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  Abstract 
  Most research on learning technology uses clickstreams and questionnaires as their 
primary source of  quantitative data. This study presents the outcomes of  a systematic 
literature review of  empirical evidence on the capabilities of  multimodal data (MMD) 
for human learning. This paper provides an overview of  what and how MMD have been 
used to inform learning and in what contexts. A search resulted in 42 papers that were 
included in the analysis. The results of  the review depict the capabilities of  MMD for 
learning and the ongoing advances and implications that emerge from the employment 
of  MMD to capture and improve learning. In particular, we identified the six main 
objectives (ie, behavioral trajectories, learning outcome, learning-task performance, 
teacher support, engagement and student feedback) that the MMLA research has been 
focusing on. We also summarize the implications derived from the reviewed articles and 
frame them within six thematic areas. Finally, this review stresses that future research 
should consider developing a framework that would enable MMD capacities to be aligned 
with the research and learning design (LD). These MMD capacities could also be utilized 
on furthering theory and practice. Our findings set a baseline to support the adoption and 
democratization of  MMD within future learning technology research and development.            

 This is an open access article under the terms of  the  Creative Commons Attribution-NonCommercial  License, which permits use, distribution and 
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. 
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         Introduction 
 The confluence of  multimodal data (MMD) with advanced computational analyses (multimodal 
learning analytics—MMLA, as the literature refers to them) enables us to understand and sup-
port complex learning phenomena (Blikstein & Worsley,  2016 ). For example, eye-tracking data 
and the different linguistic and prosodic features of  speech can inform us about the students’ 
expertise (Andrade, Delandshere, & Danish,  2016 ; Mangaroska, Vesin, & Giannakos,  2019 ); or 
video data can tell us about their engagement (Nguyen, Huptych, & Rienties,  2018 ; Pardo, Han, 
& Ellis,  2016 ). These insights can enable actionable feedback to be provided to the learners. For 
example, Hutt  et al . ( 2019 ) used eye-tracking to automatically detect mind-wandering in online 
classes; while Grawemeyer  et al . ( 2017 ) used students’ speech and interaction to detect students’ 
affective state. Such constructs (eg, mind-wandering, affective states) are used to provide feedback 
to the students (eg, by helping to determine the type of  feedback that should be provided––reflec-
tive, instructive––and how it should be presented––evaluative, interpretive, supportive, probing). 

 Insights extracted from MMD enable us to investigate learners’ behavior in ways that would not 
be possible with individual data sources. Giannakos, Sharma, Pappas, Kostakos, and Velloso 
( 2019 ) found that the prediction of  skill acquisition was far better using combined MMD (eg, 
eye-tracking, Electroencephalography [EEG] and facial video) than when using any individual 
stream. Research has shown that the fusion of  MMD brings significantly better prediction of  
learning outcomes and helps us to interpret complex learning processes (Giannakos  et al .,  2019 ; 
Liu  et al .,  2019 ; Sharma, Papamitsiou, & Giannakos,  2019 ; Sharma, Pappas, Papavlasopoulou, 
& Giannakos,  2019 ). Despite the great potential of  MMD for learning, and recent developments 
in the context of  the CrossMMLA community, research in this direction has not reached its 
potential. For example, Worsley ( 2018 ) found that there are MMLA areas that remain largely 
underexplored (eg, supporting accessibility). In the same vein, other communities (eg, intel-
ligent tutoring systems [ITS], Artificial Intelligence in Education [AIED], User Modeling and 
User-Adapted Interaction [UMUAI]) found that the implementation of  MMLA in the areas where 

 Practitioner Notes 
 What is already known about this topic

    •     Capturing and measuring learners’ engagement and behavior using MMD has been 
explored in recent years and exhibits great potential. 

   •     There are documented challenges and opportunities associated with capturing, pro-
cessing, analyzing and interpreting MMD to support human learning. 

   •     MMD can provide insights into predicting learning engagement and performance as 
well as into supporting the process.   

 What this paper adds

    •     Provides a systematic literature review (SLR) of  empirical evidence on MMD for 
human learning. 

   •     Summarizes the insights MMD can give us about the learning outcomes and process. 
   •     Identifies challenges and opportunities of  MMD to support human learning.   

 Implications for practice and/or policy

    •     Learning analytics researchers will be able to use the SLR as a guide for future research. 
   •     Learning analytics practitioners will be able to use the SLR as a summary of  the cur-

rent state of  the field.   
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learning occurs (eg, classrooms, museums) is very challenging, and sometimes prohibitive (Baker 
& Ocumpaugh,  2015 ), with the result that MMLA’s full potential is hindered (D’Mello & Kory, 
 2015 ; Giannakos  et al .,  2019 ). 

 Proponents of  MMD for learning have proposed several good arguments and benefits in seminal 
empirical and conceptual work. For example, Drachsler and Schneider ( 2018 ) suggested that MMD 
provide a more holistic picture of  learning processes and success factors than the current form of  
knowledge extracted using individual data sources. Worsley and Blikstein ( 2018 ) argued for MMLA 
by suggesting that the existing strategies for analyzing MMD could provide more meaningful insights 
into complex learning processes than traditional approaches can. In the same vein, Spikol, Ruffaldi, 
Dabisias, and Cukurova ( 2018 ) and Blikstein and Worsley ( 2016 ) highlighted the importance 
and benefits of  MMD in open-ended learning tasks, while Noel  et al . ( 2018 ) and Liu  et al . ( 2019 ) 
showcased the potential of  MMD in rather restricted settings. Moreover, Prieto, Sharma, Kidzinski, 
Rodríguez-Triana, and Dillenbourg ( 2018 ) demonstrated that MMD provide insights both from the 
learners’ side of  the interaction and from the teachers’ side of  the interaction. Therefore, we see that 
there has been increased research in the field of  MMD for learning and that it has focused on the fol-
lowing fronts. First, it had focused on the learning task: open-ended tasks such as, designing problems 
(Worsley & Blikstein,  2018 ) and close-ended tests like self-assessment tests (Sharma, Papamitsiou,  et 
al .,  2019 ). Second, research has considered both sides of  instruction: for students by predicting their 
learning task performance (Kaklauskas  et al .,  2015 ) and for teachers in order to understand their 
classroom orchestration strategies and needs (Prieto, Sharma, Dillenbourg, & Jesús,  2016 ; Prieto 
 et al .,  2018 ). Third, researchers have focused on the learning scenarios: face-to-face, to understand 
how teachers manage the classroom (Prieto  et al .,  2016 ,  2018 ) and online learning scenarios, to 
predict students’ learning-task performance (Florian-Gaviria, Glahn, & Gesa,  2013 ). 

 Learning analytics (LA) research has called for MMD actions with the formation of  a CrossMMLA 
special interest group in the Society for Learning Analytics Research (SoLAR) ( https://www.
solar esear ch.org/commu nity/sigs/cross mmla-sig/ ) as well as for the organization of  an annual 
workshop ( http://cross mmla.org/ ) and dedicated special issues. A similar call for MMD research 
has also been made in recent literature review papers. For instance, Mangaroska and Giannakos 
( 2018 ) identified that there is limited knowledge about how MMD can support the learning 
design (LD), and they suggested that the use of  a broad set of  complementary metrics (made 
possible through capturing MMD) will allow us to align the LD better with the student needs, 
thereby improving the learning process. This could be possible by finding the specific features 
that support understanding of  complex learning experiences (Martinez-Maldonado  et al .,  2016 ; 
Pantazos & Vatrapu,  2016 ) and by using these features to inform the LD (Bakharia  et al .,  2016 ). 
Furthermore, Ruiz-Calleja, Prieto, Ley, Rodríguez-Triana, and Dennerlein ( 2017 ) suggested that 
LA (in the context of  the workplace) could be enriched by exploring multiple data sources to 
overcome the problems of  incomplete and scarce data caused by the low number of  interactions 
between users and systems, thus, reducing the burden entailed by manual data gathering and 
increasing the chances of  adoption. In the same vein, Worsley ( 2018 ) indicated that leveraging 
data from “non-traditional” modalities allows us to study and analyze learning that occurs in 
complex learning environments, thereby allowing us to collect data in ecological settings. 

 However, collecting and analyzing the MMD to answer a specific research question entails cer-
tain challenges as well. Challenges associated with MMD pose a significant impediment for 
many researchers. For example, each data stream has a different sampling rate (eg, eye-tracking 
60–250 Hz, EEG 120–500 Hz, Video 10–60 FPS, Audio 44.1 KHz, heart rate 4 Hz) that incurs 
additional processing of  the collected data to ensure that all the modalities are at the same tempo-
ral resolution. Moreover, all the data streams should be synchronized so that they can be analyzed 
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together (Ochoa  et al .,  2018 ; Worsley,  2018 ). Further, each data stream carries a different set 
of  noise sources, and hence, improving the signal-to-noise-ratio for each data stream and hav-
ing it at similar levels might be a tedious task (Sharma, Papamitsiou,  et al .,  2019 ). In addition, 
each data stream entails a separate type of  features and measures (emotions from faces, D’Mello 
& Graesser,  2012 ; attention from eye-tracking, Mangaroska, Sharma, Giannakos, Træteberg, & 
Dillenbourg,  2018 ; mental workload from EEG, Doppelmayr, Klimesch, Schwaiger, Auinger, & 
Winkler,  1998 ), and once the different measures and features are extracted from the collected, 
cleaned (noise-removal) and synchronized data streams, extracting LA-specific guidelines is 
another challenge (Bakharia  et al .,  2016 ; Giannakos  et al .,  2019 ). Given that most researchers 
on MMLA rely on custom-developed scripts and manual data alignment (Worsley,  2018 ), MMD 
can be inaccessible to those who are not already invested in this type of  research and/or do not 
have the necessary technical competence. 

