH, spectral histogram
Face: deep features 9.76 (2.89)

11 PM,DB E4: GARCH, spectral histogram
Face: deep features 9.39 (2.71)

12 AA, DB E4: GARCH, spectral histogram
Face: deep features 9.16 (2.41)

13 PM, AA, DB E4: GARCH, ARMA
Face: deep features 8.64 (1.93)
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Table 5. The pairwise comparisons between the NRMSE values from the pipelines using the generalizable features (ID: 10–12)
and the context-specific features (ID: 1,5,9, and 13). The entire dataset from Study 4 (gaze-based game) was used to test the
ability of both categories features to predict cognitive performance. The values in the cells are the Wilcoxon test-statistic and
the corresponding p-values in the parentheses.

Pipeline ID 1 5 9 10 11 12 13

1 - 424
(0.60)

268
(0.04)

683
(0.0001)

769
(0.0001)

768
(0.0001)

761
(0.0001)

5 - - 241
(0.01)

658
(0.0001)

741
(0.0001)

742
(0.0001)

734
(0.0001)

9 - - - 719
(0.0001)

781
(0.0001)

784
(0.0001)

784
(0.0001)

10 - - - - 536
(0.01)

532
(0.01)

522
(0.01)

11 - - - - - 380
(0.85)

389
(0.96)

12 - - - - - - 386
(0.92)

13 - - - - - - -

5.6 Context-specific Features
For the self-training-testing pipelines (IDs: 1, 5, 9), we note that the variable importance (from the random forest)
reflects the context-sensitivity as well. Further inspection of the most important features reveals the following
feature sets for the three studies:
(1) PM: Action Units from facial features→cheek raiser, lip corner puller, upper lip raiser, lip corner depressor,

lip stretcher.
Physiological features→Most dominant frequency HR (FFT-1), mean and variance for HR and EDA.

(2) AA: Action Units from facial features→inner brow raiser, outer brow raiser, nose wrinkler, dimpler, lip
tightener.
Physiological features→first LPC coefficient HR, mean, and variance for HR and BVP.

(3) DB: Action Units from facial features→brow lowerer, lid tightener, upper lid raiser, chin raiser, lip suck.
Physiological features→mean frequency HR, mean and variance for BVP, and EDA.

We observe that the most important set of facial features from the three studies have almost no overlap across
all three studies, while the most important set of physiological features display low overlap when it comes to the
histogram-based features. This proves the fact that self-training-testing produces context-specific features, since
the training is done on one dataset only.
Finding #10: There is a substantial amount of context-specific information (variability across contexts) in
the physiological (FFT, LPC and histogram based features) and facial data (Action Units).

5.7 Implications
Our results show that there are two sets of features, one from physiological data and one from facial data,
that yield the highest FGI (ID: 10, 11, 12 in Table 3). For the physiological data, these are the coefficients from
the GARCH model and the features computed from the spectral histogram (mean, SD, skewness, kurtosis and
maximum), whereas for the facial data, it is the deep features (computed by a pre-trained deep neural network).
Instead, context-specific features include the FFT, value histograms, and LPC coefficients for the physiological
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Fig. 14. Comparison of the 13 best pipelines, grouped by the study in which they were tested. The error bars represent the
standard deviation, and the red lines represent the random NRMSE baseline.

data, and the Action Units (AUs) computed from the facial data (see Table 3 ID: 1, 5, 9). This designates that in
diverse contexts and across different tasks, there can be two kinds of features: (a) those that generalize to diverse
contexts (context-agnostic), and (b) those specific to the target context (context-specific).

We observe that GARCH features from physiological data emerged as one of the most generalizable feature set.
This indicates that modelling the variability of physiological timeseries produces generalizable features across
diverse contexts. GARCHmodels have a number of advantages over contemporary time series modelling methods.
For example, GARCH does not require any prior quantization (as opposed to Markov chain based methods),
since it is an approach designed for continuous time-series data. Plus, the length of history used by GARCH
can be empirically decided by a likelihood estimation, and there is no need for contingency counts, as opposed
to N-gram based methods. Also, GARCH describes the “conditional variance” in the time series, as opposed to
classical modelling of “conditional mean” (auto-regression). These properties of GARCH models render them an
efficient time-series modelling technique [19, 32, 75]. In fact, the aforementioned properties of GARCH may be
the reason why GARCH model-based features achieve high FGI.
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The fact that “deep features” from facial data emerged as the most generalizable, while the AUs turned out to be
context-specific, speaks to the context-sensitivity of emotions. In fact, AUs are typically used for gauging emotions
through facial expressions [29, 31, 49, 50]. Our findings indicate that deep features may be one way to obtain
generalizable features. So far, deep neural networks have been utilized in “transfer learning”, where part of the
model is transferred between different but related contexts in the domains of energy [62, 101], linguistics [57, 63],
and image processing [22, 151]. In our case, we used a relatively simple, pre-trained deep neural network (VGG-19)
to extract the features from facial expressions manifested in 3 different study contexts. By cross training-testing,
we opted for generalizabilty, showing that when it comes to facial data, deep features capture more intricacies
than the AUs do.
As previous findings suggest, cognitive performance relies on the state of the many underlying cognitive

