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An easy-to-implement methodology to develop accurate, fast and thermodynamically consistent surro-
gate machine learning (ML) models for multicomponent phase equilibria is proposed. The methodology
is successfully applied to predict the vapour-liquid equilibrium (VLE) behavior of a mixture containing
CO2, monoethanolamine (MEA), and water (H2O). The accuracy of the surrogate model predictions of
VLE for this system is found to be satisfactory as the results provide an average absolute relative differ-
ence of 0.50% compared to the estimates obtained with a rigorous thermodynamic model (eNRTL + Peng-
Robinson).
It is further demonstrated that the integration of Gibbs phase rule and physical constraints into the

development of the ML models is necessary, as it ensures that the models comply with fundamental ther-
modynamic relationships.
Finally, it is shown that the speed of ML based surrogate models can be ~10 times faster than interpo-

lation methods and ~1000 times faster than rigorous VLE calculations.
� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Motivation and literature review

The emission of anthropogenic greenhouse gases has been one
of the main subjects of environmental concerns over the past dec-
ades. Development of new, clean and enhanced industrial pro-
cesses has become a must in order to reach international and
national sustainability goals. One of the most promising
approaches to operate cleaner industrial processes is the imple-
mentation of CO2 capture and storage. It has been labeled as one
of the key technologies that will assist in achieving a global tem-
perature increment of no more than 1.5 �C by the end of 2030
(IPCC, 2018). Albeit there are several other technologies for CO2

capture, chemical absorption of CO2 with aqueous amines has
been, and seems to be in the foreseeable future, the most commer-
cially ready and competitive technology (Rochelle, 2009; Wu et al.,
2020). The high energy demand associated with the CO2 capture
process is its main challenge (Svendsen et al., 2011).

Extensive experimental and modelling research has been con-
ducted aiming to find a systemwith favorable vapor-liquid equilib-
rium (VLE) behavior that will lead to a more energetically efficient
process. Modelling of VLE is of great importance for these efforts.
The knowledge of phase behavior is necessary in order to assess
the solvent performance in CO2 capture processes. Traditionally,
the VLE models are divided into two categories: semi-empirical
models (also called rigorous models) and empirical models, each
with their respective advantages and disadvantages.

In this work, an alternative approach to VLE modeling is pro-
posed which attempts to merge all the main features of both cate-
gories. The main objectives of this work are:

� To present an easy-to-implement method based on machine
learning technology that combines the robustness of rigorous
models with the computational efficiency of an empirical
model.

� Demonstrate that machine learning models can properly pre-
dict the dependencies between the input and output variables
if a proper analysis of the thermodynamic variables is
performed.

� Give an insight into how to select properly the input and the
output variables of a machine learning model so that it is ther-
modynamically consistent.

Rigorous models may use different mathematical representa-
tions like an equation of state for both phases (phi-phi formula-
tion) or excess Gibbs energy model for liquid phase and equation
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of state for the gas phase (gamma-phi formulation). These models
make use of governing thermodynamic equations (e.g. Henry’s law,
Raoult’s law), semi-theoretical models (e.g. excess Gibbs energy
models for aqueous electrolytic solutions (Chen and Evans, 1986;
Lloret et al., 2017; Pitzer, 1973)) together with empirically fitted
parameters. Some successful applications of gamma-phi models
for the prediction of the CO2 solubility in several aqueous amines
are: 2-aminoethan-1-ol (MEA) (Aronu et al., 2011), piperazine
(PZ) and 2-amino-2-methylpropan-1-ol (AMP) (Dash et al., 2011),
2-piperidineethanol (PE) (Sherman et al., 2016), AMP (Hartono
et al., 2020) to name a few.

Although the semi-empirical models have proven to give accu-
rate predictions of VLE, the difficulty of developing a thermody-
namic model for each CO2 aqueous amine solvent and the high
computational overhead of these computationally complex models
have led to the development of empirical models.

A simple empirical VLE model that describes the CO2 solubility
in primary, secondary and tertiary amines was proposed by
Gabrielsen et al. (2005). This model was developed by summing
up all the reactions into a single overall reaction and lumping the
equilibrium constant with the CO2 physical solubility coefficient
to obtain the CO2 partial pressure. Another empirical approach
was taken by Brúder et al. (2012, 2011), Luo et al. (2015), Plesu
et al. (2018) where empirical correlations that relate the molar
compositions and the temperature with the CO2 partial pressure
were formulated. All these empirical correlations are computation-
ally inexpensive due to their simplicity when compared to gamma-
phi models. The main drawback of these empirical models is their
low dimensionality, which translates into their limited validity
range. Hence, the mathematical functions are different among dif-
ferent systems.

Machine learning has been used as an alternative to create
empirical models. Several studies in the literature have used this
approach to estimate the VLE of CO2 capture related thermody-
namic systems. These studies have mostly focused on the estima-
tion of CO2 solubility in different liquid solvents:
triisopropanolamine – MEA aqueous solutions (Daneshvar et al.,
2004), various alkanol systems (Zarenezhad and Aminian, 2011),
several aqueous amine and diamine systems containing MEA,
MDEA, PZ, 2-amino-2-methyl-1-propanol (AMP) (Bastani et al.,
2013; Hamzehie et al., 2015, 2014), pure water (Ghasemian
et al., 2013), mixtures of ethanol and ionic liquids (Mirarab et al.,
2014), aqueous PZ solutions (Norouzbahari et al., 2015), piperazine
(PZ) and ionic liquids (Golzar et al., 2016), aqueous sodium salt of
L-phenylalanine (Garg et al., 2017), aqueous potassium lysinate
mixed with MEA (Zhang et al., 2018), among others. In general,
the authors of these models claim that their machine learning
models have better prediction capabilities than the semi-
empirical models. This is expected, since these multidimensional
models were fitted to a limited range of operating conditions.
However, that is unfortunately also the reason why they cannot
be extrapolated. In addition, due to their empirical nature and to
the fact that they are constrained to an univariable output, the
reported models are not capable of predicting other important
thermodynamic quantities such as the CO2 heat of absorption or
speciation in the liquid phase.

Because of these major limitations, a direct application of these
models into a process simulation framework is not practical.
Besides, in the context of CO2 absorption into aqueous amine sys-
tems, the molar compositions of all the ionic species and the phys-
ical solubility of CO2 are needed for the evaluation of kinetic and
mass transfer rate expressions. Even though the CO2-MEA-H2O
mixture is the most studied amine system, the available data alone
is not enough to create an accurate machine learning model that
will estimate the VLE behavior of all thermodynamic (e.g. liquid
2

or vapor molar fractions) variables over a broad range of operating
conditions.