 Keeping the aforementioned benefits and challenges in mind, this paper presents a systematic lit-
erature review (SLR), strictly following the guidelines of  Kitchenham and Charters ( 2007 ), with 
the aim of  examining the empirical evidence on the capabilities of  the insights extracted from 
MMD for learning. This SLR will allow us to provide information about the implementation and 
impact of  MMD across a wide range of  learning settings, contexts and empirical methods, and to 
provide robust and transferable evidence to other fields (eg, learner modeling, Educational Data 
Mining [EDM], Learning Analytics and Knowledge [LAK] at large, AIED). This paper presents 
an overview of  what and how MMD have been used to inform learning and in what contexts. 
Although the MMLA field is still relatively young, enough work has already been done in the 
context of  the CrossMMLA community to conduct a review. 

 Specifically, in this contribution, we systematically review the existing literature from the follow-
ing two points of  view.

   RQ1:  What is the current status of  MMD for learning research, seen through the lens of  areas of  implemen-
tation (eg, learning scenario, learning environments), technologies used and methodologies (eg, types of  
data and data analysis techniques)? 

  RQ2:  What insights the MMD has given us about learning (ie, MMD capabilities for learning)?   

 Our motivation for this work is based on developments in the area of  MMLA creating momentum 
for increased use of  multiple data sources to understand learners and learning processes. This 
study can provide a springboard for other scholars and practitioners, especially in the area of  
learning technologies, to examine MMD potential and MMLA approaches by taking into consid-
eration the prior and ongoing research efforts. 

 Previous works that have reviewed the state of  the field are concerned with individual modes 
(Blikstein,  2013 ; Blikstein & Worsley,  2016 ), or provide a conceptual framework using hand-
picked studies (Di Mitri, Schneider, Specht, & Drachsler,  2018 ), or analyze architectures (and 
are thus nonempirical works; Shankar, Prieto, Rodríguez-Triana, & Ruiz-Calleja,  2018 ) and do 
not engage in a systematic collection of  empirical evidence (Blikstein & Worsley,  2016 ; Worsley, 
 2018 ). Apart from these review studies, there have been several MMLA and CrossMMLA work-
shops that have discussed the challenges and opportunities of  MMLA. However, they are limited 
by the submission length, and thus, are neither comprehensive nor systematic. This study com-
plements a vast amount of  research in related fields, such as EDM, LAK, AIED, UMUAI, that have 
a long tradition of  utilizing more than one data source to analyze and support students’ behavior/
performance. However, in light of  the special issue of  MMLA, this SLR aims to offer a solid review 
of  works that have been conducted in the context of  the CrossMMLA community and to discuss 
the results of  the review through the lens of  the neighboring fields (eg, UMUAI, AIED, EDM).  
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  Methodology 
 In this SLR, we follow a transparent and widely accepted procedure (especially in the area of  soft-
ware engineering and information systems, as well as in educational technology) to minimize po-
tential biases (researchers) and support reproducibility (Kitchenham & Charters,  2007 ). Besides 
the minimization of  bias and the support of  reproducibility, SLRs enable information to be pro-
vided about the impact of  a phenomenon across a wide range of  settings, contexts and empirical 
methods. Therefore, if  the selected studies give consistent results, SLRs have the capacity to pro-
vide evidence that the phenomenon is robust and transferable (Kitchenham & Charters,  2007 ). 

  Articles collection 
 Several procedures were followed to ensure a high-quality review of  the literature on MMD for learning. 
A comprehensive search of  peer-reviewed articles was conducted in September 2019 (short papers, 
posters, dissertations, editorials and reports were excluded). The term “multimodal learning analyt-
ics” (also written as “multi-modal”) was selected, since it is an umbrella term that captures the major 
works published in the confluence of  MMD and LA in the developing MMLA community. Publications 
were selected from 2010 onward, because there have been tremendous advances since 2010 (eg, the 
LA field emerged) in the area of  data-driven LA. A wide variety of  databases were searched, including 
SpringerLink, Wiley, Assembly of  Computer Machineries [ACM] Digital Library, IEEE Xplore, Science 
Direct, SAGE and ERIC. The search process uncovered 375 peer-reviewed articles.  

  Inclusion and exclusion criteria 
 The selection phase determines the overall validity of  the literature review, and thus, it is im-
portant to define specific inclusion and exclusion criteria. We applied eight quality criteria (see 
Appendix  A ) informed by related works (eg, Dybå & Dingsøyr,  2008 ). Therefore, studies were 
eligible for inclusion if  they were focused on MMLA. The aforementioned criteria were applied 
in Stage 2 and Stage 3 of  the selection process (Figure  1 ), when the researcher had to assess the 
papers based on their titles and abstracts (Stage 2), and then, on the full papers (Stage 3).   

  Data analysis 
 In total, 42 studies met the quality criteria. We coded these studies according to specific areas of  
focus. These areas allowed us to consolidate the essence and the main focus of  the studies. We 
selected categories that represent the MMD utilized as well as the objectives and content of  the 
paper. This categorization enabled us to record all the necessary details from the papers in our 
literature review and to use them to address our research questions. In particular, each collected 
study was analyzed using the following elements:

    1  .   Category: Experiment, Case study, Secondary Data Analysis, Ethnography. 
   2  .    Research topic: Social Sciences, Science Technology Engineering Mathematics (STEM), 

Computer Science (CS), Economics, Other (eg, Game Design, Robotics). 

  Figure  1 :                 Stages of  the selection process 



© 2020 The Authors.  British Journal of  Educational Technology  published by John Wiley & Sons Ltd on behalf  of  British Educational Research 
Association

Multimodal data capabilities for learning    1455

   3  .   Learning environment: LMS, ITS, Massive Open Online Course (MOOC), else. 
   4  .   Learning scenario: Formal, informal, nonformal. 
   5  .   Population: primary, secondary, high-school, undergraduate, graduate, master, teachers. 
   6  .   Sample size: Size of  sample population. 
   7  .   Unit of  analysis: individual or team. 
   8  .   Pedagogical approach: PBL, SRL, IBL, GBL, CSCL, Constructivism, Other. 
   9  .   Data collection: Type of  data source/collection methods. 
   10  .   Methodology: Qualitative, quantitative, mixed. 
   11  .   Research objective: What was the main research objective of  the contribution? 
   12  .   Behavior performance: What was the impact (if  mentioned) of  the intervention/innovation 

on learners’ behavior?   
 The first 10 categories answer RQ1 and the latter two address RQ2. It is important to highlight 
that articles were coded based on reported information, that different authors reported informa-
tion at different levels of  granularity, and that in some cases the information was missing from 
the paper. Overall, the authors did their best to code the article as accurately and completely as 
possible. Details on the paper coding are shown in Appendix  B .   

  Research findings 
  Domain, population and research topic 
 Most of  the contributions presented a case study (30) or an experiment (10), while only one pre-
sented an ethnography. This could further showcase the exploratory phase of  MMLA research 
since most of  the contributions present an analytical/conceptual framework, and then, used the 
data collected from a study as an example “case study.” For example, some studies proposed a 
method to obtain relevant predictions from the MMD and used a data collection based on a cer-
tain context as a case study (Sharma, Papamitsiou,  et al .,  2019 ), or they proposed a method to 
use MMD to understand user stories in a software engineering course and used the data collected 
from a specific case study to test the proposed method (Noel  et al .,  2018 ). The majority of  the case 
studies (27) were conducted in formal learning settings, with a quarter of  them (11) being in in-
formal learning environments (four of  them did not explicitly mention the learning settings). This 
shows that the MMLA community focuses on methods/artifacts-driven interventions through 
case studies conducted in convenient settings (formal learning/classroom settings), as we can 
notice by looking at the particular papers (Spikol  et al .,  2018 ; Worsley & Blikstein,  2015 ,  2018 ). 
Moreover, of  the 27 studies in formal learning scenarios, 20 were in university settings (where 
most of  the teaching practices are formal). On the contrary, 6 out of  11 studies in informal learn-
ing were in primary, secondary or high school settings (where there is scope for higher integra-
tion of  informal education, such as museum visits). 

 The unit of  analysis employed was individual data for 23 studies and teams’ data (collaborative 
settings) for 17 studies; there were also six studies that did not explicitly mention this informa-
tion. In terms of  the educational domain employed, most of  the MMLA studies focused on STEM 
topics in general (13), a good number of  studies (10) specified the domain area of  CS education, 
while there were studies focusing on teaching overall and some on gaming and memorization 
(Figure  2 , left), with most of  the studies recruiting university students (Figure  2 , right). Moreover, 
there were seven studies focusing on diverse domains such as doctoral students’ activities (2), 
economics (1), environmental studies (1), communication skills (1), construction (1) and nurs-
ing (1). There were also papers in which the study was highly contextualized and the context 
influenced the scenario, the research design and the MMD collected; for example, Martinez-
Maldonado, Echeverria, Santos, Santos, and Yacef  ( 2018 ) analyzed MMD in the collaborative 
nursing context, where the participants were told to analyze a mannequin in a simulation. The 
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majority of  the papers seemed to use educational domains and contexts that were convenient for 
them. For example, Ochoa  et al . ( 2018 ) utilized MMD to provide feedback on students’ commu-
nication skills, and Worsley and Blikstein ( 2018 ) analyzed MMD in the context of  a collaborative 
construction task, with participants recruited through university mailing lists.   

  Learning environment and pedagogical approach 
 The MMLA contributions used a varied set of  learning environments (Figure   3 , left). The pre-
dominant learning environment was a face-to-face classroom setting (7), while others used ITS 
(5), interactive development environments (4), simulations (4), learning management systems 
(LMSs) (3) and MOOCs (3). There were 14 contributions that used specific tools outside these cat-
egories and four contributions that did not mention their learning environment. When it comes 
to the pedagogical underpinnings, the MMLA studies addressed a variety of  approaches (Figure  3 , 
right). In particular, problem-based learning (PBL) was the most frequent approach (10), while 
there was also a good distribution of  other active learning approaches, such as inquiry-based 
learning (IBL, 8) and problem-regulated learning (PRL, 7). Other pedagogical underpinnings 

  Figure  2 :                 The different educational domains (left) and sample populations used in the contributions 

  Figure  3 :                 The different learning environments (left) and pedagogical underpinnings (right) employed in the MMLA 
studies 
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employed were computer-supported collaborative learning (CSCL, 7), self-regulated learning 
(SRL, 6), game-based learning (GBL, 3), example-based learning, principle-based learning and 
constructivism. The predominance of  face-to-face and active learning approaches indicates that 
the focus of  the community is to extract MMD from noninstructional learning activities and 
physical settings (non-digitally mediated learning). In particular, Worsley and Blikstein ( 2018 ) 
used an IBL framework where the students gathered three examples to understand engineering 
design; also, Junokas, Lindgren, Kang, and Morphew ( 2018 ) used a similar framework to ask 
the participants to understand the gesture recognition itself. In the same vein, Mangaroska  et al . 
( 2019 ) and Ezen-Can, Grafsgaard, Lester, and Boyer ( 2015 ) asked the participants to solve coding 
problems to learn debugging and programing, respectively. Furthermore, Martinez-Maldonado 
 et al . ( 2018 ) and Spikol  et al . ( 2016 ) analyzed MMD in collaborative nursing and collaborative 
programing contexts, respectively. Although most of  the studies were not in the space of  digitally 
mediated learning, we found a few studies, such as those by Di Mitri  et al . ( 2017 ) and Florian-
Gaviria  et al . ( 2013 ), that focused on blended and online learning, respectively.   

