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Abstract— This article presents a nonlinear observer that
performs range estimation as well as gyro bias estimation by
using velocity, angular rate and bearing angle measurements
from landmarks at unknown locations. The observer is proved
to have semi-global asymptotic stability, and its performance is
verified in simulations and on experimental data. The observer
is demonstrated on an unmanned aerial vehicle (UAV) with a
sensor setup consisting of camera, inertial measurement unit
(IMU), and velocity measured by a global navigation satellite
system (GNSS). This sensor suite is sufficient to replace the
magnetometer and the altimeter.

Index Terms— Attitude observer, Navigation, Nonlinear Ob-
server, Sensor data fusion, Localization

I. INTRODUCTION
Camera-aided inertial navigation has been extensively

studied. Some setups rely on having landmarks with known
position, which is refereed to as the perspective n point (PnP)
problem [1], while bearing-only simultaneous localization
and mapping (BO-SLAM, also called mono- and visual-
SLAM) estimates the unknown positions of the landmarks.
Many of the solutions are based on either some form of
extended Kalman filter (EKF) [2], [3], [4] or a nonlinear
optimization scheme [5], [6]. This has proven to give ac-
curate results, although robustness and computational load
remain to be challenging. Hence there has recently been an
increasing effort to investigate solutions to these problems
with global convergence guarantees [7], [8], [9], [10], [11],
[12]. It should, however, be stated that all these methods
depends on having a velocity measurements and either
having a calibrated IMU without gyro bias, or an attitude
heading reference system (AHRS) available. In [8], [9] they
also demonstrate how such an observer could be expanded to
estimate bias in the velocity measurements. However, these
observers are unable to estimate and compensate for any gyro
bias.

In this article we present a novel observer, where we
have expanded the observer in [12] to also handle gyro bias
estimation. It filters the velocity and bearing measurements
from landmarks, in order to estimate the ranges to the
landmarks as well as gyro bias. It can also be used for
bearing-only SLAM if it is combined with a loop-closing
front-end system [13]. It will be presented with a proof
of semi-global asymptotic stability and exponential stability
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in the large. The observer is demonstrated in simulations,
where a sensor setup with a camera, GNSS and IMU for a
UAV is used. The observer is able to provide range/altitude
estimates as well as estimating the gyro bias. The observer is
validated experimentally, and the gyro bias observer is used
in a cascade with an attitude estimator [14]. The attitude
observer is also compared to a simpler velocity-aided attitude
observer based on a nonlinear complementary filter [15].

The structure of this paper is as follows: Notation and
preliminaries are presented in Section II; Section III presents
the novel estimator and proof of its stability properties;
while Section IV shows simulation results. In Section V
the results of the experimental validation are presented and
finally, Section VI concludes the paper. This article is a
shorter version of Chapter 2 presented in the PhD thesis
[16].

II. NOTATION AND PRELIMINARIES

A. Notation

Scalars are lower case letters such as a, x, ω, vectors are
lower case bold a,x,ω, sets are upper case A,X,Ω, and
matrices are upper case bold A,X,Ω. The 0 denotes the
scalar zero, while 0 is the matrix zero where dimensions
are implicitly given by the context. The accents •̂, •̃, •̇, •̄,
•, denotes estimate, estimation error, time derivative, upper
and lower bound respectively. The subscript •(m) denotes the
measured value. Some common mathematical expressions
which will be used are: The Euclidean norm for vectors and
Frobenius norm for matrices, denoted ‖ • ‖, absolute value,
denoted | • | and the transpose, denoted •>.

A vector can be represented in different coordinate sys-
tems. The representation is denoted with the superscripts
•b, •n which represents the body-fixed and earth-fixed (in-
ertial) coordinate systems, respectively, and will be called
body-frame and inertial-frame. Lower case will denote the
indices of a landmark, vector or matrix •i and •i,j .