1.2. What is machine learning?

Machine learning has become popular over the past years in
both industrial and research environments. The sudden increase
in popularity is due to the fast improvement of the technical capa-
bilities of current-day computers. Machine learning is a computa-
tional modelling tool for data management that enables the
classification, pattern recognition, clustering and data prediction
(Abiodun et al., 2018). Machine learning is closely related to artifi-
cial intelligence, hence, it aims at implementing intelligent agents
that are capable of mimicking the cognitive functions of a biologi-
cal brain in order to learn or solve complex problems (Russel and
Norvig, 2009).

One of the most prominent and notable methods of machine
learning is artificial neural networks (ANN), which were first con-
ceptualized byMcCulloch and Pitts several decades ago (McCulloch
and Pitts, 1943). An ANN can be defined as a nonlinear vector of
functions (X) that needs a vector of input variables (X) and a set
of weight parameters (x) in order to estimate a vector of output

variables bY (Bishop, 2006). In general, an ANN has the general
form:

bY ¼ X X;xð Þ ð1Þ
Due to the high dimensional nature of ANN, any set of experi-

mental or observed values (Ye) corresponding to a certain set of
experimental input values (Xe) can be approximated using Eq. (1)
as long as an appropriate x is used.

The process of obtaining x that, together with Xe, allows an

estimation of the predicted output bY which numerically resembles
the experimental values Ye is called ANN training. This process is
based on the biological analogy on how a person is trained to per-
form a task correctly through a feedback procedure. Following this
scheme, a person performs a task and receives feedback on the task
performance in order to improve the result. This process goes on
repeatedly until the person performs the task well enough to meet
a standard. Following this analogy, the ANN is trained by utilizing a
loss function (LÞ that evaluates its performance by comparing the

experimental values Ye and the predicted output bY:
Loss function ¼ L bY;YeÞ

�
ð2Þ

The loss function indicates the total error of the predicted val-
ues with respect to the observed values.

Fig. 1 illustrates the training process of a feedforward neural
network (FFNN) that has 3 input values, 4 neurons in the hidden
layer and that estimates 2 values in the output layer. The FFNN
inside the grey square in Fig. 1 and is said to be a feedforward
propagation model because the information flows only in one
direction. First, the input vector Xe is transformed to calculate
the hidden layer vector Z using an activation function (e.g. an
hyperbolic function or sigmoid function) and 2 subsets of the
weight parameter vector (x 0ð Þ and x 1ð Þ, also note that:
x 0ð Þ [x 1ð Þ [x 2ð Þ ¼ xÞ. Afterwards, vector Z uses a linear transfor-
mation together with another subset of weight parameters x 2ð Þ to

estimate bY. The output vector (bY) is then forwarded to the loss
function (marked with a red square in Fig. 1) outside the FFNN.

The loss function assesses the ANN performance by comparing bY
and Ye and, depending on this evaluation, a backpropagation signal
is sent to modifyx so that the loss function is minimized. This pro-
cess keeps going until the variation of the parameters stops



Fig. 1. Diagram of a forward propagation artificial neural network (FFNN) trained
by a backpropagation algorithm.

Fig. 2. Sketch of the modelled thermodynamic system with water as the diluting
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improving the predictions. The loss function can be optimized
through different backpropagation training methods such as
Levenberg-Marquardt, resilient backpropagation, Bayesian regu-
larization propagation and the scale conjugate gradient among
others (Gonzalez Viejo et al., 2019).

In summary, training an ANN is quite similar to the other
approaches that have been used for decades or even centuries to
develop mathematical models; one of such methods is polynomial
fitting. For example, letus consider a case where it is desired to
develop a linear model of a process. One must have a set of exper-
imental data that contains the values of the independent variable
Xe and the dependent variable Ye. A linear model contains only
the slope and the intersect as the model weight parameters x, so
the «training» of a linear model should find the x that minimize
the difference between Ye and the values calculated with the linear

model bY. Machine learning models use the same concept as poly-
nomial fitting. The main difference is that the machine learning
model equations are more complicated, hence the optimization
algorithms are more sophisticated. Despite the similarities
between ANN and other mathematical modelling methods, ANN
has the advantage of its inherent high dimensionality that allows
it to capture non-linear behaviors.

2. Methodology

2.1. The thermodynamic system

The vapor-liquid equilibrium of the reactive mixture of CO2-
MEA-H2O is a highly non-ideal thermodynamic system due to
the distinct chemical nature of the components that constitute
the liquid phase. There is a gas (CO2) dissolved in an already
non-ideal mixture of MEA and H2O. Furthermore, some species
are electrolytes and the presence of ions induces highly non-ideal
long-distance interactions that contribute to a highly non-linear
behavior. The reactions taking place in the liquid phase have been
reported to be (Kim et al., 2009):

2H2O $ H3O
þ þ OH� ð3Þ

2H2Oþ CO2 $ H3O
þ þ HCO�

3 ð4Þ

H2Oþ HCO�
3 $ H3O

þ þ CO2�
3 ð5Þ

MEAHþ þ H2O $ H3O
þ þMEA ð6Þ
3

MEACOO� þ H2O $ MEAþ HCO�
3 ð7Þ

A sketch of the component distribution in the system of CO2

chemically absorbed in MEA and H2O is shown in Fig. 2. It illus-
trates the presence of 3 volatile components that are distributed
between the two phases and the non-volatile components that cor-
respond to the cations and anions formed in the liquid phase due to
the chemical reactions. Note that the water is considered as the
diluent of the ions and the volatile components in Fig. 2.

2.2. Essential thermodynamic relations

2.2.1. Physical constraints and auxiliary equations
The semi-empirical gamma-phi VLE model that is replicated in

this work (also referred to as ‘‘base model”) considers the phase
equilibria of the volatile components and the speciation reactions
in the liquid phase. This gamma-phi model is composed of equa-
tions for phase equilibria (Henry’s law and Raoult’s law), chemical
equilibria, thermodynamic constraints and complementary auxil-
iary equations. The complementary auxiliary equations can be
either of empirical or semi-empirical nature and have fitted
parameters (e.g. an activity coefficient model).

The base model estimates the activity coefficients with the
eNRTL model (Chen and Evans, 1986) along with the Peng-
Robinson equation of state for the vapor phase (Peng, 1976). The
binary parameters of the eNRTL activity coefficient model, the
equilibrium constant correlations and the implementation of the
semi-empirical model were taken from a previously published
paper (Putta et al., 2016).