  Data collection, sample size and methodology 
 Similar to the kind of  population, the size of  the population (Figure  4 ) participating in the contri-
butions varied from under 10 (3) to more than 200 (1). There were six contributions with 10–20 
participants, 16 with 20–40 participants, seven with 40–60 participants, one with 80–100 par-
ticipants and six with more than 100 participants. There was one contribution that did not men-
tion the sample size used in the study. A post hoc mapping between the modalities used in the 
studies and the sample size reveals that the majority of  the studies with a sample size larger than 
40 used data streams such as audio, video, logs and surveys (for the details of  the mapping for the 
studies with more than 40 participants, see Appendix  D ). On the contrary, most of  the other stud-
ies had more sophisticated data collection equipment, such as eye-tracking (Mangaroska  et al ., 
 2018 ), EEG (Giannakos  et al .,  2019 ; Sharma, Papamitsiou,  et al .,  2019 ), EDA sensors (Worsley & 
Blikstein,  2015 ) and Kinect (Kosmas, Ioannou, & Retalis,  2018 ). This ease of  collection of  data 
possibly explains the higher number of  participants in the first set of  studies. 

  Figure  4 :                 The modalities employed in the MMLA studies. Note: each contribution used at least two from the list 
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  The most common data analysis methodology adopted a quantitative approach (24), while 10 
contributions used a qualitative approach, and 10 studies reported results from mixed methods. 
Considering the modalities applied in the MMLA studies, a wide range of  tools and techniques were 
used for data collection (Figure  4 ). The most common modalities captured were logs (16), videos 
(15), gesture (15), audio (13) and physiological data (8; physiological data includes heart rate vari-
ability [HRV], blood volume pulse, galvanic skin response [GSR]). Other modalities captured in the 
selected contributions were eye-tracking (5), face (3), EEG (3), motion (4), posture (5), interviews (3) 
and human observations (2). We report the modes as identified in the respective papers, but different 
authors described their modes with different levels of  granularity (eg, face, video) and had different 
interpretations of  what constitutes a modality (eg, is observation a modality in the MMLA context?). 

 In most of  these contributions, there was a consistent use of  these modalities. For example, vid-
eos were mostly used to annotate gestures and interactions (Prieto  et al .,  2016 ,  2018 ; Worsley & 
Blikstein,  2015 ,  2018 ), eye-tracking was mostly used for finding attentional patterns and pupil-
lary response (Mangaroska  et al .,  2018 ; Prieto  et al .,  2018 ), EEG was mostly used to extract fea-
tures that correspond to deep mental processes such as long/short-term memory (LSTM) load 
and cognitive workload (Giannakos  et al .,  2019 ; Prieto  et al .,  2016 ; Sharma, Papamitsiou,  et al ., 
 2019 ), and faces were mostly used to extract features that correspond to emotional responses like 
boredom, happiness, sadness and engagement (Florian-Gaviria  et al .,  2013 ; Ochoa  et al .,  2018 ). 

 Further investigation into how these different modalities were used revealed that logs and vid-
eos were mostly used to evaluate the performance of  the participants, either in a quantitative 
way using logs (Liu, Stamper, & Davenport,  2018 ; Liu  et al .,  2019 ; Mock  et al .,  2016 ; Sharma, 
Papamitsiou,  et al .,  2019 ) or environment variables (Mangaroska  et al .,  2018 ), or in a qualita-
tive manner using videos (Worsley & Blikstein,  2015 ,  2018 ). The rest of  the multimodal sources 
were used to quantify behavioral trajectories, such as interaction behavior using touch gestures 
(Mock  et al .,  2016 ), engagement with problem space using EDA and audio (flow, stress; Worsley 
& Blikstein,  2015 ,  2018 ), understanding and misconceptions using physiological data (Liu  et al ., 
 2018 ,  2019 ), and problem-solving behavior using faces and EEG (Sharma, Papamitsiou,  et al ., 
 2019 ) and eye-tracking (Mangaroska  et al .,  2018 ). 

 With regard to the number of  modes used in each of  the studies, 21 studies used two modalities, 
nine used three modalities, four used four modalities and four used five modalities. The distribu-
tion of  the number of  modalities might also reflect the availability of  the data capturing devices to 
the researchers. For example, three out of  four studies using five modalities used both eye-tracking 
and EEG data (Giannakos  et al .,  2019 ; Prieto  et al .,  2016 ; Sharma, Papamitsiou,  et al .,  2019 ), 
which involves using equipment that is costly and requires specialized technical competence. 
Therefore, it is worth further investigating whether the high cost of  such off-the-shelf  devices 
and the need for specialized technical competence were limiting factors when planning the data 
collection part of  studies. 

 With regard to the sample size and number of  modalities employed, Figure  5  shows that most of  
the studies employed two modalities and covered sample sizes of  10–200.   

  Research objective 
 When coding the papers, we also collected the research objective of  each study. We then grouped 
the objectives and formed the following categories:

    1  .   Explain the learning trajectories of  the students ( n   =  16). By learning trajectories, we 
mean the MMD’s capacity to portray learners’ dialogues, strategies, behavior, interaction 
with the system or certain states of  the students. 
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   2  .   Predict the learning outcome ( n   =  5), such as grade, memorization capacity and skill 
acquisition. 

   3  .   Predict the learning performance on a task ( n  = 14). 
   4  .   Contribute toward teacher support ( n  = 6) in a manner that provides an awareness or reflec-

tion tool to the teacher or support in decision making. 
   5  .   Explain/predict student engagement ( n  = 2). 
   6  .   Present/experiment with a student feedback system ( n  = 2).   

 To investigate the connection between MMD and their capacity to assist us in understanding 
human learning, we mapped the various MMD with the research objectives (Figure  6 , left) and 
the learning settings (Figure  6 , right).   

  MMD for learning behavior and performance 
 We observed six major trends concerning the research objectives. In this section, we report on 
MMD’s capacity to inform us about each of  these six categories, focusing on the papers identified 
in each of  the categories. 

  Behavioral trajectories (process) 
 Several researchers have pointed out how MMLA is capable of  explaining learning processes or 
students’ trajectories. Specifically, Kosmas  et al . ( 2018 ) showed in a Kinect-based game that the 
play-time and range of  motion improve students’ short-term memory; Junokas  et al . ( 2018 ) used 
skeleton positions and kinematics features to predict participants’ recall; Andrade, Danish, and 

  Figure  5 :                 Number different modalities and the sample size in the MMLA studies 
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Maltese ( 2017 ) used hand positions and head poses to predict students’ understanding in a pred-
ator-prey simulation; Spikol  et al . ( 2018 ) used distance between students’ faces, hand motion 
speed and the distance between hands to predict quality of  students’ projects; and Mock  et al . 
( 2016 ) used interaction logs from a touchscreen and the hand movements to predict the cogni-
tive workload of  the students. Therefore, the studies report that MMD can be successfully used 
to explain students’ trajectories while the students engage in the learning task. From the afore-
mentioned studies, we can see that interaction logs, gestures and posture were related to memory 
(Junokas  et al .,  2018 ; Kosmas  et al .,  2018 ), conceptual understanding (Andrade  et al .,  2017 ), the 
artifact quality (Spikol  et al .,  2018 ) and cognitive workload and motivation (Mock  et al .,  2016 ). 

 In collaborative conditions, MMD have been used to identify key moments of  collaboration (Noel 
 et al .,  2018 ; Noroozi  et al .,  2019 ; Pijeira-Díaz, Drachsler, Järvelä, & Kirschner,  2019 ). MMD have 
also been used to distinguish between help-seeking and help-giving behavior (Cukurova, Kent, 
& Luckin,  2019 ), tentative and casual problem-solving behavior (Andrade  et al .,  2017 ), nonver-
bal behaviors (Cukurova, Luckin, Millán, & Mavrikis,  2018 ), solving versus guessing (Sharma, 
Papamitsiou,  et al .,  2019 ) and the reasoning behavior of  students (Worsley & Blikstein,  2015 , 
 2018 ). Therefore, the studies identified in this category demonstrate the rich insights research-
ers can extract from MMD. Depending on the context, technologies and interactions involved, 
researchers have focused on understanding different micro-level (eg, nonverbal behaviors and 
guessing behaviors) and macro-level (eg, key collaborative moments, help giving and seeking and 
reasoning) aspects of  students’ trajectories.  

  Learning outcome 
 The MMLA studies report that MMD could be a key enabler for understanding and distinguish-
ing the different levels of  learning outcomes. With one exception, all studies utilized the logs of  
the system as one of  the modalities, and all the studies used more than one modality to predict 
the learning outcome. In particular, Blikstein, Gomes, Akiba, and Schneider ( 2017 ) conducted 
a study with a focus on the laws of  Newtonian physics, where students were required to build a 
tower and a bridge using a physics microworld. In the study, the authors did not find any effect 
of  the experimental manipulation (ie, detailed vs generic instruction) on students’ learning out-
come and time to completion. However, the activation measured by the GSR was different for 
the two conditions; that is, for generic instruction the activation was monotonously decreasing, 
while the authors reported a “U-shaped” curve for the different parts of  detailed instruction. 