B. Rotation representation

Rotation is the attitude change between two coordinate
systems, and a rotation from coordinate system b to n is
denoted with subscript •nb. This can be represented as Euler
angles

θnb = [φ, θ, ψ]> ∈ {R3| |φ| ≤ π, |θ| ≤ π, |ψ| ≤ π}

and rotation matrix

Rnb ∈ {R3×3| RnbR>nb = I,det(Rnb) = 1} = SO(3)



The rotational vector transformation is calculated with the
rotation matrix xn =Rnbx

b.
The dynamics of the rotation matrix is described by

Ṙnb =RnbS(ω) (1)

where ω = ωbnb is the angular velocity of the frame b
relative to n decomposed in b. The matrix S(ω), is the skew-
symmetric matrix

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (2)

which formalizes how the cross product is performed through
matrix multiplication S(x)y = x × y. This matrix has
several properties, such as: S(•) = −S(•)>,x>S(•)x =
0, ∀x ∈ R3, S(x)y = −S(y)x and RS(x)R> =
S(Rx), ∀R ∈ SO(3). Moreover, the cross-product gives
the difference in angle-axis between two vectors

S(x)y = ‖x‖‖y‖ sin(θ)u (3)

where θ is the angle between the vectors, and u is the unit
vector of the axis of the rotation, defined by the right hand
rule, and is orthogonal to x and y. More detailed information
can be found in [16].

A common source of error in attitude estimation is a gyro
measurement

ωm = ω + bω (4)

that is corrupted by a gyro bias bω that often needs to be
estimated along with the attitude. The estimate of the rotation
matrix is denoted R̂nb, and the error is defined by R̃nb =
R̂nbR>nb as in [17]. This means the error is a rotation matrix
in itself.

C. Projection

It is useful to project vectors into the parallel and orthog-
onal spaces of a certain vector. This can be done using the
unit vector unx = x

‖x‖ and skew symmetric matrices. We
define the parallel and orthogonal projection matrices

U⊥x = −S(unx)2 = I − unx(unx)> (5)

U‖x = unx(unx)> (6)

where the projection is performed by multiplying these
matrices with the vector

U⊥x y is ⊥ to x , U‖xy is ‖ to x (7)

y = U⊥x y +U‖xy (8)

D. Landmark and vehicle dynamics

We assume that there is a vehicle with position pn and
m stationary landmarks where the ith landmark has position
pni . The vectors to the landmarks are δni = pni − pn. These
vectors can be represented by their range and bearing,

%i = ‖δni ‖ , unδi = δni /‖δ
n
i ‖ (9)

where the range %i is the geometric distance, while the
bearing vector unδi is the unit vector pointing at the landmark.
These can also be represented in the body-frame

δbi =R>nbδ
n
i , ubδi =R>nbunδi (10)

The kinematics of the position of the vehicle is

ṗn = vn =Rnbv
b (11)

which implies δ̇ni = −vn, which is used to find the time
derivative in body-frame, from (1) and (10)-(11).

˙
δbi = Ṙ>nbδ

n
i +R>nbδ̇

n
i

= (RnbS(ω))>δni +R>nb(−vn) = −S(ω)δbi − vb (12)

From this, the dynamics of the range and bearing vector can
be found

2%̇i%i = 2(δni )>δ̇
n

i (13)

%̇i = (unδi)
>(−vn) = −(unδi)

>vn = −(ubδi)
>vb (14)

u̇nδi = δni
d

dt
(

1

%i
) +

δ̇
n

i

%i
= δni

−1

%2i
%̇i +

−vn

%i

=
1

%i
(unδi(u

n
δi)
> − I)vn =

1

%i
S(unδi)

2vn (15)

u̇bδi = δbi
d

dt
(

1

%i
) +

δ̇
b

i

%i
= δbi

−1

%2
%̇i +

−S(ω)δbi − vb

%i

= −S(ω)ubδi +
1

%i
S(ubδi)

2vb (16)

where S(ubδi)
2 = ubδi(u

b
δi)
> − I is used. For mathematical

convenience, the inverse range di = 1
%i

is introduced, and
(14) leads to

ḋi = − 1

%2i
%̇i = d2i (u

n
δi)
>vn = d2i (u

b
δi)
>vb (17)

III. OBSERVER DESIGN

The proposed observer is a high gain observer resembling
the dynamics of the bearing vector. It uses the velocity
and gyro measurements to propagate and filter the bearing
vector estimates while estimating both the inverted range to
the landmarks and the gyro bias. The observer has body
velocity vb, bearing vector ubδi and biased angular rate ωm
as measurements. The bearing vector ûbδi, inverted range to
landmark d̂i and gyro bias b̂ω are estimated as follows

˙̂ubδi = −S(ωm − b̂ω + kiσi + d̂iS(ubδi)v
b)ûbδi (18)

˙̂
di = Projdi(d̂

2
i (u

b
δi)
>vb)

+ kdiProjdi((v
b)>S(ubδi)

2S(ûbδi)σi)) (19)