Since machine learning models use alternate pathways to com-
pute the numerical values of the VLE, there is no certainty that
these estimations comply with thermodynamic rules. Therefore,
it is mandatory to ensure that the calculated thermodynamic sys-
tem fulfills physical constraints. The summation constraints for the
vapor and liquid phases must be considered in the implementation
of machine learning models:X
i

yi ¼ 1 ð8Þ
component of the liquid phase.
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X
i

xi ¼ 1 ð9Þ

The electro-neutrality constraint is a restriction that only exists
in electrolytic systems. This equation arises from the principle that
the overall sum of local charges must be 0 in a system at thermo-
dynamic equilibrium (Prausnitz et al., 1999). This relation is:X
i

niCi ¼ 0 ð10Þ

Here n is the total number of moles of the component and C is
the ion charge relative to a hydrogen ion. For a more detailed
description of the additional fundamental equations and the
parameters of the semi-empirical model please refer to the sup-
porting information S1 and S2.

It is customary in the CO2 capture research field to represent the
component concentrations in the liquid phase with non-natural
thermodynamic variables: CO2 loading (aCO2 ) and amine weight
percent in the liquid solvent on a CO2 free basis (wMEA). The CO2

loading is estimated with the following relation:

aCO2 ¼
xCO2 ;App

xMEA;App
ð11Þ

where the subscript App refers to apparent and indicates that the
molar compositions of CO2 and MEA are calculated as if they had
not reacted in the liquid phase. Therefore, the apparent molar com-
positions only consider the CO2, MEA and H2O molar fractions.

The following equation relates wMEA with the MEA apparent
molar fraction on a CO2 free basis x�MEA;App:

x�MEA;App ¼
wMEA

M
�
MEA

� �
wMEA

M
�
MEA

þ 100�wMEA

M
�
H2O

� � ð12Þ

where M
�

MEA and M
�

H2O are the molecular weights of MEA and H2O
respectively. It is possible to calculate the apparent molar composi-
tions of the liquid phase using Eqs. (11) and (12).

2.2.2. Enthalpy of phase change
The CO2 enthalpy of phase change (usually referred to as CO2

enthalpy of absorption) is of fundamental importance in the field
of acid—gas treating because it is one of the main characteristics
that determines the techno-economic potential of the technology
(Oexmann and Kather, 2009; Raksajati et al., 2013). It is this ther-
modynamic quantity that is needed to estimate the required heat
duty of the solvent regeneration system in the process.

As opposed to non-supercritical fluids (MEA-H2O), the enthalpy
of vaporization of permanent gases (CO2) cannot be measured in
pure state. Therefore, it is a function of the solvent into which
the CO2 is absorbed. Moreover, experimentally it is not possible
to measure the enthalpy of vaporization and the enthalpies of
the individual reactions separately. Therefore, the overall effect is
commonly measured and reported as a single CO2 enthalpy of
absorption (Jou et al., 1994; Kim et al., 2014).

An alternative way to obtain the heat of phase change from VLE
data is by using an expression derived from the Gibbs-Helmholtz
relation (the vant’ Hoff equation):

@ln PCO2

� �
@ 1

T

� � !
P;n

¼ �DHCO2

R
ð13Þ

Here PCO2 is the partial pressure of CO2 in the vapor phase and
DHCO2 is the CO2 enthalpy of absorption. For an in-depth discussion
of the derivation and the inherent assumptions to obtain Eq. (13)
see (Svendsen et al., 2011).
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2.2.3. Gibbs phase rule analysis
The Gibbs phase rule for reactive systems provides an informa-

tion about how many degrees of freedom exist in a closed reactive
thermodynamic system. The degrees of freedom refer to the num-
ber of independent variables that can be simultaneously set in
order to fully specify the state of the thermodynamic system. The
equation for the Gibbs phase rule for reactive systems is:

F ¼ 2þ N � p� r � s ð14Þ
where F is the number of degrees of freedom, N is the number of
components, p is the number of phases, r is the number of reactions
and s is the number of non-summation constraints. It is imperative
to follow the Gibbs phase rule in the development of machine learn-
ing models. If this rule is broken, thermodynamic quantities cannot
be estimated with thermodynamic consistency.

2.3. Developing surrogate thermodynamic models

The principles of the proposed methodology to formulate surro-
gate machine learning VLE models is summarized in Fig. 3. Fig. 4
presents detailed the algorithms of the steps 4,5 and 7 shown in
Fig. 3.

Step 1: The semi-empirical model to be replicated is chosen. As
previously mentioned, an eNRTL thermodynamic model for CO2-
MEA-H2O is utilized in this work as the case study to exemplify
the use of the proposed methodology.

Step 2: The number of independent variables that can be
selected in the input layer of the ANN is calculated. In the current
example of the CO2-MEA-H2O mixture, the evaluation of Eq. (14)
yields F = 3, which designates that only 3 variables can be selected.

Step 3: The parameters needed to perform the next steps of the
algorithm are set. The ANN training parameters are independent
variables, dependent variables, limits of the independent variables,
architecture of the ANN, simulations to parameters ratio, sampling
method, training algorithm, preprocessing function, loss function,
accuracy target.

Independent variables: any set of independent variables can be
chosen as long as the number of independent variables is equal to
the degrees of freedom and the variables are independent of each
other (i.e. all the apparent molar fractions of CO2, MEA and H2O
cannot be chosen simultaneously due to the summation con-
straint). The fact that ANN can estimate the relationships between
different numerical values provide the possibility to select any
non-natural thermodynamic variable as independent variable (i.e.
CO2 loading can be selected as independent variable). The indepen-
dent variables selected in the presented case study are aCO2 , xMEA

and temperature (T).

Dependent variables: any number of dependent variables may
be chosen. In addition, any variable can be chosen as a dependent
variable as long as it is a function of at least one independent vari-
able. In the present case study, there are 13 dependent variables: 9
liquid molar fractions (xi), 3 vapor molar fractions (yi) and the total
pressure (P).

Limits of the independent variables: the upper and lower
boundaries in which the surrogate model is valid are set for each
one of the independent variables. The limits set for the surrogate
ANN model in this work are presented in Table 1. They were spec-
ified so that the machine learning model can be used for applica-
tions under common industrial operation conditions in a CO2

amine-scrubbing plant.

Architecture of the ANN: the number of hidden layers and the
number of neurons in the hidden layer must be chosen. In this
work a feedforward neural network (FFNN) was chosen as it is
the simplest ANN architecture without internal cycles or loops.
Therefore, it is expected that the lack of recursive operations will



Fig. 3. Algorithm for the development of a surrogate thermodynamic machine learning based model.

Fig. 4. Expanded algorithms of: a) step 4: raw datasets generation, b) step 5: preprocessing and c) step 7: testing and assessment of the ANN model performance.
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Table 1
Limits of the independent variables for the case study.

Variable Min Max

aCO2�MEA= molCO2=molMEAð Þ 0.001 0.60
MEAwt=% 0.1 0.60
T=K 293.15 393.15

A. Carranza-Abaid et al. Chemical Engineering Science: X 8 (2020) 100080
create the most computationally efficient ANN-based surrogate
models.