  Figure  6 :                 Association of  research objectives of  the MMLA studies with modalities employed (left); association 
of  learning settings of  MMLA studies with modalities employed (right). Note: Appendix  C  presents the detailed 

mapping, showing which papers belong in each of  the circles 
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 In another study, Andrade ( 2017 ) investigated MMLA’s capacity to enrich our understanding of  how 
elementary students explore the concept of  feedback loops while controlling an embodied simula-
tion of  a predator-prey ecosystem using hand movements. The results of  the study show five distinct 
motion sequences in students’ embodied interactions, and these motion patterns are statistically 
associated with initial and post-tutorial levels of  students’ understanding of  loops. Andrade ( 2017 ) 
demonstrated that embodiment “interacts” with the learning outcome and increases conceptual 
understanding, and that for this multidimensional association to be revealed the qualities of  MMLA 
were critical. Overall, the MMLA studies identified in the learning outcome space used different modal-
ities as a means to understand and explain the association of  different complex instructional tech-
niques and technologies (eg, embodiment, haptic, virtual reality [VR]) with the learning outcome.  

  Learning-task performance 
 The studies that focused on predicting and/or explaining learning-task performance mainly used 
logs, audio, video, eye-tracking and physiological modalities, with fewer studies using modalities 
like EEG, posture and survey. Di Mitri  et al ., ( 2017 ) utilized MMD such as heart rate, step count, 
weather condition and learning activity to predict learning performance in SRL settings, with the 
results presenting “decent” prediction accuracy. In particular, the participants of  the study were 
doctoral students who were asked to wear a Fitbit wristband and to rate their learning activities 
from 7 a.m. to 7 p.m. every hour while working in their normal routine (Di Mitri  et al .,  2017 ). 

 In another study, Worsley and Blikstein ( 2018 ) investigated three MMLA approaches from a mak-
ing-based learning activity. The authors concluded that there are many different approaches to 
applying MMLA and that each approach can provide a meaningful “glimpse” into a complex data-
set, a glimpse that may be difficult to identify using non-MMLA approaches. In a controlled lab 
setting, participants were asked to play a version of  a Pacman game focusing on movement-mo-
tor learning; Giannakos  et al . ( 2019 ) compared MMD (EEG, facial video, eye-tracking, heart rate, 
electrodermal activation and blood volume pulse) to unimodal (logs) data and identified that tra-
ditional click streams (18% error rate) were significantly outperformed by MMD models in predict-
ing movement-motor learning performance when the authors fused MMD (the error drops to 6%). 

 The MMLA studies identified in the learning-task performance category utilized the richness of  
MMLA to investigate different approaches (eg, making: Worsley & Blikstein,  2018 ; debugging: 
Mangaroska  et al .,  2018 ; playing: Giannakos  et al .,  2019 ) with the ultimate goals of  understand-
ing the experience (Di Mitri  et al .,  2017 ; Giannakos  et al .,  2019 ), improving either the technol-
ogy (eg, Mangaroska  et al .,  2018 ) or the design of  the process (eg, Liu  et al .,  2019 ; Worsley & 
Blikstein,  2018 ) and achieving a higher level of  success on the given task. An interesting obser-
vation is that all the studies identified in this category were highly contextualized.  

  Teacher support 
 Prieto  et al . ( 2018 ) reported that the temporal relationships of  the events occurring at different 
points in a lesson can be captured using MMD and found that they are important in predicting 
a teacher’s activity. Florian-Gaviria  et al . ( 2013 ) demonstrated that integrated applications for 
adopting a well-grounded framework in teaching practice are required since they can assist teach-
ers in creating contextual awareness. Prieto  et al . ( 2016 ) reported reasonable accuracy using 
MMD features to predict teachers’ activities in the classroom, which was later used as a reflec-
tion tool for teachers. Rodríguez-Triana, Prieto, Martínez-Monés, Asensio-Pérez, and Dimitriadis 
( 2018 ) showed the positive impact of  such a tool on prediction performance, as well as on the 
teacher’s ability to interpret and react according to the results. Further, Cukurova  et al ., ( 2019 ) 
argue that knowledge embedded in the analytical nature of  classification models could be used to 
track/monitor each factor’s contribution to decisions made in the classroom. Overall, MMLA to 
support teaching is a category with several studies, and most of  them focus on less-sophisticated 
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modalities (eg, audio, video and motion) that can be easily implemented in the classroom. Most 
studies converged on the fact that MMD’s ability to distil information that is either nonobvious 
or demands high cognitive load for the teacher (eg, posture, gesture, level of  collaboration) has 
important implications for the teaching design and teaching temporal actionable insights.  

  Engagement 
 The two studies that investigated engagement offer several insights into students’ engagement pat-
terns using MMLA. In particular, Pardo  et al . ( 2016 ) proposed that a positive student experience 
of  self-efficacy, tests, motivation, self-regulation and positive interaction with many online events, 
particularly those that offer feedback, reflection and reasoning, would correlate with academic 
achievement. In another study to investigate students’ engagement in an online course, Nguyen  et 
al . ( 2018 ) found, that high-performing students were studying in advance, while low-performing 
students showed more catching-up activities. For example, Nguyen  et al . ( 2018 ) showed that for 
certain lessons in the later parts of  the course all the students spent significantly more time on 
learning. However, the passing students spent more time in learning in advance while failed stu-
dents spent more time catching-up with the material. Therefore, the results from both studies impli-
cate that linking LD with MMLA-based insights, such as pointing out students to certain materials 
(eg, relevant online events: Pardo  et al .,  2016 ) or frontloading and scaffolding learning materials 
that cause engagement and were avoided; and the ones causing disengagements (Nguyen  et al ., 
 2018 ). Both studies also call for further research actions using MMD-based behavioral patterns to 
uncover student disengagement and to highlight the potential of  MMD-based insights to inform the 
LD and to evaluate the implications of  this for engagement (Nguyen  et al .,  2018 ; Pardo  et al .,  2016 ).  

  Student feedback 
 Interestingly, we identified only two studies that used MMD to provide feedback. Those two stud-
ies report high agreement between the human expert feedback and the MMD-based feedback. 
In particular, Ochoa  et al . ( 2018 ) found that the system’s feedback highly agrees with human 
feedback and that students considered this feedback to be useful and meaningful in developing 
their oral presentation skills. The authors concluded that an affordable system (camera and mi-
crophone) is able to provide feedback to avoid common errors in oral presentations. The feedback 
was given to the students off-line and post-presentation about their posture, gaze toward the au-
dience and speech (pauses and volume). The initial evaluation showed that the majority of  the 
students rated the system from acceptable to excellent (from 6 to 10 on a 10-point scale) in terms 
of  overall experience, usefulness and learnability (Ochoa  et al .,  2018 ). 

 Moreover, Ochoa  et al . ( 2018 ) reported that the results from the hand-annotated data, which all 
correlated with the system’s feedback, provided a consistent picture of  how principle-based rea-
soning may be related to success and learning. It is, however, agreed that the more the complex-
ity of  the system increases (Worsley & Blikstein,  2015 ), the more difficult it becomes to provide 
high-quality feedback. In the fields of  AIED and UMUAI, there have been a lot of  contributions 
dealing with student feedback. For example, Grawemeyer  et al . ( 2017 ) adapted the feedback 
based on students’ affective states, reduced boredom and off-task behavior. Similarly, Davaris  
et al . ( 2019 ) used hand movement data and game logs in a VR setting not only to help the trainee 
surgeons understand basic anatomy, but also to provide feedback on the students’ mistakes.    

  Discussion and future research directions 
 From the review process, we observe certain clear trends. STEM and CS are domains that have ex-
tensively researched and defined problems and problem-solving approaches. These domains are 
also heavily studied in the related fields, such as CSCL, LA and EDM, with dedicated special issues 
and venues on the intersection of  these content areas (eg, In ACM Transactions on Computing 



© 2020 The Authors.  British Journal of  Educational Technology  published by John Wiley & Sons Ltd on behalf  of  British Educational Research 
Association

Multimodal data capabilities for learning    1463

Education [TOCE], LA and CS education). Although there is no clear evidence about the rea-
sons behind these trends, the convenience of  conducting studies in the university context and 
the focus on action learning (which is very common in STEM) are two potential explanations (as 
shown in the left panel in Figure  2 , CS and STEM are the domains that receive the most focus). 
Further, face-to-face classroom settings and ITS provide a better opportunity for MMD collection 
than do other learning environments because physiological sensors are easily integrated in such 
environments (as shown in the left panel in Figure  3 , face-to-face classes and ITS have been the 
most used learning environments). In ITS, an eye-tracker and/or a webcam can easily be con-
nected to the system, and the devices can use the system’s (eg, ITS) timestamp for synchroniza-
tion (the appropriateness of  using MMD with ITS and standalone systems was also highlighted in 
a review and meta-study by D’Mello & Kory,  2015 ). 

 The challenging contexts for implementing MMD are MOOCs and LMS, since these platforms 
were not designed for multimodal input interaction. The following barriers are encountered: (1) 
MMD collection and integration are difficult (huge amount of  data); (2) off-the-shelf  devices are 
not yet “at-scale” (and when webcams, eg, are available, privacy and ethical requirements make 
their utilization impossible); and (3) students use such environments asynchronously (making 
collaborative MMD nonfunctional). However, the challenging contexts could also benefit from the 
use of  MMD with the advancements in technology and proper ethical permissions (eg, in an LMS, 
if  the students have the capacity to upload their Fitbit data while working on an assignment, it 
would help the researchers understand the arousal and engagement patterns). 

 Concerning data collection, MMLA researchers have used a plethora of  data streams to obtain 
a deeper insight about the learners’ rich and “multimodal” behavior. The most frequently used 
modalities are logs, audio, video and gestures (as shown in Figure   4 ). These modalities have a 
smaller cost and overhead in setting up than high-quality off-the-shelf  sensor devices. Moreover, 
these modalities are the least obtrusive. This way, researchers could set up an experiment/case 
study seamlessly. However, implications from such studies are limited in terms of  the depth of  the 
understanding these modalities provide about the learners’ behaviors and states. 