processes [140], and it is affected by a plethora of factors [2, 5, 20, 58, 60, 79, 108, 137, 150]. Depending on the
context and the task at hand, different cognitive processes may manifest. Thus from the outset, accurately gauging
cognitive performance is not an easy feat. Multiple instances in literature have utilized physiological responses
and facial expressions in monitoring cognitive performance [9] for increasing productivity [83, 105], deciding
when one can be interrupted [48, 114], monitoring workload [72, 122], gauging enjoyment [65, 130, 135], and
facilitating learning [10, 28, 29, 33, 35, 36, 42, 49].
Across all these instances of prior work, one can quickly notice the diversity of the contexts in which some

aspect of cognitive performance was measured. Inevitably, instances such as the above, are almost always tailored
to measure aspects of cognitive performance with great accuracy, but within a strictly specific context and
during a specific task at hand. Thus, when it comes to assessing cognitive performance in a new context, little
if any knowledge can be transferred, and prediction models have to be generated again through exhaustive
trial-and-error approaches. Although the need for generalizability in ML has been stressed before in multiple
instances, such as music information retrieval [112], personality assessment [14], predicting driver intentions
[99], and developing BCIs [91], little progress has been made towards developing generalizable features.
Instead, most ML approaches that claim generalizability, focus on “transfer learning” in deep learning [136].

However, more recently transfer learning (TL) typically assumes deep learning, since the computational power
has become on par with computational needs. Moreover, TL requires an already trained model, parts of it, or a
model trained on related data (e.g., recognizing cats) that is introduced to a new but related context for completing
a similar task (e.g., recognizing objects). Thus, TL is fundamentally different from engineering generalizable
features. Recent work by Hutt et al., on producing generalizable affect detection from usage analytics of online
learning platforms, is perhaps an instance that approximates our work the most [64]. Even so, their selected
features were generic and “hand-picked,” while relying on extraordinary big sample sizes (> 69, 000 users). In
our work, we attempt to overcome the lack of generalizability that characterizes most of the ML approaches
in literature, by introducing an ML methodology for engineering generalizable features in a systematic and
near-automatic fashion, with data from attainable sample sizes.
By drawing on 4 datasets from 4 independent studies, we were able to engineer features that generalize

well for assessing cognitive performance. Engineering features that reliably assess cognitive performance in
diverse contexts yields novel opportunities, not only in the realm of Ubiquitous Computing and HCI, but also in
Cognitive Psychology and Neuroergonomics. Indeed, generalizable features, in combination with the ubiquity
of wearable and image-capture devices, enable the around-the-clock monitoring of the states of our cognitive
processes. This could bear tangible benefits in domains such as the ones mentioned earlier (e.g., increasing
productivity, facilitating learning, etc.), and could also be incorporated in existing architectures for delivering
improved wearable cognitive assistance [52, 88, 139], and eventually pave the way for cognition-aware systems
[17, 30, 89].

But perhaps the most important contribution of this work lies in the methodology applied within, and in the
generalizable knowledge to which it has contributed. Besides highlighting which physiological and facial features
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one can use to reliably assess cognitive performance in diverse contexts, the methodology per se can be applied
entirely outside the realm of cognitive performance. Thus, in this work we have contributed towards the creation
of knowledge that is more abstract than particular instances, leading to generalized theories [61].