Additionally, the number of hidden layers for all ANN was fixed
to 1 because a higher number of hidden layers is used for more
complex purposes where deep learning is specifically needed, for
example for image pattern recognition (Al-Saffar et al., 2017) or
in the development of advanced artificial intelligence for intricate
decision-making models for the video-game industry (Vinyals
et al., 2019). Furthermore, there is no need to choose more com-
plex architectures according to the universal approximation theo-
rem that states that any continuous function can be approximated
using a single hidden layer feed-forward ANN with a finite number
of hidden neurons (Cybenko, 1989). The effect of the number of
neurons in the hidden layer on the ANNmodel performance is ana-
lyzed and discussed in Section 3.1.

Simulations to parameters ratio: the number of simulations
present in the training dataset is selected. Since the overall idea
of our proposed methodology is to use data generated by a semi-
empirical model to train an ANN, the number of data points gener-
ated by the base model is an important training variable. The sim-
ulations to parameters ratio is given by:

DataPar ¼ NS

NP
ð15Þ

Here DataPar is the simulations to parameters ratio, NS is the
number of datapoints in the datasets and NP is the number of
parameters in the ANN. The number of parameters in a single layer
FFNN is calculated by:

NP ¼ NHNI þ NHNOð Þ þ NH þ NIð Þ ð16Þ
where NH is the number of neurons in the hidden layer, NI is the
number of inputs and NO is the number of outputs in the FFNN. It
is important to remark that DataPar must always be greater than
1 so that the ANN training can be an optimization problem. The
effect of DataPar on the accuracy of the ANN models is studied in
Section 3.1.

Sampling method: the values of the independent variables in
the raw matrix must be generated with a sampling method. Three
different sampling methods are analyzed in this manuscript: ran-
dom, structured and combined. The random method generates
the input raw matrix with a Monte Carlo sampling scheme. The
structured method generates permuted vectors that form an
evenly distributed grid. The combined scheme divides the number
of simulations in two, the first half is generated with the random
method while the second half with the structured method. All
the values generated with the sampling methods must be within
the limits shown in Table 1.

Training algorithm: selection of the optimization method used
to fit ANN models. The present work focuses on the most promi-
nent methods to train FFNN: the Levenberg-Marquardt backprop-
agation method and the Bayesian regularization method.

The Levenberg-Marquardt (LM) backpropagation algorithm is
considered because, according to the Matlab documentation
(Matlab, 2019), it is the recommended method due to its higher
computational speed during the training of feedforward neural
networks. The LM method uses a maximum neighborhood search
method that is an hybrid between the Taylor series and gradient
6

optimization methods (Marquardt, 1963). This method was later
adapted and applied to perform the backpropagation training of
ANN (Hagan and Menhaj, 1994). The Bayesian Regularization
(BR) backpropagation algorithm combines the Bayesian interpola-
tion method developed by MacKay (1992)) with the Levenberg-
Marquadt (LM) optimization method (Dan Foresee and Hagan,
1997). It was chosen because it has been shown in several applica-
tions like in biological studies with mice (Okut et al., 2011) or in
the cement industry (Garoosiha et al., 2019) that the Bayesian reg-
ularization may give better generalization properties than the LM,
and thereby, better prediction capabilities. The effect of the train-
ing algorithm on the ANN performance is discussed in Section 3.1.

Preprocessing function: any mathematical function can be used
to transform the raw data into preprocessed data. Data normaliza-
tion is a common preprocessing function that scales the data
within a certain range usually from 0 to 1. The normalization func-
tion is not shown in Fig. 3 or Fig. 4 because Matlab 2019b always
includes this step inside the ANNmodel and therefore it is not nec-
essary to explicitly program it. Caution is advised when using a dif-
ferent programming platform.

Loss function: the loss function assesses the performance of the
ANN based on the preprocessed values.

The Matlab framework for performing the ANN training uses
the Mean Square Error (MSE) as the optimization function.
Nonetheless, in the case of models that are valid over a broad range
of molar compositions, using MSE will focus the optimization on
the higher values rather than distribute the error evenly through-
out the dataset. To avoid this, the optimization function of the
model was changed to Mean Relative Square Error (MRSE) instead
of the default mean square error (MSE). The optimization function
for MRSE has the form:

min L ¼ 1
NS

X B
0 � bB 0

B0

0B@
1CA

2

ð17Þ

where B0 is the output matrix generated with the base model and bB 0

is the output matrix from the ANN model.

Accuracy target: the degree of desired exactness of the surro-
gate model with respect to the base model must be specified
(see step 8).

Step 4: Here, the datapoints are generated with the semi-
empirical model. Fig. 4a shows that in the first iteration of the algo-
rithm, the input matrix Xe and the output Ye testing matrices are
generated. This testing dataset is used in step 7 to determine if
the ANN model can properly predict values for which the ANN
model was not trained for. If the predictions of the testing dataset
are significantly worse than the ones done with the training data-
set, it means that the ANN is overfitted and cannot generalize (this
usually happens if the DataPar value is too small). Note that a sim-
ilar algorithm is used to generate the raw input matrix A and the

raw output B matrices used for the ANN training of each one of

the ANN models.
Step 5: The raw input matrix A and the raw output matrix B are

preprocessed using transformation functions (see Fig. 4b). In the
present work the matrices are transformed as follows: A0 ¼ A and

B0 ¼ ln Bð Þ.
Using the natural logarithm of the output variables helps in

addressing one of the main challenges in the modelling of VLE with
ANN: the big variance between the orders of magnitude in the
molar fractions of the individual electrolytes. A large variation in
the orders of magnitude of the output variables results in an ill-



Table 2
ANN training parameter values.

Variable Values

Number of neurons in the hidden layer (NH) 10/30/50
Simulations to parameters ratio (DataPar) 2/3/5
Training method BR/LM
Sampling method* R/S/C

* In sampling method R, S and C stand for random, structured and combined
respectively

A. Carranza-Abaid et al. Chemical Engineering Science: X 8 (2020) 100080
conditioned or badly scaled training dataset which reduces the
accuracy of the model predictions.

An example of badly scaled data points can be obtained by com-
paring the orders of magnitude of the unreacted molar fraction of
CO2 xCO2

� �
of two different thermodynamic systems. The first case

considers a thermodynamic system at aCO2 ¼ 10�5, T ¼ 293:15K

and wMEA ¼ 30% which yields molar fraction xCO2 ¼ 3x10�16. This
small value is caused by the low CO2 loading and the exothermic
nature of the chemical reactions which promote the product for-
mation. Hence, most of the solubilized CO2 is chemically bound
to the amine. On the other hand, the second scenario considers
the system to be at aCO2 ¼ 0:60, T ¼ 393:15 and wMEA ¼ 30% which
leads to an absolutely contrasting value of molar fraction
xCO2 ¼ 3� 10�3. This is because the high CO2 loading together with
the high temperature significantly decreases the molar fraction of
CO2 that can be chemically bound to MEA and, consequently,
increases the amount of CO2 solubilized by van der Waals forces.