 By contrast, gaze, EEG, face and physiological data provide in-depth access to learners’ affect, 
attention and cognition. In spite of  gaze and EEG being highly informative, they are one of  the least 
used modalities (as shown in Figure  4 . However, high-quality off-the-shelf  devices are expensive, 
and data collection and analysis need high expertise and entail several ethical issues. Furthermore, 
processing these data modalities is not trivial: because these are high-frequency modalities, there 
are also high noise levels, their synchronization is often challenging and there are several import-
ant methodological decisions that require high competence and contextual knowledge (eg, going 
from low-level signals to high-level abstractions, such as features and measurements). 

 Contemporary research on valid ways of  collecting, preprocessing, synchronizing and ana-
lyzing these data streams can be found in related fields, such as human-computer interaction 
and ubiquitous computing (Grosse-Puppendahl  et al .,  2017 ; Mansoorizadeh & Charkari,  2010 ; 
Newell,  1994 ; Rasmussen,  1983 ), ITS (D’Mello, Dieterle, & Duckworth,  2017 ), EDM (Blikstein 
& Worsley,  2016 ) and LAK (Di Mitri  et al .,  2018 ). Therefore, the community can benefit from 
these approaches, techniques and recommendations. For example, D’Mello and Kory ( 2015 ) 
highlighted the trade-off  between “accuracy” and “authenticity,” since accurate results (high-
data quality) are usually obtained in nonauthentic contexts (low ecological validity). In addition, 
“standard procedures,” such as the one-off  collecting labeled data to train supervised classifiers, 
are inherently limited due to the manual annotation process (D’Mello & Kory,  2015 ). Therefore, 
general techniques and recommendations are important and useful, but the final methodological 
decisions and applied techniques should be guided by specific application contexts. 
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 Considering the target population (Figure  2 , right panel), there are a few studies that focused on 
primary and secondary school children; while most studies focused on high school or university 
(undergraduate, master’s, graduate) students. This could be because recruitment of  participants 
depends on teachers and/or parents (legal guardian). MMD has not yet achieved a high level of  
social acceptance (Koelle  et al .,  2018 ; Lee, Lee, Shin, & Oakley,  2018 ), which could be the reason 
why parents do not consent to their children participating in a study. Moreover, teachers might 
also think that data collection would hinder the normal learning process and be too intrusive. 

 Finally, we observe the following downward trend: when the researchers have used a high num-
ber of  modalities to collect data (as shown in Figure  5 ), the sample size decreases (with the excep-
tion of  Liu  et al .,  2019 ). However, when we remove the studies with two modalities (the minimum 
to be considered “multimodal”) we see that there is a significantly negative Spearman correla-
tion between the number of  modalities in MMD and the sample size ( r  = .49,  p  = .05, Figure  5 ). 
This indicates difficulties in collecting, preprocessing and analyzing MMD in large-scale studies. 
Moreover, such problems are aggravated when there are many psycho-physiological sensors (eg, 
EEG, GSR, heart rate, eye-tracking) involved (Giannakos  et al .,  2019 ; Prieto  et al .,  2018 ; Sharma, 
Pappas,  et al .,  2019 ). Thus, from a practical perspective, when designing an MMLA study it is 
important for the researcher to consider the targeted population (eg, size, age), the objectives of  
the study (improving learning outcomes, engagement) and to carefully decide the modalities, tak-
ing into consideration their inherent qualities: noninvasive (cameras, audio, logs), invasive (EEG, 
eye-tracking glasses), sensitivity to noise, processing complexity, individual capacities (selection 
of  appropriate modalities that produce useful for the under investigation phenomenon data) 
and collective capacities (ie, their ability to combine certain modalities to investigate different 
phenomena, such as combining video to find the moments of  collaboration with eye-tracking to 
investigate the quality of  those moments). 

  Opportunities 
 Several combinations of  audio data, eye-tracking, system logs, video data and physiological data 
(eg, HRV, GSR) have been used to predict/explain learners’ task performance (Florian-Gaviria 
 et al .,  2013 ; Giannakos  et al .,  2019 ; Sharma, Papamitsiou,  et al .,  2019 ). On the contrary, several 
combinations of  audio data, system logs, video data and physiological data have been used to de-
fine different behavioral trajectories (eg, Noel  et al .,  2018 ; Spikol  et al .,  2016 ; Spikol  et al .,  2018 ). 
These two MMD sets provide deep insights into the performance and learning process from differ-
ent standpoints. For example, gaze data can provide attentional information (Poole & Ball,  2006 ), 
physiological data can provide information about stress and arousal states of  learners (Sharma, 
Pappas,  et al .,  2019 ), and gesture, posture and motion data can tell us about the way learners 
interact/communicate with each other or with the system in a certain learning environment (eg, 
ITS, embodied play). Combining two or more of  these datasets could improve our understanding 
and the predictive power of  the ML algorithms in terms of  the performance and learning pro-
cess. However, contemporary MMLA applications are context-dependent, requiring customized 
and sometimes cumbersome methods that cannot be easily reused and standardized. Therefore, 
working toward the modularization and standardization of  MMD for learning (eg, identifying 
data features that are not context-dependent) is a promising avenue that can allow us to further 
MMLA research and application. 

 Further, we observe that combinations of  audio and video data have been used to provide teacher 
support, both in terms of  post-class reflection (Prieto  et al .,  2016 ,  2018 ) and decision making 
(Cukurova  et al .,  2019 ). A plausible explanation for this could be that these two modalities are 
the most unobtrusive when it comes to monitoring a classroom, and they present almost no 
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hindrance to the normal execution of  routines in any given face-to-face classroom. Also, most of  
the recording devices have these two modalities synchronized at the hardware level, so there is no 
requirement for lengthy preprocessing in such cases. 

 With regard to the second mapping (Figure  6 , right), we observe four clear trends. First, while ana-
lyzing a collaborative and formal setting, certain combinations of  audio, video, physiological data 
and system logs were used (Martinez-Maldonado, Power,  et al .,  2017 ; Noel  et al .,  2018 ). Second, 
for informal situations in collaborative learning, audio, system logs, gesture and motion data 
were preferred (Spikol  et al .,  2016 ,  2018 ). Third, in the case of  formal instruction to individuals, 
audio, system logs, gesture and video data were used (Blikstein,  2013 ; Mock  et al .,  2016 ). Finally, 
for informal and individual cases, audio, gestures and log data were utilized by most contributions 
(Andrade  et al .,  2017 ; Ochoa  et al .,  2018 ). These choices reflect peculiarities of  instructional set-
tings. For example, most informal collaborative settings are carried out with learners talking to 
each other (audio and gesture) in an environment (eg, museum) where they are required to move 
(motion and posture); while in collaborative formal settings, learners interact with each other 
and with the system (audio, video and logs), and during these interactions argumentation and 
negotiations take place (causing stress and arousal, hence, the usage of  physiological data). In 
addition, the selection and utilization of  different data streams might also be connected to the 
equipment and technical competence of  the researchers. 

 Combining the aforementioned observations, we can reckon that there is a body of  knowledge 
suggesting that there are certain combinations that are useful for predicting/explaining learners’ 
behavior/performance/outcome, such as audio, eye-tracking, system logs, video and physiolog-
ical data (see Figure  6  and Appendix  C  for the detailed mapping). However, further exploitation 
(new features, advanced ML methods) of  these data sources is necessary to advance the current 
knowledge. Another interesting insight has to do with a limitation in the range of  the learning 
scenarios that have been studied. There have been only a few learning scenarios explored (face-
to-face: Prieto et al.,  2016 ,  2018 ; scripted group-work: Martinez-Maldonado et al.,  2018 ). This 
limitation becomes even more important when we start considering whether the students or the 
teacher in these learning scenarios are being monitored. This also suggests that MMLA is still 
in an exploratory phase, with most studies and prototypes addressing specific learning scenar-
ios. The contribution of  this paper will provide insights into MMD’s capabilities to inform learn-
ing based on the empirical works published in the MMLA community; in addition, it will allow 
researchers to make informed decisions about which MMD to employ in their studies (eg, different 
goals and learning scenarios).  

  Challenges and future directions 
 During the mapping of  the different modalities, we also came across a few gaps in the research. 
For example, we observed that EEG data are underutilized. Only three contributions (Giannakos 
 et al .,  2019 ; Prieto  et al .,  2018 ; Sharma, Papamitsiou,  et al .,  2019 ) used a combination (or a 
subset) where EEG data were part of  MMD. This might be for one or more of  the following rea-
sons: the low signal-to-noise ratio in EEG data; the requirement (which might sometimes be an 
overhead) of  preprocessing (noise cancelation from eye movements, jaw movements and other 
possible sources due to involuntary motions) is higher for EEG data than for any other data source 
(as shown in Figure  6 ); and EEG costs the most in terms of  ecological validity. However, there are 
emerging EEG devices that reduce the invasiveness of  EEG (Vourvopoulos, Niforatos & Giannakos, 
 2019 ) and provide a good proxy (compared to other data sources in MMLA) to deeper cogni-
tive states, such as cognitive load (Doppelmayr  et al .,  1998 ), memory load (long term: Jensen & 
Tesche,  2002 ; short term: Ryu & Myung,  2005 ) and higher mental functions (Georgiadis, van 
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Oostendorp, & van der Pal,  2015 ). Therefore, it is necessary that EEG data collection and prepro-
cessing is done carefully to obtain the most information from this valuable data source. 

 Another future direction for MMLA would be the use of  facial videos, skeleton data, system logs 
and physiological data to provide actionable feedback to students. These MMD are the most ubiq-
uitous, and many of  them are noninvasive (eg, depth cameras such as Microsoft Kinect) or have 
minimized their invasiveness in recent years (eg, skin conductance mouse, wristbands), making 
them more appropriate for utilization in pedagogical settings. However, there is much research 
required to understand the timing and the type of  feedback (Schwartz & Bransford,  1998 ). As 
we found in this SLR (which might be limited due to the special focus on MMLA), there is limited 
work on whether the feedback should be proactive (preventive feedback; eg, should the system 
forecast the mistake to occur and act before the students make the mistake?) or reactive (cor-
rective feedback; eg, should the system wait for the students to make the mistake, and then, act 
accordingly?), on whether it should be initiated by the teacher, by the student or by an artificial 
agent and on how much information it should provide to the student about their behavior (Nicol, 
 2013 ; Ochoa  et al .,  2018 ). Therefore, future work needs to focus on how to leverage MMD’s 
capacities (eg, temporal information, affective information) to provide more effective and efficient 
feedback to the learner. 