5.8 Limitations
Besides the applicable findings and the exciting methodological potential this work bears, it also comes with
significant limitations that we need to address. First, we postulate that the 4 studies (and the 4 corresponding
datasets), on which this work draws, encompass the major portion of the cognitive processes that underpin
human cognition. Although we do not expect that all cognitive processes manifested to the same extent across
all studies and all participants, the selected study contexts (i.e., Pac-Man game, adaptive-assessment learning,
code-debugging, and a gaze-based game) required different levels of decision-making, problem-solving, memory
recall, learning, and of course attention. In Study 4 (gaze-based game), we were surprised to discover that our
generalizable features performed considerably well in predicting the cognitive performance of school students.
So far, we had engineered our features entirely based on datasets collected from adults performing a variety of
cognitive tasks. We did however try to control as many variables as possible by applying the same experimental
protocol across all 4 studies (see Fig. 1).
Next, this work assumes that cognitive performance can be characterized by the score that one achieves

in a mental task, and can be reflected in one’s physiological responses and facial expressions. On one hand,
our approach is by design computational, and thus it relies a priori on quantified and objective measures of
performance such as scores. On the other hand, there is an amassing body of evidence on the connection of
physiological responses and facial expressions with cognitive performance [26, 56, 149]. In this work, we did
not consider physiological responses measured by EEG and eye-tracking, simply due to requiring stationary
settings—our intention is to move outside the lab. Having said that, we need to acknowledge that in this stage,
this work builds on studies that have taken place entirely in control settings. In this way, we were able to
minimize most of the confounding factors that impact physiological responses (e.g., movement), and ensure that
the proposed methodology yields the desirable results before we transfer it outside the lab.
Finally, we do recognize the fact that we have not deployed any means for directly collecting feedback on

the cognitive workload our participants exhibited. For example, administering a NASA-TLX questionnaire [55]
would have shed light on the cognitive workload our participants experienced when completing a cognitive task
through self-assessment. In turn, utilizing self-reported (cognitive) workload could have enabled us to estimate
cognitive performance in an even more accurate, and perhaps more generalizable fashion. Thus, purely relying
on scores bears the drawback of potentially miss-classifying high-performing individuals, who may exhibit
little or no physiological and facial expression effects, due to reduced effort invested on their part. However,
our assumption here is that high-performing individuals, who do not experience any physiological effects due
to cognitive workload, are outliers. Detecting and modeling such outliers would require more sophisticated
approaches, such as the Extreme Value Theorem and Copula Theory [86], and are currently outside the scope of
this work.

6 CONCLUSION AND FUTURE WORK
In this work, we introduce a machine learning methodology for engineering generalizable features from phys-
iological responses and facial expressions that assess cognitive performance. Our methodology draws on 4
independent studies, that followed a highly-similar experimental protocol, and 4 corresponding datasets from a
total of 123 participants, exhibiting varying levels of problem-solving, decision-making, and learning processes
during the completion of the tasks at hand. Our results show that LASSO is the best feature selection technique
when it comes to training and testing in the same context, whereas Random Forest performs better when it comes
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to testing in one context and training in another. Kernel PCA emerged as the best dimensionality reduction
technique for training and testing in multiple contexts.

Our methodology revealed that the most generalizable features in reliably assessing cognitive performance are
GARCH with spectral histogram and deep features from data of physiological responses and facial expressions,
respectively. On the contrary, the most context-specific features are FFT, value and spectral histograms for
physiological responses, and Action Units for facial expressions. By introducing a feature generalizability index
(FGI), we showcase how our methodology can be applied for engineering generalizable features outside the realm
of cognitive performance.

As for future work, we plan to extend our methodology to consider mobility and physical activity by supplying
it with the corresponding data streams (e.g., accelerometer values) for measuring cognitive performance outside
the lab. We also plan to use our technique with additional data that reveal cognitive performance such as facial
thermal imaging [1]. Finally, we plan to explore how generalizable our approach can be in assessing cognitive
performance during collaborative tasks, using the features engineered in this work.
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7 APPENDIX A

7.1 Power spectral histogram:
The power spectrum of a time series describes the distribution of power into frequency components composing
that signal. Once the frequency components are computed, they can be represented as a histogram (Power Spectral
Histogram). We computed the mean, SD, skewness, kurtosis and median of the Power Spectral Histogram.
The average power of a signal is given by:

P = lim
T→∞

1
T

∫ T

0
|x(t)|2 dt (10)

To analyse the individual frequency component, we used the truncated Fourier transform and define the
amplitude spectral density:

x̂(ω) =
1
√
T

∫ T

0
x(t)e−iωtdt (11)

from above the power density can be calculated using:

Sxx (ω) = lim
T→∞

E
[
|x̂(ω)|2

]
(12)

where,

E
[
|x̂(ω)|2

]
=

1
T

∫ T

0

∫ T

0
E[x∗(t)x(t ′)]eiω(t−t ′)dtdt ′ (13)

with x∗ being the complex conjugate of x and t ′ provides the range granularity.