In order to overcome this problem, a scaling through a logarith-
mic transformation can be performed. An additional advantage of
this transformation is that it avoids the calculation of negative
molar fractions when any of the molar compositions is close to 0.

Step 6: The ANN weight parameters x are calculated and the
ANN function X is generated. This step needs the following ANN
training parameters: training algorithm, ANN architecture, number
of neurons in the hidden layer and the loss function.

In Matlab 2019b, the training datasets are usually divided into 3
parts: the training fraction, the validation fraction and the test
ratio. We selected 0.90 for the training fraction, 0.1 for the valida-
tion fraction and 0 for the testing ratio. The testing ratio is used to
assess the ANN generalization capability of the ANN model to pre-
dict values that were not used in the ANN training. Since the ANN
model testing in this methodology is performed with an indepen-
dent dataset, the value was set to be a very low value.

Step 7: The model is tested and assessed by evaluating the ANN
model X using the testing matrix Xe as input and then comparing
the output predictions with the testing output matrix Ye (see
Fig. 4c).

First, the preprocessing transformation function p is applied on
Xe to obtain X0e. Then, the transformed matrix X0e andx are used to

evaluateX in order to get bY 0 0 . The values of bY 0 0 do not have physical
meaning yet because they are in a different mathematical space
due to the preprocessing. Hence, a postprocessing procedure must
be performed with an anti-transformation function of the form q�1

to get physically meaningful values bY 0 . In this work, the molar

compositions of the liquid and vapor phase in bY 0 are evaluated
afterwards with a compositional normalization function (g) in
order to comply with the restrictions of Eqs. (8) and (9). This pro-

cess finally calculates bY.
After postprocessing, the accuracy of the model can be evalu-

ated by comparing bY and the testing output matrix Ye. The ANN
model capabilities to replicate the base model can be assessed by
calculating the ‘‘model average absolute relative difference”
(MAARD) and ‘‘model average relative difference” (MARD) of each
one of the variables between the base model and the ANN model.
The equations for the MAARD and the MARD are:

AARD ¼ 1
NC

X
N

bY � Y�
��� ���ffiffiffiffiffiffiffiffiffibYY�
p � 100% ð18Þ

ARD ¼ 1
NC

X
NC

bY � Y�ffiffiffiffiffiffiffiffiffibYY�
p � 100% ð19Þ
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where NC is the total number of datapoints in the testing dataset
(NC ¼ 250;000 in the case study).

Step 8: This decision-based step will stop the algorithm if the
accuracy target is reached. In the case that the accuracy target is
not reached, the algorithm estimates if the number of neurons in
the hidden layer or DataPar should be increased. It should be
remarked that although ANN can replicate the base model, one
should specify reasonable values (e.g. do not specify very small
MAARD).
3. Results and discussion

3.1. Surrogate model parametrization

Since the number of ANN training parameters is somewhat
extensive, a factorial-based study was done to determine the best
parameter selection. The analyzed ANN training parameters as
well as their factors are presented in Table 2. A total of 54 ANN
models were developed considering all permutations. These mod-
els were generated by only performing the steps from 1 to 7 of the
algorithms shown in Fig. 3 and Fig. 4. Step 8 was not done because
this parametric study aims at understanding the effect of the train-
ing parameters on the ANN model performance.

Training method: It can be seen from Table 3 that the best mod-
els were trained using the BR back propagation method. Moreover,
the average MAARD of the models trained with the BR method was
23% better than the models trained with LM.

Sampling method: The results in Table 3 demonstrate that both
the combined and random sampling methods provide quite similar
results and there is not a clear trend on which one is better. The
MAARD of the random sampling ANN models have, on average, a
MAARD of 3.78% while for the combined method it is 4.72%.

Architecture of the ANN: The effect of the number of neurons in
the hidden layer is clear, as the best models have 50 neurons. This
is expected as the number of neurons and number of fitting param-
eters increase together. The average MAARD of all the models with
10, 30 and 50 neurons are 13.2%, 5.6% and 4.2% respectively, which
confirms that a higher number of neurons increase the model
accuracy.

Simulations to parameters ratio: As seen in Table 3, a higher
DataPar has a higher chance of having higher accuracy. For
instance, models #35, #33 and #31 have the same training param-
eters except for the DataPar and it is seen that the model with the
highest DataPar has the best MAARD. It is important to note that
the DataPar value does not have a significant impact in the compu-
tational performance of the surrogate model as it is only used in
the ANN training. However, choosing a large DataPar (e.g. 100)
may significantly increase the training time and, as seen in Table 3,
the MAARD improvement is so minimal that it may not justify the
considerable additional training time.

According to this study, we recommend using the Bayesian Reg-
ularization training method and the random sampling method to



Table 3
ANN model performances using different training parameters.

ANN Model # Neurons in the hidden layer DataPar Training method Sampling method Mean MAARD (%) Mean MARD (%)

35 50 5 BR Random 0.50 0.03
33 50 3 BR Random 0.52 0.04
13 50 2 BR Combined 0.52 �0.01
15 50 3 BR Combined 0.54 0.00
17 50 5 BR Combined 0.57 �0.01
31 50 2 BR Random 0.57 0.09
36 50 5 LM Random 0.63 0.11
16 50 3 LM Combined 0.66 �0.02
18 50 5 LM Combined 0.67 0.00
34 50 3 LM Random 0.80 0.17
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develop thermodynamic ANN surrogate models for new systems.
However, the optimal number of neurons in the hidden layer and
DataPar may vary from system to system. Therefore, we suggest
to start the procedure shown in Fig. 3 with NH ¼ 10 neurons and
DataPar ¼ 2.

3.2. Surrogate model assessment

3.2.1. Statistical and graphical analysis
In this section, the application and validation of the model #35

is performed (the parameters can be obtained from the authors
upon request). This model was chosen because it is ranked as the
best model and because it has a MAARD of 0.50%. The MAARD
and the experimental AARD (EAARD) of model #35 and the eNRTL
model are presented in Table 4. All fitted variables in model #35
show good agreement with the base model, as none surpasses a
MAARD value of 1.00%.