˙̂
bω = KbProjb(

m∑
i=1

S(ûbδi)S(ubδi)σi) (20)

σi = S(ubδi)û
b
δi (21)

where ki > 0, kdi > 0 and Kb > 0 are gains. The
Proj• operator is presented in [16], and ensures that the bias
estimate is maintained in a ball which is predefined, and that



the inverse range estimates are kept between d < d̂i < d̄. We
see that (ûbδi)

> ˙̂ubδi = 0, because (ûbδi)
>S(ûbδi) = 0, which

ensures that ûbδi is maintained on the unit ball.
First the error dynamics of ũbδi = S(ubδi)û

b
δi = σi, d̃i =

di − d̂i and b̃ω = bω − b̂ω are derived:

˙̃ubδi = S(ubδi)
˙̂ubδi − S(ûbδi)u̇

b
δi

˙̃ubδi = S(ũbδi)ω + kiS(ubδi)S(ûbδi)ũ
b
δi + S(ubδi)S(ûbδi)b̃ω

− d̃iS(ûbδi)S(ubδi)S(ubδi)v
b + d̂iS(ũbδi)S(ubδi)v

b

For details see [16]. We then end up with the error dynamics

˙̃ubδi = [−S(d̂iS(ubδi)v
b + ω) + kiS(ubδi)S(ûbδi)]ũ

b
δi

+ S(ubδi)S(ûbδi)b̃ω − S(ûbδi)S(ubδi)
2vbd̃i (22)

˙̃
di = −kdiProjdi

(
(vb)>S(ubδi)

2S(ûbδi)ũ
b
δi

)
+ d2i (u

b
δi)
>vb + Projdi

(
−d̂2i (ubδi)>vb

)
(23)

˙̃
bω = −KbProjb(

m∑
i=1

S(ûbδi)S(ubδi)ũ
b
δi) (24)

by assuming that the bias is constant ḃω = 0. We see that
the error dynamics has an equilibrium for ũbδi = 0, d̃i = 0
and b̃ω = 0. In addition, we stack the bearing errors in
the vector x = [(ũbδ1)>, · · · , (ũbδm)>]>, and the inverted
range estimation errors and gyro bias error in vector y =
[d̃1, · · · , d̃m, (b̃ω)>]>. The structure of the error dynamics
can then be represented as

ẋ = A(t)x+B(t)y (25)

ẏ = −ΓBp(t,x)> + g(t,y) (26)

where the matrices are defined as

A(t) =

diag({−S(d̂iS(ubδi)v
b + ω) + kiS(ubδi)S(ûbδi)}mi=1)

B(t) =[
diag({−S(ûbδi)S(ubδi)

2vb}mi=1) {S(ubδi)S(ûbδi)}mi=1

]
Bp(t,x)> =


{

Projdi
(

(vb)>S(ubδi)
2S(ûbδi)ũ

b
δi

)}m
i=1

Projb

(
m∑
i=1

S(ûbδi)S(ubδi)ũ
b
δi

) 
where {•i}m1 = [(•i|i=1)>, · · · , (•i|i=m)>]> is a column
vector or a matrix, where the entries •i are stacked above
each-other. The gain matrix is

Γ =

[
diag(kd1, · · · , kdm) 0

0 Kb

]
(27)

where we see that Γ is positive definite with a smallest
and largest eigenvalues γ̄, γ, which also gives bounds on the
observer gains. Finally,

g(t,y) =

[{
d2i (u

b
δi)
>vb + Projdi

(
−d̂2i (ubδi)>vb

)}m
1

0

]
We use this notation to highlight the similarities be-
tween Bp(t,x)> and B(t)>x which in fact are identical

Bp(t,x)> = B(t)>x when there are no projections acti-
vated. This notation helps the reader to see why the adap-
tation law of the inverted range and gyro bias were chosen
i.e. to relate the system to the family of skew-symmetric
systems that have been investigated extensively in many
forms, including [18], [19], [20], [21]. In the first lemma we
show that the persistence of excitation (PE) condition of this
system related to the skew-symmetric part can be checked
with a simpler matrix inequality.