7.2 GARCH:
GARCH models are similar to AutoRegressive Moving Average (ARMA) models but they are applied to the
variance of the data instead of being applied to the mean [4, 38, 69, 78, 113, 118]. GARCH processes X (t)t ∈Z take
the general form

Xt = σtZt , t ∈ Z (14)
Where σt , the conditional deviance (so-called volatility in finance), is a function of the history up to time t − 1

represented by Ht−1 and (Zt )t ∈Z a strict white noise process with mean zero and variance one. We assume that Zt
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is independent of Ht−1. Mathematically, σt is Ht−1 measurable, where Ht−1 is a filtration generated by (Xs )s≤t−1 ,
and therefore

Xt |Ht−1 = σ 2
t (15)

The series (Xt ) follows a GARCH (p,q) process if for all t

σ 2
t = α0 +

p∑
j=1

α jX
2
t−j +

q∑
k=1

ηkσ
2
t−j ,α j ,ηk > 0 (16)

The condition on the parameters, α j = 1. . .p and, ηk = 1. . .q for the GARCH equations to define a covariance
stationary process with finite variance is that

p∑
j=1

α j +

q∑
k=1

ηk < 1 (17)

The rationale behind equation 16 is that, first, opposite to AutoRegressive Moving Average (ARMA) models,
which are models for the conditional mean, the GARCH is a model for the conditional standard deviation. By
“conditional” we mean “given the history up to time t”, that is given Ht−1. Second, the model shows that more
persistence is built into the variability. In other words, GARCH models the variance at time t in the time-series as
the linear combination of the history of variances up to time t − 1. For more details see [131]. The coefficients
α0. . .αp and η1. . .ηp can be estimated by maximizing a likelihood function. The most popular GARCH model is
GARCH (1, 1), that is, p = q = 1 in (3) meaning that the current action variability is explained by the latest action
and the latest action number only (lag time of one).

7.3 LFSC:
LPC is susceptible to high peaks in the signal [7], hence we also compute the LSFC for the arousal data that
improves upon this shortcoming of the LPC [67].
Following are the steps to compute the LFSC:
(1) Compute LPC. Let {ai }mi=1 are the LPC coefficients.
(2) Compute the spectral Frequency using the following

Ŷm(ωk ) =
д̂m

|Âm(e jwk )|
(18)

where, д̂m is the prediction error of themth frame of the audio; and Âm is the Toeplitz normal equation
[13] of orderm.

(3) LSFC = loд |Ŷm(ωk )|

7.4 LASSO:
To select the most important features we employ the Least Absolute Shrinkage and Selection Operator (LASSO)
[134]. LASSO is an extension of Ordinary Least Square (OLS) regression techniques fit for the cases where the
number of examples are less than the length of the feature vector [134]. To find the best fitting curve for a set of
data points, OLS tries to minimize the Residual Sum of Squares (RSS) which is the difference between the actual
values of the dependent variable (y) and the fitted values (ŷ). The formulation of the OLS is given as follows:

ŷ = α0 + β1X1 + β2X2 + ... + βnXn

The objective of the OLS regression is to minimize the difference between
∑
(ŷ − y)2 with the constraint that∑

β2i ≤ s . Where s is called the shrinkage factor. LASSO on the other hand performs similar optimization with
the slight difference in the constraint, which is now

∑
abs(βi ) ≤ s . While using LASSO, some of the βi will

be zero. Choosing s is like choosing the number of predictors in a regression model. Cross-validation can be
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used to estimate the best suited value for s . Here, we use 10-fold cross validation to select the value of s . Our
analysis seeks to identify how each of the extracted features from the different data-streams predicts participants’
performance scores.

7.5 Random Forest:
Random forest is mostly used as a prediction algorithm, however, we will use it as a feature selection mechanism.
random forests are ensembles of decision trees. The training algorithm for RF applies the general technique of
bagging: repeatedly selects a random sample with replacement of the training set, fits trees to these samples,
and uses these replicates as new testing sets. One of the key features of the random forest is that it can permute
the given feature set and compute the feature importance for each feature in each dataset, by optimising one
of the modelling parameters, e.g., root mean squared error, proportion of variance explained; or in the case of
classifications, precision and/or recall. Using the individual feature importance from RFs, one can put a threshold
either on the number of features or on the importance values of the features to select the required number of
features.

7.6 Dimensionality Reduction

Fig. 15. Left: Simulated eigenvalues sorted in decreasing order. Right: Cumulative sum of the sorted eigenvalues; blue line is
the threshold for the number of dimensions and the red line is the threshold for the percent of variance explained.