The EAARD values were calculated by comparing the model pre-
dictions against experimental data: 131 CO2 partial pressure data
points (Aronu et al., 2011), 80 total pressure data points (Aronu
et al., 2011), vapor molar fractions data points (Hilliard, 2008)
and 16 liquid phase speciation data points (Jakobsen et al., 2005).
The operating conditions in the cited references that were outside
the validity range of the ANN models were omitted. The MAARD
seems to be insignificant as the difference between the EAARD of
the base model and model #35 is negligible.

Parity plots between the base model and the ANN model #35
are presented in Fig. 5. The 1,000 datapoints used in Fig. 5 were
randomly chosen from the testing dataset. It can be seen in Fig. 5-
a-b that the highest residual errors are not the same as the largest
relative deviations. The residual errors are higher in the carbamate
Table 4
Relative deviations between model #35 and the base model and experimental data.

Variable Model #35
MAARD (%)

Base model EAARD (%) Model #35
EAARD (%)

xH2O 0.05 – –
xCO2 0.63 – –
xMEA 0.41 14.6 14.8
xH3O

þ 0.86 – –
xMEAHþ 0.46 28.4 28.6
xOH� 0.57 – –
xHCO�

3
0.41 34.6 34.5

xCO2�
3

0.67 27.0 26.9

xMEACOO� 0.35 12.5 12.6
yH2O 0.39 1.7 1.7
yCO2

0.79 23.8 23.9
yMEA 0.50 31.5 31.5
PT 0.41 13.9 14.0
PCO2 – 20.7 20.8
Overall (%) 0.50 24.4 24.5
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xMEACOO� at high loadings because this is when the carbamate con-
centrations are larger, so even if the relative error is small at these
conditions, the residual error will be high.

Fig. 5c-d on the other hand presents the vapor molar fraction of
CO2. The residual plot shows that at low loadings, the residuals are
small. This is because at these loadings, the CO2 is mostly absorbed
in the liquid phase by chemical reactions, therefore the free CO2 in
the liquid solution does not exert high pressures of CO2 in the
vapor phase, resulting in a small CO2 molar fraction. This gives
low vapor molar fractions and, therefore, the residuals must be
small. In contrast, at higher loadings the CO2 is absorbed in the liq-
uid phase by van der Waals forces as well, thus the pressure
exerted by CO2 on the vapor phase increases drastically, and the
CO2 vapor molar fraction is higher.

When the relative deviations are compared, the error is well
distributed along the entire range of CO2 loadings and tempera-
tures. There is no trend that suggests that the CO2 loading and tem-
perature have any effect on the differences in CO2 molar fractions
between the ANN model #35 and the base model.

In order to show the VLE prediction accuracy, the total pressure
of the CO2-MEA-H2O system was calculated at different conditions
and compared against experimental data. The results are presented
in Figs. 6–9, where the continuous lines represent the predictions
of model #35. The data reported for total pressure in literature
(Aronu et al., 2011) are mainly from medium to high pressures,
hence there are few data points at low CO2 loadings or tempera-
tures. Fig. 6 shows that the cited experimental data and the model
predictions are in good agreement over a broad range of tempera-
tures and CO2 loadings.

The speciation predictions of model #35 were calculated and
are presented in Fig. 7 and compared against experimental specia-
tion data points (Jakobsen et al., 2005). Even at low loadings, the
smooth behavior of the speciation curves was accurately repro-
duced by the ANN model. It is important to underline that the esti-
mation of the molar compositions need to be reasonably accurate
as the liquid molar compositions are often used in kinetic and mass
transfer models.

The experimental molar vapor fractions in Fig. 8 were calcu-
lated using Dalton’s law and the reported partial pressures of
CO2, MEA and H2O. Fig. 8 shows that the vapor molar compositions
are properly predicted by the model #35 at different conditions of
CO2 loading, MEA wt% and temperature.

Although the developed ANNmodels in this work do not explic-
itly predict the CO2 partial pressure PCO2 , it can be calculated by
multiplying the total pressure and the CO2 vapor phase molar frac-
tion. Since the ANN model #35 accurately estimates both variables
independently, the calculated PCO2 is in good agreement with the
experimental data as shown in Fig. 9. This indicates that the surro-
gate model is not only accurate, but also represents the thermody-
namic system in the same fashion as calculations done with
traditional VLE models.



Fig. 5. Parity plots between the base model and the ANN model #35: a) xMEACOO� residual error parity plot, b) xMEACOO� relative deviation plot, c) yCO2
residual parity plot and d)

yCO2
relative deviation plot.

Fig. 6. Total pressure plots at different MEA weight fractions: a) wMEA ¼ 15% and b) wMEA ¼ 60%. Continuous lines: model prediction with ANN model #35. Experimental
data: (Aronu et al., 2011).

Fig. 7. Speciation plots at different conditions. a) wMEA ¼ 30% and 40 �C, b) wMEA ¼ 45% and 20 �C. Continuous lines: model prediction with ANN model #35. Experimental
data: (Jakobsen et al., 2005).
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Fig. 8. Molar fraction plots at a) 3.5 MEA molarity and 60 �C and b) 7.0 MEA molarity and 40 �C. Continuous lines: model prediction with ANN model #35. Experimental data:
(Hilliard, 2008).

Fig. 9. CO2 partial pressure plots at different wMEA: a) 15% b) 60%. Continuous lines: model prediction with ANN model #35. Experimental data: (Aronu et al., 2011).
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Fig. 10. presents a relative deviation plot for predicted PCO2 and
PT as a function of aCO2 compared with to experimental data. Fig. 10
shows four different sets of relative deviations between the predic-
tions of the base model and model #35 and the experimental val-
ues of PCO2 and PT . It is seen that model #35 and the base model
agree very well with each other, as almost all datapoints in
Fig. 10 calculated by the base model are covered by the estimations
of model #35. Additionally, the relative deviation of model #35
with respect to the experimental data is well distributed and there
is no sign of bias.

The predictions of the base model and model #35 were plotted
together so their differences could be illustrated. For instance, if
only the datapoint of the ANNmodel #35 is seen, it is an indication
Fig. 10. Relative deviation plot between the experimental values and the predicted valu
2011).
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that both models predicted the same values. Few datapoints show
both model datapoints, whereby it can be concluded that the base
model was accurately replicated by model #35.
3.2.2. Thermodynamic constraints
The black-box nature of ANN models may draw skepticism on

the physical validity of the model, which in turn, may inhibit their
implementation into process engineering frameworks. The ANN
models are said to be of black-box nature because, to this day, it
is not possible to deduce a physical meaning from the ANN param-
eters alone. Additionally, the difference between the semi-
empirical model and the ANN models is that the first model con-
siders the electronegativity constraint and the summation con-
es from the ANN model #35 and the base model. Experimental data: (Aronu et al.,



Fig. 11. Enthalpy of absorption calculated as a function of CO2 loading using 30
MEA wt% at 40 �C. Experimental data: (Kim and Svendsen, 2007).