 Future work should also focus on not only on designing the feedback tools based on MMD, but also 
on testing the tool’s effectiveness and efficiency. There are plenty of  feedback tools/practices in 
related fields, such as LAK, EDM, AIED and UMUAI. For example, Zhu, Xing, Costa, Scardamalia, 
and Pei ( 2019 ) triangulated the speech, sentiment and discourse analysis to provide personalized 
support to students and improve their collaborative knowledge building. Similarly, Grawemeyer 
 et al . ( 2017 ) used students’ speech and interaction data to adaptively scaffold their affective states 
so that the off-task behavior could be reduced and the learning gains could be increased. Finally, 
Davaris  et al . ( 2019 ) used logs and movement data to facilitate support that reduced students’ 
mistakes. However, further research is required to be able to provide feedback using multiple 
channels and to validate the effectiveness and efficiency of  such feedback tools. 

 Finally, only two contributions combined attention (eye-tracking), cognition (EEG) and affect 
(face) measurements (Giannakos  et al .,  2019 ; Sharma, Papamitsiou,  et al .,  2019 ). Baker, D’Mello, 
Rodrigo, and Graesser ( 2010 ), D’Mello and Graesser ( 2010 ) and Mangaroska and Giannakos 
( 2018 ) have called for these three measurements to be combined so that a holistic picture of  the 
learners’ performance, outcomes and behavior can be formed. Especially in formal settings, the 
synchronization of  eye-tracking, EEG and facial videos can be achieved with a relatively lower 
level of  difficulty than in informal settings.  

  Theoretical and practical implications 
 A number of  implications emerge from this SLR on MMLA empirical published work in recent 
years. In the following sections, we summarize the implications derived from the reviewed articles 
by considering six thematic areas. 

  Enhanced prediction/explanation using MMLA 
 Using automatic analyses of  the data, one key performance (methodological) trend in the MMLA 
research has been the showcasing of  the improved and generalized performance of  the studies. 
For example, Worsley and Blikstein ( 2015 ) suggested that MMLA can significantly enhance our 
understanding in detecting and modeling student learning. Giannakos  et al . ( 2019 ) highlighted 
limitations of  standalone clickstream models in a specific context, quantified the expected benefits 
of  using a variety of  MMD that employ physiological sensing, and proposed guidelines for design 
learning technologies. Liu  et al . ( 2018 ) and Andrade  et al . ( 2016 ) claimed their MMD analytic 
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approach to be useful and generalizable to any branch of  LA research in which data from multi-
ple sources or modalities must be integrated for analysis. Cukurova  et al . ( 2019 ), Liu  et al . ( 2019 ) 
and Sharma, Papamitsiou,  et al . ( 2019 ) demonstrated the improved accuracy of  prediction over 
unimodal variables and proposed a generalized methodology for creating MMLA pipelines.  

  Automatic methods and machine Learning 
 MMD provide a unique opportunity for researchers to apply state-of-the-art ML techniques, since 
the data has different granularities and is sufficient for properly training the algorithms. Spikol  et 
al . ( 2018 ) showed that new and promising approaches, such as neural networks, and more tradi-
tional regression approaches can both be used to classify MMLA data. Ezen-Can, Boyer, Kellogg, 
and Booth ( 2015 ) proposed the application of  unsupervised models to asynchronous commu-
nication, which can enable massive-scale automated discourse analysis and mining to better 
support students’ learning. Finally, Casey ( 2017 ) proposed methods to discover what constitutes 
relevant data within a particular learning context in programing using MMLA patterns.  

  Deep temporal Learning 
 Most of  the methods used in the selected contributions either used the aggregated version of  the 
MMD across the dependent variable that does not use time as a factor, or, when using temporal 
analysis, employed discrete classes/clusters of  behavior (Worsley & Blikstein,  2018 ). Both these 
methods have their limitations. For example, clearly aggregating the data at the dependent vari-
able level does not tell us anything about learners’ behavioral trajectories. On the contrary, using 
discrete classes/clusters of  behavior does not produce a holistic portrayal either. In related fields, 
such as EDM and teaching analytics, there are a few examples of  using deep learning methods 
with temporal data to provide better predictability than when using clustering or aggregation 
(Grafsgaard, Duran, Randall, Tao, & D’Mello,  2018 ; Prieto  et al .,  2018 ; Stewart, Keirn, & D’Mello, 
 2018 ). These methods could be further exploited in MMLA to further our understanding of  learn-
ing performance/outcomes/trajectories.  

  Adaptation, personalization and moments to intervene 
 MMLA focuses on providing deep insights into the learning processes and learners’ behavior. In 
addition, MMLA provides guidelines (and, in some cases, systems) to move toward adaptive and 
personalized learning scenarios. Junokas  et al . ( 2018 ) demonstrated a promising way to create 
productive experiences with gesture-based educational simulations, promoting personalized in-
terfaces and MMLA scenarios. Ezen-Can, Grafsgaard,  et al . ( 2015 ) presented a step toward achiev-
ing a better understanding of  student utterances by incorporating natural language processing 
based MMD features within adaptive learning environments. Kaklauskas  et al . ( 2015 ) proposed 
a system that integrates the strong points of  a student’s personal learning style preference with 
a choice of  available adaptive learning materials for the most appropriate learning adaptation 
(applying text, video, audio, computer learning systems and virtual and augmented realities). 
Finally, Cukurova  et al . ( 2018 ) outlined implications for design, research and development of  ed-
ucational technology based on MMD measures to empower teachers with information that they 
can use to obtain a better view of  the whole picture so that they can plan and adapt instruction 
accordingly. 

 Another facet of  adaptation and personalization has been to discover the moments when, during 
the learners’ interaction with the learning technology, personalized feedback should be provided. 
For example, Holmes, Latham, Crockett, and O’Shea ( 2017 ) presented a method for identifying 
timely intervention points at which an intelligent e-learning platform could scaffold the experi-
ence of  learners who had failed to comprehend tutorial information. Di Mitri  et al . ( 2017 ) pre-
sented a system for designing and developing predictive LA systems that exploit MMD about the 
learners, their contexts and their activities to predict the learners’ current learning state, and thus, 
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to generate timely scaffolding. For example, Amarasinghe, Hernández-Leo, and Jonsson ( 2019 ) 
used the engagement levels, measured from the system logs and interactive discourse, to adapt 
the group creation and scaffolding in a collaborative setting. Santos, Saneiro, Salmeron-Majadas, 
and Boticario ( 2014 ) used affective states, which were detected using physiological and log data, 
to provide motivational feedback adapted to students’ personality and self-efficacy. Conati and 
MacLaren ( 2009 ) used emotions, detected by bodily expressions and game logs, to scaffold stu-
dents’ emotional states based on their personal goals. D’Mello  et al . ( 2005 ,  2010 ) designed a con-
versational agent using students’ discourse, facial expressions and body movements to provide 
the students with support according to their affective states. Finally, Grawemeyer  et al . ( 2015 , 
 2017 ) developed an ITS to support children learning fractions by using their speech and interac-
tion logs.  

  Generalizability 
 MMLA often results in big datasets, which involve the risk of  mis-implicating the results (Kidzinski, 
Sharma, Shirvani Boroujeni, & Dillenbourg,  2016 ). The mis-implication could surface for two 
main reasons. First, the effect sizes are a few orders of  magnitude smaller than we are used to ex-
pect in classical educational psychology studies; and the results are still significant due to the large 
sample. Second, “black-box” approaches, like support vector machines or neural networks, give 
us great predictive power of  the models, but they do not have a transparent predictor. Therefore, 
another challenging facet of  the MMLA research is to seek generalizability. Only two (Liu  et al ., 
 2019 ; Martinez-Maldonado, Shum,  et al .,  2017 ) out of  42 contributions in this SLR have more 
than one case study (or experiment) reported. This means that the implications generally emerge 
from only one case study that was implemented in a specific context. This raises a big question 
about whether the results (or part of  the results) are generalizable. One should use the basic prin-
ciple of  transfer learning (Bleidorn & Hopwood,  2019 ; Phillips, Wheeler, & Kochenderfer,  2017 ; 
Saari, Eerola, & Lartillot,  2010 ) to use a pretrained (or partially trained) model from one MMLA 
dataset to verify the implications of  other datasets. In this direction, early results indicate that 
there are certain capacities of  MMLA data that are generalizable across contexts, while there are 
also capacities that are context-dependent (Sharma, Niforatos, Giannakos, & Kostakos,  2020 ).  

  Importance of  contextualization and ecological validity 
 All of  the aforementioned advantages of  MMLA come with a cost of  ecological validity, which re-
quires attention. The transfer of  MMLA findings and implications from a constrained laboratory 
setting to an open-ended democratized setting is important (Blikstein,  2013 ; Martinez-Maldonado 
 et al .,  2018 ; Pijeira-Díaz  et al .,  2019 ). Martinez-Maldonado  et al . ( 2018 ) set out guidelines for 
other researchers and developers seeking to provide enhanced support in simulation laboratories 
as well as in more generic collocated settings. Blikstein ( 2013 ) indicated how MMLA could be 
used to devise naturalistic assessments, which would, at the same time, be social, ecologically 
valid, more inclusive as to the types of  knowledge they measure, and enabling of  real-time evalu-
ation in realistic tasks, either offline or online. As a step toward ecologically valid settings, Pijeira-
Díaz  et al . ( 2019 ) provided an ecologically valid picture of  group dynamics in terms of  arousal 
direction, level and contagion among triad members during collaborative learning. 