Lemma 1: Consider the matrix B(t), representing the part
of the dynamic (25) that is linearly dependent on y. Assume
velocity of the vehicle is non-zero, ‖vb‖ > 0, not parallel
to the bearing measurements, and there are at least three
bearing measurements that are linearly independent so that
the following inequalities hold

− (vb)>S(ubδi)
2S(ûbδi)

2S(ubδi)
2vb > a , ∀i (28)

−
m∑
i=1

1

ξi
>ξi

S(ûbδi)S(ubδi)S(ξi)S(ξi)S(ubδi)S(ûbδi) > b

(29)

ξi = −S(ûbδi)S(ubδi)
2vb (30)

where a > 0 and b > 0 are lower bounds. Then the matrix

B(t)>B(t) > µI (31)
is positive definite, where µ > 0 is a lower bound.

Proof: The details of the proof can be seen in Chapter
3 of [16], which is based on deriving the Schur complement
of B(t)>B(t), which leads to the expressions (28)-(29).
The first inequality (28) intuitively makes sense, since the
range to the landmark is unobservable if the bearing is
parallel to the velocity, hence constant. This is similar to what
is found in [7], [9], [11], [12], where the derivative of the
bearing vector being nonzero is a necessary condition for PE
and observability. What distinguishes the presented observer
from these, is that gyro bias estimation is also performed. In
addition, the landmark positions are estimated, which is not
done in [9], [22].

The condition of having (28) satisfied for every bearing
is to guarantee that all inverted range estimates converge.
In simulations, violating this condition for some time or
initializing the bearing vector estimate parallel to the velocity
vector did not cause any problem for the observer. In
addition, as we will see in experiments, this condition will
not be necessary to make the gyro-bias estimation converge.

The second inequality (29) is less intuitive. We see that
for the matrix to be positive definite, we need that at least
three bearing vectors exist, in which the projection of the
velocity onto their orthogonal space spans R3 at all time

∃i, j, k ∈ {1,m}|span([U⊥δbi
vb, U⊥δbj

vb, U⊥δbk
vb]) = R3

This gives us the intuition that the value µ in (31) will be
related to how different the bearing vectors are, and how
aligned they are to the velocity vector.

Remark 1: For the special case when velocity is zero,
the inverse range di is unobservable, and can be neglected.



To show that the gyro bias can be estimated, set y =
b̃ω , yielding B(t) = {S(ubδi)S(ûbδi)}mi , B(t)>B(t) =

−
m∑
i=1

S(ûbδi)S(ubδi)S(ubδi)S(ûbδi) and g(t,y) = 0. The

system is skew symmetric without pertubation and can be
shown to be uniformally semi-globally asymotically and
locally exponentially stable using similar steps as in the proof
of Theorem 1.
The following theorem says that a high gain can be chosen
so that the system is uniformly semi-globally asymptotically
stable, and exponentially stable in the large.

Theorem 1: Consider the kinematics of a vehicle where
bearing of landmarks ubδi, velocity vb, and biased angular
rate ωm are measured, and assume that all inputs and system
functions are Lipschitz and bounded. Further we assume
that the landmarks are a minimum distance away from the
vehicle so that the inverted ranges are also bounded. If we
choose gains ki large enough, then there exist gains kdi and
Kb such that the error dynamic of the observer (18)-(20)
converges in finite time from initial estimates ûnδi satisfying
(ûbδi)

>ubδi > cos(π − ε), and the origin is exponentially
stable for (ûbδi)

>ubδi > cos(ε) as long as the assumptions
of Lemma 1 are fulfilled, where ε > 0 is an arbitrary small
constant.

Outline of the proof:

A) First prove that the the system (18)-(20) is Uniformly
Bounded (UB), and the error states converges to an open
set.

B) Define a Lyapunov function candidate for the error
dynamics (22)-(24) and find its time derivative. Derive
bounds on the terms of the time derivative.

C) Handle the projection related to the perturbation terms,
and derive a bound on the perturbation.

D) Using bounds B) and C), to show that there exist gains
that yields exponential stability in the large.

E) Combine A), D) to conclude that the observer is semi-
globally asymptotically stable.

The proof can be seen in Chapter 3 of [16], where lower
bounds on the gain ki are given.