Fig. 12. Enthalpy of absorption calculated as a function of CO2 loading using 30
MEA wt% at 80 �C. Experimental data: (Kim and Svendsen, 2007).
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straints in the solution algorithm while the ANN models do not
(the summation equation restrictions are used in the postprocess-
ing calculations but not in the neural network itself).

Table 5 presents the mean difference between the values calcu-
lated by the ANN model #35 with respect to Eqs. (8)–(10) without
performing a compositional normalization. The second column
presents the absolute mean error when the molar fractions are
compositionally normalized. Note that the absolute error of Eqs.
(8) and (9) is 0 on the second column because the normalization
redistributes the molar fractions so that their sum is 0.

It can be concluded from Table 5 that although there is a small
error in the summation constraints, the fact that the absolute error
in Eq. (10) is the same between the second and third column indi-
cates that the error in the molar fractions is well distributed
between all the species. The base model fulfills the electronegativ-
ity constraint with an error less than 10-15 while the error in the
summation constraints is 0.

3.2.3. Why does the Gibbs phase rule matter?
Complying with the Gibbs phase rule is crucial, regardless if the

model is either semi-empirical or machine learning based. For
example, let us consider an over specified system where there
are more fixed variables than degrees of freedom. In this case,
the thermodynamic system will not have any physical meaning
as it cannot exist at the specified conditions. The mathematical
effect of overspecification in a thermodynamic system depends
on the model type. If one tries to estimate the VLE behavior of a
thermodynamic system with a semi-empirical model, a solution
cannot be achieved as the mathematical model will be mathemat-
ically inconsistent. Unfortunately, an ANN does not have a similar
‘‘safe-lock” and it can predict VLE values that may seem reasonable
at first glance, but do not have a physical meaning.

Consistent thermodynamic models allow evaluating thermody-
namic quantities that are related to the VLE behavior through fun-
damental equations. In the context of CO2 capture, an important
solvent quantity is the CO2 enthalpy of absorption which can be
estimated using Eq. (13) and the VLE model.

In order to highlight the importance of the Gibbs phase rule and
thermodynamic consistency in the ANN model development, an
inconsistent model of the VLE system was formulated following
the methodology previously presented but omitting the Gibbs
phase rule analysis. The inconsistency was imposed on the model
by specifying one extra variable and breaking the Gibbs phase rule.
The ‘‘inconsistent model” was trained with 4 inputs: aCO2 , MEA wt
%, T and PT. The model was developed and compared with the test-
ing dataset, and a MAARD of 0.37% was obtained. The PT values of
the training dataset were given as inputs in the ‘‘validation” of the
inconsistent model. Hence, the MAARD seems to be low and in
agreement with the base model.

Fig. 11 and Fig. 12 show the CO2 enthalpy of absorption on the
left axis and the PCO2 on the right axis, both as functions of aCO2 .
This was done demonstrate that a low MAARD is not necessarily
a satisfactory indication that the model was ‘‘properly understood”
by the ANN.

Fig. 11 presents the thermodynamic system at 40 �C, it shows
that model #35 accurately reproduced the PCO2 behavior of the
base model as the curves of both models are overlapping com-
Table 5
Thermodynamic constraints check of ANN model #35.

Eq. Absolute Error Without
Normalization - 105

Absolute Error With
Normalization - 105

(8) 2.34 0
(9) 8.19 0
(10) 12.6 12.6
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pletely. The heat of absorption predictions between the two mod-
els are in excellent agreement (MAARD = 0.30%). The difference
between the experimental and the estimated CO2 heat of absorp-
tion is caused by the inherent simplifications to the use of Eq.
(13) (Kim et al., 2014; Sherwood and Prausnitz, 1962; Svendsen
et al., 2011).

Fig. 12 on the other hand, presents the predictions of the incon-
sistent model and the base model at: wMEA ¼ 30%, 120 �C and dif-
ferent loadings and pressures. The heat of absorption predictions
with the inconsistent model are inaccurate (relative deviations
up to 50%). This is a clear indication of a model inconsistency. An
ANN model may look ‘‘good” in a statistical analysis even if it
was with a wrong conception of the system physics. The inconsis-
tent ANN model created a fallacious dependency of PCO2 on the
total pressure even though it is thermodynamically proven that,
for this case, it should only be a function of aCO2 , wMEA, and T. This
demonstrates that the misuse of machine learning or artificial neu-
ral networks can lead to correlation-causation fallacies.

If the PCO2 predictions of the inconsistent model are observed,
one would expect that the CO2 heat of absorption estimations
would be accurate as well, but they are not. This might raise the
question: why are the heat of absorption values so inaccurate? This
can be explained by considering the similitudes between the ANN
and biological organisms. Much of the knowledge of animals or
humans is based on experience or correlations. They learn to react
accordingly to environmental stimuli by creating a cause-effect
correlation that does not necessarily indicate that the living being
has understood the root cause of the phenomenon. A similar situ-
ation occurs when training an ANN. During the process, the ANN
learns and finds the correlations between the variables, but that
does not mean that it found right dependencies of the system, it
just found a mathematical correlation.

Another situation in which thermodynamic inconsistencies in
ML models may occur is if there is an interdependence among
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the input variables. Let us consider a situation where the ANN
model was developed using the CO2 molarity concentration, T
and wMEA as inputs. While the use of three input variables complies
with the degrees of freedom of the system, the interdependency
between the molar concentration and the temperature will pro-
duce thermodynamic inconsistencies if a physically unfeasible
combination of input variable values is chosen. Once again, this
may not be detectable by the ANN as the VLE predictions do not
directly solve the thermodynamic equations. For this reason, con-

centrations on molarity basis are not recommended and it is
preferable to use concentrations on a molal basis or a molar frac-
tion basis to avoid unfeasible scenarios.

3.3. Surrogate model application

Since the goal of developing the surrogate model is to improve
the computational time, the computational speed of the different
calculation methods was compared. Table 6 presents the compar-
ison of the computational speed of the gamma-phi calculations,
different interpolation methods and the ANN surrogate model
method proposed in this work. The molar fraction of CO2 in the
vapor phase was chosen as the output variable. A total of 100
batches with 50 simulations each were run in order to estimate
the relative computational speed with respect to the gamma-phi
calculations shown in Table 6. The values of each batch are differ-
ent between each other and were generated randomly.

The interpolations were done using the Matlab built-in function
interp3. Two interpolating algorithms were chosen: the linear
interpolation and the cubic spline interpolation algorithm (de
Boor, 1978). The best models with 10, 30 and 50 neurons in the
hidden layer are also presented in Table 6. This table shows that
the linear interpolation can accelerate the computational speed.
However, its intrinsic relative error is high and the savings in com-
putational time may not be high enough to compensate and justify
the error.