 In summary, the challenges in MMLA are concerned with: (1) the ecological validity of  the stud-
ies; (2) the transfer of  the knowledge from controlled studies to real-life scenarios; (3) using the 
findings to provide actionable feedback; (4) the manual annotation work, such as in labeled data, 
needed for various purposes (eg, to train supervised classifiers); (4) the lack of  modularization and 
standardization of  methods, since all the MMLA studies are custom and context-dependent; and 
(5) the fact that the insights extracted are also context-dependent, making it difficult to extract 
generalizable insights. MMLA also presents certain technical challenges to researchers who are 
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not familiar with MMD noise reduction, synchronization, preprocessing and feature extraction. 
A few MMLA system architectures attempt to bridge the technological gaps across different con-
texts (for a review, see Shankar  et al .,  2018 ). Furthermore, certain MMLA architectures are not 
completely context-agnostic, but are more generalizable than individual contexts/purposes (eg, 
ubiquitous learning: Muñoz-Cristóbal  et al .,  2017 ; blended learning: Rodríguez-Triana  et al ., 
 2018 ; incorporating annotations: Di Mitri, Schneider, Klemke, Specht, & Drachsler,  2019 ).   

  Ongoing research in MMLA 
 In recent years, in the context of  LA research, there has been growing interest and momentum 
in MMLA. This is reflected in the formation of  the CrossMMLA SIG, the continuous growth of  the 
respective workshop and the increasing interest in this special issue. Given the timeframe of  this 
SLR and this special issue, it would not be possible to incorporate the content of  the special issue 
within our SLR, despite this collection of  articles naturally fitting here. However, we would like to 
discuss the results of  our SLR with respect to this special collection of  MMLA studies. 

 The contributions in this collection (Cukurova, Giannakos, & Martinez-Maldonado,  2020 ) fall 
into one or more of  the six major research trends identified in this literature review. For example, 
Larmuseau, Cornelis, Lancieri, Desmet, and Depaepe ( 2020 ) measure cognitive load ( behavioral 
trajectories ) using GSR, Electrocardiography (ECG) and HRV in an informal online problem-
solving task. Dindar, Oulun, Järvelä, Haataja, and Oulun ( 2020 ) monitor meta-cognitive expe-
riences ( behavioral trajectories ) and explain group performance ( learning performance ) using data 
coming from learners’ EDA and survey responses in an informal collaborative problem-solving 
task. Olsen, Sharma, Rummel, and Aleven ( 2020 ) use LSTM on data features coming from learn-
ers’ gaze, log, dialogue and audio to predict their posttest score ( learning performance ) and leaning 
gain ( learning outcomes ) in a formal collaborative setting of  an ITS. Ahn and Harley ( 2020 ) use 
gaze and facial data to understand emotional processes ( behavioral trajectories ) and their rela-
tionship with learning gains ( learning outcomes ) in the context of  GBL. Vujovic, Hernàndez-Leo, 
Tassani, and Spikol ( 2020 ) use motion and video data to explain level of  participation and move-
ment range ( behavioral trajectory ) in a collaborative formal learning setting. Emerson and Lester 
( 2020 ) use gaze, facial and log data to predict students’ motivation ( behavioral trajectories ) and 
 learning outcome . Finally, Ochoa and Domínguez ( 2020 ) present a controlled evaluation against 
experts’ opinion about the oral presentation skills ( feedback ) in the context of  informal learning, 
using data coming from learners’ video, audio and presentation files. 

 The collection includes two more papers that place strong emphasis on the ethical perspectives 
of  MMLA. Although they do not focus on one of  the six major research trends, they cover one or 
more in a transversal manner. Crescenzi-Lanna ( 2020 ) presents an SLR with a focus on MMLA 
in children under six. The author analyzed the contributions using seven scales: performance 
analytics (students’ understanding and engagement); use of  machine learning; use of  eye-
tracking; Kinect; biometrics; human-coded quantitative data; and qualitative data (interview, 
observation). Crescenzi-Lanna ( 2020 ) also provides a commentary on the ethical issues (eg, chil-
dren being lied to in a “Wizard of  Oz” experiment, longer and obtrusive exposure to experiments, 
effect on data quality of  the interaction with strangers who are researchers, anonymity). Beardsley, 
Martínez-Moreno, Vujovic, Santos, and Hernàndez-Leo ( 2020 ) also tackle the ethical aspects of  
MMLA and introduce an informed consent comprehension test for MMLA research. The authors 
assessed its effects based on learners’ comprehension and rates of  enrolment in an MMLA study. 

 This special collection provides a good coverage of  the different dimensions of  MMLA research, as we 
saw them in this review; at the same time, it opens up new avenues for research with the six research 
trends to be major areas of  focus in coming years, as well as the cross-cutting category of  ethics.  
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  Limitations and interpretation of  the results 
 This work should be seen through the lens of  some limitations. First, the authors had to make 
some methodological decisions (eg, selection of  databases, the search query) that might intro-
duce certain biases into the results. However, we did the best we could to avoid such biases by 
considering all the major databases and following the steps set out by Kitchenham and Charters 
( 2007 ). Second, the selection of  empirical studies and coding of  the papers might pose another 
possible bias. However, the focus was clearly on the empirical evidence, and the coding of  papers 
was performed by two independent researchers. Third, some elements of  the papers were not 
described accurately, leading to some missing information in the coding of  the papers. However, 
the amount of  missing information was very small and could not affect the results significantly. 

 Another important limitation of  this study is the focus on the MMLA-based theme of  the special 
issue. This special issue responds to the growing interest in this theme as observed in a series 
of  workshops organized by the MMLA community and in the respective terminology. Therefore, 
the selection criteria we employed captured relevant papers that used the keyword “multimodal 
learning analytics” (which is common in the MMLA community), but we did not capture poten-
tially relevant papers that used “multimodal” and “analytics/modelling” as standalone keywords, 
such as affective learner modeling and multimodal affect detection, despite the potential of  some 
of  these papers being conceptually relevant (SLR refers to them as Type I errors). This positions 
the results of  our work at the center of  the MMLA community, but we also need to acknowledge 
that relevant works from neighboring communities, such as AIED, ITS and UMUAI, might have 
been excluded. This has several implications for the results, since areas in the intersection of  mul-
timodality and ITS, ubiquitous systems for learning, mobile learning, sensors and feedback sys-
tems, to mention but a few, might have been missed or underrepresented. 

 This is even more intense in the AIED, ITS and UMUAI communities where the development of  
models that automatically detect learner affect to inform feedback and regulate engagement is at 
the epicenter (eg, see extensive reviews in Calvo & D’Mello,  2010 ; D’Mello & Kory,  2015 ). This line 
of  research is closely related to MMLA, with MMLA being an emerging domain of  LA that anal-
yses evidence from multimodal and multisystem data and extracts meaning from the increas-
ingly fluid and complex data that come from different kinds of  transformative learning situations 
(Giannakos  et al .,  2020 ). 

 Both MMLA and multimodal affective detection communities focus on physical sensors, capture 
physiological and behavioral manifestations of  emotion (Paquette  et al .,  2016 ). Especially with 
recent advances in sensing technologies and computational methods, the interest in (and prom-
ise of) multimodality informing and supporting learning is ongoing, but it still requires plenty 
of  effort to reach a matured stage. However, both the communities agree that further works are 
needed, because their implementation in the areas where learning occurs (eg, homes, classroom, 
museums) is challenging and sometimes prohibitive (Baker & Ocumpaugh,  2015 ), with research-
ers from both communities arguing that this line of  work has not yet reached its full potential 
(Blikstein & Worsley,  2016 ; D’Mello & Kory,  2015 ; Giannakos  et al .,  2019 ).  

  Conclusions 
 We have presented an SLR of  42 contributions in the field of  MMLA from the last 9 years. We 
analyzed the papers from the perspective of  the study design (learning context, environment, 
population and so on) and the insights they provide about the learners’ task-based performance/
outcome or behavior. We categorized the main findings of  the selected papers in six thematic 
areas and discussed the challenges and opportunities emerging from the current review in terms 
of  both the MMD used and the impact it could have on our understanding of  learners’ outcome 



© 2020 The Authors.  British Journal of  Educational Technology  published by John Wiley & Sons Ltd on behalf  of  British Educational Research 
Association

Multimodal data capabilities for learning    1471

and behavior. Finally, based on the current state of  the field, we have proposed further possible 
advancements.   
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     APPENDIX    A  
   Critical appraisal skills programme criteria 
 The selection phase determines the overall validity of  the literature review, and thus it is important to define 
specific inclusion and exclusion criteria. As Dybå and Dingsøyr ( 2008 ) specified, the quality criteria needs 
to cover three main issues (ie, rigour, credibility, and relevance) that needs to be considered when evaluating 
the quality of  the selected studies. We applied eight quality criteria informed by related works (eg, Dybå & 
Dingsøyr,  2008 ). Following are those criteria:

    1  .   Does the study clearly address the research problem? 
   2  .   Is there a clear statement of  the aims of  the research? 
   3  .   Is there an adequate description of  the context in which the research was carried out? 
   4  .   Was the research design appropriate to address the aims of  the research? 
   5  .   Does the study clearly determine the research methods (subjects, instruments, data collection, 

data analysis)? 
   6  .   Was the data analysis sufficiently rigorous? 
   7  .   Is there a clear statement of  findings? 
   8  .   Is the study of  value for research or practice?      
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  Table  B2 :        Coding details Part 2 

 ID  Unit of  analysis  Pedagogical approach  Data collection  Methodology 

 1  Team  IBL  Video, audio, gesture and 
bio-physiology 

 Quantitative 

 2  Team  GBL  Psychometric prepost testing, 
games-usage analytics, a 
student attitudinal scale, 
teachers’ reflection notes 
and teacher interviews, 
Kinect sensor 