7.6.1 Principal Component Analysis (PCA):. PCA identifies patterns that represent the data in a “better manner”.
The principal components could be seen as the new axes of the data maximizing the variance along those axes.
This is achieved through the eigenvectors of the covariance matrix of the data. A common application of PCA is
dimension reduction in a way that the information loss is minimised minimal loss of information. PCA projects
the dataset (with d dimensions) onto a new subspace (k new dimensions where k < d). The main benefit of PCA
is reduced computation time and also reduced error in the parameter estimation. PCA can be summarised in the
following steps:
(1) compute the covariance matrix of the original data (X ).
(2) compute the eigenvectors and eigenvalues of the original data.
(3) sort the eigenvalues in descending order (Figure 15 left panel).
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(4) now, there are two different ways of reducing the number of dimensions in the original data. 1) pre-select
the reduced number of dimensions and select the eigenvectors corresponding to the largest eigenvalues
(see the blue line in the Figure 15 right panel). 2) put a threshold on the variance explained of the original
data. This is equal to the proportion of the sum of the eigenvalues to the total sum of eigenvalues (see the
red line in the figure 15 right panel).

(5) construct the projection matrixU using the k eigenvectors.
(6) project the data onto the new space using Y =UT . X

7.6.2 Kernel PCA:. In the case where the data is not linearly separable, we would require a method to perform the
dimensionality reduction using a way that considers the non-linear separation in the new space, since the linear
dimensionality reduction will not yield good results. To perform the non-linear dimensionality reduction, we
chose to use the kernel PCA, the basic working principle is the same as defined above, however we use a kernel
function κ to compute the covariance matrix. The kernel is a function ϕ that transforms the data (d-dimensions)
into a higher dimensional (p-dimensions) space, where the separation between the classes becomes linear again.
Let us consider the sample X , the kernel function ϕ can be described as X → ϕ(X ). The individual data points in
X would be projected to the higher dimensional space as follows (for details, see REF):

κ(xi , x j ) = ϕ(xi )ϕ(xi )
T (19)

For example, if X has two features

X = [xi , x j ]
T X ∈ R (20)

↓ ϕ (21)

X ′ = [x1 x2 x1x2 x
2
1 x

3
1x

2
2 ...] X ∈ Rp (p >> d) (22)

Next, to compute the covariance in kernel PCA, instead of using

Cov =
1
N

N∑
i=1

xix
T
i (23)

we use

Cov =
1
N

N∑
i=1

ϕ(xi )ϕ(xi )
T (24)

7.7 SVM (Linear, polynomial, radial):
SVM maps an input X onto a multidimensional space using kernel functions (linear, radial or polynomial), and
then any kind of regression can be used to model the input data in the new feature space (the kernel functions
are described in the subsection “kernel PCA”). The quality of estimation is measured by the ϵ–intensive loss
function given by Chapelle and Vapnic (1992):

Lϵ (y, f (x,ω)) =

{
0 i f |y − f (x,ω)| ≤ ϵ

|y − f (x,ω)| − ϵ otherwise

}
(25)

SVM regression performs regression in the high-dimensional space using ϵ–intensive loss function, while
minimising ∥ω∥2. This can be achieved using non-negative slack variables to measure the deviation of training
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samples out of the ϵ–intensive loss zone. The SVM tries to minimise 1
2 ∥ω∥

2 +C
∑N

i=1(ξi + ξ
∗
i ) subjected to:

yi − f (x,ω) ≤ ϵ + ξ ∗i
f (x,ω) − yi ≤ ϵ + ξi

ξi , ξ
∗
i ≥ 0, i = 1..N (slackvariables)

 (26)

this can be transformed to

f (x) =
Nsv∑
i=1

(αi − α∗
i )κ(xi , x) subject to 0 ≤ αi ,α

∗
i ≤ C (27)

Where Nsv is the number of support vectors and κ is the kernel function.

7.8 Model tree M5:
These are based on decision trees, which let us split the data into separate smaller datasets or “islands” using
different feature sub-spaces. The main purpose of such splits is to minimise the overall weighted loss on the
data. What is commonly used in decision tree classification is the mean-regression with L2 loss for decision tree
regression. Model Trees extend the decision trees by allowing us to build decision trees out of any model of our
choice.

7.9 Gaussian process model (Linear, polynomial, radial):
This model is like SVM, the only difference being the fact that the mapping from the original space to a
multidimensional space is governed by Gaussian latent variables that are parametrized using different kernel
functions (Rasmussen and Williams, 2016).

P(Y |X , θ ) =
D∏
i=1

1

(2π ) 12 |κ |
1
2
e−y

T
i κ

−1yi (28)

Where θ is the set of hyperparameters, κ is the kernel function. D is the dimensions of the original data X and
Y is the target variable. In this study, we set the kernel functions to take linear, polynomial and radial forms.
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