Cubic spline interpolation has better accuracy when compared
to the linear interpolation, but at the cost of lower computational
speed. Making a balance between the relative computational speed
and the MAARD, cubic spline interpolation appears to outperform
the linear interpolation. It is important to underline, that due to
the algorithm of the cubic spline interpolation, it may happen that
the algorithm estimates values of yCO2

less than 0 whenever there is
a steep change in yCO2

when the value is close to infinite dilution.
The machine learning models clearly outperforms the interpo-

lation in both the computational speed and the capabilities for esti-
mation accuracy. The main reason of the computational speed
Table 6
Computational speed comparison between different VLE calculation schemes.

Elements in the
interpolation
matrix

Relative
computational
speed

yCO2
MAARD

(%)

Gamma-phi
calculations (base
model)

– 1 –

Linear interpolation 1000 10 28.17
8000 7 8.78
27,000 6 4.67

Cubic spline
interpolation

1000 8 9.20
8000 6 1.74
27,000 5 0.93

ANN with 10
neurons

– 1202 8.03

ANN with 30
neurons

– 987 1.12

ANN with 50
neurons

– 966 0.49
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superiority is that the ANN calculations are simple and non-
recursive calculations. Another reason for the machine learning
outstanding computational characteristics is that the ANN struc-
ture allows calculating the entire input matrix in parallel (in this
example there were 50 simulations in parallel) as opposed to the
interpolation algorithms that must process each one of the inputs
individually.

The last three rows of Table 6 suggest that there is a tradeoff
between the number of hidden neurons and the computational
speed. Fig. 13 presents how the speed of the ANN models is
affected by the number of parallel simulations and the number of
hidden neurons. The tradeoff between the number of neurons
and the computational speed is evident as the model with 10 neu-
rons has the fastest relative speed, however its MAARD is some-
what high, thus the models with 30 and 50 hidden neurons seem
to be better. A higher number of neurons implies more operations
inside an ANN, therefore it is important to set a reasonable target
of the MAARD in order to avoid a large number of neurons that
would reduce the computational speed.

From Fig. 13a it is evident that the model with 50 neurons is
around 3 orders of magnitude faster than the gamma-phi calcula-
tions when performed with more than 100 simulations done in
parallel. The computational gain at smaller number of parallel sim-
ulations is unclear, hence, an amplification was done and shown in
Fig. 13b. The minimum relative speed is reached for all models
when there is only one simulation. However, even at this minimum
point the relative speed of all 3 models is 40 times the speed of the
base model. At 30 parallel simulations the computational gain is
around 3 orders of magnitude, while for 400 simultaneous calcula-
tions, the speed is around 2,500 times faster if the model with 50
neurons is used.

So, one may wonder: is it really important to speed-up the VLE
computation time? If the surrogate model is to be used to model
the behavior of a single vapor–liquid separator, the calculations
would take 8.0 � 10�5 s instead of 3.2 � 10�3 s. Looking at this sce-
nario, from the end user perspective there is not a noticeable dif-
ference that justifies the use of a surrogate model. But what
Fig. 13. a) Computational efficiency tradeoff between the number of neurons and
the number of parallel simulations. b) Amplification of a).
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happens if there is a complex problem that requires a non-steady
state 2-D formulation? Let us assume that the geometry uses a
400 � 400 grid that requires a VLE evaluation in each discretized
point. Furthermore, the time is discretized in 400 timesteps and
it is assumed that each timestep requires 10 iterations to solve.
Considering these conditions, the VLE simulations would take
400 � 400 � 100 � 10 � 3.2 � 10�3 s = 510,000 s (142 h) if the base
model is used. In contrast, the simulation would take 0.15 h to
solve if the surrogate model with 50 neurons is used (this scenario
assumes 400 simultaneous VLE simulations). The use of ANN sur-
rogate models instead of performing the traditional semi-
empirical models may thus give extraordinary computational
advantages in complex problems that require VLE calculations in
multidimensional problems. One of such examples may be the
solution of the model needed for the characterization of aerosol
emissions from CO2 capture plants (Majeed and Svendsen, 2018).
4. Conclusions

An easy-to-implement method based on machine learning Arti-
ficial Neural Networks (ANN) was developed and proved to be a

feasible alternative for the development of accurate, consistent

and computationally fast surrogate models. The proposed method
was employed to develop a surrogate machine learning thermody-
namic model of a ternary system CO2-MEA-H2O. The surrogate
models were based on a semi-empirical gamma-phi model frame-
work (eNRTL for the liquid phase and Peng Robison for the vapor
phase). The advantage of the proposed method is that it can be
easily extrapolated to other thermodynamic quantities (e.g. activ-
ity coefficients, enthalpy calculations or heat capacities) and sys-
tems (e.g. more components or more phases).

A quantitative assessment of the effect of the training parame-
ters on the prediction capabilities of the ANN models was per-
formed. The first conclusion from this study is that a single
hidden-layer FFNN architecture is enough to represent the behav-
ior of reactive multiphase systems. Therefore, the need for more
complex architectures (e.g. multiple hidden-layers or feedback)
may be unnecessary as they may introduce extra training parame-
ters or iteration loops that may make the ML model implementa-
tion difficult without significantly improving the prediction
capabilities.

Through a statistical analysis, it was found that the accuracy of
the surrogate models was improved using Bayesian regularization
back-propagation algorithm and a random sampling method to
generate the training datasets. The DataPar value is suggested to
be as low as possible (DataPar ¼ 2 for similar applications). The
analysis involved the development of 54 ANN models wherefrom
the one with the best prediction capabilities with respect to the
semi-empirical model has a MAARD ¼ 0:50%.

It was shown that the integration of the Gibbs phase rule and
physical constraints in the ANN framework is of utmost impor-
tance as their inclusion allows avoiding thermodynamic inconsis-
tencies that may lead to inaccurate predictions.

It was also demonstrated that good prediction capabilities in
ANN models are not necessarily a satisfactory indication of ther-
modynamic consistency, proper dependency between the variables
or that the model complies with the physical constraints. There-
fore, the integration of the Gibbs phase rule and physical con-
straints in the ANN model is a viable method to ensure that the
thermodynamic model has the same behavior and dependencies
as the semi-empirical models.

The developed surrogate ANN models can be around ~1000
times faster than rigorous calculation methods because the ANN
models do not have recursive operations that jeopardize the com-
putational efficiency of the calculations. Additionally, the compu-
13
tational speed of ANN surrogate models outperforms the ones of
linear and non-linear interpolation methods.
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