 Mixed 

 3  Team  GBL  Survey, coding  Quantitative 
 4  Team  else  Capture of  objects; the posi-

tions of  people, hand move-
ments, face tracking; audio 
and video 

 Quantitative 

 5  Individual  PBL  Eye track, audio-visual  Quantitative 
 6  Team  IBL  Gesture data, skeleton posi-

tions, kinematics feature 
 Mixed 

 7  Team  IBL  Visual feedback, movements  qualitative 
 8  Team  PBL  Microphones  Mixture 
 9  Team  PBL  Academic performance, 

video, digital footprint, 
questionnaire 

 Quantitative 

 10  Individual  SRL  Survey  qualitative 
 11  Individual  PRL  Web camera image streams  Quantitative 
 12  Individual  SRL  Software tracking tool in-

stalled on laptop 
 Quantitative 

 13  Team  PRL     
 14    PRL     
 15  Individual  PRL  Examples, challenges, and 

coding exercises 
 Quantitative 

 16  Team  CSCL  Arm Tracking, Audio Levels, 
Motion, Objects, facial and 
object tracking 

 Qualitative 

 17  Individual  PRL  Touch point detection  Quantitative 
 18  Individual  PRL  Video and gesture tracking  Quantitative 
 19  Team  CSCL  Eye-tracking, EEG, accelerom-

eter, audio and video 
  

 20    CSCL    Quantitative 
 21  Team  CSCL  Analysis of  the learning 

designs, teacher interviews, 
researcher observations, 
student questionnaires, 
system logs, and student-
generated artefacts 

 Both 

 22  Individual  SRL  Video, audio, slides  qualitative 
 23  Individual  PBL  Posture, gesture features  Quantitative 
 24  Individual  Else  Hand movements, video 

frames 
 Qualitative 

 25  Team  Else  Audio, gesture and video, 
measuring stress and/
arousal 

 Quantitative 
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 ID  Unit of  analysis  Pedagogical approach  Data collection  Methodology 

 26  Individual  GBL  Click-stream data, as well as 
eye-tracking, electroen-
cephalography (EEG), video, 
and wristband 

 Quantitative 

 27  Individual  SRL  Voice, grades  Quantitative 
 28  Individual  IBL  Movements, students’ interac-

tion with the model 
 Both 

 29    CSCL     
 30  Individual + Team  IBL  Video data, sensor data  Quantitative 
 31  Team  CSCL  EDA sensor recordings  Quantitative 
 32  Team  IBL  Sensor data  Quantitative 
 33  Individual  SRL  Clicks, views  Quantitative 
 34  Individual  IBL  Screen video and audio 

captures 
 Both 

 35  Individual  IBL  Gesture, speech, hedging, 
gaze. body, eye contact 

 Both 

 36    PBL, PBL     
 37  Individual  PBL  Movement data, hand 

position 
 Both 

 38  Individual  PBL  Eye tracking, gaze, debug 
solving 

 Quantitative 

 39  Individual  PBL  Time spent on each slide of  
the learning materials, IP 
address, keystroke timings, 
successful compiles, failed 
compiles (again recording 
the source code) and GUI 
interactions such as menu 
clicks and window opening/
closing. 

 Quantitative 

 40  Individual  Else  Audio, experience, survey  Quantitative 
 41  Individual and Team  PBL, CSCL  Logs, audio, video  Both 
 42  Individual  SRL  Logs gaze eeg wristband face  Quantitative 

   PBL = problem based learning; IBL = inquiry based learning; PRL = problem regulated learning; CSCL = com-
puter supported collaborative learning; SRL = self  regulated learning; GBL = game based learning.  
    Key (number to reference) for Tables B1 and B2.  
    1 Worsley and Blikstein ( 2018 ). 2 Kosmas  et al . ( 2018 ). 3 Blikstein  et al . ( 2017 ). 4 Spikol  et al . ( 2018 ). 
5 Prieto  et al . ( 2018 ). 6 Junokas  et al . ( 2018 ). 7 Barmaki and Hughes ( 2018 ). 8 Noel  et al . ( 2018 ). 
9 Pardo  et al . ( 2016 ). 10 Florian-Gaviria  et al . ( 2013 ). 11 Holmes  et al . ( 2017 ). 12 Di Mitri  et al . ( 2017 ). 
13 Martinez-Maldonado, Power,  et al . ( 2017 ). 14 Martinez-Maldonado  et al . ( 2018 ). 15 Mangaroska 
 et al . ( 2019 ). 16 Spikol  et al . ( 2016 ). 17 Mock  et al . ( 2016 ). 18 Blikstein ( 2013 ). 19 Prieto  et al . ( 2016 ). 
20 Ezen-Can, Grafsgaard  et al . (2015). 21 Rodríguez-Triana  et al . ( 2018 ). 22 Ochoa  et al . ( 2018 ). 23 
Ezen-Can, Grafsgaard  et al . (2015). 24 Andrade ( 2017 ). 25 Worsley and Blikstein ( 2015 ). 26 Giannakos 
 et al . ( 2019 ). 27 Kaklauskas  et al . ( 2015 ). 28 Schönborn, Bivall & Tibell ( 2011 ). 29 Reis  et al . ( 2018 ). 30 
Cukurova  et al . ( 2018 ). 31 Noroozi  et al . ( 2019 ). 32 Pijeira-Díaz  et al . ( 2019 ). 33 Nguyen  et al . ( 2018 ). 34 
Liu  et al . ( 2019 ). 35 Andrade  et al . ( 2016 ). 36 Martinez-Maldonado, Power,  et al . ( 2017 ). 37 Andrade  et al . 
( 2017 ). 38 Mangaroska  et al . ( 2018 ). 39 Casey ( 2017 ). 40 Cukurova  et al . ( 2019 ). 41 Liu  et al . ( 2018 ). 42 
Sharma, Pappas,  et al . ( 2019 ).   

Table  B2 :  (Continued)
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  Table  C2 :        Mapping between the Learning settings and the MMD 

   Team formal  Team informal  Individual formal  Individual informal 

 Audio  8, 13, 25, 41  1, 4, 16, 19  5, 27, 34, 35, 41  22, 40 
 EEG    19  42  26 
 Face    10, 16  11, 42  26 
 Gaze    10, 19  35, 42  26, 38 
 Gesture  6, 25  1, 4, 16, 30  17, 18, 23, 35  24, 30, 37 
 Interviews  21    15  40 
 Logs  3, 8, 9, 13, 21, 

32, 41 
 2, 4, 16  11, 12, 14, 15, 17, 

27, 28, 33, 39, 41, 
42 

 22, 26, 38 

 Motion  6, 7  4, 16, 19  14, 28  37 
 Observations  21  1     
 Physiological  25, 31, 32  1  12, 42  26 
 Posture  6  30  23, 35  30 
 Survey  3, 21    15, 33  40 
 Video  6, 7, 9, 25, 41  4, 19  5, 18, 34, 41  22, 24 

   Key (number to reference) for Tables C1 and C2.  
    1. Worsley and Blikstein ( 2018 ). 2 Kosmas  et al . ( 2018 ). 3 Blikstein  et al . ( 2017 ). 4 Spikol  et al . ( 2018 ). 
5 Prieto  et al . ( 2018 ). 6 Junokas  et al . ( 2018 ). 7 Barmaki and Hughes ( 2018 ). 8 Noel  et al . ( 2018 ). 9 
Pardo  et al . ( 2016 ). 10 Florian-Gaviria  et al . ( 2013 ). 11 Holmes  et al . ( 2017 ). 12 Di Mitri  et al . ( 2017 ). 
13 Martinez-Maldonado, Power,  et al . ( 2017 ). 14 Martinez-Maldonado  et al . ( 2018 ). 15 Mangaroska  et al . 
( 2019 ). 16 Spikol  et al . ( 2016 ). 17 Mock  et al . ( 2016 ). 18 Blikstein ( 2013 ). 19 Prieto  et al . ( 2016 ). 20 Ezen-
Can, Grafsgaard  et al . (2015). 21 Rodríguez-Triana  et al . ( 2018 ). 22 Ochoa  et al . ( 2018 ). 23 Ezen-Can, 
Grafsgaard  et al . (2015). 24 Andrade ( 2017 ). 25 Worsley and Blikstein ( 2015 ). 26 Giannakos  et al . ( 2019 ). 
27 Kaklauskas  et al . ( 2015 ). 28 Schönborn  et al . (2011). 29 Reis  et al . ( 2018 ). 30 Cukurova  et al . ( 2018 ). 31 
Noroozi  et al . ( 2019 ). 32 Pijeira-Díaz  et al . ( 2019 ). 33 Nguyen  et al . ( 2018 ). 34 Liu  et al . ( 2019 ). 35 Andrade 
 et al . ( 2016 ). 36 Martinez-Maldonado, Power,  et al . ( 2017 ). 37 Andrade  et al . ( 2017 ). 38 Mangaroska  et al . 
( 2018 ). 39 Casey ( 2017 ). 40 Cukurova  et al . ( 2019 ). 41 Liu  et al . ( 2018 ). 42 Sharma, Pappas,  et al . ( 2019 )   
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          APPENDIX    D  

     
  

  Table  D1 :        Mapping the studies with sample size more than 40 to the type of  data collected 

 ID  Sample  Data collection 

 Noel  et al . ( 2018 )  60  Microphones 
  Pardo  et al . ( 2016 )   145  Academic performance, video, digital footprint, 

questionnaire 
 Holmes  et al . ( 2017 )  44  Web camera image streams 
 Martinez-Maldonado, 

Power,  et al . ( 2017 ) 
 56  Video, logs 

 Ezen-Can, Grafsgaard,  et al . 
( 2015 ) 

 155  Logs, text 

 Rodríguez-Triana  et al . 
( 2018 ) 

 165  Analysis of  the learning designs, teacher inter-
views, researcher observations, student ques-
tionnaires, system logs, and student-generated 
artefacts 

 Ochoa  et al . ( 2018 )  83  Video, audio, slides, 
 Kaklauskas  et al . ( 2015 )  206  Voice, grades 
 Cukurova  et al . ( 2018 )  45, 36  Video data, log data 
 Nguyen  et al . ( 2018 )  182  Clicks, views 
 Liu  et al . ( 2019 )  56  Screen video and audio captures 
 Casey ( 2017 )  111  Time spent on each slide of  the learning materials, 

IP address, keystroke timings, successful com-
piles, failed compiles (again recording the source 
code) and GUI interactions such as menu clicks 
and window opening/closing 

  Cukurova  et al . ( 2019 )   41  Audio, experience, survey 
 Liu  et al . ( 2018 )  59, 104  Logs, audio, video 