A. Decoupling of gyro bias estimation

Remark 2: It should be noted that inertial/body reference
vectors, such as magnetometer and gravity, can also be used
in the gyro bias observer, where the vectors can be included
by using ubδi = rbi and by setting di = d̂i = 0, and thus
annihilate its effect.
As will be seen later in the article, the rate of convergence
of the gyro bias estimation error can be quite different in
different axes. This affects how large gain one might desire
to have for the gyro bias estimation in different directions. An
example of this is when a reference vector rb is significant.
Since this reference vector makes the gyro bias with axis
orthogonal to this vector more available, it can be desirable
to divide the gyro bias estimation into the space orthogonal
rb
⊥ and parallel rb‖ to this vector. We recall the projection

transformations

U⊥r = −S(rb)2 , U‖r = rb(rb)> (32)

This can then be used to provide one gain for the gyro
bias estimation parallel to, and another gain for the bias
estimation orthogonal to, the reference vector

˙̂ubδi = −S(ωm − b̂ω + kiσi)û
b
δi + d̂iS(ûbδi)S(ubδi)v

b

˙̂rb = −S(ωm − b̂ω + krσr)r̂
b (33)

˙̂
di = Projdi(d̂

2
i (u

b
δi)
>vb)

+ kdiProjdi((v
b)>S(ubδi)

2S(ûbδi)σi) (34)

˙̂
bω = (k1bU

‖
r + k2bU

⊥
r )Projb(

m∑
i=1

(S(ûbδi)S(ubδi)σi)

+ S(r̂b)S(rb)σr) (35)

σi = S(ubδi)û
b
δi , σr = S(rb)r̂b (36)

The crucial part is that the gyro bias estimation can be tuned
to balance the difference in the convergence rate. We believe
that the reason for this difference in convergence rate along
the different axis is related to the different eigenvalues of the
matrix (29) which will be shown for different scenarios in
the simulation example.

IV. SIMULATION RESULTS AND
PERFORMANCE EVALUATION

One interesting question to investigate is how the landmark
distribution will affect the convergence of the observer.
Lemma 1 show that the convergence of the inverted distance
estimate to the landmark depends on the velocity not being
parallel to the landmark bearing, which is intuitive as the
distance to the landmark is unobservable if the bearing
measurement is stationary. This is consistent with the ob-
servability results and PE conditions found in [12], [11], [7],
[9]. For the convergence of the gyro bias estimate, we see
that it is related to the inequality

−
m∑
i=1

1

ξ>ξ
S(ûbδi)S(ubδi)S(ξ)S(ξ)S(ubδi)S(ûbδi) > 0

where we recall that ξ = −S(ûbδi)S(ubδi)
2vb. To better

understand this inequality, and how its positive definiteness
depend on landmark positions, the related matrix

m∑
i=1

1

ξ̂
>
ξ̂
S(ubδi)

2S(ξ̂)S(ξ̂)S(ubδi)
2 (37)

ξ̂ = −S(ubδi)
3vb (38)

was calculated, and its eigenvalues were compared in the
different setups. We note that the matrix is independent of
the range estimates, the angular rate, as well as the attitude
and the magnitude of the velocity as long as it is non-zero.
A scenario can be seen in Figure 1.

The matrix (37) and its eigenvalues were calculated for
several consecutive scenarios where the virtual camera setup
was varied with different number of bearing measurements,
different angles between the velocity and the camera axis,



Fig. 1: Simulation setup for evaluating the matrix (37)

and different field of view (FOV) of the camera. For each
parameter setup, the matrix was calculated 10 times with
randomly bearings satisfying the the parameters. The eigen-
values of these matrices can be seen in Figure 2, where
one can see how the camera position relative to the velocity
affects the convergence of the gyro bias estimate. However,
this example does not take into account the difference in
noise that the bearing measurements experience because of
changing FOV. Not surprisingly, having too narrow FOV will
make gyro bias estimation difficult. From Figure 2a one can
see that after having a FOV of 150o, an increase in FOV will
not make the eigenvalues more negative. For the case when
the camera is looking in the same direction as the velocity,
which is typical for an automotive application, see Figure
2b, the matrix has an optimal FOV close to 90o. We see
from Figure 2c that for a camera with 90o FOV, the optimal
angle between the camera and the velocity is 0o, 60o, 120o

and 180o. It is also intresting to see from Figure 2d that
the eigenvalues have a linear dependency with regards to the
number of bearings.

A. UAV flight simulation

For the next simulation we have investigated a common
setup for UAV camera navigation, where a UAV has a
downward looking camera. From Figure 2a, we see that
for the camera we are simulating, a 90o FOV can be
troublesome, as the movement of the UAV is often perpen-
dicular to the camera direction. Nevertheless, we will show
that the sensor setup presented in (33)-(36), will still give
satisfactory results. The camera will work both as a gyro
bias estimator, especially in yaw, as well as an estimate for
range to landmarks which are seen. The setup was tested
in simulations, where a vehicle is moving in a circle with
radius of 10 m, looking downward at a plane from a height
of 13 m. The simulation setup can be seen in Figure 3, where
one can see that the landmarks dies and are born, and the
number of bearing measurements varied between 166 to 215.
When the estimates have converged and all innovations were
kept under a threshold, a timer was introduced for accepting
new landmarks/states so that they could converge before
they affected the gyro bias estimate. This let the inverse
range estimates converge before they affected the gyro bias
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(a) Plotted against the FOV in the downward looking camera, with
50 bearing measurements.
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(b) Plotted against the FOV in the forward looking camera, with
50 bearing measurements.
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(c) Plotted against the angle between the camera and the velocity
with FOV 90o with 50 bearing measurements.
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(d) Plottet against the number n of bearing measurements. The
camera was pointed at 45o forwards with regards to the velocity,
and with a FOV of 90o.

Fig. 2: The eigenvalues of matrix (37).



Fig. 3: The trajectory of the UAV with a downward looking camera. The
red points are the landmarks that are observed by the camera, and the green
arrows are the bearing measurements scaled according to the inverse range
estimates.
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Fig. 4: The gyro bias estimation, where the true bias is propagated according
to (39). The blue estimate is from the novel observer, while the green
estimate is from the complimentary filter [15].

estimate. An extension of this could be to estimate whether
a bearing measurement is PE, and let this influence the gains
of the observer. However, for the scenarios encountered both
in simulations and experiments, such a setup was not deemed
necessary to achieve satisfactory results.

The simulator was discretized with the Euler method with
step length ∆t = 0.067, and white measurement and process
noise were added. In addition a gyro measurement ωm had
a bias that was initialized as bω = [0.4, 0.05, −0.25]> and
updated by a white noise with standard deviation σbw =
0.001 according to

bω(t+ ∆t) = bω(t) +N (0, σ2
bw) (39)

In addition, the gyro measurement was corrupted with a
white noise with standard deviation σω = 0.001·I . The noise
of the bearing vector measurements were σu = 0.00314 · I .
The bearing vector noise was orthogonal to the bearing
vector measurement ubδi = S(ubδi)wu, where the noise wu

was a white noise vector wu = N (0,σ2
u). As the bearing

vector is normalized the noise becomes nonlinear. The
gravity was utilized as a reference vector

rn1 = [0, 0, −1]>, rb1 = f imu/‖f imu‖ (40)

where the IMU measures the specific force, f imu =
R>nb(an−gn+wf ) and wf = N (0, Iσ2

f ) with σf = 0.002.
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Fig. 5: The height estimate derived from the inverse range estimates
compared to the truth.
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Fig. 6: The attitude estimates with the estimates from the complimentary
filter from the simulations in degrees.
For the attitude estimate the GNSS and camera velocity were
also used as a reference vector.

rn2 = (vn +wv)/‖vn +wv‖ (41)

rb2 = (vbcam +wvc)/‖vbcam +wvc‖ (42)

where vbcam is the camera velocity, and wv, wvc is the
GNSS and camera velocity noise vector with σv = 0.05 and
σvc = 0.05. As a reference attitude observer we used the
complimentary filter [15], with the same reference vectors.

The velocity was 1 [m/s] set to zero four times at t =
33.3, 80.0, 126.7 and 173.3 for 13.2 seconds. This to see
how the observer setups reacted to having zero velocity.
The gains used for the simulation was ki = 2

√
0.9, kr =

kdi = 0.9,k1b = 1
m6,k2b = 1 and were found through a

combination of the tuning preformed in [23], and trial and
error. From Figure 4, it can be seen that the observers are
able to estimate the gyro bias quite accurately. In addition,
it can be seen how the proposed observer is able handle
zero velocity compared to the straight-forward velocity-
based observer. Another benefit is also seen for the cascaded
system, since the bias estimation is independent of the
attitude estimate, and the error in the attitude does not
affect the gyro bias estimation. It can also be seen how
this affects the yaw estimates in Figure 6. In Figure 5, the
height estimate acquired from the observer inverse range
estimates are shown. For this setup, the height estimate is
found by averaging the projected length estimates onto the



vertical unit vector ĥ = 1
n(C)

∑
i∈C

1
d̂
(rb)>l̂

b

i where the set C

contains the indices of the estimates that are regarded as
converged, meaning that the bearing error σui has become
sufficiently small. This is also a reason why there is no
height estimate at the beginning, as it takes some time for the
bearing estimates to converge. The cardinality of the set C is
denoted n(C). The estimate can hence be used to have a more
accurate height estimate, without having to use pressure or
laser altimeter together with the GNSS. From the simulations
we see that the camera can both replace a pressure sensor
and a magnetometer, assuming that a sufficient number of
landmarks are detected.

V. EXPERIMENTAL VALIDATION

The experimental validation was carried out by using
an octocopter flying in a circle with an autopilot for 150
seconds. The data set was recorded from a payload consisting
of a SenTiBoard, a uBlox GNSS receiver and a STIM300
tactical grade MEMS IMU [24]. The SenTiBoard was also
connected to the flash signal of a uEye UI-3140CP camera,
time stamping the flash signal from the camera such that
accurate timing of the images were available. The sensor
data and images were stored using an Odroid UX4. Before
the flight, the IMU, camera and temporal calibration was
performed using the Kalibr toolbox [25], [26], finding IMU
biases, time delay and coordinate transformation between the
camera and the IMU. In the data set used in this article, the
estimated image capture time delay was less than 3 ms, and
as the timing of the image was measured by flash signal it
was independent of the kernel load and thus assumed to be
constant. As the IMU was tactical grade, the accelerometer
and gyro biases were assumed constant for the duration of
the experiment and respectively ba = [0.03, 0.005, 0.085]>

[m/s2] and bω = [0.007, −0.0002, 0.0017]> [rad/s]. The
objective of the experiment was to verify that the observer
could estimate a gyro bias, we added a synthetic gyro-bias
following (39) with initial value b̌ω = [0.1, 0.4, −0.25]>.
Thus we could verify that the gyro bias estimated by the ob-
server was equal to the synthetic one. The tuning parameters
used in the experiments were ki = 2, kr =, kdi = 1,k1b =
1
m12,k2b = 2.

As the experiments were performed while flying over
flat fields, homography transformation between two images
were used to acquire the camera velocity needed. For more
detail on how this is done see [27]. For feature extrac-
tion we used Harris Min Eigen features [28] which was
tracked with the Kanade-Lucas-Tomasi feature tracker [29].
The homography matrix was found with a 4-point direct
linear transformation (DLT) [30] and outlier rejection was
done using RANSAC. The velocity was extracted from the
homography using techniques based on [31], this provided
the camera velocity vchom = vc

h , which is divided by the
height over the plane. The GNSS velocity was then used
to scale the velocity so that the body velocity used in the
observer was v̂b = Rbc

vc
hom

‖vc
hom‖
‖vngnss‖ , where the lever

arm effects were neglected, and Rbc is the rotation from

Fig. 7: The trajectory of the UAV with a downward looking camera. The
yellow arrows are the bearing measurements scaled according to the inverse
range estimates.
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Fig. 8: The gyro bias estimation preformed by the novel observer and
complimentary filter on experimental data.
camera to IMU. The trajectory of the position can be seen in
Figure 7, where the number of bearing measurements varied
between 317 to 410. From the plots, it is evident that the
observer is also able to converge with experimental data. The
gyro bias estimate seems to achieve acceptable accuracy, and
the height estimate gives a reasonable estimate for the octo-
copter altitude over the ground. As in the simulations there
seems to be some bias in the estimates. Nevertheless, this
shows that applying the proposed observer together with a
camera can give robust gyro bias estimation as well as a
height estimate.

VI. CONCLUSION

The article introduces a nonlinear observer that combines
velocity, gyro and bearing measurements from landmarks
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Fig. 9: The height estimate derived from the inverted range estimates
compared with the post process kinematic (PPK) height estimate.
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cascade attitude setup (Est).
to estimate the distance to the landmarks as well as the
gyro-bias and attitude. It was proven to be semi-globally
asymptotically stable and exponentially stable in the large if
a persistence of excitation condition holds. The observer was
demonstrated in simulations and on experimental data, where
it was shown how a camera could replace a magnetometer
and altimeter.

It should also be noted that if GNSS is unavailable, the
body velocity could be acquired with an altimeter or laser
scanner which could be used for scaling the camera velocity,
and thus the observer could be used for more accurate and
drift free position estimates, similar to what was shown in
[12]. If in addition it is combined with optimization [32] and
an image to image loop closing system [13], the bearing only
SLAM with semi global stability properties can be achieved.
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